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TWO THEORIES OF PROOF

JOHN CORCORAN

There was, until very lately, a special difficulty in the principles
of mathematics. It seemed plain that mathematics consists of de-
ductions, and yet the orthodox accounts of deduction were largely

or wholly inapplicable to existing mathematics. Not only the
Aristotelian syllogistic theory, but also the modern doctrines of
Symbolic Logic, were either theoretically inadequate to mathematical
reasoning, or at any rate required such artificial forms of state-
ment that they could not be practically applied. ~-Russell

This part of the series has a dual purpose. In the first place we will
discuss two kinds of theories of proof. The first kind will be called a
theory of linear proof. The second has been called a theory of supposi-
tional proof. The term "natural deduction" has often and correctly been
used to refer to the second kind of theory, but I shall not do so here
because many of the theories so-called are not of the second kind--they
must be thought of either as disguised linear theories or theories of a
third kind (see postscript below). The second purpose of this part is
to develop some of the main ideas needed in constructing a comprehensive i
theory of proof. The reason for choosing the linear and suppositional i
theories for this purpose is because the linear theory includes only '
rules of a very simple nature, and the suppositional theory can be seen
as the result of making the linear theory more comprehensive.

1. THEORIES OF LINEAR PROOF

A theory of linear proof is a theory of proof which holds that proofs gave
a certain simple structure which can be metaphorically called 1inear.2

As will be obvious shortly, such theories can be quite plausible a priori
but, of course, the comprehensiveness of a theory of proof is an empirical

25

26A system of logic need not contain a theory of proof. There are
other purposes for constructing such systems. For example, a logician
may be concerned to codify comsequences of sets of premises without even
considering the problem of describing proofs per se. A system designed
for such a purpose was called a consequence system in Corcoran (1969). I
Many consequence systems are systems of formal deductions which would be
theories of linear proof were they put forth as theories of proof--which
they usually are not. 207
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See par. 2 of the second article in this series.




208 Corcoran

matter. As usual, what is plausible a priori turns out to be a gross
oversimplification of reality.

Because theories of linear proof are simple and (often) plausible it is
perhaps remarkable that the first theory of proof was actually supposi-
tional in nature {cf. my "A Mathematical Model of Aristotle's Logic").
However, theories of linear proof are quite old,tracing their common
history at least as far back as Boole. Indeed, Boole (pp. 142, 143) was
so clear about his own theory that his description of it can still serve
as a concise introduction to the general topic.

211 demonstration essentially consists of the deduction of
conclusions from premises,=--a conclusion once deduced being
irself admissible as a premiss. And it is in this order that
reasoning usually proceeds. Certain premises are laid down,
either from experience or from testimony, or from some other
extralogical source; from these are deduced conclusions which
simply or combined with other premises derived from the same
class of sources as those first given, serve as bases for
further inference, until the chain of argument is completed.
At any stage of the process we may find ourselves dealing
with two sorts of data, viz., such as have been deduced in
the previous course of argument from given data, and such as
have not before appeared. A very slight examination of any
actual specimen of demonstrative reasoning will show that
such are the materials of its composition and such the order
of its progress.

In more modern terminology we can say that a linear proof of a conclusion
¢ from a set P of premises is a sequence of lines, beginning with a list
of all or some of the premises and such that each subsequent line is
derived immediately from premises and/or previously proved lines and,
finally, ending with ¢. In other words a linear proof of ¢ from P is
written linearly in a column, say, beginning with the premises P at the
top and proceeding step-by-step through intermediate conclusions all
derived from P and ending with ¢ the final conclusion. This is the
idea; in practice things are a little more complicated, but the follow-
ing general statement always holds--in a linear proof from premises P to
conclusion ¢ each sentence in the proof is a logical consequence of P.
(The reader should note that the concept of logical consequence as de-
fined above is not relative to any system of proof.)

There are threce minor modifications to be made to the above loose account
of linear proofs. The first is that for clarity the premises shall be
marked as such to make it clear that they are not asserted to follow

from_ any seutences whicl they may happen to follow. The second is that
in sowme systems premises may be written at any place in the proof, not
just at the top. Finally, in addition to assumptions and inferences,

2%ne motivation for allowing new premises to be intrcduced in the
course of a linear prcof may be the observation that cne often tries to
get a conclusion from only some of the available premises but then cis-
covers in rhe course of constructing the prcof that others are needec.
From the present point of view this cbservation is irrelevant and taking
cognizance of it may lead to an incorrect theory. Our purpose is net
to describe how paths of reasoning emerge in thought but rather to
describe how they are described once foumd. It seems to be a general

e et o g e+



Two Theories of Proof 209

properly so-called, all linear systems of proof permit the writing of
so-called logical axioms at any point in a proof. For example, in writ-
ing proofs in algebra we often have occasion to write logical identities,
t = t, in proofs. Corresponding to this we would have a logical axiom
rule which permits any proof to be lengthened by addition of a logical
identity. For another example, in setting up a '"proof by cases' we often
write in proof lines of the form 'p or not-p' where p is a sentential
formula. Corresponding to this we would have a logical axiom rule which
permits any proof to be lengthened by addition of "excluded middle for- 28
mulas." These two are probably the most prominent logical axioms rules.

(y‘ ae L-‘-‘<¢£.¢¢Z ltc/t‘!b¢<(

Below we will mark premises with a plus sign. Thus '+p' will be read
“assume p as a premise' or simply "assume p.’

(I‘iot&tfvam‘(«Aﬁza e VL;h4/ ij‘

As our example of a theory of linear proof we will give a (non-comprehen~
sive) theory of the proofs found in the abstract algebra of equations=--

the so-called equational algebras wherein all sentences are either equa-
tions or universal generalizations of equations. Following the statement
of the rules we will give a proof of the theorem (x)(x=x"""") fevery cle-
ment is identical to the inverse of its own inverse! from the group axioms.

Rule Set A

Initial String Rule (Kernel Rule)

ey P/ 15 awrasteca

(1) Premises: A finite sequence of sentences each affixed by + is
a proof.

Production Rules

(2) TIdentity Law: any proof may be lengthened by addition of any
logical identity, (t = t) where t is a constant term.

(3) Substitution of "Equals'': any proof containing (t = s) and
also p may be lengthened by adding p' where p' is the result
of replacing occurrences of t in p by s and/or vice versa.

(4) Instances: any proof containing (v)p(v) may be lengthened by
adding p(t)--where v is a variable and t is a term composed of
constants. 30

(5) Generalizations: any proof containing p(d), ¢ a dummy”" con-
stant, may be lengthened by addition of (v)p(v) provided that
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fact that in actual proofs where premises are made explicit at all tuey
are put down at the beginning. If this is so then any theory which fails
to take account of it is, strictly speakiang, incorrect regardless of how
valid it may be on other grounds.

2&Me way of characterizing the difference between normal reasoning
and the so-called Hilbert-type systems of deduction is to note that in
the former there are few logical axicms rules but many inference rules
whereas in the latter there are commonly many logical axioms rules but
few (usually one or two) inference rules. {Cf. Thomason, chapters III,
1y, V, esp. Pp- 62-63).

29 Note that for purely heuristic reasons we have tacitly been usiug
the term 'prooi' in such a way that a partial proof is counted as a proof,
thus a finished proof will be a '"proof' which satisfies some additional
conditions. This issue will be discussed in more detail below. See esp-
ecially, the discussion of "developments" of axiomatic theories in Sec-
tion 5.
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210 Corcoran

no assumptions concern d (i.e., provided d is "arbitrary').
(6) Repetition: any proof may be lengthened by repeating any
previous line dropping a '+' if it occurs.

Obviously,each of the above rules corresponds exactly to a rule commonly
used in proofs in algebra. Notice however that there are commonly used
rules which do not appear in the list. For example,the only way of instan~
tiating here is by rule &4 and this permits the elimination of quantifiers
only one per application. This will be an annoying deficiency. Similarly
for genmeralizations. Another deficiency is that substitutions can be done
using only one equation at a time. In the proof below we have starred

the lines that would remain were the deficiencies eliminated.

+ (x) (¥)(2) (x.(y.2) = (x.y).2) *
+ (x)(x.1 = x) *
+ (x)(l.x = x) *
+ (x) ((x.x71) = 1) *
+ ) (xL x) = 1) *

(9 (z)(a.(y.2) = (a.y).2)
(z)(a.(a"l.z) = (a.a”1).2)
(a.(a"l.a"1"1) = (a.a"1).a"1-1) *
(al.a"l"1y =1 *

a.l = (a.a"1l),a-1-1

a.a”l =1 *
a.1=1.a71°1 *
a.l = a *
a=1l.a1"1

PP I *
a=al-l *
() (x = x7171) *

Having a more powerful instantiating rule would permit going from the
associative law directly to the first unquantified line--skipping two
lines. The other two unstarred lines would be skipped by doing two sub-
stitutions at a time.

Incidentally,the above rule set (or discourse grammar) describes proofs--

30yse of the term 'dummy' is redundant here; a dummy constant is
simply one which does not occur in the premises, Usually the constants
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Two Theories of Proof 211

but it does not make explicit what "a proof of ¢ from P" is. Naturally,
we define a proof to be a_proof of ¢ from P if ¢ is the last line of the
proof and all premises in the proof are in P. The above example is a
proof of (x)(x = x=1-1) from the group axioms.

As the rule set is being used here, the (metalinguistic) symbols p, p(t),
p(v), and p(d) refer to formulas in the language of groups. Thus this 3
set of rules presupposed a sentential grammar for the language of groups.
However, if we interpreted the symbols as referring to formulas in the
arithmetic language, then we could use Rule Set A for the theory of proof
needed to complete the Partial Grammar of the Arithmetic Language given
at the end of the first article. This would actually be a bit silly for
two reasons: first, the Partial Grammar has no quantifiers so rules 6 and
7 would never apply; second, the Partial Grammar does have the logical
connectives whereas none of the rules permit any inferences involving con-
nectives. The point, therefore, is not that the Partial Grammar would be
finished but rather that the reader can now see what a finished grammar
would be like. The respective natures of an alphabet, a rule set for
words, a rule set for phrasesyand a rule set for sentences are already
clear from the Partial Grammar. Now we have also seen a discourse gram-
mar which describes or produces a certain set of proofs. This discourse
grammar, Rule Set A, is a theory of proof.

Rule Set A is obviously a correct theory of proof--each of its rules cor-
responds exactly to (or is) an actual rule of inference that we have all
used when doing proofs in elementary group theory. Rule Set A is obviously
not comprehensive in the sense that I have defined the term because, e.g.,
it lacks the complex rules alluded to above which permit the unstarred
lines to be omitted. However, it is complete in a certain sense.

occurring in premises are given special symbolization: 'O,' '1,' 'm,'
‘e, etc.; whereas dummies are indicated by 'a,' 'b,' 'c,’ 'd,' or by
variables subscripted with a '0,' e.g., xg- Incidentally, Thomason
(chapter IX, esp. p. 183) does not class his rule of generalization with
the immediate inference rules. His rule of generalization 1is sound bu:,
in my opinion, it does not correspond to actual reasoning as closely as
does the present rule.

31The possibility of obtaining a correct theory of (symbolic) proof
depends on having a 'correct' symbolic sentential grammar to begin with.
Indeed, finding "natural reasoning' blocked by restrictions dictated by
peculiarities of the sentential grammar can indicate need for revision of
the latter. For example, in the otherwise correct theory of symbolic
proof given by Resnik (1970),every proof of Fyy from (x)(y)Fxy involves
getting a generalization of Fyy as an intermediate step because of the
need to avoid "capturing.' Similar situations are common. However, it
is possible to design the symbolic language in such a way as to make
"capturing" grammatically impossible. This makes it unnecessary to add
special restrictions on the rules. Once the symbolic language is thus
revised,as in Lemmon (1965),as an unexpected advantage one finds that
intrinsically awkward symbolic sentences are eliminated without loss of
expressive power.

324 theory of proof for a particular language is called equationally
complete when the following holds: given any set of equational sentences
(either equations properly so-called or universal generalizations there=~
of) and any single equational sentence c, if ¢ is a logical consequence
of P, then there is a proof of ¢ from P constructible by the rules of
the theory. Rule Set A 1is equationally cqgplete. This fact will be
plausible to any reader who understands it. To the other readers the
following remarks are addressed. Let P be the axioms for groups. Let
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In any theory of proof which describes or produces only linear proofs, it
is possible to give a very simple description of all proofs from a parti-
cular set P of premises to a particular conclusion, c¢. Given a definition
of the logical axioms and the rules one can then say: a proof of P from

c is a finite sequence of lines ending with c, each subsequent line of
which either is an assumption in P or is a logical axiom or is obtained
from previous lines by a rule.

The underlined expression (or rather an even simpler version of it) has
become a slogan and, sometimes, a battlecry. One eminent logician re-
lated to me that when he first heard this slogan presented he was struck
by its simplicity and truth and was moved to say to himself, "By God,

that is what proofs are!"

If one takes the slogan as a rough description of all proofs, then one is
led (1) to distinguish three kinds of rules of inference and (2) to be-
lieve that all rules of inference must be of one of the three kinds. The
first kind contains only the rule of assumption--essentially to the effect
that an assumption may be written to start (or to lengthen) any proof
provided that it is marked as an assumption. The second kind contains all
logical axiom rules--to the effect that a logical axiom may be written to
lengthen any proof. The third kind contains all immediate inference rules;
rules which state that any proof containing one or two (or some fixed
finite number of) sentences of certain specified forms may be lengthened
by adding a sentence in another form.

2. IMMEDIATE RULES AND SUBSIDIARY PROOF RULES

It so happens that by surveying the proofs in the mathematical literature
(or by looking at our own proofs) we find many rules that are not of any
of the above three kinds. Indeed, if all rules were of the three above
kinds then there would be no room in mathematical reasoning for making
subsidiary assumptions. Much of the most elegant and enlightening reason-
ing in mathematics turns on the ability to imagine good subsidiary assump-
tions. Below are some examples. (1) In proving that the square root of
two is not rational,we assume, in addition to the axioms of arith?ﬁfic,
the subsidiary assumption that the square root of two is rationals (2)
In proving the right cancellation law )M () (x.z = y.z)Dx =y}
from the group axioms,we assume, in addition to the group axioms, that
a.d = b.d where a, b and d are arbitrarily chosen but fixed elements of
the group. (3) Whenever we give proofs by cases after we have proved
that there are two cases, say, we assume that the first case holds and
then prove our theorem in that case, then we assume the second case and
prove our theorem in that case--finally we conclude that the theorem
holds in general.... In each of these three examples the proof involves
making subsidiary assumptions, assumptions other than those from which
the conclusion is shown to follow.

¢ be any equational sentence written in the langunge of groups and
which is true in all groups. ¢, then, is a logical consequeuce of P;
since (1) a group is by definition any mathematical system in which the
axiloms of groups are true and (2) to say that ¢ is a logical consequence
of P is to say that ¢ is true in any mathematical system which makes all
of the sentences in P true. The above-mentioned completeness condition
implies, then, that by using Rule Set A one can construct a proof start-
ing with P as assumptions (as in the example) and ending with ¢. In faceg,
such a proof can be gotten by lengthening the one given as a sample.
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At some point in each of these examples an inference is made not from
certain previous lines in a proof but rather from (or on the basis of) a
certain part of the proof. In other words, there are rules which can be
stated as follows: any proof containing a subsidiary proof of a certain
form may be extended by adding p. For example, in reductio reasoning

we are following the rule: any proof containing a subsidiary proof be-
ginning with p and containing a contradiction may be extended by adding
~p (not-p).

A subsidiary proof begins with a subsidiary assumption, a 'mew' assump-
tion made for purposes of reasoning. The subsidiary assumption is marked
with a 'beginning" corner bracket 'V'. Thus 'pp' may be read "for pur-
poses of reasoning suppose p' or simply "suppose p." When the subsidiary
reasoning is completed one adds a 'closing' or '"ending'' corner bracket

'L' to the last line. Each time an ending bracket is added it is matched

with the last beginning bracket not yet matched. The latter is always on
the line containing the supposition which begins the subsidiary proof in
question. Thus a subsidiary proof may be defined as a section of a proof
enclosed in matching brackets. The details, if not already clear, will be
so after considering a couple of examples.

Two paragraphs back we stated the reductio rule. We now give as an ex-

ample an indirect (reductio) proof of ~(x) ~ (x = x'l) [not every element
is different from its own inverse] from the group axioms.

+ () () (2) ((x.(y.2)) = ((x.y).2))

+  (x)(x.1 = x)
+ (x)(l.x = x)
4 (x)(x.x'1 =1)

+ (x)(x-1 WX

n
—
~

F o~ (=x"h

~(1 = 171)
-1 =
L7 =1 subsidiary
-1 . -1
1.1 1 proof
1=t
~(x) ~ (x = x-l)

The subsidiary proof is enclosed in matching brackets. The contradiction
in question is 'between' the starred lines. Notice that the conclusion
is inferred to follow from tue sroup axioms (not from all assumptiocns) om

The equational completencss of Rule Set A was proved several years
aeo Ly Jan Kalicki and Dana Scott (1955).
33vor a wide-ranging discussion of this particular proof in the

gereral context of a concern with the history and the soundness of in-
direct rcasorning sce Cauman (1966).




214 Corcoran

the basis of the subsidiary proof. Once a subsidiary proof is marked off
by an ending bracket (L), it must be regarded as an isolated, separate
unit in the proof. In particular, one may no longer apply any of the
immediate inference rules to lines inside of the subsidiary proof. For
example, we could not write down as a next line ~(1 = 1-1) by repetition
because this does not follow from only the group axioms.

Let us use the phrase 'subsidiary proof rule' to refer to rules which
permit the lengthening of a proof on the basis of a subsidiary proof.

Of course, the most notorious of subsidiary proof rules is the rule of
conditionalization which permits inference of 'if p then q' on the basis
of a subsidiary proof beginning with p and ending with q. We will give
a proof of the right cancellation law from the group axioms to illustrate
this. (In the proofs below we do not necessarily follow Rule Set A but
use other commonly known rules as well.)

+ ) () (2) ((x.(y.2)) = ({x.y).2))

+ (x)(x.1 =

f
»
~

+ (x)(l.x = x)
+ (x)(::.x-l = 1)
+ (x)(x'l.x =1)

[ a.d =b.d

(b.d).d7} Subsidiary
Proof

(a.d).a’t
a.(d.a’l) = b.(d.a"h)
L a=5b
(a.d =b.d) > (a = V)
() @)W(x.z = y.2)ox = y)
It will be valuable to notice that in proofs by cases morc than one sub-
sidiary proof is needed--one for each case. Actually, all proofs~by-
cases-rules are 'combinations'' of the two-case rule stated as follows:
any proof containing 'cl or c2', together with two subsidiary proofs, one
veginning with ¢y the other beginning with c, both ending with ¢, can be
extended by adding ¢. To illustrate this we will give a proof of the
two-sided cancellation law. The proof will involve one application of
the two-case rule inside of a subsidiary proof on which conditionaliza-
tion is used.
o) (y)(2)((x.(y.2)) = ((x.y).2))
(%) (x.1 = x)
+ (x) (l.x = x)
) (xexTh =)

+ (x) (x'l.x = 1)

B A T
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Two Theories of Proof 215

r?h.d = b.d) v (d.a = d.b)) =c, or ¢,

[Ta.d = b.d ;
-1 - -1 1
(a.d).d”* = (b.d)d first subsidiary |
) proof {
a.(d.d’Y) = b.(@d.a’h 2
:
L a=b .
{
r_;.a =d.b '
. |.
d"*.(d.a) = d'l.(d.b) secondary sub=- i
-1 -1 sidiary .
(d"*.d).a = (d"".d).b proof )
5
L_ a=b !

L_ a=b>b ~cases rule*
((a.d =b.d) v (d.a =d.b))> a=b -conditionaliza- |
tion¥*% :

(x) (¥)(2) (((x.2=y.z)v(z.x=2.¥)) D x=y)

The notations on the right are designed to help the reader see exactly
where and how the two subsidiary proof rules are applied (* and **).

Before we proceed to a discussion of theories of suppositional proof
(theories involving subsidiary proof rules), the reader should note

that the above three proofs are not linear because the subsidiary assump- ]
tions are not among the premises from which the proof proceeds and neither H
are they consequences of the premises. That is, for example, in the

proof of the cancellation law from the group axioms there are sentences

which are not logical consequences of the group axioms. Thus in these

proofs we do not reason in a linear fashion--we take "side trips."

3. THEORIES OF SUPPOSITIONAL PROOF :

The defining characteristic of a theory of suppositional proof is that
the rules permit the use of subsidiary assumptions which are later ‘dis~
charged' and are not among the assumptions from which the final conclu-
sion is shown to follow. These rules are subsidiary proof rules which
countenance an inference not from previous lines but rather on the basis
of a subsidiary proof. Such rules are not unusual but rather they com=
prise the essence of clear, elegant mathematical reasoning. Indeed, 1
think the mathematically experienced reader will agree that linear procfs
have a very computational flavor to them,whereas suppositional proofs
seem to cmbody more creative and enlightening reasoning.

There arc a few questions concerning the formulation of suppositional
rules which might have been annoying some readers. I will digress slight-

1y at this point to take up some of them.

In tie first place we must give an explicit rule for adding subsidiary
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assumptions: yxule of supposition--any proof can be lengthened by addition
of a formula prefixed by a beginning bracket. Secondly the following

rule explicitly accounts for introduction of closing brackets: closing
rule--any proof containing more beginning brackets than ending.brackets
can be modified by affixing a closing bracket to its last line. The idea
is that each supposition line, rp, starts a subsidiary proof and that

each subsidiary proof must start with the last supposition line not
already a part of another subsidiary proof. Each time an ending bracket
is put into a proof there is exactly one beginnin%dunckec with which to
match it--namely the last one not already matched:

A subproof of a proof is a sequence of lines beginning and ending with
matched brackets. An occurrence of a sentence is inactive in a proof if
it occurs within a subproof. An occurrence is active if not inactive.

A sentence is active in a proof if it has an active occurrence therein.

A subproof occurrence in a proof is inactive if it occurs within another
subproof. An occurrence of a subproof is active if not inactive. A
subproof is active in a proof if it has an active occurrence in the proof.

All rules must be stated so that they apply only to sentences and sub-
proofs which are active.

A given proof is a proof of its last line (if active) from its set of
active assumptions (premises plus active suppositions). Now we can
state two important general principles for suppositional proofs.

Let p be a given line of a suppositional proof. (1) The sequence of
lines up to and including p is itself a proof. Let us call this the
partial proof ending with p. (2) 1In any suppositional proof, cach given
line p is a logical consequence of the active assumptions of the partial
proof ending with p. (If p is prefixed by ar, thel counts as in the
partial proof--if by i the{ does not count as in the subproof).

Now we can define a finished proof to be one which satisfies the follow-
ing two conditions: first, it contains no active subsidiary assumptions;
second, it ends with an active sentence. The first condition guarantees
that any reasoning for purposes of which a supposition has been made is
completed. The second condition allows a subsidiary proof rule to be
applied after the last subsidiary proof has been completed. This defini-~
tion includes every proof that one would want to count as finished and
excludes most unfinished proofs,but it still counts as 'finished' cer-
tain proofs which one would not wish to consider as such. A more ade-
quate definition would involve intricacies undesirable in an article of
this sort (but sce below for an easy improvement).

It is obvious that the framcwork of a suppositi%ﬂfl theory is much mere
adequate for chavacterizing mathematical proofs than is the framevork

of a lincar theory--even thwough arything that can be proved in a jiven
suppositional theory will also admit of proof in some lircar theory.

In other words, we are not contrasting the abstract pewer of such theories
ut rather their relative adequaciecs in characterizing tne proeis ici
we actually write. Given the advantaje of suppositional theories
ask: are there other kinds of rules of proof which could bhe adde

}“Proofs in suppositional theories have the abstract form of nest
seructurcs i the sense of Smullyan (1965).

551n particular, there are many proofs which cannn* he accounted
for except in a suppositional theory.
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which would constitute an even more adequate framework? Let us put this
question another way. Besides the premises rule and the closing rule we
have seen four kinds of rules of inference: (1) assumption rules, (2)
logical axiom rules, (3) immediate inference rules and (&) subsidiary
proof rules. Are there other kinds of rules which are actually employed
in writing of proofs?

The most obvious kind of rule to suggest adding is a rule that permits
the writing of ''goals.'" Frequently when we are writing a proof, after
some assumptions (premises and/or suppositions) have been entered, we
indicate our goal by writing, for example, 'we want to show p." This is
actually a very handy device which helps convey the reasoning to be ex-
pressed in the proof. Since the purpose of proofs is to express reason-
ing we should certainly consider such a rule. ‘e could state it: Any
proof may be lengthened by aﬂdi%g ?p. The question mark in this context
could be read ''to prove," say.3 e would then have to define all occurr-
ences of ?7p as inactive because otherwise we would be applying immediate
rules to what we were trying to prove--thus begging the question.

Now let us consider another important kind of rule. We have actually
given an example of this kind of rule, but we did not classify it. Notice
that all of the above kinds of rules apply only to a part of a proof to
which they apply, i.e., it is usually unnecessary to look at each line in
the whole proof in order to apply any of the above four kinds of rules--
supposition does not require looking at any lines, the same for logical
axiom rules, immediate inference rules involve only fixed finite numbers
of lines, subsidiary proof rules involve perhaps a few subsidiary proofs
plus perhaps a few active lines. The rule of generalization, however,
requires looking at a particular line p(d) and then checking through the
whoie proof to determine that nothing has been assumed about d--i.e.,
that d is indeed arbitrary ('d' is dummy). Such rules we call global
immediate rules. Thus, the classification of linear rules above was
inadequate.

In addition there are subsidiary rules which involve reference to the
entire proof to which they are applied. The most prominent example of a
slobal subsidiary rule is the rule that is generally used in reasoning
from an existentially quantified statement. For example, suppose that
we have assumed the right cancellation law in a proof and we are aiming
to prove (3x)(y)(y.x=x) = (x)(x=x"'). We assume the antecedent Gax)(y)
(y.x=x) and we say 'let x be such an object.” ("Let" is a cure sign of
an assumption.) We are assuming that xg is an "arbitrary object'' satis-
fyving the condition (y)(y.xg = xg)- We reason then of an (genuinely)
arbitrary b that b.xg = xg and that b “.xg5 = xg. Then, usin% the cancel-
lation law, infer b = b=1. Since b is arbitrary, (x)(x = x~1). Now we

say: "Since xqg was arbitrary and (x)(x = x~1) does not depend on xpythe

36ihis rule imay profitably be compared with a similar device of
Kalish and Montague (pp. 14ff) which involves writing 'show p' to indicate
a goal and which reguires the ‘show’ to be crossed out once "the goal has
been reached.' 4s uscful and valid as this device surely is, it is wot
correct in our sense because it violates the principle that every sub-
proof of a (parctial) proof is itself a (partial) proof. Trhe latter is a
rough statement which corresponds to the apparent facts that we do not
alter previously written (partial) proofs and that we read them 'top to
hottom'" checking each line as encountered. The Kalish-Montague device
may correspond better to a description of how proofs "emerge in thought"
wiich, of course, is not our goal.
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conclusion follows from the original assumption.' This corresponds, in
the below formalized version, to taking (x)(x = x~1) out of the subsidiary
proof and making it active [starred linel.
+ (%) (y) (2)(x-25y.2) D x=y)
23 () (y.x=x) > (x) (x=x"1)
f@x) (v) (y.x=x)

Qy)(y.x0=x0) "let xg be such an object”

b.xg = xg

(b.xo = b-l.xo):>b = b-l (cancellation law)

L(x) (x=x"1)
L ) x=x"1) *
@) () (yox=x) 5 () =1

It might be worthwhile to do another example using the above rule. We
will prove (y)((3x)(Dx&Hyx) = (3z)(Az&Hyz)) from (x)(Dx > Ax).

+ (x)(Dx > Ax)
[@x) (Dx&Hbx)
" (Da&Hba) "let a be such an object"
Da
Da > Aa
Aa
Hba
Aa & Hba
{32) (Az&Hbz)
L (3z) (Az&ibz) %*
(3%) (Dx&lbx) = (37) (As&lbz)
(y) ((3x) (Dx&Hyx) > (@z)(Az&iyz))

The rule just exempliffed could be called 'existential instantiation"
because it involves 'Instantiating' as existential statement to begin the
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subsidiary proof.

Of ten in writing a proof after a pair of contradictions have been proved
(made active) we write 'a contradiction' and it is on the basis of that
notation that we apply the reductio rule. Thus it is -necessary (for
comprehensiveness) to add a special symbol, say X, to the language of
proofs. 7 "X can be read 'A contradition.' The rule of contradiction
introduction is the following: any proof which contains active sentences
p and not-p may be lengthened by addition of X. Given this we can now
state two new reductio rules: any proof which ends in a subsidiary
proof beginning p (respectively ~p) and ending with X can be lengthened
by addition of ~p (respectively p).

The usual proof of Russell's theorem [no set contains exactly the sets
not containing themselves] involves all three of the rules just mentioned
together with the subsidiary proof rule of "existential instantiation.”
It should be mentioned that Russell's theorem is proved without the use
of premises--it is proved using logic alone. For this reason it is often
counted as a ''law of logic''~-indeed, its denial implies a contradiction.

25 My 2 Tve o5 we Lequal 2uvew

n .
7~(3x) (y) (xey 2 ~(yey)) et euen Tueos Lo cweduce bnt
r x &v.\nsp.;'.séun M{N‘Uu;.'& worwete U
(3x) (y) (xey = ~(yey)) Y bwac TR Erplist ®awk tle
symbonzate 4.
My (x):;e‘y = ~(yey)) "let X be such an object"

Xgexqy = ~(xogx0)
r;oexo

..xoexo

Lx

“XnpeX

070

X0€X0

L X "but X, was arbitrary"

L x
~(3x)(y) (xey = ~(yey))

Because of limitations of space we merely menticn a class of rules called
definitional rules which actually form a subclass of the global subsi-
diary rules and which, as can be surmised from the name, countenance the
use of nominal definitions within proofs.

As a final question we consider the rature of an axiomatic development
of a mathematical theory. An axiomatic development cf a theory begins
with the axioms. Subsequently the first theorem is proved, then the

37 Linguisticall , this may be a radical move. We are adlling to the
8 y y
"sentences' used in discourses something that does not appear in the
underlying language.
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second, then the third, ete. However, after the first proof the axioms
are not repeated. Moreover, in addition to the axioms, previously proved
theorems are also used as new 'axioms'--but these are generally not re-
written either. One way of characterizing such a development is to say
that it is one long proof and that axioms and previously proved theorems
can be used because they are already active above. There is something ar-
tificial about this characterization--we usually say that a development of
a theory contains many proofs, here we say that it is just one long proof.
It is obvious that there is a level above the level of proofs--a level
containing "axiomatic developments' which, in a sense, are composed of
proofs. This implies that in a development of a theory Epere is struc-
ture which is not reducible to the structure of proofs.) Thus there

are at least two levels of language above the sentential level.

4. SUMMARY OF SUPPOSITIONAL THEORIES

We have seen that linear theories contain four kinds of rules: premises,
logical axiom, immediate inference, and global immediate inference.

Next, we noticed that suppositional theories contain two additional kinds
of rules: subsidiary proof rules and global subsidiary proof rules. It
is important to realize that relative to linear systems both kinds of
subsidiary rules are radical innovations because they countenance infer-
ences not based on previously proved sentences but rather on the basis of
previously performed patterns of reasoning. In addition, we pointed
out that the definitional rules are merely a species of the global sub-
sidiary proof rules.

We explained the concept of an active sentencéK) in a proof and we assert-
ed that the general principle behind suppositional proofs has two parts:
(1) that given a proof and a sentence occurrence p in the proof, the part
of the proof ending with p is also a proof (called the partial proof
ending with p) and (2) each such p is a logical consequence of the active
assumptions of the partial proof ending with p. Given this principle,

the notation for subsidiary proofs, and the classification of the rules,

38 In a development of an axiomatic theory each theorem and each
lemma is a ''main goal' and within the course of deduction of a main goal
one often choses “intermediate goals' in order to focus on the local
direction of the reasoning. Several things follow. The first is that
one needs at least two ''goal indicators,' one for main goals and one for
intermediate goals. One way of handling this is to use a single question
mark to indicate a main goal, two question marks to indicate a conclusion
to be reached in proving a main goal, (perhaps) three guestion marks to
indicate a conclusion to be reached in proving a ‘level-two' goal, etc.
The second is that the notion of a "finished proof' must be modified in
orcer that a proof is counted as finished only if all of its yoals have
been reached in the requirec order. As cach subsequent theorea or lemna
has been reached the entire proof up to that point should be finished
and it may be necessary to have a special symbol to indicate the end of a
finished proof. Indeed many current authors use such symbols. Kelley
(1955) uses a small shaded rectangle whici: he attributes to lHalwmos; Suppes
(1960) uses the traditional 'G.E.D.;' and bean (1966) uses a triple
asterisk. For further discussion of the structure of a dJevelopment of
an axiomatic theory see my "A Mathematical lodel of Ariscotle's syllo-
gistic."

39 For a more detailed discussion see my ''Three Logical theories.'

40 See Section 3 above.

3
E
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anyone having a backq{ound in mathematics is prepared to formulate his
own theory of proof. 1

5. GUMMARY OF THE SERIES

In the interest of accuracy we must admit that the obvious heuristic value
of the notion of a partial proof probably refutes the hypothesis that the
class of discourses has a kernel/transformations structure. The proof
discourses are clearly the 'finished proofs' and it does not seem to be
the case that these have the requisite structure: one does not build up
finished proofs by applying 'matural' transformations to other finished
proofs. Indeed, it seems to be generally the case with discourses that
the beginning of a discourse is not itself a discourse but rather it
seems that the beginning of a discourse makes ''promises' which must be
fulfilled later in order for the discourse to be "finished.' When we

put down some axioms and "a goal' (see above),that proof is not finished
until the goal has been reached, Likewise with discourses, generally.
For example, if someone were to say,''l have called this meeting to give
you my views on the latest crisis;y' and then sat down, he would not have
uttered a complete discourse. There are innumerable similar examples.
The conclusion that the class of discourses fails to have a kernel/trans-
formations structure seems inescapable.

In part I we discussed some fundamental concepts involved in the analysis
of mathematical reasoning. In addition, we introduced the concept of
levels of language and pointed out that a grammar of an entire language
should be composed of several grammars, one at each level. We also made
the point that a proof is a certain kind of discourse which, in turn,
suggested the possibility of a theory of proof--a discourse grammar which
describes the proofs of a language.

In part II we outlined what a theory of proof would be like. We noted
that the grammatical rules used in describing proofs are the rules of in-
ference according to which we write proofs. We discussed the nature of
our knowledge of rules of inference distinguishing weak and strong var-
ieties of such knowledge. Finally, we speculated councerning the utility
of a theory of proof vis-a-vis improvements in mathematical education.

In the course of Part III, we contrasted what has become the traditional
theory with a newer and more adequate theory whose essential features

wvere discovered in the 1920's (Jaskowski). The older theory holds that
mathematical reasoning proceeds from axioms step-by-step to conclusions

an mathematical logic one constructs a precisely defined mathe-
matical analog (Lormal deductive system) of a system of proofs and a pre=-
cise mathematical analog (formal semantic system) corresponding to the
(actual or imagined) system of interpretations associated with the lan-
guage. In this way che philosophical problem of the soundness of a sys-
rem of prools is replaced by a precise mathematical problem. The form of
the wain lemma in a soundness proof for a system of linear proofs is tihis:
for every proof = ihe assumptions of ~ taken together imply each sentence
in =. 1In iy opinion the form of the corresponding lemma for any correct
theory of suppositional proofs is this: for every proof = the active
assumptions of =~ taken together imply each active sentence of m. This
opinion, if correct, will account for the feeling of strangeness encoun-
tercd in trying to construct proofs in the system of Quine's Methods (pp.
159-367).



222 Corcoran

in a strictly linear fashion; i.e., each step in a proof must be a logi-
cal consequence of the axioms. Apparently this view was first systema-
tized by Boole in the nineteenth century. It became the commonly accepted
view until the 1920's when Lukasiewicz pointed out in his seminar that

the theory did not agree with mathematical practice. Jaskowski, who was

a student in the seminar, accepted the project of developing the exact
details of a theory of proof which would take into account the salient
features of mathematical reasoning not accounted for by Boole's theory.
The newer theory is largely the result of Jaskowski's cffort. The older
theory we called linear, the newer suppositional.

We gave several examples of rules and proofs with the intention of supply-
ing enough detail so that the basic ideas can be grasped in a useful way.

6. POSTSCRIPT

The linguist and the logician will doubtless disagree with many of the
above assertions. Several serious oversimplifications have been made--
mostly concerning linguistics. My hope has been to show the overlap and
possible cross-fertilization between, on the linguistic side, the ideas
of Harris and Chomsky and, on the logical side, the ideas of Jaskowski.

I have tried to do this in a way that would be of benefit to persons of
diverse backgrounds. I was trying to write to an audience of mathematics
educators, linguists, mathematicians, psychologists,and logicians.

One final technical point: the so-called natural deduction systems found
in books by Suppes, Lemmon, and Mates are not theories of suppositional
proof. By looking carefully at each of them, one notices that the lines
of their proofs are not sentences, but rather ordered pairs (P,c} where

P is a set of "premises” and ¢ is a single sentence. Moreover, a grammar
to generate their proofs takes the form of a linear theory without any
assumptions. In particular, in each of these systems each proof is a
finite sequence of lines (PI'CI)’ (P,, Cz)’ <v.oy (P, c,) where each sub-
sequent line is either (axiomatically) of the form ({c},c) or else is the
result of applying an immediate rule to a fixed, finite number of pre-
ceding lines. An example of such a rule wculd be: if (P;, d) and (P.,

d > c) are lines in a proof, then the proof can be lengthened by writing
(Py + Pj’ c¢). The idea behind constructing a proof of ¢ from P in these
systems is not to try to deduce ¢ from P, but rather to construct the
ordered pair (P,c) starting initially from ordered pairs ({x}, x) using
rules which when applied to 'valid arguments' produce ''valid arguments.'
In a word, these systems stack-up valid arguments starting with the simple
and building to the complex. As far as either the characterization of
normal reasoning or utility in teaching is concerned, it seems to me that
none of these systems fares well in comparison to a suppositional system
as found in the following: Anderson and Johastone (1963}, Kalish aud
Montague (1964), Leblanc (1966), or Thomason (19/70).
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