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Introduction 
The study of variable binding term operators (vbtos) in logic dates from ‘the 

beginning of the modern period. Perhaps because the RUSSELL device of contextual 
definition was used to establish eliminability-in-principle of the common vbtos, full 
deductive and semantic treatment of them was not regarded as important. However, 
the fact that symbols of a certain kind are eliminable-in-principle does not by itself 
imply that the best framework for logic is achieved by renouncing use of such 
symbols. Adoption of function symbols as primitives is now widespread though, 
of course, they are eliminable-in-principle in  a logic with identity. Moreover, the 
expedient of introducing vbtos by contextual definition leads quickly to  elaborate 
technical maneuvers involving numerous metatheorems in order to justify ther use 
in a natural and easy way (cf. QUINE [6], pp. 133, 140ff, for example). The system 
presented in this paper provides the basis for a standard handling of vbtos. 

Given the semantics of variable binding term operators, it is seen that deductive 
completeness can be achieved by addition of a single axiom scheme, here called the 
truth set principle (see below). The whole situation is analogous to the relationship 
between the predicate logics with and without identity. Once a semantics for logic 
with identity is given, deductive completeness is achieved by addition of schemes 
to the deductive system of logic without identity. The proof of completeness of 
logic wit,h identity can be obtained from completeness of logic without identity by 
showing that every model of the theory got by taking the added schemes as proper 
axioms in logic without identity is equivalent to some interpretation in the new 
Semantics (cf. HEN= [3], pp. 64-65). 

Similar observations hold for soundness. The soundness and completeness proofs 
for logic with identity and vbtos given below exploit the analogy. 

Of course, in the case both of logic with identity and of logic with identity and 
vbtos, the well-known HENKIN-HASENJAEGER methods can be used to  construct 
direct completeness proofs not based on completeness results for the simpler systems. 
This type of completeness proof does not indicate, however, the exact interrelation 
between the original system and its extension. In  case this exact interrelation is 
of interest, a proof based on the completeness of the original system is to be preferred. 

1. The logics 2K and 2(X + V )  

Let LK be a first order language with identity where K indicates the set of non- 
logical constants possibly including individual constants and function symbols. Let 
AK be some deductive system which is sound and complete with respect to some 

12 Ztschr. f .  math. Logik 



178 JOHN CORCORAN, WILLIAM EATCHER AND JOEN HERRINQ 

standard semantic system ZK in which an interpret&ion (or structure) i is a pair 
(D, m) with D a non-empty set and m a function assigning appropriate set-theoretic 
structures to the constants in K .  

For simplicity we assume that each set D is accompanied by a set of symbols L)*, 
disjoint with K and put into canonical one-one correspondence with D. An element 
of D* is said to name (or to  be the name of) the unique object of D assigned to i t  
by the canonical bijection. D* is adjoined to K so that the denotation funct’ion, di ,  
and the truth-valuation function, Ei ,  are defined (on closed terms and sent.ences 
respectively) without reference to sequences or assignments of values to variables. 
SHOENFIELD [5] gives a detailed treatment of such a semantic system. Examples 
of suitable deductive system? can be found in many places, specifically see 
HATCHER [2], MENDELSON [a], and SHOENFIELD [5]. 

Because statements of rules involving identity and terms can vary in ways which 
are crucial t o  the concerns of this article we explicitly assume that AK contains 
the following schemes wherein t , ,  t , ,  . . ., t,& and t l ,  t , ,  . . ., t: are terms and P’ is 
a result of replacing zero or more free occurrences of any tj in F by free occurrences 
of tj and/or vice versa (a (tj = t j )  is the conjunction of the formulas tj = t;) : 

1.0 t = t ;  1.1 &(t j  = t j )  ZI F 3’’. 
Any logic QK as described above which does not have these as axioms will have 

them as theorems since 2K is sound and complete and the schemes 1.0 and 1.1 are 
valid. 

Let V be a new set of symbols called variable binding term operators (vbtos). 
Given 2K we form a new logic 2 ( K  + V )  which is designed to  account for the logical 
behavior of what are normally called “variable binding term operators” in mathe- 
matics. We do this by amending the components of 2K as follows. L (K + V) is 
formed by adjoining V to the set K of non-logical constants of LK and adding the 
following grammatical rule to  the recursive definition of “term ” for L K :  

1.2 (Grammat ica l  Rule). I f ’ v  is a vbto, x is a variable, F is a formula hav- 
ing a free occurrence of x, then (vxP) is a term in which all occurrences of x are 
bound. Otherwise, the free variables of (vxP) are the same as the free varia’bles of F .  

In  the semantic system Z(K + V )  (essentially the system of HATCHER [2] as 
modified by CORCORAN and HERRING [l]) an interpretation i is a pair (D, m )  where 
D is as above and m is a function defined on K + V with m the same as above 
on K and, for v in V, with mv a function from PD (power set of D) to  D. The tie- 
notation function, di,  is defined as for 2K with one additional clause (1.3 below), 
and the recursive definition of the truth valuation function Ei is exactly as iri 2 K .  
In  order to state the definition of d i  we define, for each variable x, formula F con- 
taining exactly x free, and interpretation i, the truth set (or solution set) of F relative 
to i as follows. T(x, P)i is the set of objects d in D which satisfy P when F is int’er- 
preted according to  i except that x is taken to denote d .  More formally, T ( x ,  F)’ is 
the set of all d in D such that Ei(P(x /d*) )  = true, d* being the name of d .  We t;tat’e : 

di((vxF)) = ~ v ( T ( x ,  F ) i ) .  
1.3 (Defini t ion of Deno ta t ion  f o r  Var iab le  Bound  Terms). 
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The deductive system A ( K  + V )  is the result of adding a new scheme (1.4 below) 
to  the axiom schemes of A K .  This scheme, called the truth set principle (TSP) is 
due to CORCORAN and HERRING [I] who conjectured that its addition to A K  is 
complete relative to Z ( K  + V ) .  

1.4. Let y and y' be distinct variables. Let F (respectively F' )  be a formula hav- 
ing y but not y' free (respectively y' but not y free). The following is a truth set 
axiom : 

V y  Vy' (y = y' 3 F F ' )  3 (vyF) = (wY'F'). 

Our main theorem, which is immediate from the lemmas of Section 3 below, is 
the following : 

Theorem. Let F be a sentence of L ( K  + V ) .  Then F is true in ewery interpreta- 
tion i n Z ( K  + V )  if and only if P is the last line of a formal deduction in A ( K  + V ) .  

2. The pseudo logic 2K/V 
In  order to study the relationship between 2K and 2 ( K  + V )  it is convenient 

to consider an intermediate system whose language is that of 2 ( K  + V )  but whose 
deductive system is that of Q K ,  the simpler logic. Let LK/V be L ( K  + V )  and 
let dK/V  be the result of deleting the truth set principle from A ( K  + V ) .  The 
behavior of variable bound terms (vbts) in AKjV is very limited in comparison 
with their behavior in A ( K  + V )  which takes ac2ount of their entire inner structure. 
More precisely, AKIV treats each vbt as if it were obtained by substituting terms 
for variables in a certain vbt which behaves like a term composed of a function 
symbol applied to variables. In  particular, some vbts (e.g. (wxPz)) behave like 
individual constants, some (e.g. (vxRxyz)) behave like terms made with a single 
function symbol (i.e. fyx) and some (e.g. (wxRx(vyRyzu) (vwRx'wy')) like terms 
made with more than one function symbol (i.e. f ( f z u ,  hx'y')). But there is much 
inner structure to vbts which cannot be accounted for in this way and this additional 
inner structure is ignored by AK/V.  In  particular, in AK/V 2.0 and 2.1 below are 
provable whereas 2.2 and 2.3 are not, where v is in V :  

2.0. 

2.1. 

2.2.  V X ~ ( ( W Z R X ~ Z )  = (WURZYU)), 
2.3. Vz(Px Qx) 3 (WXPX)  = (vxQx).  

To be more precise concerning AKlV,  a few definitions are needed. Let t be a vbt 
containing no constant terms. If t has exactly n free occurrence of variables, let 
(x, , x2, . . . , x,J be the sequence of free variables of t in their exact order of occur- 
rence. (Thus, there are as many as n and as few as zero distinct variables in 
( x ~ ,  z2, . . . , x,J .) If the following two conditions hold, then t is a canonical vbt (cbvt) : 
( 1 )  (xl, x2, . . . , x,J is the sequence of the first n (distinct) variables of the language 
not occurring bound in t in numerical order. (We presuppose a standard enumera- 
tion of the variables.) (2) Every term having a free occurrence in t is a variable. 

V Z ? / ( ~ X T J  = ( ~ z R x Y z ) )  I> Vu(fuu = (WZRUUZ)), 
d = (VXSZ)  3 (vxTzd) = VZTZ(WXSX), 
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Every vbt is obtainable from a cvbt by replacement of terms for variables. More 
importantly, every vbt is so obtainable from exactly one cbvt, as is clear from 
their syntactical structure. Let c be the function defined on the set of vbts and 
such that ct is the cvbt from which t is obtained by replacement. 

Consider the free occurrences of terms in t ,  a vbt. In  some cases one or more 
occurrences will be proper parts of an occurrence which itself is not a proper part 
of any other proper free occurrence of a term in t .  A free occurrence in t of a term 
which is within no other free term occurrence in t (other than t itself) is called a 
maximal term occwrrence in t . A term which has a maximal term occurrence in t is 
called a maximal term of t . If (t,, t,, . . , , t,) is the sequence of maximal terms of t 
in exact order of occurrence as maximal terms of t ,  and if (xl, x,, . . . , a,) is the 
sequence of free variables of ct in their exact order of occurrence, then t is obtained 
from ct by simultaneously replacing each free occurrence of a variable in ct by the 
maximal term of t which occurs a t  the corresponding place in t ,  

Now let CV be the set of cvbts of L ( K  + V )  and let G be a set of function sym- 
bols (including individual constants) disjoint with K and such that r is a bijection 
from CV onto G which associates n-ary function symbols with cvbts having TL free 
variables. Using r we define a bijection R from the terms and formulas of L(K + V )  
onto those of L ( K  + G ) .  On A K ,  the expressions common to the two languages, 
R is the identity. If t = ftlt, . . . t,,, set Rt = fRt,Rt, . . . Rt,&. If t is a vbt with 
maximal terms (tl,  t,, . . ., t,J as above, set Rt = (rct) Rt,Rt,. . . Rt,,. Finally, let R 
preserve sentential connectives, quantifiers and identities. Using R, one can trans- 
late sequences of formulas in L ( K  + V )  into sequences of formulas in L(K + G) 
so that a sequence in L f K  + V )  is a proof of a formula F in d K / V  if and only if 
its translation is a proof of RF in A ( K  + G). Moreover, by changing variables if 
necessary, every proof in A ( K  + G )  of a formula F can be converted into another 
proof in A ( K  + G) of F‘, an alphabetic variant of F ,  so that the new proof is a 
translahion of a proof in AKIV. Thus F is a theorem of AKIV i f  and only if RF 
is a theorem of A ( K  + G )  , and F is a theorem of A ( K  + G )  if and only if F is 
equivalent to RH from some theorem H of AKlV. 

Despite obvious deficiences, AKIV is still a “sensible” deductive system and i t  
is not difficult to provide a natural semantics for it by amending Z K .  Let us define 
Z K / V ,  the pseudo semantics for QKlV,  as follows. A pseudo interpretation i inZKlV 
is a pair ( D ,  m )  where D is non-empty and m is a function defined on the union 
of K and the set CV of cvbts such that (1)  if m I K is the restriction of m to K, 
then (D, m I K) is an interpretation in ZK and (2) i f  t is a cvbt having exactly n 
free variables, then mt is a function from Dll to D (a funct,ion from DO to D is under- 
stood to be a member of D). The definition of denotation of terms and truth valuation 
of formulas relative to an i of ZK/V  is the same as for Z K  except for the following 
additional clause for defining d i  (the denotation function) on closed vbts. 

2.4. Let t be a closed vbt having (tl , t,, . . . , t,,) as its sequence of maximal terms 
as above. Assuming di  defined on the maximal terms of t ,  we pose dit  = 
= mct (d’t, , dit,, . . . , dit,,) . 
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The function r above can be used in the obvious way to  construct; a bijection 5 
from the pseudo interpretations of ZKlV onto the interpretations of Z ( K  + G )  so 
that every i is equivalent to pi in the sense that: 

(a) for all closed t in L ( K  + V), dit = diiRt and 

(b) for all sentences F in L(K + V), V i P  = V"BF. 
Since i!(K + G) is an ordinary sound and (strongly) complete logic with identity, 
we have the following lemma, in which satisfiability and consistency are defined 
as usual. 

2.5. Lemma. Let S be a set of sentences of L(K + V). Then S is satisfiable in 
ZK/V if and only if S is consistent in AKIV. 

3. Soundness and completeness of 2(X + V )  
3.1. Lemma (Soundness). Let F be a sentence of L(K + V). If P is the last 

line of a formal deduction of A ( K  + V) , then F is true in every interpretation in 

Proof. Let T be the theory of QK/V got by taking the truth set principle as 
proper axioms. Clearly T has exactly the same theorems as 2(K + V ) .  Thus, by 
the soundness of 2K/V (Lemma 2.5), every theorem of 2 ( K  + V )  holds in every 
pseudo model of T .  Thus, if every interpretation in .Z(K + V) is equivalent to a 
pseudo model of T, then the present lemma is proved. 

Let i be an interpretation in Z ( K  + V ) ,  i = (D, m).  We construct the pseudo 
interpretation i = ( D ,  m') as follows. For s in K, let m's = ms. For t a cvbt of 
L (K + V) , m't is a function from Dn t o  D defined by m't ( d l ,  d,, . . . , dlL)  = dit', 
where (xl, x2, . . . , x,) is the sequence of variables free in t in their order of occur- 
rence and t' is theresult of replacing the occurrence of xk in t by the name d: (from 
D*) of dk for 0 k 6 n .  Clearly, i is equivalent to i . Since TSP is valid in 
Z ( K  + V), j is a pseudo model of T. 

3.2. Lemma (Completeness). Let F be a sentence of L ( K  + V). If F is true 
in every interpretation in Z(K + V ) ,  then F is the last line of a formal deduction 

Proof. It is sufficient to show that every pseudo model of T is equivalent t o  
some interpretation of Z(K + V). For then if F is true in every interpretation of 
Z(K + V) i t  is true in every pseudo model of T .  But by completeness of 2K/V 
(Lemma 2.5), if F is true in every pseudo-model of T, then F is a theorem of T 
and therefore a theorem of d (K + V). 

Let i = ( D ,  m) be a pseudo-model of T .  We define j = (D, m') , an interpretation 
in Z(K + V) as follows. For s in K take m's = ms. For each vbto v in V we want 
to define mv as a function from PD to D such that all terms have the same denota- 
tions and all sentences have the same truth values in both i and j .  Let F be a for- 
mula having only x free and possibly containing occurrences of names. For each a ,  
set m'vT(x, F ) i  = di(vxF).  Since TSP holds in i ,  m'v has a unique value on each 

Z(K + V). 

of d ( K  + V). 
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subset of D definable in i . Let m'v take arbitrary values elswhere on PD.  By c 
struction, closed terms and sentences without vbtos have the same values (denc 
tions or truth values) in i and i .  By course of values induction on the length 
closed terms and sentences, one extends the equivalence to all of L ( K  + V )  . 

These two lemmas establish our main theorem which was stated in Sectioi 
The strong completeness of i? (K + V )  is also immediate from the proof of Lemma ~ 

4. Generalization 
In  Section 1 above we have given the details of the treatment of vbtos wk 

bind one variable. Extension of the treatment to  vbtos which bind more than 
variable is obvious. In  particular, terms are formed by the following grammat 
rule. 

4.1 (Grammat ica l  R u l e  fo r  n - a r y  vbtos) .  Let v be an n-ary vbto. 
x l ,  x2 ,  . . . , xn be n distinct variables all of which, have free occurrences in the 
mula F .  Then (wxlx2. . . x,$') is a term in which x l ,  x2, . . ., xfL are bound. Otl 
wise, the free variables of the term are those of F.  

If i = ( D ,  m) is an interpretation of a language LK where K contains an n- 
vbto v ,  then mu is a function from PDn to  D. Moreover, if (vxlx2 . . . x,,F) is a clo 
term, then we pose: 

4.2. di(wx,x2.. . x,F) = mwT(xl,  x 2 , .  . ., xIL, F) i  

where T(x , ,  x2, . . . , x,, F ) i  is the truth set (or solution set) of F ,  i.e. the sel 
n-tuples from D which satisfy F when F is interpreted according to i except t 
each x , ~  is taken to denote the kih member of the n-tuple. 

Finally, completeness is achieved by addition of the following scheme : 

4.3 (Generalized T r u t h  Se t  Pr inciple) .  Let x and y be strings of n disti 
variables. Let &(x = y) indicate the conjunction of the identities between 
responding components of x and y .  Let F be a formula having free occurrer 
of all variables in x and none of those in y. Let H be a formula having free oc( 
rences of all variables in y but none of those in x. Then the universal closure1 
the following are axioms: Vxy(&(a: = y) =, F 2 H )  2 ( m F )  = (vyH) .  
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