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Abstract 

Experts in Artificial Intelligence (AI) development predict that advances in the development of 

intelligent systems and agents will reshape vital areas in our society. Nevertheless, if such an advance 

is not made prudently and critically-reflexively, it can result in negative outcomes for humanity. For 

this reason, several researchers in the area are trying to develop a robust, beneficial, and safe concept 

of AI for the preservation of humanity and the environment. Currently, several of the open problems in 

the field of AI research arise from the difficulty of avoiding unwanted behaviors of intelligent agents 

and systems, and at the same time specifying what we want such systems to do, especially when we 

look for the possibility of intelligent agents acting in several domains over the long term. It is of 

utmost importance that artificial intelligent agents have their values aligned with human values, given 

the fact that we cannot expect an AI to develop human moral values simply because of its intelligence, 

as discussed in the Orthogonality Thesis. Perhaps this difficulty comes from the way we are 

addressing the problem of expressing objectives, values, and ends, using representational cognitive 

methods. A solution to this problem would be the dynamic approach proposed by Dreyfus, whose 

phenomenological philosophy shows that the human experience of being-in-the-world in several 

aspects is not well represented by the symbolic or connectionist cognitive method, especially in 

regards to the question of learning values. A possible approach to this problem would be to use 

theoretical models such as SED (situated embodied dynamics) to address the values learning problem 

in AI. 
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I. Introduction 

Researchers and specialists in Artificial Intelligence (AI) development stipulate that within 10 

years many human activities will be surpassed by machines in terms of efficiency. Several 

aspects of our public policies will need to be modified to accommodate such advances, which 

promise to reshape areas such as transportation, health, economics, military fighting, lifestyle, 

etc. (GRACE et al. 2017). There is also concern about the risks that machines with a high 

level of human or superhuman intelligence may bring to humanity in the coming decades. A 

survey conducted by Müller and Bostrom (2016) consisted of building a questionnaire to 
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assess progress in the field of AI research and prospects for the future, interviewing various 

experts in the field. The questionnaire showed that, on average, there is a     chance that 

high-level (human) machine intelligence will be achieved between 2040 and 2050, reaching a 

    probability by 2075. It is also estimated that this intelligence will exceed human 

performance in 2 years (    chance) to 30 years (    chance) after reaching human 

intelligence levels (MÜLLER; BOSTROM, 2016).  

However, in the same survey,     of respondents classified this development in AI as “bad” 

or “extremely bad” for humanity (MÜLLER; BOSTROM, 2016). As there is no guarantee 

that such systems will be “good” for mankind, we should investigate further the future of 

superintelligence and the risks it poses to the human race. Some several open questions and 

problems need to be solved. How will we remedy the economic impacts of AI to avoid 

negative effects such as mass unemployment (FREY; ORSBORNE, 2013)? How can we 

prevent the self-motivation of jobs from pushing the distribution of income into law of 

disproportionate power among classes, genders, and races (BRYNJOLFSSON; MCAFEE, 

2014)? Can autonomous lethal weapons be built without changing humanitarian rights, and, 

should autonomous weapons be completely banned (DOCHERTY, 2012) (CHURCHILL; 

ULFSTEIN, 2000)? How can we ensure privacy by applying machine learning to confidential 

data such as medical data sources, phone lines, emails, online behavior patterns (ABADI et al. 

2016)? How can we understand what complex AI systems are doing to iteratively classify and 

reconstruct images from neural networks (MORDVINTSEV, OLAH, TYKA, 2015)? 

Some researchers have already created models (ASI-PATH) of how an AI could cause some 

kind of catastrophe, becoming super-intelligent through recursive self-improvement 

(BARRET; BAUM, 2017), something known in the AI literature as a Singularity. Such 

models suggest scenarios where intelligent agents, after obtaining some kind of strategic 

advantage (DSA - decisive strategic advantage or MSA - major strategic advantage), such as 

advances in nanotechnology or robotics, could achieve considerable power of domination 

(BOSTROM; ĆIRKOVIĆ, 2008). The scenarios suggest different types of takeovers by 

artificially intelligent systems, ranging from fast takeoffs, situations where a drastic takeover 

by such systems occurs, to slow takeoffs, where gradually the human race becomes more 

dependent and, to some extent, under the control of AI (SOTALA, 2018). 

The development of an AI ethic presupposes, in fact, the intuitive formulations of Isaac 

Asimov's so-called Three Laws of Robotics (1950), at a time when this theme still seemed 



relegated to the realm of science fiction - recalling that such ethical-moral codifications were 

introduced in a 1942 tale, Runaround: “(1) A robot may not harm a human being or, by 

inaction, allow a human being to be harmed; (2) a robot must obey the orders given by human 

beings, except where such orders conflict with the First Law; (3) a robot must protect its 

existence, provided such protection does not conflict with the First or Second Law. In our 

century, this ethical orientation of not harm mankind was extended not only to robots and 

robotic artifacts but to machines and intelligent devices generally associated with AI 

resources. 

Thus, Shulman (2010, pp. 2) suggests a model that explains in which situations an AI would 

abandon cooperation with the human race and take hostile action, in which an artificial agent 

that believes it has a   probability of being successful, if it initiates aggression, receiving 

some expected utility               , and with a (     ) probability of failing, receiving 

              . If it gives up the aggressive strategy, the agent receives utility 

                  . The AI will rationally initiate the aggression only if: 

                                                 

II. Safety Issues in AI 

Ultimately, there is a consensus in the literature: AI development must be done in a safe, 

beneficial, and robust manner. An article published by Amodei et al. (2016) entitled 

“Concrete Problems in AI Safety” lists several open problems in the field of AI research that 

must be addressed if we are to reap the benefits of AI without compromising our safety. These 

problems are classified into specification and robustness problems and are the current barriers 

to be overcome in the area (LEIKE et al. 2017). 

To better synthesize and develop the content of this study, we will refer briefly only to 

specification errors. Specification errors occur when the utility function of the AI is poorly 

specified by programmers, causing unwanted and even harmful results, even if the learning is 

perfect with explicitly clear data (AMODEI et al. 2016). Some examples of specification 

errors are negative side effects, reward hacking, and safe interruption (corrigibility). 

Negative side effects occur when the maximization of the reward function focuses on 

achieving a goal while the agent ignores important factors in the environment, causing 

potential cross effects. In reward hacking, the AI agent finds a solution to its goal that 



maximizes its reward function, but unexpectedly, perverting the intention of the programmers 

(AMODEI et al. 2016). The Safe Interruption or Corrigibility concerns how we can be able to 

interrupt an agent if it is behaving unexpectedly, and in a certain way, correct the detected 

errors without the agent opposing to interruptions. (SOARES et al. 2015). 

Two theses published by Bostrom, (2012), firstly proposed by Omohundro (2008) in his 

seminal paper “The Basic AI Drives”, point out how these problems can present a risk. The 

Thesis of Instrumental Convergence shows us how a series of self-improvement and 

preservation goals can be pursued by any intelligent agent with a terminal goal. We can 

formulate this thesis as follows: 

Several instrumental objectives can be identified, which are convergent in 

the sense that their attainment would increase the chances of the agent's 

terminal objective, implying that these instrumental objectives are likely to 

be pursued by any intelligent agent (BOSTROM, 2012, p. 6). 

Without careful engineering of these systems, risks with an “intelligence explosion” (the 

exponential increase in the cognitive capacity of the agent) can create agents much more 

powerful than our ability to control them. On the other hand, and correlated to the first thesis, 

the Orthogonality Thesis proposes that intelligence and final objectives have independent and 

orthogonal properties. The hypothesis is argued as follows: 

Intelligence and ultimate goals are orthogonal axes along which possible 

agents can freely vary. In other words, more or less any level of intelligence 

could, in principle, be combined with more or less any final objective 

(BOSTROM, 2012, p. 3). 

The thought behind the orthogonality thesis is analogous to the so-called Hume's Guillotine 

(also known in English as Hume's fork or Hume's law), opposing what is factually and 

empirically verifiable (matters of fact and real existence) to what should be, in rational terms, 

normative and counterfactual (relations of ideas). Hume observed a significant difference 

between descriptive statements and prescriptive or normative statements, and therefore, it 

would not be obvious, self-evident (self-evident) or valid (valid) to derive the latter from the 

former. The undue passage from being (Is) to being (Ought), which would be one of the 

seminal problems of research in metaethics, normative ethics and applied ethics in the 

twentieth century, was noted by the Scottish philosopher in a famous passage in section I of 

part I of his Treatise of Human Nature: 



 In every moral system I have encountered to date, I have always noticed 

that the author follows for some time the common way of reasoning, 

establishing the existence of God, or making observations regarding 

human affairs, when suddenly I am surprised to see that, instead of the 

usual propositional copulations, as it is and is not, I do not find a single 

proposition that is not connected to another by one should or should not. 

This change is imperceptible but of the utmost importance. For as this 

must or must not express a new relationship or affirmation, it would need 

to be noted and explained; at the same time, it would need to give a 

reason for something that seems inconceivable, that is, how this new 

relationship can be deduced from entirely different ones (HUME, 2009, p. 

509). 

 
Just as descriptive, purely factual statements can only bind or imply other descriptive or 

factual statements and never standards, the problems of orthogonality and value alignment 

consist in guaranteeing, if an AGI (artificial general intelligence, that is, a hypothetical 

intelligence of a machine with the capacity to understand or learn any intellectual task that a 

human being can perform) were to develop enough intelligence to have power over the human 

species, that such intelligence would do with human beings only what we would wish or 

accept it to be done. 

In this sense, the problem of alignment is identical to what we see in moral philosophy about 

utilitarianism, in that the maximization of utility by some moral agent can culminate in 

morally repugnant conclusions, including the violation of the rights of others. Although it 

may guarantee the resolution of tasks in computational time (polynomial), the mere efficiency 

or optimization of procedures does not ensure normative universalizability (as it would be, 

moreover, a basic premise of ethical deontological and non-utilitarian models) and may 

eventually conflict with the interests or rights of other people. We should also note that the 

ethics of artificial intelligence is part of the ethics of technology in general and, specifically, 

for robots, learning machines, and other artifacts and artificially intelligent entities. 

In our approach, the AI ethic comprises both robotics (robotic ethics), which is concerned 

with the moral behavior of human beings when designing, building, using and programming 

artificially intelligent beings, and a machine ethic, which is concerned with the moral 

behavior of artificial moral agents themselves. Both bioethics and neuroethics would have 

much to learn, to teach and to interact with the ethics of artificial intelligence, especially 

through the interface of artificial life models, genomic editing and neural networks with the 

ethical-normative challenges of orthogonality, value alignment, and transhumanism, 



integrating the neurobiological, cultural and technological legacies of the homo sapiens 

sapiens. 

Anthropomorphic bias tends to shape the entire spectrum of possible minds and intelligence, 

but this is a mistake, known as the Fallacy of Mind Projection (JAYNES, 2003). On the 

contrary, we consider intelligence as a function of optimizing an agent's ability to achieve 

goals in a wide variety of environments with limited resources (LEGG, 2008). To best 

exemplify this thinking, we use a quote from Dijkstra, (1984), “the question of whether a 

machine can think is as relevant as the question of whether submarines can swim”. The upper 

limit of brute processing for the whole known universe, imposed by the laws of physics, is 

10120 operations in 1090 bits (10120 bits including the degrees of gravitational freedom) 

(LLOYD, 2002). The human level of information processing is 1011 operations per second 

(MORAVEC, 1998). This difference between the human level and the highest possible degree 

of optimization leaves open a wide range of possible levels of superhuman intelligence 

(SOTALA, 2010). In the Kantian sense, reason can be defined as the ability to obtain logical 

inferences or, in a systematic way, the ability to synthesize in unity, through comprehensive 

principles, the concepts provided by the intellect, in that agents use reason to establish and 

pursue ends (goals, purposes, Zwecken), using the rest of nature as a means to their ends. 

Humanity is thus considered as an end in itself and a terminal end of nature (ALLISON, 

1996). 

For these reasons, the alignment of values between AI and humans is an important problem to 

be solved in the area of machine ethics (SOARES; FALLESTEIN, 2014). Practically all 

problems of specification, robustness, and value alignment seem to occur at the same point 

when our representations of values or final objectives (goals) lose their meaning or are 

misinterpreted. Is the objective-representational approach doomed to error? Would the 

cognitive models used in the creation of artificially intelligent agents, especially symbolism 

and connectionism, be incapable of expressing the meaning of human values? If so, would 

there be any alternative? 

III.  Cognitive Models: Symbolism and Connectionism 

Since the late 1950s, the discussion about cognition and intelligence has been permeated by 

the computational framework, also known as a symbolic view. This perspective starts from 

the assumption that cognitive systems are intelligent in that they can encode knowledge into 



symbolic representations. Symbolists believe that through sets of “if-then” rules and other 

forms of calculation for symbolic algorithms, all cognition is accomplished by manipulating 

such representations (THAGARD, 1992). 

Newell, (1990), defined the computationalist proposal, which is also referred to as the 

“Physical Symbol System Hypothesis”, as follows: Natural cognitive systems are intelligent 

by being physical systems that manipulate symbols in such a way as to present intelligent 

behavior, codifying knowledge about the external world in symbolic structures (NEWELL, 

1990, pp. 75-79). Newell has dedicated much of his work to building systems that express his 

vision of a physical symbol system. His most promising model is known as SOAR. SOAR is 

a symbolic computational system that formulates its tasks based on symbol and goal 

hierarchies, thus generating an algorithmic production and decision making system for 

problem-solving (NEWELL, 1990, p. 39). 

of cognition are high-level effects that depend on lower-level phenomena. Thus, the 

connectionist hypothesis encapsulates the idea that the fact that most determine the cognitive 

capacity of an agent is not the ability of representative manipulation, but its architecture. 

Thus, connectionists attack the problem of cognition by performing reverse engineering on 

the central nervous system, copying its basic processing unit, namely the neuron (Churchland 

and Sejnowski, 1992, p. 2). Sejnowski (1988, p. 7) notes in his connectionist hypothesis: “The 

intuitive processor is a dynamic sub-conceptual connectionist system that does not admit a 

complete, formal and precise description on a conceptual level”. 

Thus, theories of cognition in AI (symbolism, connectionism, and dynamism) can be 

considered theoretical structures, since they provide us with the filters, analogies, and 

metaphors by which we try to understand the phenomenon of cognition, and thus create 

theoretical models that can generate simulations to be tested (BEER, 1998). The symbolism, 

for example, highlights the internal representations of the system or agent, and the algorithms 

by which these representations are manipulated. Connectionalism emphasizes the neural 

network architecture, the learning algorithm, the preparation of training data, and the protocol 

used (ELIASMITH, 1996). 

However, the limitations of the symbolic computational hypothesis, especially in the aspects 

of time, architecture, computing, and representation, led researchers to consider new 

theoretical models, such as the dynamic hypothesis (van GELDER, 1998). And as much as 



the connectionist model is similar to the dynamic model in the aspects pointed out in the 

symbolic model (time, architecture, computing, and representation), the connectionist model 

still fails to produce agents that can solve the above-mentioned problems of specification and 

robustness. 

In this article, we do not adopt an anti-representationalist position, as we humans constantly 

use and manipulate representations, as in language, writing, speech, music, and other forms of 

abstract thinking. However, we skeptically position ourselves concerning the function of 

representations in systems that involve value-objective-methods, and therefore goal-oriented 

behavior. Perhaps, in some cases, the roles played by the internal states of a cognitive agent 

simply cannot be interpreted as representative (FRANKISH; RAMSEY, 2014). 

IV. Criticism of the Symbolic Method 

One of the biggest criticisms raised against the symbolic computing model is the difficulty in 

meeting time constraints. When trying to replicate the phenomenon of cognition van Gelder 

and Port, (1998, p. 2) states that the symbolists “leave time out of the picture”. Since the 

objective of cognitive science is to describe the behavior of natural cognitive agents, and by 

definition, these agents operate in real-time, a cognitive model that replicates the human 

experience of cognition must present real-time cognitive processes (in the case of humans: ± 

10 milliseconds) (van GELDER; PORT, 1998). 

The limits imposed by symbolic architecture are another source of criticism of the 

computational method. For Newell, (NEWELL, 1990, p. 82), the behavior is determined by a 

variable content being processed by a fixed structure, which is the architecture. Dynamists 

criticize this view of the cognitive system as “a box” within a body, in turn within a physical 

environment. However, where do we draw the line that divides the box from your body? And, 

more controversially, the body with the environment? Van Gelder and Port, (1998, p. 8), 

analyze the internal architecture in the cognitive agent as not being a fixed structure, where all 

aspects of cognition, brain-body-environment, as mutually influencing each other 

continuously. 

Consequently, this view of architecture often refers to the symbolic method as a 

computational method, because it describes the mind as a special type of computer. This 

characterization is following the architecture proposed by Newell, (1990), and identifies the 

mental computer with the brain. The body, through the sensory organs, delivers to the 



cognitive system (brain) representations of the state of its environment; the system on its part 

calculates an appropriate response and the body carries the action (van GELDER; PORT, 

1998, p. 1). However, this system of perceiving-planning-acting ignores important 

phenomena in decision makings, such as reflex actions, and the speed with which such actions 

are expressed in real cognitive agents, showing once again that the symbolic computational 

method has no basis with the biological and physical reality of the cognition phenomenon. 

Hubert Dreyfus (1992) was one of the most prominent critics of the symbolic representational 

approach in the field of AI research. Based on the hermeneutic-existentialist philosophy 

proposed by Martin Heidegger, Dreyfus indicated in his works that the manipulation of 

symbols and representations is not enough to generate the non-representational type of 

existence of a being in the world (Dasein). At the bottom of this impasse, there remains a 

criticism of materialist Cartesian thought and subject-object dualism: materialist Cartesianism 

that attempts, without success, to replicate the whole world “inside the mind” is doomed to 

fail according to Dreyfus, because it is impossible to contain the world inside the mind for the 

simple fact that the world is infinitely complex and we are finite creatures (DREYFUS, 2007). 

Thus, a self-contained, rigid system is not capable of duplicating the type of cognitive agent 

we desire. Perhaps this indicates to us that representations and experience must operate 

together for the former to have meaning. 

V. Connectionism and Value Learning 

We can see that many of the problems mentioned above come from the difficulty of 

programmers in expressing the meaning of what is proposed by the language (specification 

errors) and how this should change when the context of the environment evolves (robustness 

errors). Be it the representative cognitive model, using rules of behavior (if-then), or the 

connectionist model, using artificial neural networks with reward functions, we still reach the 

same impasse. How to express our goals and align the values of artificially intelligent agents 

with ours? 

The related approach encounters several difficulties in this task, which are explored in more 

detail below. Commonly artificial neural networks are trained in a supervised manner, using 

labeled training data, however, this method may not be the safest for value learning. Dreyfus 

and Dreyfus (1992), cite an example where a machine learning system is trained to classify, or 

not, military ground vehicles hidden among the trees. The classifier during the training was 



able to identify with great precision the desired vehicles, however, the system had a fuzzy 

performance with images outside the training group. It was later discovered that the set of 

photos used for training containing vehicles were taken on a sunny day, while the images 

without the vehicles were made on a cloudy day. What the classifier was identifying was the 

brightness of the images. Potentially, learning values by induction is susceptible to this failure 

(SOARES, 2016). 

For this reason, it is expected that artificial intelligent agents possess a property called 

corrigibility. Such systems must have their reward function or value hierarchy adjusted in 

case something unwanted happens. However, it is also necessary that the same agents cannot 

influence their learning environment or reward function, much less prevent it from being 

modified. There are currently no solutions to this problem (SOARES; FALLENSTEIN, 

2015). Besides, both supervised training methods, which use labeled data and reinforcement 

learning, which use utility functions as a proxy for desirable results, are extremely vulnerable 

in identifying ambiguities (SOARES, 2016), as evidenced by “Sorcerer's Apprentice” 

problems and situations where the system, due to divergence in testing environments and new 

environments, and also goal misspecification, have the opportunity to hack its reward 

(BOSTROM, 2014). The reward hacking scenario, or “wireheading,” is wrongly compared to 

humans stimulating their pleasure (e.g. drug use). Human appetite is satiable; an artificial 

agent with the power to maximize its reward will not stop its “compulsive” behavior. It will 

even seek ways and means to perpetuate its self-compensating behavior free from interference 

(OMOHUNDRO, 2009). 

The utility function can be explained by the von Neumann-Morgenstern utility theorem (von 

NEUMANN; MORGENSTERN, 1953). The theorem configures utility functions through 

preference sorting: A is preferred to B, or B is preferred to A, or both have the same 

preference value. A utility function allows that, given the state of the agent and the state of the 

world in general, an agent decision is generated between two or more options. The concept of 

the utility function is a mathematical formalization for the notion of human values and is 

widely used in economics and decision theory. However, one of the best-known problems of 

this model is the empirical fact that humans violate the axioms of utility theory and do not 

have consistent utility functions (TVERSKY; KAHNEMAN, 1981).  

An alternative would be to model the intent of operators using inverse reinforcement learning 

(NG; RUSSELL, 2000): where one agent tries to identify and maximize the reward function 



of some other agent in the environment (usually a human operator). However, human 

preferences cannot necessarily be captured by observations alone, and if they are modeled 

optimally inverse reinforcement learning demonstrate the problem of learning “errors” or 

biases of human behavior as valid solutions. Recent advances in the area, such as the CIRL 

(Cooperative Inverse Reinforcement Learning) training model would solve this problem: 

instead of estimating and adopting the human being's reward function as its own, the system 

tries to solve a POMDP (Partially Observable Markov decision process), leading to a 

cooperative learning behavior, in which the system or agent tries to maximize the operator's 

reward function, but without knowing what it is (HADFIELD-MENELL, 2016). However, 

this approach generates problems of interpretation, such as the identification of ambiguity and 

coordination problems between the agents involved in POMDP. 

Moreover, situations where humans are part of the reward system of an AI, also called 

human-in-the-loop, are not considered safe, as there is strong evidence to believe that artificial 

intelligent agents would be inclined to manipulate the human part of their reward mechanism 

if it meant an increase in reward (HIBBARD, 2012; BOSTROM, 2014). In general, our 

current training methods for the connectionist cognitive model are not appropriate for an AI 

or IAG (general artificial intelligence) operating in the real world. Possible scenarios of self-

improvement, or even an “intelligence explosion”, as explained by the Instrumental 

Convergence Thesis (BOSTROM, 2012), can generate calamitous consequences for humanity 

(YUDKOWSKY, 2008). The ultimate goal of these agents is to maximize the reward, being 

our values and goals only instrumental to their ultimate goal. Such agents can learn that 

human goals are instrumentally useful for high rewards, but replaceable, especially if the 

intelligence of these agents is superior to ours (DEWEY, 2011). 

Whether by symbolic representativeness or by connectionist training, so far value objectives 

cannot be safely expressed, and given the importance of human value alignment with AI, new 

methods must be investigated. We propose in this article that the dynamic cognitive model 

offers a new way of thinking about the problem of alignment. In the following section, we 

will discuss some of the characteristics of the theoretical dynamic model of cognition. 

VI. Dynamic Cognitive Model 

It can be said that many theoretical models begin as metaphors or analogies, later becoming 

theories that can be implemented in models and subsequently simulated. The conceptual 



structures that we form through this process can have a great impact on the way we conduct 

our studies, the way we approach the problem, the language we describe the phenomena, and 

the way we formulate a question and interpret an answer. The theory of dynamic systems 

invites us to think about the phenomenon of cognition and human experience in a progressive 

way, as proposed by Van Gelder (1998, p. 4), whose Dynamic Hypothesis postulates: 

“Natural cognitive systems are certain types of dynamic systems, and are best understood 

from the dynamic perspective”. Dynamic systems, in this sense, are systems in which, as they 

evolve in time, their variables are continuously and simultaneously determining the evolution 

of one of the others, in other words, they are systems governed by non-linear differential 

equations (van GELDER; PORT, 1998, p. 6). With this statement, the dynamist puts the agent 

in a situation of coupling with the environment, turning brain-body-environment into an 

autonomous cognitive dynamic system where it no longer makes sense to talk about cognition 

or experience without recognizing the three aspects of this triad (van GELDER; PORT, 1998, 

p. 23). 

A dynamic system is a mathematical abstraction composed of a space of      states, a set of 

time-ordered     , and an evolution operator φ that transforms one state to another along  . 

  can be numeric or symbolic, continuous, discrete or hybrid, of any topology or dimension. 

  is typically expressed by the set of integers or real numbers, and the evolution of the 

operator   can be deterministic or stochastic (KUZNETSOV, 2004). The situated activity has 

its philosophical origins in the phenomenological work of Heidegger (2012), which Dreyfus 

(1992) applying it to the field of AI, in which it is assumed that the Heideggerian agent cannot 

be separated from the environment or its interpretative context. Gibson's Ecological 

Psychology (1979) is also a precursor of situated activity, with its notion of affordances: 

Gibson emphasizes the environment-organism relationship in the phenomenon of perception 

as a two-way street, where one perceives to act, and acts to perceive. The idea of situated 

cognition can be extended to theories such as “extended mind” (CLARK & CHALMERS, 

1998), also known as ECH (extended cognition hypothesis) (ROCKWELL, 2010), which 

invites us to think in a different way concerning Cartesian thought that places the imprisoned 

mind inside the brain. We explain gravity as the relationship between gravitational fields; 

electromagnetism by electromagnetic fields; the position of subatomic particles is expressed 

through probabilistic waves using Schrödinger's equation, De Broglie's wavelength, and 

Heisenberg's uncertainty principle. Thus, it seems likely that a sophisticated theory explaining 



the consciousness and experience of a cognitive agent involves some kind of theory that refers 

to the dynamic fluctuation of fields. 

The theoretical model we present in this article is SED (situated embodied dynamics), 

proposed by Beer (2000), which emphasizes how the cognitive experience arises from the 

dynamic interaction brain-body-environment. In the first place, SED takes into account the 

situation as being fundamental to cognition, placing concrete action, that is, literally acting in 

the world, as something more fundamental than the abstract descriptions of this action. Thus, 

the final work of the intelligent agent is to act, an action that occurs in an environment, which 

is a central part of the behavior, since it is what gives meaning and context to the action. And 

the interaction of the agent with the environment is mutual, not being the environment just a 

source of problems to be solved, but a partner with whom the agent is involved from moment 

to moment (FRANKISH; RAMSEY, 2014). In the SED approach, the concept of embodiment 

says that the physical form and its functional and biomechanical aspects are essential aspects 

for behavior, as well as its biology and physiology, in the case of artificial agents, mechanics, 

hardware and software. All these factors create the conceptual realization by which we create 

our experiences and representations. 

The thought of embodiment has its origin in the phenomenology worked by Merleau-Ponty 

(1962), who was moreover one of the forerunners of Gibson's notion of affordance (1979), 

placing body involvement as crucial to the way we perceive and act with the environment. 

Also being the biological structure that supports the vital cognition for the cognitive 

phenomenon, we must think about the implications or possibilities of this phenomenon being 

duplicated by electronic components, and which concepts and abstractions such formation 

could generate, given the importance of the embodied experience in the creation of abstract 

concepts (LAKOFF; JOHNSON, 1999). Thus, the role of language, metaphors, and mental 

representations in the formulation of concepts used in scientific theories is evident, despite all 

ontological commitment to a certain scientific realism. The term “naturalized epistemology”, 

forged by W.V. Quine in his 1969 seminal essay “Epistemology Naturalized”, followed 

several of the epistemic premises of Hume's skepticism, which, as we pointed out above, 

solves every platonically inspired foundation, including the dualism of Cartesian rationalism, 

in its pretension to justify an sure knowledge of the truth of the outside world. According to 

Quine (1969, p. 75): 



It was sad for epistemologists, Hume and others, to have to agree on the 

impossibility of strictly deriving the science of the external world from 

sensory evidence. Two fundamental principles of empiricism remained 

unassailable, however, and remain so today. One is that any evidence that 

exists for science is sensory evidence. The other is that any inculcation of 

word meanings must ultimately rest on sensory evidence (QUINE, 1969, p. 

75). 

As in Quine, the Humean-inspired empiricism that interests us, from Dreyfus, Rorty, Prinz 

and neopragmatism, is intersubjective, falsificationist and, interestingly, externalist, that is, a 

form of social linguistic and historically co-constitutive pragmatism of observer subject and 

the objective world to be known, experienced, lived. The problem of knowledge, as well as 

that of giving reasons for moral action, remains the great human problem according to the 

Humean formulation: in the words of Quine (1969, p. 72), “the Humean problem is the human 

predicament” so that not even induction (such as that which has been adopted by models of 

reflexive balance in metaethics and philosophy of science) can solve the naturalistic fallacies 

that arise from the guillotine. The externalism of the naturalists, in the wake of Hume and 

Quine, would here oppose the internalism of the rationalists and Kant, according to which the 

epistemic justification for cognition and moral action is found in consciousness (cogito) or a 

structure of transcendental subjectivity.  

Although we cannot develop here the internalist-externalist problem, we believe that the 

debate between rationalism and empiricism that preceded it authorizes us to assert, as Quine 

suggested, that Hume's great mistake would have been to reduce analytical judgments to a 

priori, universal, necessary judgments, as opposed to synthetic ones. In tur, they are reducible 

to posterior judgments, contingent particularities, without solving the problem of induction 

but allowing, on the contrary, their return through the back door, as Popper would show, by 

the self-deception of those who intend to justify the moral action with a transcendental or 

normativism argument. Our programmatic intuition on AI ethics is, therefore, that neither 

naturalism seems to be able to reduce the alignment to a utilitarian program, nor the 

deontological, normative models and their transcendental arguments seem satisfactory to 

avoid anthropomorphic suspicion. 

Computational neuroethology is a distinct area of neuroscience, as it involves the creation of 

joint models of neural circuits, biomechanics, and ecological niches as relevant parts of a 

cognitive agent (CHIEL; BEER, 1997). Work in the field of autonomous robotics emphasizes 

that intelligent behavior is an emerging property of an agent incorporated in an environment 



with which it must interact continuously. Thus, the symbolic computer vision, which places 

the brain as the source of commands that are issued to the body, may be incomplete. There 

may be a cognition or “mind” of the body (or mechanical system), governed by the laws of 

physics itself. This puts the nervous system not in a position to issue commands, but 

suggestions, reconciled with the biomechanical and ecological context (RAIBERT; 

HODGINS, 1993). There is the possibility that an AI that has an understanding of human 

concepts would require a design very close to that of a human being (SOTALA; 

YAMPOLSKIY, 2013). 

Finally, to understand the SED approach we must analyze the assumed dynamics. We refer to 

dynamics as a mathematical theory that describes systems that systematically change over 

time. The dynamic framework also provides us with a different filter to observe the 

phenomenon in question (FRANKISH; RAMSEY, 2014).  Dynamic systems are certainly 

configured as a body of mathematics, and not as a scientific theory of the natural world. The 

most common examples of dynamic systems are sets of partial differential equations, used to 

describe phenomena such as the movement of water, behavior of electromagnetic fields, the 

position of subatomic particles among other natural phenomena. Thus, the dynamic 

perspective brings with it a set of concepts and filters that influence the way we think about 

the phenomenon studied; when approaching any system from the dynamic perspective, we try 

to identify a set of state variables whose evolution can explain the observed behavior, the 

dynamic laws by which the values of these variables evolve in time, the dimensional structure 

of their evolution, possible states and dominant parameters (BEER, 2000). 

Finally, the hypothesis of the situated embodied and dynamic structure postulates that brains, 

bodies, and environments are dynamic systems, governed by dynamic laws, and the dynamics 

of this triad are coupled, is the study of the behavior of the complete dynamic system, brain-

body-environment,  the correct object of study for cognition (BEER, 2000). The most crucial 

conclusion to be drawn from this model is: the behavior is a property of the whole brain-

body-environment system and cannot, therefore, be adequately attributed to any subsystem 

isolated from the others. We propose that such an approach, SED, can be an interesting model 

for embodied agents and safe AI systems.  

VII. Discussion and Conclusion 



How can this dynamic approach be useful for the problem of learning values? This has been 

the guiding question of this study. We have seen in this study the imminent advance of AI 

technologies, and the importance that such advances are made safely, because we cannot 

anthropomorphize AI, and expect artificial intelligent agents to have the same terminal 

objectives (values) as us. Therefore, value learning becomes an area of crucial importance in 

the field. The limitations present in the representative symbolic method and the connectionist 

model may be indicating to us that a different approach to the behavioral problems of 

intelligent agents should be considered. Dynamism certainly approaches the problem 

differently and unveils new aspects that both the symbolic and the connectionist model leave 

aside. 

How should we understand the nature and role of this inner state within a dynamic agent? The 

traditional computational interpretation of such states would be as internal representations. 

Unfortunately, despite the fundamental role that the notion of representation plays in 

computational approaches, there is very little agreement about what its real function is in 

controlling and maintaining behavior. We should also remember that symbolism, 

connectionism, and dynamism are theoretical structures, not scientific theories of the natural 

world, that is, they cannot be proved or refuted. While symbolism emphasizes the 

manipulation of internal representations, Connectionism emphasizes the architecture of the 

network and the training protocol. The SED structure, on the other hand, highlights the 

trajectory space and the determining influences on the brain-body-environment system. A 

dynamic approach to the problem of value learning may help us to elucidate some of the 

problems in value learning. However, as stated above, we do not put ourselves in a position of 

anti-representationalism. On the contrary, a complete theory of cognition is likely to use all 

three theoretical structures. We suggest that in certain cases, as in goal-oriented behavior, the 

internal functioning of a dynamic agent cannot be interpreted as representative unless we 

refine what a representation really can be or mean. 

Gärdenfors (2000) proposes a general theory of representation, where concepts such as values 

are represented as geometric forms within a multidimensional space. Several brain modeling 

studies try to understand how the brain creates and manipulates information 

(KRIEGESKORTE; KIEVIT, 2013), and recent findings using simulations of cortical groups 

analyzed by algebraic topology show that the brain seems to organize itself in an orderly and 

geometric way when we analyze its structure as a multidimensional object (REIMANN et al. 



2017). It is possible that similar structures, corresponding to the concept of value, are found in 

the hyperdimensional field that composes the cognitive agent. 

The dynamic approach differs from the symbolic and connectionist cognitive models because 

it places biomechanics and ecology with the same relevance as neural activity in the 

phenomenon of cognition. Perhaps the difficulties we have encountered in learning values and 

other problems in the field of AI are due to the fact that we are ignoring two crucial factors of 

the phenomenon. The implications of the dynamic hypothesis not only bring a new way of 

thinking but also new problems to the field of AI research, thus nurturing new ideas in areas 

such as neurophilosophy, neuroscience, metaethics, computational neuroethology, and the 

interdisciplinary field of cognitive science itself. In conclusion, improvement and a better 

understanding of dynamic systems concepts is needed, with the promise that such methods 

can be useful for the problem of value alignment in AI and for the cognitive science 

community in general. 
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