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STRING THEORY

JOHN CORCORAN, WILLIAM FRANK AND MICHAEL MALONEY

Abstract. For each n > 0, two alternative axiomatizations of the theory of
strings over n alphabetic characters are presented. One class of axiomatizations
derives from Tarski’s system of the Wahrheitsbegriff and uses the n characters and
concatenation as primitives. The other class involves using n character-prefixing
operators as primitives and derives from Hermes’ Semiotik. All underlying logics are
second order. It is shown that, for each n, the two theories are synonymous in the
sense of deBouvere. It is further shown that each member of one class is synonymous
with each member of the other class; thus that all of the theories are synonymous
with each other and with Peano arithmetic. Categoricity of Peano arithmetic then
implies categoricity of each of the above theories.

Because all mathematically precise results in logic (aside from those concerned
with infinitary languages) involve the syntactical interrelations among finite strings
of characters over a finite alphabet (Tarski [22, p. 172]; Carnap [I, p. 7]), mathe-
matical logic itself may be said to ‘presuppose the theory of strings' (Hilbert
[12, pp. 464-465]). The view that logic and mathematics are nothing but string
theory seems an exaggeration to the point of caricature. Nevertheless, the founda-
tional importance of abstract syntax seems established. Despite its importance, no
current treatises on logic present this theory.? Moreover, explicit axiomatic

Received December 21, 1972.

1 The phrase “the theory of strings™ is used in the same informal sense in which the phrases
““the theory of sets™ and ‘‘the theory of numbers” are used. The usage emphasizes the universe
of objects under consideration: strings, sets, numbers. The same constellation of ideas has been
referred to as *“the theory of symbol manipulation” and as “concatenation theory.” The first of
these emphasizes an important application of the theory much as does the reference to geometry
as the theory of land measurement. The second of these emphasizes the intended interpretation of
one of the primitives of one formulation of the theory—it is analogous to calling the theory of
sets ‘‘membership theory” and to calling the theory of numbers **successor theory.” Below the
theory of strings will be referred to in several ways—none new, and all suggesting various aspects
of the theory.

2 Kleene [13, pp. 246-258] presents a theory which serves some of the purposes served by the
theories to be presented below. However, Kleene’s theory (called generalized arithmetic) does
not admit of a natural interpretation in the universe of strings over n characters. A natural
interpretation of Kleene's theory is based on a universe constructed by closing a finite alphabet
under the three operations of taking sequences of lengths 1, 2 and 3. Kleene’s theory is best
thought of as a theory of syntactic structures. Admittedly the importance of theories of the sort
envisaged by Kleene has also been overlooked—most notably by the modern mathematical
linguists whose grammars are intended to generate syntactic structures (cf. Chomsky [2]).

Martin [15] and Quine [18] both present axiomatizations of the theory of strings over the
specific alphabets of their respective object languages. Neither work contains any substantive
metamathematical discussion of theories of strings.

Algebraists treat string theories as theories of certain free semigroups.
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626 JOHN CORCORAN, WILLIAM FRANK AND MICHAEL MALONEY

formulation of abstract syntax has also been neglected by other areas such as
information science and linguistics which also presuppose it. The present article
includes, for each n, two simple and transparent axiomatizations of the theory of
strings over n characters.

Each of the theories axiomatized below has a second-order logic® as its underlying
logic (in the sense of Church [4, p. 317]). For each positive n, Sn and Cn indicate
the two theories in question. S1 is essentially identical to (second-order) Peano
arithmetic. We show that, for every n, Sn and Cn are synonymous.* Moreover, by
employing radix-n notation for positive integers, we also show that S1 is synony-
mous with each of the Sn. From the categoncny of S1 the categoricity of the other
theories is obtained.

Let An be a set of n distinct characters a,, a,, - - -, a,. An*, the set of all finite
strings over A4n (including the null string 0), is the universe of discourse both of the
intended interpretation® of Sr and also of the intended interpretation of Cn.

2 All object-language theorems have been formally deduced in a natural deduction system
which results from adding to a complete first-order system the following: the obvious introduc-
tion and elimination rules for universal and existential second-order quantifiers and the usual
rules for handling “permanent” and “ad hoc” definitions. Such a system has been shown
(Maloney [14]) to be equivalent in the relevant sense to the system F** of Henkin which Henkin
[10] himself had shown equivalent to Church’s F2 (Church [3]). Since the above second-order
natural deduction system is in effect ordmary mathematical reasoning, formal description of it
is here omitted.

% Let T and S be two theories having disjoint sets of primitives. T and S are synonymous
(deBouvere [7]) if there exists a theory TS in the language whose primitive set is the union of
that of T with that of S and which can be obtained both by adding to T definitions Dy, of the
primitives S in terms of those of T and by adding to S definitions D, of the primitives of T in terms
of those of S. Synonymy is not the sime as mutual interpretability in the sense of Tarski
[20, p. 20]. For example if M is the set of logical truths involving a single monadic primitive and
R is the set of logical truths involving a single diadic primitive then M and R are mutually
interpretable (by arbitrary definitions) whereas they are not synonymous. According to
deBouvere [8, p. 403], D. Kaplan has also constructed a counterexample to the proposition that
mutual interpretability entails synonymy. The fact that synonymy is an equivalence relation
(deBouvere [7]) is used below.

5 The terms ‘character’ and ‘string’ correspond to undefined primitives in the formal
theories developed below and it is very likely the case that their current technical meanings
cannot be explicated without using equally problematic notions. However, the following in-
formal comments may be useful to some readers. First, by a character we mean an abstract
object, a “character-type,” which has concrete instances called character-tokens or character-
inscriptions. The latter may be destroyed (by fire, e.g.) but the former cannot. Relative to a given
system of characters, a character is not decomposable into characters; a character is an atom.
By a string we mean a “string-type” which is completely decomposable into characters which
occur in it. A string-type has instances which are string-tokens or string-inscriptions composed
of instances (not occurrences) of characters; the string-tokens are ultimately composed of
character-tokens. Hermes and “Tarski are both inclined to regard characters as somehow
reducible to their instances which are in turn reducible to objects of physics. Thus, for Hermes
and Tarski, the axioms are to be verified by “scientific experimentation.” The present authors
agree that knowledge of the truth of the axioms is to be derived from experience but they doubt
that “scientific experimentation” is relevant. In any case, the question of the philosophic status
of strings seems open. Finally, by means of human conventions a string may come to denote;
but, the potential symbolic use of strings plays no role whatever in the formal theories developed
below (although without the symbolic use of characters no written communication is possible).
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Cn, “the concatenation theory,” has as primitives (besides 0, a, a,, - - -, @, which
denote themselves under the intended interpretation) the monadic predicate A,
intended to indicate the alphabet, and the binary function symbol + which is
intended to indicate the operation (“concatenation”) of patching one string
directly onto the front of another. Thus a, + a is simply a,a, and, of course, + is
associative, satisfies both cancellation laws, has 0 as a null element, etc. Sn, “the
successor theory,” has as primitives (besides 0) n unary function symbols,
S35 Sa, * - +, Sy, the ith of which indicates the operation of prefixing a, to the front of a
string. Thus, combining the two languages and the two intended interpretations
we have s;x = a; + x for all strings x in An*. Cn is due in all important respects to
Tarski® whereas Hermes” first presented a theory which embodied the main ideas
of Sn. Sn has been mentioned by Kleene [13, p. 246] as a “generalized arithmetic.”

As is the case above, n is a parameter which when combined with S or C deter-
mines a set of primitives and an intended interpretation. It also determines a set of
axioms. Accordingly, the axioms are presented using metalinguistic devices which
presuppose in each case prior choice of n. In particular, when Fi is a metalinguistic
expression involving / and indicating a formula involving i, [&i]Fi and [\/i]Fi
indicate respectively the conjunction and disjunction of the n formulas indicated by
Fi (as i takes values between 1 and n). Similarly, where Fij is a metalinguistic
expression involving i and j, [&/ < j]Fij and [\/i < j]Fij indicate respectively the
conjunction and disjunction of the n(n — 1)/2 formulas indicated by Fij (as i and j
take ordered values between 1 and n). When n = 1, [&i]Fi = [\/i]Fi = F1 and
any expression involving [&i < j] or [\i < j] is to be ignored. Any axiom
involving free occurrences of variables is assumed to be universally quantified as
usual.

§1. Concatenation axioms Cn [Tarski].

CAl: [& < j)a; # a))
The n characters are distinct.
CA2: Ax = [Vil(x = a)
The alphabet consists exactly in the characters.
CA3: ~ A0
CA4.1: Ax+ )2 (Ax & (y =0)) v (4y & (x = 0)))
CA4.2: O=x+y»)2x=0&y=0)

S Tarski is almost certainly the first person to axiomatize a theory of strings [22, p. 172].
Although Tarski clearly recognized the foundational importance of string theory for logic, for
historical accuracy it must be noted that Tarski’s intended interpretation involves the class of
strings over a countably infinite alphabet.

7 The idea of using successor functions instead of concatenation derives from Hermes [11]
although the system of that work is based on a single second-order primitive (our primitives are
all first order). Hermes’ work was completed without knowledge of Tarski’s so he did not think
of himself as giving an alternative axiomatization. By modern standards Hermes’ system would
probably be adjudged unnecessarily succinct, especially in comparison to those given here—
but one should realize that in former times the number of primitives of a system was thought to
be a measure of its complexity.
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Simplicity of the alphabetic characters and the null string.
CAS.1: x+0=x
CA5.2: x+0=0+x

The null element is 0.

CA6: (x+p» =& +))
=X =x+z&z2+y =y)vViZx=x'+2z&z+y=))

Tarski’s law. This axiom characterizes the conditions under which *different
compounds™ give the same string. See Figure 1 below. In such situations, z is
informally called “the interpolant for the pairs x, y and x’, y'.”

x iy x 3y x y
z=0 E z z
xl E yl x; y' xl yl
FIGURE 1
CA7: VP([PO & Vx(Px = Vy(Ay = P(y + x)))] > VzPz)

* String induction.

1.1. THEOREMS OF Cn. - Let a, b and c be arbitrary. The string b is by construc-
tion an interpolant for the pairs @, > + c and a + b, c. By Tarski’s law, therefore,
a+ (b + ¢) = (a + b) + c. This proves:

CT1: x+O+2D=(x+y)+2
By induction we get

CT2: x=0v yz(Ay&x =y + 2)

CT3: [&ila+x=a+y>x=y)

To see this let  and ¢ be arbitrary and suppose thata, + b = a, + c. By Tarski’s
law 3z(a; = a, + z&z + ¢ =b) or 3z(a; =a, + z&z + b = ¢). Suppose the
first. Then, for a particular z,, a; = @, + z, and z, + ¢ = b. But, by CA2, 4a;; so,
by CA3 and CA4, z, = 0. By CAS5, 0 + ¢ = ¢, so b = c. In the second case the
reasoning is the same. Q.E.D.

CT4: zZ+x=z+y>x=y)

By induction. Let g and b be arbitrary and define P as the property which holds
forzifz+a=2z+b>a=»b. POis obtained by CAS and the induction step
follows by CT1 and CT3. Q.E.D.

For n = 1, Cn is (in the same logical form as) second-order arithmetic where
0 denotes 0, a, denotes 1, + is addition and A is the property of being 1. In this
case, no useful purpose is served by including A4 as a primitive.
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§2. Successor axioms Sz [Hermes].

SAl: [&i < j)(six # 519)
The successors have disjoint ranges.
SA2: [&i](s;x # 0)
SA3: - [&ilsx =sy 2 x=13)
SA4: VP[(PO & Vx(Px > [&i]lPsx)) = VyPy]

Successor induction.

2.1. THEOREMS OF Sn.
ST1: (x =0 v PVillx = 5:9)).
ST2: NfVx(fOx = x) & Vxy[&i)(fs,yx = 5,fyx)).

For n = 1, Sn is (in the same logical form as) second-order Peano arithmetic
and ST2 is the theorem which justifies taking the ordinary recursive definition of
addition as a definition, properly so-called. The proof of ST2 mirrors the proof of
the analogous theorem in arithmetic and the significance of ST2 here is the same
as that of its analogue in arithmetic. In particular, ST2 implies that the extension
of Sn effected by inclusion of the recursive “definition” (S*D3 below) is a defini-
tional extension (cf. Corcoran [5]). Actually, the proof of ST2 exhibits the necessary
explicit definitions. '

§3. Synonymy of Cn and Sn. In this section we produce Cn* and Sn* which
are definitional extensions respectively of Cn and Sn. It can be verified that the
axioms of Sn* are theorems of Cn* and that the axioms of Cn* are theorems of
Snt.

3.1. Cn*: Interpreting Sn in Cn. Here we need only define each s; in terms of
the primitives of Cn. The obvious choice is as follows.

C*Dl.i: SXx =a + x

From the axioms of Cn and the above definitions it is easy to prove the axioms of
Sn.

3.2. Sn*: Interpreting Cn in Sn: The Definitions. For each i we define a; as
_ follows:

S+Dl.i: a = 50
The primitive 4 of Cn is defined in Sn explicitly.
S*D2: Ax = ([Vilx = s50)
Concatenation is defined recursively:

S*+D3: Vx(0 + x = x) & Vxy([(&i](s,y + x) = sy + X))
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3.3. Sn*: The Theorems. For each i we get the following directly from the
appropriate clause of S*D3 together with S*D1 and the first clause of S*D3.

S*+Tl.i: a; + x = 8§x

Now CA1, CA2, CA3, and CA4 obviously follow. CAS5 is obtained by induction
using S*D3 twice. CA6 is proved using the following lemmas.

S*T2: [&((s;y = x + x") > Fz(x + X" = 5z + x')
V (x = 0 & 3z(x' = 5:2))))

S*T3: [&i<jlx+a#y+a)&[&l(x+a=y+a)>x=))
S+T4: . x+z=y+z>2x=y)

Finally CA7 is obtained using SA4 and the definitions.

The results of 3.1 and 3.3 do not imply that Sn and Cn are synonymous but only
that they are mutually interpretable. It remains to prove the definitions of Cn*
as theorems of Sn* and to prove those of Sr* in Cn*. We omit the details.

§4. Synonymy of every Sn to Peano arithmetic. Standard second-order Peano
arithmetic is nothing but S1 (cf. Montague [16, pp. 131, 135]). In this section
we want to show that, for each n, Sn is synonymous with S1. We want to conclude
that all of the above considered theories are synonymous.®

But this program reveals a minor short-coming with above accounts of
deBouvere’s concept of synonymy and Tarski’s notion of interpretability. The
trouble is that because S1 and Sn (n > 2) share the function symbol s; used “in
different senses” they are jointly inconsistent. For example, in S1 every nonnull
object has the form s,x but in Sn (n > 2) some nonnull objects do not have this
form (e.g. 5;0). This obstacle is handled in the obvious way using the traditional
notion of logical form (cf. Corcoran [6]). Two theories T and T’ are defined to
be in the same (logical) form if there is a one-one, category-preserving function
from the content words of one onto the set of content words of the other which
translates the theorems of one into theorems of the other and vice versa. Then
define one theory to be interpretable in another if some theory in the same logical
form as the first can be obtained in a definitional extension of the other. Finally,
define two theories to be synonymous if each is in the same logical form as one of
a pair of synonymous theories. In order to carry out the above purpose we assume
a new theory SO which results from S1 by replacing all occurrences of s; by the
new function symbol s.

4.1. SO*n: Interpreting Sn in SO. For purposes of terminology think of S0 as
an arithmetic.

& The connection between string theory and arithmetic was first noticed by Hermes [11].
In effect he did the following two things. First he observed that S1 and Peano arithmetic are
synonymous. Second he showed that, for every n, Sn is relatively interpretable in arithmetic.
The latter result was slightly more difficult to obtain than our result (which is somewhat stronger)
because Hermes chose to be guided by Godelization rather than by radix notation.
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In order to construct SO*n as a definitional extension of SO which contains Sn
we assume that the usual orderings (< and <), addition @, multiplication and
exponentiation are all defined relative to SO as usual. In addition we assume for
each integer j that j is the SO-numeral associated with j, i.e., that j is a string of j
successor symbols s followed by 0. Finally we need to assume that a binary opera-
tion has been defined so that [x]n denotes the length of the least series of powers
of n containing x; more precisely, so that

if x # 0, z is the least number such that 37 n* > x,
fx=0,z=0.

It may be helpful to note that if abed is a numeral in ordinary decimal notation
and none of the digits are zero the following holds.

ched = @-10%6410 4 . [QRAN0 4 ¢ 10910 4 4,

Given that these definitions have been added to SO we construct S *0On by
adjoining the following definitions, one for each i between 1 and n.

SODi: sx = (i-A%" @ x).

The details of verifying that the axioms of Sn are provable in S0*» are omitted
here. The idea behind the definitions SODi will be discussed below in §5.

4.2. Sn*0: Interpreting SO in Sn. For purposes of terminology think of Snasa
theory of strings over the finite alphabet a,, g, - - -, a, given in alphabetical order.
Assume that lexicographic order (<) has been defined so that for any two strings
x and y we have x < y iff, for x and y of different lengths, x is shorter than y or,
for x and y of the same length, in the first (= left-most) place where they differ the
character in x is -alphabetically prior to the corresponding character in y. In
addition, we assume the proof of a theorem to the effect that for each string x
there is a unique lexicographically next string y, i.e., that for each string x there is
a unique string y where x < y and y lexicographically precedes all other strings
lexicographically later than x. Thus we assume that it has been proved that “im-
mediate” lexicographic order is a functional relation. This justifies the following
definition.

(1) z=[x]n iff

SnD1: sx=y=(x<y&Vz2((z#£y&x<2)Dy<2)

The details of proving the Peano axioms are here omitted.

To establish synonymy of SO and Sn we have to prove (1) the definitions SODi
in Sn*0 and (2) the definition SnD1 in SO*n. These details are omitted.

4.3. S0*1 and S1*0.
S*01: In order to get S *01 from the result of adding the usual definitions to SO
only one definition was added, viz., the following definition of the *““new” successor
operator.® :

SOD1: 5;x = (s0-50°%10 @ x),

® The basic idea involved in the definition occurs in several places, notably (for the present
context) in Quine [17]. There Quine wanted to establish two things: first (in effect) that Peano
arithmetic is weakly interpretable (cf. Tarski [20, p. 29]) in each Cn (#n = 2) and second (in
effect) that Peano arithmetic is interpretable in each Cn. Quine’s work differs from ours in
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where s is ordinary successor, s0 denotes one and @ is ordinary addition. In case
x = 0 we have [0]sO = 0; so using ordinary arithmetic we get

) 50 = (s0-50 + 0) = s0.
In case x # 0 we have [x]sO = x; again using ordinary arithmetic we get
3) 51x = (s0-50* @ x) = (s0 @ x) = sx.

Thus as expected we simply repeat in the definitional extension another theory
in the same logical form as SO, viz. S1.

S1*0: In order to get S1*0 we first define lexicographic order in S1 and then
add SnD1.

At this point, we obtain the theorem

S1*+TI.1: SX = §;X.

This “means” that concatenating the single character as a prefix is interpreted as
successor. The lexicographic order over a unit alphabet is simply order by length:
0, a,, aya,, a,a,a,, etc. Thus the new successor s is the same as the old one and again
we have repeated in the definitional extension a new theory in the same form.
Moreover, addition turns out, as expected, to be simply concatenation. The idea,
alluded to above, used for interpretating Sn in SO amounts to the idea of the
relationship of addition to concatenation in Sn. This idea hinges on what is here
called radix-n notation for positive numbers. The latter degenerates in the case
of n = 1 to representing a number m by a string of m I’s.

§5. The radix-n notation for positive numbers. Assume that we have characters
(a;, az,- -+, a,_,, 0) to be used in constructing notation for the natural numbers.
Without loss imagine that the first 9 of these are 1,2, 3, .-, 9.

The usual radix-n notation for the natural numbers uses all nonnull strings over
all n characters and involves the following denotation function d for a string of
. m + | characters (since normally d is not defined on the null string).

(4) dbmbm—l' . 'blbo = dbm'nm @dbm_l'nm_:l @' . '@dbl’nl @ dbo'no

where db; is the denotation of the ith character in the string.

Given a theory of strings themselves interpretable as numerals, one would like
to interpret SO in the theory by simply looking at the strings as numerals and seeing
what successor would be. But radix-» notation for natural numbers will not do if
only because its denotation function is not one-one, it is not totally defined and
it is not onto.

Radix-n notation for positive numbers does, however, have a one-one, total,
onto, denotation function. Here the nuil string denotes zero and each positive

several respects. In the first place his underlying logics are all first-order (most of our results do
not hold when the underlying logics are first order). In the second place he does not consider
specific axiomatizations of any of the theories involved. In the third place, as is intimated by his
title, his concern is with interpretability and weak interpretability—not with synonymy. Although
none of the authors had seen Quine’s paper until after this paper was written, some ideas
involved in this research are already in Quine’s paper.
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number is denoted by a unique nonnull string over {a,, @, - - -, a,}. Given that
da, = i, equation (4) above still defines the required denotation function. Moreover,
because all digits are nonzero, for all strings x, the length of x is simply [dx]n, and,
contrary to the case of radix-n notation for natural numbers, when the ith successor
prefixes the ith digit we have

&) ds;x = (i-n'*" @ dx)
For example, using ordinary decimal notation to discuss ordinary decimal notation:
(2- 10W@00120 4 400) = (2-10° + 0) = 20

But of course 4200 = 200, and therefore 4200  (2-101°0120 + 400). The point is,
of course, that in order to know the significance of the left-most digit it is not
sufficient to know the value of the numeral represented by the remaining digits.
Zeros to the right of a digit contribute to its significance but they do not contribute
to the size of the number represented by the remaining digits. In particular, equation
(5) above does not hold in decimal notation for numerals having an initial nonzero
digit followed by zeros.

§6. Categoricity of all theories. Categoricity of SO (cf. Robbin [19, pp. 161-163]
for recent proof) was first proved by Dedekind in the last century [9, pp.
92-96]. Any theory synonymous with a categorical theory is itself categorical.
To see this let M and N be models of an arbitrary theory T synonymous with
a categorical theory S. Using the definitions D which extend Tto S, M and N
can be expanded both in a unique way to M’ and N’ which are both models of
T + D (the composite theory). Now consider M‘/S and N'/S the reducts of M’
and N’ to the language of S. Since S is categorical there exists a 1-1 structure
preserving function between the universes of M’/S and N’/S. The composite
theory T + D must contain explicit definitions of the primitives of T in terms of
those of S. Thus the isomorphism extends back to M’ and N'.

Although S1 is monotransformable (any two of its models have only one iso-
morphism between them) this is obviously not the case for any Sz and Cr (2 > 2).
The reason for this, vis-a-vis the above proof, is that if T is one of the above-
mentioned theories then there are several nonequivalent choices of definitions D
so that S + D includes 7.

Synonymy with SO of all theories Sn and Cm (m, n > 0) follows from the above
results, since synonymy is an equivalence relation. Thus all of the theories S» and
Cm (m, n > 0) are categorical.

§7 Unnamed characters: The theories C(7). To some it may seem superfluous
that the characters in A4 are given special names in formulating the theory of strings
in 4*. To eliminate the possibly extraneous names from the theory, eliminate them
from the language and then replace CAl and CA2 by a single axiom which asserts
that there are exactly n elements in the alphabet. The following will do for n > 1.

CAl&2:  Ixyxy- - -x,([&i < jI(x; # X)) & Vx(Ax = [Vil(x = xy))).
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For n = 1, take
CA1&2: ’ IxVy(dy = y = x).

For each n we define C(n) as the theory whose primitives are simply 0 and +
and whose axioms are those of Cn with CA1 and CA2 replaced by the appropriate
CA1&2. From the forms of the added axioms one can see that, for each n, if S is
in the language of C(n) then S follows from C(n) if and only if S follows from Chn.
Since Cn is complete C(n) is also complete. Moreover, since any model of C(n)
can be expanded to a model of Cn, the categoricity of C(n) follows from that of
Cn: In addition for n = 1, a, can be defined as the unique member of the alphabet
giving an interpretation of Cn in C(n). Thus also taking the null set of sentences as
a set of definitions we have the synonymy of Cl and C(1). However, since each
model of C(n) can be expanded in factorial n different ways to get a model of CAl
and CA2, it is clear (by Padoa’s test) that a,, a,, - - -, a, cannot be defined in C(n)
relative to Cn. The latter fact by itself does not establish that Cn and C(n) are not
synonymous; a rather trivial and involved argument is needed.

Let T and S be theories with primitives ¢ and s respectively and, without loss,
assume that 7 and s are disjoint. Let i, and i; be interpretations of the respective
languages and let /,; be an interpretation of the combined language. If i, has the
same universe as i, (and i,) and agrees with i (respectively ;) on s (respectively t)
then (1) i, (i;) is the reduct of i to s (¢) and (2) iy, is an expansion of i; (i;) to s + ¢
(the union of s and #). Let i be an interpretation with universe u. Let m be a member
of u, let f be a function from ™ into u, and let r be a subset of »". Following Tarski
[21] we say that (a) m is definable in i when there is a formula in the language of i
having exactly one free variable and which holds exactly of m, (b) f'is definable in i
when there is a formula F(x,, x,, - - -, X5, ») in the language of i having exactly the
indicated variables free and which hold of exactly the (n + 1)-tuples m,, m, - - -,
my, fmym,---m, and, finally, (c) r is definable in i when there is a formula
F(x;, x5, -+ -, X,) in the language of i having exactly the indicated variables free
and which holds exactly of the n-tuples m,, m,, - - -, m, in r. Given these definitions
the following is obvious.

THEOREM. If T is synonymous with S then every model i, of T has an expansion
iy which satisfies S and, when iy is the reduct to s, exactly the same entities of the
universe (individuals, functions or relations) are definable in i as in i,.

The following can also be shown. Let S be a complete theory. Let i; be a model
of S and let e be an entity definable in /. Let i, be expanded to i;+ by letting the
new constant € denote e in the usual way. Then & is definable relative to S+, the
set of truths of i +.

Suitably changing primitives, take Cn for T, C(n) for S, i, any model of T and
da; for the object-denoted by a;, we have that the da, are all definable in i,. By the
theorem every da; is definable in some expansion iy with reduct /. But since C(n)
is complete, if we denote da; by a; we have, in effect, that the g, are definable relative
to Cn, contradicting an observation above based on Padoa’s test.

All this was designed to show that Cn and C(n), n > 1, are not synonymous;
something obvious enough in itself,
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§8. Unnumbered alphabets: The theory C. In many contexts not only are the
names of the alphabetic characters irrelevant but it is also not to the point to
consider the size of the alphabet. Thus one seeks a set of axioms involving 0, 4
and + which has as consequences exactly those sentences which are true in every
interpretation i with universe A4*, 4 an arbitrary alphabet, where 0 denotes the null
string, the symbol 4 indicates 4 and + indicates concatenation. Deletion of CAl
and CA2 from the axioms of Cn yields a plausible candidate for such a set. Call
the desired theory C. C is necessarily not complete (so not categorical and not
synonymous with Peano arithmetic nor with any of the above theories).

Bourbaki and others have found it heuristically useful to distinguish formal
theories into two classes on the basis of their usual mathematical significance. A
theory which is intended as an axiomatic codification of the truths of a science
studied antecedent to the axiomatization belongs to the first class which contains
geometry, set theory, arithmetic, and the like. A theory which comes into existence
only as the consequences of a set of sentences (e.g., chosen because they occur
together in various contexts) belongs to the second class which contains the theory
of equivalence relations, the theory of associative systems (semigroups), the theory
of partial order, and the like. Categoricity (or at least completeness) is regarded as a
desirable property for theories of the first class whereas theories of the second class
are normally expected to be inherently incomplete. The incompleteness of (first-
order) arithmetic is regarded as unfortunate whereas the incompleteness of the
theory of equivalence relations is regarded as neutral or even as desirable. For
example, some writers have “blamed” the incompleteness of first-order arithmetic
on “inadequacy of first-order expressive power” while emphasizing that second-
order arithmetic is categorical. The points seem to be: First, that one can ask of a
given axiomatization of the first class whether “enough” axioms have been given;
but, second, that such a question is inherently meaningless when applied to a
member of the second class. Obviously our theories Sn, Cn and C(n) are theories
of the first class whereas C is not in the first class. However, C does not seem to
belong to the second class either.

Theories in the first class can be called individual because each seems to presuppose
an (essentially unique) intended interpretation. Those of the second can be called
abstract because they are formulated without reference to any intended inter-
pretations. It would seem that heuristic purposes would be served by distinguishing
a third class of theories each of which is intended as a codification of the truths
common to a ‘“general class” of interpretations. The term generic may be applied
to theories of the third class. The question of “enough axioms” is meaningful
applied to generic theories but categoricity (or completeness) is not to be expected.

Instead of explaining what is meant by a ““general class” of interpretations
consider the following examples. Define a string structure as quadruple {u, 4, 0, +)
where u is the class of strings over a given alphabet, A4 is the set of characters in u,
0 is the null string and + is concatenation on u. Define a class structure as a quin-
tuple <u, 1,0, +, —> where u is the class of subclasses of a given class, 1 is the
given class, O is the null class, + is union on # and — is complementation on .
Define a permutation structure as a quadruple <u, 0, +, —) where u is the class of
permutations of a given class, 0 is the identity permutation on the given class, + is
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composition on u and — is the inverting function on . An arbitrary class of inter-
pretations of a given language will not serve as a *general class” of interpretations.
All members of a given general class must have universes taken from a common
homogeneous class of objects and the special individuals, functions and relations
must be uniformly defined and “natural.” Moreover, a general class must satisfy
certain strong closure conditions.
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