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Prominent constructive theories of sets such as Martin-Löf type theory
and Aczel and Myhill constructive set theory, feature a distinctive form
of constructivity: predicativity. This may be phrased as a constructibil-
ity requirement for sets, which ought to be finitely specifiable in terms of
some uncontroversial initial “objects” and simple operations over them.
Predicativity emerged at the beginning of the 20th century as a funda-
mental component of an influential analysis of the paradoxes by Poincaré
and Russell. According to this analysis the paradoxes are the resulg of
a vicious circularity in definitions; adherence to predicativity was there-
fore proposed as a systematic method for preventing such problematic
circularity. In the following, I sketch the origins of predicativity, review
the fundamental contributions by Russell and Weyl and look at modern
incarnations of this notion.

1. Introduction

Since recent years the word “constructive” is typically employed as synonym

of “using intuitionistic logic”. Indeed, influential constructive mathematical

theories, as Martin-Löf type theory and Aczel and Myhill constructive set

theory employ intuitionistic logic.a However, there is a more fundamental
∗This is a preprint of an article appeared in Proof and Computation Digitization in
Mathematics, Computer Science, and Philosophy, Klaus Mainzer, Peter Schuster and
Helmut Schwichtenberg (eds.), World Scientific. https://doi.org/10.1142/11005
aSee, for example, [1–5]. For surveys see [6, 7].
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sense of constructivity that these theories also aim at capturing, which is

deeply rooted in the mathematical tradition, and is commonly expressed by

stating that they are predicative. According to one way of spelling out the

notion of constructivity, this relates to a finitary process of “construction”

or specification of a mathematical entity. For example, the Oxford English

Dictionary so defines the word “constructive” (in the mathematical case):

“Relating to, based on, or denoting mathematical proofs which show how an

entity may in principle be constructed or arrived at in a finite number of

steps.” There is a sense in which an intuitionistic approach to mathematics

satisfies this notion of constructivity, as it assigns a fundamental role in

mathematics to the availability of explicit or constructive proofs of math-

ematical statements. For instance, an intuitionistic proof of an existential

statement is usually read as embodying an algorithm which provides (at

least in principle) a witness to the statement in question and a proof that

the witness does satisfy the relevant condition expressed by the statement.

In addition, an intuitionistic proof of a disjunction ought to offer the mean

for deciding which of the disjuncts holds true.b The requirement that an

intuitionistic proof of an existential statement also ought to include a wit-

ness is a paradigmatic example of the constructivity of the resulting proof,

as the latter shows how to “construct”, or specify, a witness. Similarly, the

requirement of availability of a decision procedure for a disjunction ensures

that a constructive proof is fully explicit.

The issue that predicativity rises is distinct from, though related to, that

of the availability of an intuitionistic proof, and may be seen as directly per-

taining to the question of how we specify domains of quantification.c For

this reason, debates on predicativity have been traditionally perceived as

disputes pertaining the concept of set.d The thought is that an analysis

of constructivity, which relates to “how an entity may in principle be con-

structed or arrived at in a finite number of steps”, ought to include also a

clarification of the concept of set, in as much as sets are domains of quantifi-

cation. It is then clear that the case of universal quantification on infinite

domains is particular problematic, as according to this constructive per-

bThis understanding of the notion of intuitionistic proof is manifested, for example, by

the so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic.
See e.g. [8, 9]. The ideas underlying the BKH interpretation are made more precise in
Martin-Löf type theory and in models of intuitionistic theories, as realizability models

[10].
cThe interrelation between predicativity and intuitionistic logic is complex, and for this

reason an analysis of this issue is postponed to subsequent work.
dSee the final section for a brief discussion of this point.
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spective we require that a domain of quantification be finitarily specified.

If sets are to be understood constructively, then two crucial issues need

to be examined: which methods of “construction” of sets are considered ad-

missible, and which initial entities can be taken as legitimate starting points

of the construction process. As I clarify below, the predicative literature

witnesses a number of distinct answers to these questions.

The principal aim of this article is to survey and discuss predicativity.e

In the following, I outline the origins of predicativity, and review an informal

characterization of this notion. I then briefly sketch the main traits of

two fundamental predicativist proposals by Russell and Weyl, respectively

[14, 15]. Finally, I delineate the principal steps of a logical analysis of

predicativity that began in the 1950’s, and conclude with a comparison

between two forms of predicativity: predicativity given the natural numbers

and strict predicativity.

2. The emergence of predicativity

The notion of predicativity has its origins within a remarkable exchange

between Poincaré and Russell at the beginning of the last century.f The

wider context of Poincaré and Russell’s debate on predicativity are well-

known reflections by prominent mathematicians of the time on the new

concepts and methods of proof which had made their way in mathemat-

ics from the 19th century.g Predicativity specifically was forged as part of

Poincaré and Russell’s attempts to analyse and counter the paradoxes that

afflicted the foundations of mathematics.h Russell’s influential analysis of

the paradoxes imputes them to the illegitimate assumption that any propo-

sitional function gives rise to a class, the class of all the objects which sat-

isfy it.i Russell therefore introduced the term predicative to denote those

propositional functions which define a class and distinguish them from the

non-predicative or impredicative ones, which do not define a class [20].

eThis note is part of a wider project of clarification and assessment of predicativity. See
also [11–13].
fSee [14, 16–22].
gSee e.g. [23–25].
hSee below for an emblematic example of paradox: Russell’s paradox.
iIn the present context for simplicity we may identify a propositional function with an
open formula, i.e. a formula with a free variable (see e.g. [26]). Note, however, that

the interpretation of the notions of proposition and propositional function in Russell is
complex. See e.g. [27]. Note also that the term “class” is here used as in the original lit-

erature, to refer to a collection of elements. Therefore it should be carefully distinguished
from the notion of “proper class” that is often used in contemporary set theory.
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Poincaré and Russel’s debate witnesses the difficulties involved in spelling

out the notion of impredicativity, and clarifying its perceived problematic

status. Russell, in particular, turned to devise formal ways of capturing

the distinction between predicative and impredicative propositional func-

tions. A clarification of the notion of predicativity became a fundamental

component of a thorough analysis of the foundations of mathematics, and

adherence to predicativity the main instrument for blocking the paradoxes.

Russell’s efforts culminated in his ramified type theory, as further discussed

in section 3.1.

2.1. Circularity and Russell’s VCP

A crucial feature of Russell’s type theory is its implementation of the so-

called Vicious Circle Principle (VCP), introduced to ban vicious-circular

definitions (see below). The VCP was prompted by the fundamental obser-

vation by Richard, further developed by Poincaré, that paradoxes typically

manifest a form of vicious circularity, or self-reference [16, 18, 28]. An

example may help clarify this point.

Richard’s paradox. This paradox arises form the definition of the

least non–definable real number, r, by reference to the class of all definable

real numbers. More precisely, let us consider all the real numbers which

are definable in English by a finite number of words and let D be their

collection. D is countable. We can then list all the elements ofD, and mimic

Cantor’s diagonal proof of the non-denumerability of the real numbers to

produce a new real number, r, which is different from each element of D.

However, one can easily express in English a rendering of the “algorithm”

that allows for the definition of r, so that r turns out to be a definable real

number after all, and a contradiction arises.

According to the present analysis, Richard’s paradox is engendered by a

form of circularity: we define r by reference to the whole D, and therefore,

so it is claimed, by reference to r itself. In fact, Russell introduced the

VCP to prevent the formation of collections as D, and claimed that these

are ill-formed. He gave a number of variants of the VCP. For example:

“no totality can contain members defined in terms of itself” [14, p. 237].
Another version is to be found in [29, p. 198]:

... whatever in any way concerns all or any or some of a class
must not be itself one of the members of a class.

The latter rendering of the VCP clearly highlights the fundamental link
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between impredicativity and quantification.j

2.2. Characterising predicativity

Having introduced the VCP and explained its motivation with an example,

I can now review an informal characterisation of predicativity which fig-

ures in the early foundational debates. Predicativity is typically presented

negatively: we specify what is impredicativity and term predicativity the

negation of impredicativity. We say that a definition is impredicative if it

defines an entity by reference to a class to which the entity itself belongs. In

particular, a definition is impredicative if it defines an entity by quantifying

over a class which includes the entity to be defined. Given this notion of

impredicative definition, one can further specify a notion of impredicative

entity : this is an entity which can only be defined by an impredicative defi-

nition. We can hence talk of impredicative classes, propositions, properties.

A definition or entity is predicative if it is not impredicative.k

2.2.1. Examples

In the previous section, I have reviewed Richard’s paradox, which arises

from an impredicative definition, as we define a new element r of D by

reference to the whole D. Further examples may help clarify the notion of

impredicativity. In presenting these examples I closely follow [14, 34], but

also [35, 36], as their analysis clearly highlights a number of reasons that

are typically adduced against impredicativity.

1. Russell’s paradox. The first example of impredicative definition I

consider is that of Russell’s “set”, R. This can be so defined in modern

terminology:

R = {x | x /∈ x}.
Here R arises from an application of the Unrestricted Comprehension

schema: given any formula φ in the language of set theory, we form the
jThis is perhaps the best know expression of the VCP. However, Russell gave other

renderings, some of which, like the first one above, do not directly involve quantification
over, but reference to a class that includes the definiendum. The plurality of formulations

of the VCP induces difficulties for an exegesis of Russell’s thought, and, indeed, for a

thorough clarification of the notion of predicativity, as already noted by Gödel [30].
kThis negative characterisation of impredicativity is clearly unsatisfactory. As discussed

below, subsequent technical work, starting from Russell’s type theory, aimed at offering
more informative characterisations of predicativity. Note also that the late writings by
Poincaré [21, 22] feature another, apparently distinct, characterisation of predicativity

which does not appeal to circularity. A predicative set is “invariant under extension”:

the addition of new elements does not “disorder” the set itself. See [12, 13, 31–33].
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set of all the x’s that satisfy φ, that is, {x | φ(x)}. In R’s definition, in

particular, one takes φ to be x /∈ x.

In his analysis of this paradox Russell observes that R is defined im-

predicatively as it refers to the class of all classes [14, p. 225]. He also

states that if we tried to block the paradox by deciding that no class is a

member of itself, then R would become the class of all classes. But then the

question arises whether R is a member of itself, and we have to conclude

that R is not a member of itself, that is, that R is not a class. Russell

therefore draws the conclusion that there is no class of all classes, since if

we supposed there is, then this very assumption would give rise to a new

class lying outside the presumed class of all classes.

2. Burali-Forti paradox. This is so described by Russell: we can show

that every well-ordered class has an ordinal number, and that the ordinal of

the class of ordinals up to and including any given ordinal exceeds the given

ordinal by one. But “on certain very natural assumptions” the class of all

ordinals itself is well-ordered and has an ordinal number, say Ω. However,

the class of all ordinals including Ω turns out to have ordinal number Ω+1,

contradicting the assumption that Ω is the ordinal of the class of all ordinals.

Russell’s assessment of this paradox is that it shows that “all ordinals” is

an “illegitimate notion; for if not, all ordinals in order of magnitude form

a well-ordered series which must have an ordinal number greater than all

ordinals.” [14, p. 225]

3. The logicist definition of natural number. The logicist definition of

natural number may be so expressed: n is a natural number if it satisfies

all properties which hold of 0 and which are closed under the successor

operation. In modern terminology:

N(n) := ∀F [F (0) ∧ ∀x(F (x) → F (Suc(x))) → F (n)].

The predicate N expressing the property “to be a natural number” is

here defined by reference to all predicates, F , expressing properties of the

natural numbers. A circularity arises as the predicate N itself is within the

range of the first quantifier: the definition is impredicative, as N is defined

by reference to all predicates expressing properties of the natural numbers

and thus, so it is contended, to itself.l

In the following, I draw on Carnap’s clear analysis of this example in

[35]. Carnap rightly stresses the importance of this example, which shows

lPoincaré is well-known for having noted this difficulty with this definition of natural

number, and for suggesting that the principle of mathematical induction and the natural
numbers can not be reduced to something more primitive.
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that impredicativity affects not only paradoxical cases, but one of the most

fundamental concepts in mathematics, that of natural number.m Carnap

remarks that the above definition induces difficulties which are best seen if

we consider a specific natural number, say 3, and check whether it satisfies

this definition. In order to do so, we need to check if each property of the

natural numbers holds of 3, that is, if: ∀F [F (0)∧∀x(F (x) → F (Suc(x))) →
F (3)]. However, the property “to be a natural number”, which is expressed

by the predicate N , is one of the properties of the natural numbers. That

is, to find out whether N(3) holds, we need to be able to clarify whether

the following holds:

N(0) ∧ ∀x(N(x) → N(Suc(x))) → N(3).

Hence it would seem that we need first to ascertain whether the property

of being a natural number holds of 3, in order to assess whether it holds

of 3. Carnap concludes that this definition of natural number is therefore

“circular and useless” [35, p. 48] .n

4. Napoleon’s qualities. Another example of impredicative definition

which does not involve a paradox is given by the sentence: Napoleon had

all the qualities that make a great general [34, p. 59]. We might

wish to compare the expression above with the following: Napoleon was

Corsican, or Napoleon was brave. These are utterly unproblematic, as the

properties expressed by “being Corsican” and “being brave” do not refer

to other properties. However, the property expressed by “having all the

qualities that make a great general” would seem to be itself a quality of a

great general, and therefore refer to itself.o

5. Least Upper Bound principle. Finally an example from analysis: the

Least Upper Bound principle (LUB). This states that:

Every bounded, non–empty subset M of the real numbers has
a least upper bound.

mA worry for Carnap is that the impredicativity of the logicist definition of natural

number seems to compromise the logicist programme.
nCarnap [35] hints at the possibility of an alternative reading of universal quantification,

which would vindicate the usefulness of impredicative definitions as the one above. The
idea is to consider a reading of universal quantification which avoids the presupposition

that a universal quantification also entails reference to each individual element of a

domain of quantification. Carnap’s proposal is briefly discussed by Gödel [30]. See also
[37] for a contemporary perspective into this issue inspired by Carnap’s discussion. [12]

also analyses, under the light of [38], the prospects of eliminating these difficulties by
reading universal quantification intuitionistically.
oThis example is often used by Russell to explain the workings of “ramification” in

ramified type theory, as discussed below.
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To explain the impredicativity of the (LUB) I follow [36, p. 2]. In a

standard way, we can codify rational numbers by suitable natural num-

bers and identify real numbers with certain sets of rational numbers, via

Dedekind sections or Cauchy sequences. If we identify real numbers with

the upper parts of Dedekind sections, we see that the least upper bound of

a bounded, non-empty set M of real numbers is given by S = ∩X[X ∈ M].

The difficulty with this definition can be seen as follows. The set M will

be typically given by a condition, C(X), such that

∀X[X ∈ M ⇐⇒ C(X)].

Now S above is such that

∀x[x ∈ S ⇐⇒ ∀X(C(X) → x ∈ X)].

Feferman writes:

However, to answer the question “What are the members of
S?” we would, in general, first have to know what sets X
satisfy C(X), and in particular whether or not C(S) holds; this
would, in turn, in general depend on knowing what members S
has. [36, p. 2]

As further discussed below, if impredicativity is seen as problematic, this

particular example is critical, as it goes at the very heart of mathematics,

affecting a core discipline as analysis.
To conclude this section, I outline Russell’s verdict on examples as 1 and

2 above. As already anticipated in [20], Russell claims that a solution to the
paradoxes lies in countering the assumption that any propositional function
gives rise to a set. More precisely, Russell observes that a typical common
feature of the paradoxes is that they involve a form of “self-reference of
reflexiveness”. “In each contradiction something is said about all cases
of some kind, and from what is said a new case seems to be generated,
which both is and is not of the same kind as the cases of which all were
concerned in what was said.” [14, p. 224] Russell concludes that viciously
circular definitions do not give rise to a class, on pain of contradiction, and
therefore are illegitimate:

Thus all our contradictions have in common the assumption of
a totality such that, if it were legitimate, it would at once be
enlarged by new members defined in terms of itself. This leads
us to the rule: “Whatever involves all of a collection must not
be one of the collection”; or, conversely; “If, provided a certain
collection had a total, it would have members only definable in
terms of that total, then the said collection has no total.”
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3. Shedding light on predicativity: Russell’s ramified type

theory and Weyl’s “Das Kontinuum”

The above characterisation of impredicativity and the examples suffice to

convey a general idea of this notion. However, the above characterisation

is insufficiently precise to fully clarify what counts as predicative and what

does not. In fact, as already noted by Zermelo, mathematical notions are

typically defined in a number of alternative but equivalent ways [39]. It is

therefore to be expected that some mathematical notions which are prima

facie impredicative may, under closer scrutiny, turn out to be predicative

after all. A detailed assessment of this issue requires therefore a more

sophisticated approach which makes use of a precise logical machinery.

Two main lines of research arise from this observation. First of all, from

a perspective that finds faults with impredicativity, one would like to have

some general criteria which systematically guarantee that when developing

mathematics we do not introduce impredicative notions or entities. One

way to achieve this is to develop a suitable foundational theory (e.g. a set

theory) which complies with predicativity, so that working within it fully

guarantees adherence to predicativity.

Secondly, as the examples of the logicist definition of natural number

and the LUB principle clarify, impredicativity is to be found in everyday

mathematics. Therefore, from both a perspective that favours and one that

objects to predicativity, it becomes crucially important to assess what is the

impact of complying with predicativity. A clarification of the latter point

turns out to be more complex than the above informal characterisation of

predicativity may suggest, especially because of the possibility of developing

a portion of mathematics in a number of alternative ways. In the following,

I briefly review two particularly significant steps in the development of these

two lines of research: Russell’s type theory and Weyl’s predicative analysis.

In Section 4, I discuss more recent developments that directly tackle the

second issue.

3.1. Russell’s type theory

The need to replace the purely negative characterisation above with a pos-

itive one was fully acknowledged by [14], who claimed that “our positive

doctrines [...] must make it plain that ‘all propositions’ and ‘all properties’

are meaningless phrases.” [14, p. 226] Russell’s “positive doctrine” finds full

expression in his ramified type theory [14, 34]. This is a careful and complex
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formulation of a concept of set which introduces a number of restrictions

compared with the naive concept of set given by unrestricted comprehen-

sion. Retrospectively, Russell [14] introduces simultaneously two kinds of

regimentation: a type restriction and an order restriction for propositional

functions.

Type restrictions have the effect of producing a hierarchy of “levels”

or “types”. As a consequence, membership is now a relation between, on

the one side, members of a type and, on the other, the type itself. A type

is “[...] the range of significance of a propositional function, i.e. [...] the

collection of arguments for which the said function has values.” [14, 236]

The underlying idea is that we start from a type of individuals, and then

consider types which are ranges of significance of propositional functions

defined on the individuals, and so on. This apparently suffices to block

set-theoretic paradoxes as, for example, Russell’s paradox: expressions as

x ∈ x or x /∈ x are simply ill-formed.p

In addition to type restrictions, Russell also introduced further con-

straints on propositional functions, whose effect is to block impredicativity

more generally. Example 4 above highlights the difference between ex-

pressions as “being Corsican” and “being brave” on the one hand, and

expressions as “having all the qualities that make a great general” on the

other hand. The first are utterly unproblematic, while the latter refers to

“all qualities” of a great general, including the property it refers to, and

therefore is problematic from a predicative perspective. The strategy un-

derpinning ramification may be concisely summarised as follows: to avoid

defining a property in terms of an expression which refers to “all proper-

ties”, we subdivide the propositional functions (referring to properties) in

different “orders”. First order propositional functions are those, as “be-

ing Corsican” and “being brave” which do not refer to other propositional

functions. At the second order we have propositional functions which quan-

tify over all propositional functions of the first order, and so on.q This is

accounted for by introducing a hierarchical structure, ramification, at the

level of propositional functions; quantification is then constrained to range

over propositional functions of lower orders. Consequently, cases of impred-

icativity as that involved in Example 4 and in the definition of the natural

numbers discussed above can now be eliminated. However, as quickly re-

alised by Russell [14], the device of ramification causes difficulties as soon as

pSet-theoretic paradoxes are paradoxes, as Russell’s and Burali-Forti’s, that relate to

the concept of set. See also page 14.
qOn ramification see e.g. [40–44].
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we attempt to prove statements by induction on the natural numbers. For

example, we can not refer to all the properties of the natural numbers, but

only to those of some given order. These difficulties propagate to the case

of the real numbers, as witnessed by the impredicativity of the LUB. As a

consequence, many “fundamental theorems not only could not be proved

but could not even be expressed.” [35, p. 46] In fact, “many of the most

important definitions and theorems of real number theory are lost” [35, p.

49]. Russell [14] felt compelled to introduce the axiom of reducibility, “by

means of which the different orders of a type could be reduced in certain

respects to the lowest order of the type.” [35, p. 46] A frequent criticism of

this axiom today, is that from an extensional point of view it has the effect

of reintroducing impredicativity. Soon after its introduction, reducibility

was met by stark criticism for its lack of satisfactory justification: “[t]he sole

justification for this axiom was the fact that there seemed to be no other

way out of this particular difficulty engendered by the ramified theory of

types.” [35, p. 46] More forcefully Weyl wrote:

Russell, in order to extricate himself from the affair, causes

reason to commit hara-kiri, by postulating the above assertion

[the axiom of reducibility] in spite of its lack of support by any

evidence. [45, p. 50]

3.2. Weyl’s “Das Kontinuum”

A fresh attempt at developing mathematics from a predicative point of view

was proposed by Weyl in his book “Das Kontinuum” [15]. Weyl may be

seen as contributing in original ways to both the above mentioned lines of

research: he put forth a concept of predicative set, that is, a systematic

predicative foundation, but also explored the mathematical extent of pred-

icativity, developing (a portion of) analysis on the basis of this predicative

concept of set.

Weyl was fully aware of the difficulties introduced by ramification for

the development of mathematics, and severely criticized the axiom of re-

ducibility, as also witnessed by the quotation above; he thus refrained from

both. As to ramification, in Section 6 of “Das Kontinuum”, Weyl does

consider this possibility, but concludes: “A ‘hierarchical’ version of analy-

sis is artificial and useless. It loses sight of its proper object, i.e. number

[...]. Clearly, we must take the other path [...] to abide the narrower itera-

tion procedure.” [15, p. 32] In the following, I present the main characters
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of Weyl’s approach and clarify what is the “narrower iteration procedure”

mentioned in the above quotation.r

In setting up his predicative analysis, Weyl’s starting point are the nat-

ural numbers, which are assumed as given together with the principle of

mathematical induction.s Weyl refers back, approvingly, to Poincaré, who

had strongly criticised any attempts to justify the principle of induction as

viciously circular.t As for Poincaré, also for Weyl we have no option but

to take the natural numbers with the principle of induction at the start:

“the idea of iteration, i.e., of the sequence of the natural numbers, is an

ultimate foundation of mathematical thought, which can not be further re-

duced” [15, p. 48]. In fact, Weyl clearly highlights the fundamental role

that the principle of induction has for the natural numbers, as it is this

principle that allows us to characterize uniquely each natural number in

terms of its position in the number sequence.

While the natural numbers are assumed as “given”, Weyl imposes re-

strictions, motivated by predicativity concerns, at the next level of idealiza-

tion beyond the natural numbers: the continuum. As the real numbers can

be represented by sets or sequences of rational numbers, and the rational

numbers, in turn, by natural numbers, the question underlying Weyl’s pred-

icative approach may be phrased as follows: which sets of natural numbers

can be justified predicatively? From an impredicative perspective, Weyl’s

predicative analysis may be seen as introducing predicative restrictions on

the powerset of the natural numbers, which is an emblematic manifestation

of the concept of “arbitrary” set underpinning ZFC [23, 49, 50]. For Weyl,

an arbitrary set is “a ‘gathering’ brought together by infinitely many indi-

vidual arbitrary acts of selection, assembled and then surveyed as a whole

by consciousness” and, as such, it is “nonsensical” [15, p. 23]. Weyl pro-

poses an alternative concept of set, one which can be portrayed as if it were

produced by a step-by-step process from the safety of the natural numbers

by application of well-understood logical operations. He is very clear that

only by reforming the concept of set so to anchor it to the safe domain of

the natural numbers, can we be confident that the edifice of mathemat-

ics stands on “pillars of enduring strength”. For example, Weyl notes the

impredicativity of the LUB and writes:

But the more distinctly the logical fabric of analysis is brought

rSee also [46–48], and [13, 26] for overviews.
sI shall also write “induction” for “mathematical induction”.
tSee e.g. [18].
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to givenness and the more deeply and completely the glance of

consciousness penetrates it, the clearer it becomes that, given

the current approach to foundational matters, every cell (so

to speak) of this mighty organism is permeated by the poison

of contradiction and that a thorough revision is necessary to

remedy the situation. [15, p. 32]

The process of “formation” of predicative subsets of the natural num-

bers suggested by Weyl may be concisely summarised as follows: we start

from the natural numbers with full mathematical induction and use the or-

dinary logical operations to form judgements expressing properties of (and

relations between) natural numbers. Crucially, quantification is restricted

to the domain of natural numbers.u Sets are then extensions of properties

(and relations) expressed by such judgements, modulo extensionality. More

precisely, a set is the collection of all and only those objects which satisfy

a property affirmed by one such judgement, and sets are identified if and

only if they have the same elements. The restriction to quantification on

the natural numbers witnesses Weyl’s fundamental choice of following the

“narrower iteration procedure”. One could, in fact, imagine that once a set

has been justified in the above manner, it would be legitimate to quantify

over it, therefore using it to define new predicatively justified sets, that can

again act as domains of quantification, and so on. As mentioned above,

Weyl does consider this possibility but suggests that for the purpose of de-

veloping real mathematics, it is unnatural. He therefore explores how far

can we go by restricting quantification to the natural numbers.

In modern terminology, in the language of second order arithmetic, Weyl

introduced restrictions on how we form subsets of the natural numbers,

that, in practice, justify only applications of the comprehension schema to

arithmetical formulas, that is, those formulas which do not quantify over

sets (but may quantify over natural numbers). In this way one justifies sets

of the form {x |φ(x)} only if φ does not contain set quantifiers. This restric-

tion prevents vicious–circular definitions of subsets of the natural numbers:

the restriction to number quantifiers in the comprehension principle does

not permit the definition of a new set by quantification over a collection of

sets to which the definiendum belongs.

Weyl’s fundamental realisation was that adopting this very restrictive

uWeyl in [15] takes a more general approach, by proposing a concept of set which is built

on any “definite” basic category of object. The natural numbers are a paradigmatic

example of basic category, and the fundamental one for analysis.
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concept of set does not impair the development of large parts of 19th century

analysis. In fact, Solomon Feferman [46] has extended Weyl’s work to

include large portions of contemporary analysis, as further discussed below.

4. The re-emergence of predicativity

The interest in predicativity sharply declined soon after the publication of

Weyl’s book for a number of reasons, among which, for example, Weyl’s

brief conversion to Brouwer’s intuitionism [?].a Peharps the most signif-

icant circumstance that determined predicativity’s loss of appeal was the

rapid accreditation of impredicative set theory as standard foundation.b In

addition to historical and sociological reasons, the widespread neglect for

predicativity is also due to two kinds of objections that were quickly leveled

against it: one of a mathematical and one of a philosophical nature. The

mathematical objection was that adherence to predicativity is unnecessary

to avoid the paradoxes that afflict the foundations of mathematics. This

followed a proposed distinction between set-theoretic and semantic para-

doxes [52, 53]. Set-theoretic paradoxes are those which directly relate to

the concept of set, and include e.g. Russell’s and Burali-Forti paradoxes;

semantic paradoxes involve linguistic or semantic notions, and include e.g.

Richard’s paradox and the Liar paradox. It was then suggested that only

the first kind of paradoxes constitutes a serious threat to the foundations

of mathematics [52, 53] (see also [35]). Furthermore, Chwistek and Ram-

sey [53, 54] observed that Russell’s ramified type theory could be simplified

by introducing type restrictions without also imposing ramification. The

resulting formalism goes under the name of simple type theory and its for-

mulation was subsequently simplified by Church [55], among others. Simple

type theory does not eliminate all impredicativity, but seems sufficient to

block all known set-theoretic paradoxes. This observation was then taken

to undermine what is typically seen as the principal motivation for predica-

tivity: to avoid the paradoxes. It certainly intimates more care in constru-

ing an argument for predicativism, the philosophical position according to

which only predicative mathematics is justified.

As to the philosophical objection, a frequent interpretation of impred-

icativity is that it becomes a genuine difficulty only if the role of definitions
aNote that Weyl’s classical approach in “Das Kontinuum” had lasting influence on Loren-

zen [51].
bSee also [26] for additional historical and sociological reasons for the decline of interest

in predicativity.
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is to produce or create their definiendum, rather than select it from a pre-

viously given domain of mathematical entities. In this context, one often

mentions [53]’s example: “the tallest man in this room”.c This is an impred-

icative definition, but its impredicativity is harmless. Its innocent nature

is often explained by claiming that its purpose is singling out rather than

creating a particular individual. Ramsey’s objection to predicativity is so

summarised, for critical purposes, by [35, p. 50]: “That we men are finite

beings who cannot name individually each of infinitely many properties is

an empirical fact that has nothing to do with logic.” In other terms, it is

often argued that it is only from a throughly constructive perspective that

impredicativity is problematic; however, a realist attitude to mathemati-

cal entities grants the legitimacy of impredicativity. This interpretation of

predicativity is very common, so much so that it might be termed the “re-

ceived view” on predicativity. Its prevalence is probably also due to [30]’s

well-known analysis of predicativity, that is often read along these lines.

A discussion of these objections is beyond the aims of this note. As to

the philosophical objection, I argue elsewhere that both the legitimacy of

impredicativity from a realist perspective and its illegitimacy from a con-

structive perspective require further scrutiny.

4.1. A new stage for predicativity

Notwithstanding these objections, renewed interest in predicativity

emerged from the 1950’s, when fresh attempts were made to obtain a

clearer demarcation of the boundary between predicative and impredica-

tive mathematics, by making use of state-of-the-art logical machinery. The

literature from the 1950’s and 1960’s witnesses the complexity of the task

of clarifying the limit of predicativity, which saw the involvement of a num-

ber of prominent logicians, as Feferman, Gandy, Kleene, Kreisel, Lorenzen,

Myhill, Schütte, Spector and Wang. In the following, I sketch the most

salient characters of this new phase for predicativity.d As argued in [13],

a very striking aspect of the logical analysis of predicativity is the radical

change in purpose, compared with the first discussions on predicativity.

The mathematical logicians who approached predicativity in the second

half of the last century typically aimed not at rectifying the foundations

of mathematics, but at further clarifying the notion of predicativity and

distinguishing it from impredicativity. The principal aim was to establish

cSee also the discussion of this example in [35].
dSee e.g. [13, 26] for surveys and further references.
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the limit of predicativity, clarifying how far predicativity goes. This was

approached by two distinct, but related, strategies. A first objective was to

devise formal instruments for capturing the notion of predicativity and es-

tablish their theoretical limit. A second purpose was to clarify which parts

of contemporary mathematics can be developed without any appeal to im-

predicativity, by systematically analysing mathematical theorems from a

logical perspective.

The efforts to establish the limit of predicativity culminated in a funda-

mental chapter in proof theory. Here Russell’s original idea of ramification

had a crucial role, as it lead to the definition of a transfinite progression of

systems of ramified second order arithmetic indexed by ordinals. As in [15],

the natural numbers were assumed as starting point, and constraints were

introduced at the next level, restricting the powerset of the natural num-

bers. However, there was also a departure from Weyl’s “narrower iteration”

procedure, as the aim was now to assess how far can we go from a pred-

icative perspective: the ascent to sets beyond the arithmetically definable

ones was therefore permitted, as long as it could be predicatively justified.

The principal difficulty was, however, devising suitable criteria for justifying

predicatively the extension beyond Weyl’s original approach. Here a notion

of “predicative ordinal” played a pivotal role, as ascent along the progres-

sion of ramified systems was admitted only along predicative ordinals. The

intuition underlying the notion of predicative ordinal is that this is an ordi-

nal which can to be recognized by exclusive appeal to notions that have al-

ready been secured. Roughly, one introduces a “boot-strapping” condition,

requiring that we progress up along the hierarchy of ramified systems to a

stage α only if α has already been recognized as predicative at a previous

stage of the hierarchy, i.e. if α has been proved to be an ordinal at a previous

stage of the hierarchy. Following a proposal by Kreisel [56], Feferman and

Schütte (independently) determined the so-called limit of predicativity

in terms of the first non-predicative ordinal, known as Γ0 [36, 57, 58].e The

claim was that theories whose proof theoretic strength is below Γ0 could

be predicatively justified.

The second component of the logical analysis of predicativity was a

detailed logical investigation of the underlying assumptions which are im-

plicit in ordinary mathematics, with the purpose of elucidating the role of

impredicativity in ordinary mathematics. The expression “ordinary math-

ematics” refers to mainstream mathematics, that is, those areas of mathe-

eSee e.g. [59, 60] for more details.
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matics which make no essential use of the concepts and methods of abstract

set theory and, in particular, the theory of uncountable cardinal numbers.

Weyl’s pioneering work in “Das Kontinuum” constituted fundamental ref-

erence, especially for Feferman’s investigations [26, 46]. Feferman [46] has

carefully analysed Weyl’s text and proposed a system, W (for Weyl), which

can be used to codify the analysis in “Das Kontinuum”. He has verified

that not only Weyl’s analysis, but large portions of contemporary analysis

can be carried out on the basis of system W.f The significant point is that

W is very weak proof-theoretically, as it is no stronger than Peano Arith-

metic (and hence well within the Γ0 limit). Another important source of

insight on the mathematical extent of predicativity are the findings obtained

within Friedman and Simpson’s programme of Reverse Mathematics [62],

which also produced important independence results.g This research over-

all confirms that if we confine our attention to ordinary mathematics, then

impredicativity is largely unnecessary.h The situation bears similarity to

the one we encounter in constructive mathematics. Brouwer and, subse-

quently, Bishop [65] realised that notwithstanding the fact that the prin-

ciple of excluded middle is extensively used in ordinary mathematics, we

can re-develop a large body of interesting and useful mathematics with-

out any appeal to this logical principle. Here it is tempting to draw the

moral that at least for a substantial portion of ordinary mathematics, the

apparent necessity of certain features of ordinary mathematics, like the

use of the principle of excluded middle or impredicativity, turns out to be

a by-product of the context in which it is developed, and might also de-

pend on the specific formulation of their statements. In particular, in the

constructive case a careful choice of definitions allows for a constructive re-

development of parts of mathematics that are non-constructive. In the case

at hand, many instances of prima facie impredicativity become amenable

to predicative treatment once we work within sufficiently weak systems.i

fSee also [61].
gIn this context, Weyl’s predicative analysis can be recast within the system ACA0.
hSee [63] for details and [64] for examples of mathematical theorems that lie beyond

predicativity.
iThere has been extensive cross-fertilisation between reverse and constructive mathe-

matics. Simpson, however, also emphasizes a difference with constructive mathematics,

in that the aim in reverse mathematics is “to draw out the set existence assumptions

which are implicit in the ordinary mathematical theorems as they stand”. Bishop’s goal,

according to Simpson, is instead “to replace ordinary mathematical theorems by their

“constructive” counterparts.” [63, p. 137]
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In addition, like in constructive mathematics, we need to rely on individ-

ual case studies for our findings, so that any general conclusion can only

be achieved on the basis of a thorough investigation of the mathematical

practice.

5. Plurality

The logical analysis of predicativity aimed at determining the limits and

the extent of a notion of predicativity given the natural numbers. Here

one takes an approach to predicativity analogous to Weyl’s, in that the

natural numbers with full (i.e. unrestricted) induction is assumed at the

start, and appropriate predicatively motivated constraints are imposed on

the formation of subsets of the natural numbers. In the case of predicativity

à la Weyl, an appeal to the natural numbers together with simple logical

operations enables for the articulation of a predicative concept of set which

offers a secure foundation for mathematics, as its certainty is grounded on

the reliability of the natural numbers and those simple logical operations.

In particular, by restricting quantification to the natural numbers, we do

not appeal to dubious sets, definable only by vicious circles. The legitimate

subsets of the natural numbers may be portrayed as if they were the result

of a bottom-up procedure, or the repeated application of an arithmeti-

cal rule which, starting from the natural numbers, prescribes step-by-step

which elements belong to the given set (and when two such elements are

equal). The comparison with the full powerset of the natural numbers is in-

structive, as in that case one collects together all the subsets of the natural

numbers, irrespective of whether we can offer, even in principle, a finitary

rule of formation. The arithmetical sets are therefore a particularly clear

exemplification of a predicative and constructive notion of set grounded on

the natural numbers (and the first order logical operations).

The assumption of the natural numbers with full induction as starting

point for predicativity has, however, not gone unchallenged. Different forms

of predicativity have been proposed in the relevant literature. For example,

systems as Martin-Löf type theory and Aczel and Myhill constructive set

theory embody a particularly generous notion of predicativity, and combine

it with the rejection of the principle of excluded middle. The thought here

is that compliance with intuitionistic logic makes predicatively legitimate

constructions, as generalised inductive definitions, which are problematic
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from a classical predicativist perspective.a Another variant of predicativity

instead preserves the adherence to classical logic, but restricts rather than

extends the domain of predicatively justifiable mathematics. This variant of

predicativity has been called strict predicativity [68] and arises from a crit-

icism of the natural numbers from a predicativist perspective. An analysis

of these variants of predicativity and their respective relations is beyond the

remits of this note. Here I only briefly discuss strict predicativity with the

aim of placing predicativity given the natural numbers under perspective.

Edward Nelson [69] has proposed a form of predicative arithmetic which

imposes severe restrictions on the principle of induction. Nelson’s principal

motivation for his predicative arithmetic is the complaint that the natural

numbers hide a form of circularity. Charles Parsons has also argued that

impredicativity already makes its way at the level of the natural numbers,

and that induction is the culprit [67, 68]. Nelson and Parsons’ criticism

of induction bears similarities with the objection to the impredicativity of

the logicist definition of natural numbers which was discussed above, since

it highlights a circularity in the definition of natural number. Nelson’s

complaint with induction is put forth in a dense paragraph at the beginning

of [69], whose interpretation is complex. In the following, I propose a

possible way of arguing for the impredicativity of induction which is inspired

by [69] and [67].

The logicist definition of natural number is impredicative as it has a

second order quantifier at the start. It is therefore problematic from a

predicativist perspective. A more promising definition of natural number is

its inductive specification: a natural number is either 0, or the successor of a

natural number, and nothing else. Here the closure condition is given by the

induction principle. Induction is expressed as follows in Peano Arithmetic:

[φ(0) ∧ ∀x(φ(x) → φ(Suc(x)))] → ∀xφ(x),

where φ is an arbitrary formula in the language of PA, and Suc(x) is the

successor of x. First of all, one claims that the principle of induction plays

a fundamental role in clarifying what are the natural numbers. This point

was already stressed by Poincaré and Weyl: the principle of induction is

a crucial component of the natural number structure. One could also say

that induction is required to determine the extension of the natural number
aThe proof-theoretic strength of theories of inductive definitions is well above the Kreisel-

Feferman-Schütte limit of predicativity mentioned above [66]. See [12, 36, 67] for discus-

sion.
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concept (i.e. what falls under that concept). Secondly, one observes that

in the induction principle, the induction formula, φ, is arbitrary, so that it

might be instantiated by a formula with unrestricted (number) quantifiers.

Now a difficulty arises as follows: in order to make sense of an instance of

induction with an unrestricted universal quantifier ranging over the natural

numbers, we would seem to require a prior clarification of what falls under

the natural number concept. That is, it would seem that we need first to

have a specification of what belongs to the natural number concept before

we can make sense of a statement of the form “for all natural numbers ...”.

However, if induction plays an essential role in determining the extension

of the natural number concept, we end up with a vicious circle: we need

induction to clarify what belongs to the natural numbers, but we need to

already know what the natural numbers are, in order to make sense of

crucial instances of induction.

Nelson’s rejection of the induction principle on the grounds of circu-

larity leads him to justify only weak subsystems of Peano Arithmetic. In-

terpretability in a fragment of primitive recursive arithmetic, Robinson’s

system Q, seems to be the main criteria Nelson adopts for assessing the

predicativity of a formal system. Nelson predicative arithmetic therefore

lays within the realm of bounded arithmetic [70].b

6. Conclusion

Strict predicativity is philosophically interesting as it suggests that from a

thoroughly predicativist point of view already the theory of Peano Arith-

metic, with its unrestricted induction, may be problematic. In other terms,

Nelsons’ argument, if granted, would imply that if we were to appeal to

predicativity as a way of avoiding all forms of vicious circularity, we would

have to impose restrictions already on the principle of induction. This

suggests that a predicativist given the natural numbers would have to of-

fer suitable argumentation for the exemption of the natural numbers from

predicativity constraints.a

The comparison between strict predicativity and predicativity given the

natural numbers is particularly significant also from a perspective that does

not attempt to argue for predicativism. From this “external” perspective,

predicativity may be viewed as a notion that may be applied to a num-

bSee [71] for examples of systems which would seem to conform with Nelson’s views.
a [15] offers a possible strategy.
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ber of different contexts.b In general, predicativity imposes a requirement

on domains of quantification: to be specifiable without vicious circularity.

When spelling out the notion of predicative domain of quantification, we

might choose, however, different initial assumptions. In the case of strict

predicativity we only take a bare minimum. This could be expressed in

terms of an initial element, say 0 and a successor operation. We then see

how far we can go in building further mathematical constructions from

these two initial “ingredients” and the usual first order logical operations.

In the case of predicativity given the natural numbers, instead, we take as

starting point not only 0 and successor, but also the principle of mathe-

matical induction (unrestricted) and start building new sets from that. In

all cases, once a certain initial “base” has been granted (or agreed on), the

aim is to proceed without incurring in vicious circularity as far as we can,

in predicatively justified ways. The crucial point is that with respect to a

certain initial “base”, sets are defined explicitly by application of a fixed

set of simple operations. We could also say that sets which are so specified

are predicative, relative to a certain “base”.c When it is so formulated,

predicativity may become a useful instrument in the philosophy of math-

ematics, as it may help clarify the assumptions underlying a number of

philosophical positions.

I conclude with a remark. During the Autumn School, Professor

Schwichtenberg organised a discussion on predicativity and raised a num-

ber of stimulating questions, which also go in the direction of broadening

standard interpretations of predicativity. The notion of predicativity is cus-

tomarily seen as pertaining primarily to the concept of set. In addition,

the concept of set is often taken as prior to that of function, due to our

familiarity with theories as ZFC, in which functions are codified as par-

ticular sets: graphs. However, it would be important to assess whether a

comparison with other foundational contexts in which functions, possibly

partial, are primitive, would help furthering our understanding of predica-

tivity.d In fact, the early discussions on predicativity were typically framed

within complex contexts, as the underlying systems displayed forms of in-

tensionality or assumed a primitive concept of function. It would seem that

a thorough discussion of predicativity would benefit from a deeper analysis

of issues of identity and a comparison between different approaches to the

notion of function, including partiality.

bSee also [12, 26, 72].
cSee also [11].
dSee e.g. [73]. See also the notion of predicativity in Martin-Löf type theory.
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ferman on Foundations: Logic, Mathematics, Philosophy, Outstanding Con-

tributions to Logic, Springer Forthcoming.

[14] B. Russell, Mathematical logic as based on the theory of types, American

Journal of Mathematics. 30, 222–262 (1908).

[15] H. Weyl, Das Kontinuum. Kritische Untersuchungen über die Grundlagen

der Analysis. Veit, Leipzig (1918).
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