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ABSTRACT. Predicativity is a notable example of fruitful interaction be-
tween philosophy and mathematical logic. It originated at the beginning
of the 20th century from methodological and philosophical reflections on
a changing concept of set. A clarification of this notion has prompted
the development of fundamental new technical instruments, from Rus-
sell’s type theory to an important chapter in proof theory, which saw
the decisive involvement of Kreisel, Feferman and Schiitte. The techni-
cal outcomes of predicativity have since taken a life of their own, but
have also produced a deeper understanding of the notion of predicativity,
therefore witnessing the “light logic throws on problems in the founda-
tions of mathematics.” (Feferman 1998, p. vii) Predicativity has been
at the center of a considerable part of Feferman’s work: over the years
he has explored alternative ways of explicating and analyzing this notion
and has shown that predicative mathematics extends much further than
expected within ordinary mathematics. The aim of this note is to out-
line the principal features of predicativity, from its original motivations
at the start of the past century to its logical analysis in the 1950-60’s.
The hope is to convey why predicativity is a fascinating subject, which
has attracted Feferman’s attention over the years.

1. INTRODUCTION

The distinction between predicative and impredicative definitions has its
origins in the writings of Poincaré and Russell and was instigated by the
discovery of the set-theoretic paradoxes.! According to one characterization
of (im)predicativity, a definition is impredicative if it defines an entity by
reference to a totality to which the entity itself belongs, and it is predicative

This is a manuscript version of an article to appear in Feferman on Foundations:
Logic, Mathematics, Philosophy, G. Jager and W. Sieg (eds.), forthcoming in the series
“Outstanding Contributions to Logic”, Springer. I thank Andrea Cantini for helpful
comments on a draft of this article. I also profited from remarks by Gerhard Jager and
Wilfried Sieg, as well as two anonymous referees. I gratefully acknowledge funding from
the School of Philosophy, Religion and History of Science of the University of Leeds and
from the FEuropean Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement n. 312938.

1See, for example, (Poincaré 1905, Poincaré 1906a, Poincaré 19065, Russell 19065,
Russell 1906a, Russell 1908, Poincaré 1909, Poincaré 1912).
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otherwise. Adherence to predicativity was proposed as a way of avoiding
vicious circularity in definitions and resulted in the creation, by Russell, of
ramified type theory; it also motivated a first development of a predicative
form of analysis by Weyl.? A new phase for predicativity began in the 1950’s,
with a logical analysis of predicativity which employed state-of-the-art log-
ical machinery for its analysis. That work culminated with an important
chapter in proof theory whose principal outcome was the determination of
the limit of predicativity by means of ordinal analysis.® In addition, Fefer-
man’s work and the so-called “Reverse Mathematics programme” have since
clarified that large portions of everyday mathematics can be already carried
out in predicative settings.*

Feferman’s engagement with predicativity extends well beyond his cel-
ebrated contributions to the determination of the proof-theoretic limit of
predicativity, as over the years he has explored alternative ways of explicat-
ing and analyzing this notion, as well as assessing the reach of predicative
mathematics. This had two principal purposes: to offer further support for
the original logical analysis of predicativity and to highlight the significance
of predicative mathematics, both within mathematical logic and ordinary
mathematics, with a particular attention to scientifically applicable mathe-
matics. Feferman has also offered unrivalled expositions of predicativity.”

One of the difficulties in writing on predicativity is what might be called
a lack of consensus on this notion. The early writings on predicativity
by Poincaré, Russell and Weyl at the turn of the 20th century are rich of
stimulating ideas, and deserve further scrutiny, however, to a contempo-
rary technically-trained eye they often appear as insufficiently clear, open-
ing up the way for a number of possible interpretations of predicativity.®
The subsequent logical analysis of predicativity of the 1950-60’s shed light
on important aspects of predicativity, employing an array of precise logi-
cal instruments that were unavailable at the beginning of the past century.
Notwithstanding that fundamental work, predicativity still raises complex

2See (Russell 1903, Russell 1908, Whitehead & Russell 1910, 1912, 1913, Weyl 1918).

3See (Kreisel 1958, Feferman 1964, Schiitte 19655, Schiitte 1965a).

4See e.g. (Feferman 1988b, Simpson 1988, Simpson 1999, Feferman 20045, Feferman
2013).

5See, for example, (Feferman 2005), and (Feferman 1964, Feferman 1987, Feferman
1988a, Feferman 1988b, Feferman 1993a, Feferman 19936, Feferman 1996, Feferman 1998,
Feferman 2000, Feferman 2004b).

SFeferman (2005) writes: “Though early discussions are often muddy on the concepts
and their employment, in a number of important respects they set the stage for the further
developments, and so I shall give them special attention.”
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questions from historical, philosophical and technical perspectives.” In ad-
dition, further difficulties are induced by the emergence over the years of a
plurality of forms of predicativity, some within a classical and some within
an intuitionistic context.®

The aim of this note is to offer an outlook of predicativity, sketching the
most important (and hopefully less controversial) features of this notion,
the original motivations, as well as the logical work that was inspired by
the desire to clarify it. In particular, I shall focus on the classical form
of predicativity that goes under the name of predicativity given the natural
numbers; this has been extensively studied mathematically and is at the
heart of Feferman’s work.? T hope to convey why predicativity is a fascinating
subject, which has attracted Feferman’s attention over the years, and why
it is an area of research offering the potential to substantially enrich today’s
philosophy of mathematics. Like Feferman, I also think that an account
of predicativity ought to begin from the early discussions on predicativity,
which clarify how we arrived at the notion of predicativity given the natural
numbers and its logical analysis.

2. PREDICATIVITY: THE ORIGINS

The early debates on predicativity were prompted by the discovery of the
set theoretic paradoxes, which gained particular attention after Russell’s fa-
mous letter to Frege in 1902. The general context of the early discussions on
predicativity are renowned reflections by prominent mathematicians of the
time on new concepts and methods of proof, which had emerged in mathe-
matics from the nineteenth century.’® These debates are well-known as they
gave rise to influential foundational programs as logicism, formalism and in-
tuitionism. In the case of Poincaré and Weyl’s writings on predicativity, one
finds severe criticism of the new methodology, and, especially, of the concept

"In his introduction to a chapter on the ordinal analysis of predicativity, Pohlers (2009,
p. 134) writes: “The notion of predicativity is still controversial. Therefore we define
and discuss here predicativity in a pure mathematical — and perhaps oversimplified —
setting.” See (Kreisel 1960, Kreisel 1970, Feferman 1979, Howard 1996, Weaver 2005)
for discussions pertaining to the logical analysis of predicativity. See also the discussion
on “metapredicativity” in (Jager 2005). As to the philosophical and historical aspects of
predicativity, see e.g. (Parsons 1992, Feferman & Hellman 1995, Mancosu 1998, Parsons
2002, Hellman 2004, Feferman 2004b, Parsons 2008).

8Predicativity-related themes have appeared in different forms over the years, both in
classical and constructive settings. In fact, predicativity is gaining renewed prominence
today especially in the constructive context. I shall postpone to another occasion a discus-
sion of other forms of predicativity, as the constructive predicativity which characterizes
Martin-Lof type theory (see e.g. Martin-Lof 1975, Martin-Lof 1984, Martin-Lof 2008)
and forms of “strict predicativity” (Nelson 1986, Parsons 1992, Parsons 2008). See also
(Crosilla 2014, Crosilla 2015).

9In the following, I shall also write “predicativity” to denote predicativity given the
natural numbers. See section 3.4 for some remarks on the notion of predicativity given
the natural numbers.

10Gee e.g. (Stein 1988, Wang 1954).
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of arbitrary set which emerged from Cantorian set theory.'' Adherence to
predicativity offered a way of securing a safe concept of set, one that is not
prey to the set-theoretic paradoxes and also avoids the arbitrariness implicit
in the new concept of set.

The term predicativity itself emerged in an animated discussion between
Poincaré and Russell which spanned from 1905 to 1912. Notwithstanding
the remarkably different views of Poincaré and Russell, for instance, on the
role of formalization within mathematics, they both converged on holding
impredicative definitions the cause of the onset of the paradoxes, and at-
tempted to clarify a notion of predicativity, adherence to which would avoid
inconsistencies. Through Russell and Poincaré’s confrontation a number of
ways of capturing impredicativity and explaining its perceived problematic
character emerged.

A first observation was that paradoxes as, for example, that of Russell’s
class of all those classes that are not members of themselves, typically dis-
play a form of vicious circularity.'®> In modern terminology we may define

R={z|x ¢z}

by application of the Naive Comprehension schema: given any formula ¢
in the language of set theory, we form the class of all the x’s that satisfy
@, that is, {z | ¢(z)}. Then we have that R € R if and only if R ¢ R. A
circularity arises here as R’s definition refers to the class of all classes, to
which R itself is supposed to belong.

Observations along similar lines gave rise to a characterization of impred-
icativity as follows: a definition is impredicative if it defines an entity by
reference to a totality to which the entity itself belongs.'® In particular, a
definition is impredicative if it defines an entity by quantifying over a total-
ity which includes the entity to be defined. A definition is then predicative
if it is not impredicative. Given this notion of impredicative definition, one
may call an entity (e.g. a class) impredicative if it can only be defined by an

1See, in particular, (Poincaré 1912, Weyl 1918). See also (Bernays 1935, Maddy 1997,
Ferreirés 2011) for a discussion of arbitrary sets and (Parsons 2002) for an analysis of
Weyl’s conception of predicative set and its reception by Weyl’s contemporaries.

12Gee (Poincaré 1905, Poincaré 19065, Poincaré 1906a, Russell 19065, Russell 1908).
Note that the term “class” is used here as in Russell and Poincaré’s texts, that is, to
refer to a generic collection. Hence it should be carefully distinguished from the notion
of proper class that is found in contemporary set theory. In the original literature one
frequently finds also the word “totality”. In this section I shall try to avoid the use of the
term “set”, since the latter has in the meantime acquired additional connotations (as set
in e.g. ZFC) that should not be presupposed in this discussion.

13566 (Poincaré 1905, Poincaré 1906a, Poincaré 19065, Russell 1906, Russell 1906a).
See e.g. (Godel 1944, p. 455) for discussion. Note also that today the distinction between
predicative and impredicative definitions is typically framed as relating to sets. However,
Russell and Poincaré’s discussions are concerned with definitions of different kinds of
entities, including propositions, properties, etc.
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impredicative definition.!* Russell famously introduced his “Vicious—Circle
Principle” (VCP) to ban impredicative definitions. This had a number
of formulations, like, for example: “no totality can contain members de-
fined in terms of itself” (Russell 1908, p. 237). Another is to be found in
(Russell 1973, p. 198):

[...] whatever in any way concerns all or any or some of a
class must not be itself one of the members of a class.

The latter formulation forbids definitions which quantify over a totality to
which the definiendum belongs, and is at the heart of Russell’s implemen-
tation of the VCP in his type theory (see section 2.1).

Two examples may better clarify the notion of impredicative definition
and its perceived difficulties; the first one is given by the logicist definition
of natural number, and the second by the Liar paradox. The first example is
significant not only because it is of central importance for the logicist project
pursued by Russell, but as it clarifies that the discussion on impredicativity,
which originated from an analysis of paradoxes of various kind, extended
quickly beyond the case of the paradoxes. Let

N(n):=VF[F(0) AVx(F(x) = F(Suc(x))) = F(n)].

According to this definition, the concept of natural number is defined by
reference to all properties F' of the natural numbers. A circularity arises
here as the property N itself is within the range of the first quantifier. As
a consequence, N is defined by reference to itself. The difficulty with this
definition is typically explained as follows:'® suppose we wish to determine
whether the predicate NV holds for a specific natural number, say 3. It would
seem that we need to check for every property of the natural numbers, F,
whether F' holds of 3, that is, whether:

VF[F(0) AVa(F(x) — F(Suc(x))) — F(3)].

However, the property “to be a natural number”, which is expressed by
the predicate N, is one of the properties of the natural numbers. That is,
to find out whether N(3) holds, we need to be able to clarify whether the
following holds:

N(0) AVz(N(x) = N(Suc(z))) — N(3).

Therefore it would seem that we need to determine whether N (3) holds prior
to determining whether N(3) holds.®

MThe issue of how we establish whether an entity is impredicative (and in which
context) is more complex than this coarse characterization of impredicativity may suggest.
This complexity was further addressed by the development of Russell’s type theory, Weyl’s
(1918) and the logical analysis of predicativity to be discussed below.

15Here I shall follow (Carnap 1931, p 48).

16Carnap (1931, p. 48) concludes that this definition of natural number is “circular and
useless”. It is worth recalling that (Carnap 1931) also hints at a form of platonism, attrib-
uted to Ramsey (but not endorsed by Carnap), which finds no fault with impredicative
definitions. See also (Poincaré 1912, Godel 1944) for further discussion.
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Let us consider another example of impredicative definition that is dis-
cussed by Russell (1908): the Liar paradox. In this case it is instructive to
see how Russell himself analyzed the paradox. Russell first of all observes
that the sentence “I’'m lying” is the same as: “There is a proposition which
I am affirming and which is false.” He also notices that this, in turn, can
be rephrased as: “It is not true for all propositions p that if I affirm p, p
is true.” He then concludes that “[t]he paradox results from regarding this
statement as affirming a proposition, which must therefore come within the
scope of the statement.” Russell’s conclusion is that the notion of all propo-
sitions is illegitimate, “for otherwise, there must be propositions (such as the
above) which are about all propositions, and yet can not, without contradic-
tion, be included among the propositions they are about.” In fact, Russell
further claims that “[w|hatever we suppose to be the totality of proposi-
tions, statements about this totality generate new propositions which, on
pain of contradiction, must lie outside the totality.” The worry here is that
an impredicative definition of an entity (e.g. a proposition) would seem to
generate a new element of the very class that was employed to define it. As
a consequence, “there must be no totality of propositions”, and statements
such as “all propositions” must be meaningless.

A second characterization of predicativity emerged from Poincaré’s re-
newed analysis in (Poincaré 1909, Poincaré 1912). Central to this charac-
terization is the thought that an impredicative definition seems to generate
new elements of a class which is used (e.g. as a domain of quantification)
within that definition. Here Poincaré’s criticism of impredicativity is deeply
interrelated with a reflection on infinity and the role of definitions in math-
ematics. For the French mathematician a definition is a classification: it
separates the objects which satisfy, from those which do not satisfy that
definition, and it arranges them in two distinct classes. Poincaré also high-
lights a sort of incompleteness of infinite classes: they are open-ended and
unfinished, so that definitions which refer to their totality might become
problematic. For example, in the case of the definition of Russell’s class, R,
above, it would seem that we need first of all to fiz the class of all classes,
say C, prior to defining R by reference to C. But then the definition of R
would seem to extend C by a new class, R itself. And this process may be
repeated at will.'”

Poincaré’s discussion hints towards a distinction between predicative and
impredicative classes that appeals to a form of “invariance” of predicative
definitions: a predicative classification is one that can not be “disordered” by
the introduction of new elements. This gives rise to a new characterization
of predicativity which does not directly appeal to circularity, and can be so

1Tpgincaré’s texts make use of other examples, more directly drawn from the math-
ematical practice. See also (Dummett 1991, Dummett 1993) for a similar reading of
Russell’s paradox. (Cantini 1981) proposes a detailed analysis of Poincaré’s ideas.
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expressed in modern terminology: a definition is predicative if the class it
defines is invariant under extension.'®
Poincaré (1909, p. 463) writes:

Hence a distinction between two species of classifications,
which are applicable to the elements of infinite collections;
the predicative classifications, which can not be disordered by
the introduction of new elements; the non predicative clas-
sifications which are forced to remain without end by the
introduction of new elements.”

For Poincaré impredicative definitions are problematic as they treat as com-
pleted (French “arrété”) infinite classes which are instead “in fieri”, open-
ended or incomplete by their very nature. Predicative definitions, instead,
guarantee that the classes so defined are stable or invariant. Poincaré does
not spell out this notion of invariance in any detail, being very critical of
formal endeavors; however, he indicates that the relations between the el-
ements of the class and the class itself should not admit of change as we
progress introducing new elements through our definitions. He also points
towards a kind of genetic construction of predicative classes, which are built
up from some initial elements step by step: we construct new elements of a
predicative class by defining them in terms of the initial elements, we then
define further new elements from the latter, and so on. In the case of infinite
classes, this process is without end. A related but more precise account of
a predicative conception of set is to be found in (Weyl 1918), as further
discussed in section 2.2.

2.1. Russell’s way out. The analysis of the paradoxes and their relation
with impredicativity turned out to be extremely fruitful for the development
of mathematical logic, starting from Russell’s own implementation of the
vicious circle principle through his type theory.?’ Russell’s way out from the
paradoxes is well-known, as it introduced a regimentation of classes through
a hierarchy of types and orders.?! For Russell the paradoxes were due to the
assumption that any propositional function gives rise to a class: the class
of all the objects that satisfy it.2? As discussed above, of particular concern

18566 (Kreisel 1960) for discussion of this characterization from a modern logical per-
spective. See also (Feferman & Kreisel 1966, Feferman 1968a).

19My translation; italics by Poincaré. The word “disordered” translates the French
“bouleverseé”.

208ee (Cantini 2009) for a rich discussion of the impact of the paradoxes on mathemat-
ical logic.

21Russell’s ideas on type theory appeared first in an appendix to (Russell 1903), and
were further developed (with ramification) in (Russell 1908) and then in (Whitehead &
Russell 1910, 1912, 1913).

22In the present context we may follow (Feferman 2005), and identify the notion of
propositional function with that of open formula, i.e. a formula with a free variable, say
(). Note, however, that the interpretation of the notions of proposition and proposi-
tional function in Russell is complex. See e.g. (Linsky 1988).
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were classes defined impredicatively. To avoid impredicativity, in setting
up ramified type theory Russell (1908) made two distinguishable moves as
follows. The first move amounts to associating a range of significance to
each propositional function, that is, a collection of all arguments to which
the propositional function can be meaningfully applied. In Russell’s terms:
“within this range of arguments, the function is true or false; outside this
range, it is nonsense.” (Russell 1908, p. 247) The ranges of significance
then form types, and these are arranged in levels: first we have a type of
individuals, and then types which are ranges of significance of propositional
functions defined on the individuals, and so on. The crucial point is that
as a consequence of this regimentation of classes, expressions such as = € x
and r ¢ x are simply ill-formed, since in z € w, w must be of the next-
higher level than z. Accordingly, Russell’s paradox (and other set-theoretic
paradoxes) do not carry through.

It was subsequently realized by Chwistek and Ramsey that if one imple-
ments only this restriction, then one obtains a formalism that is interesting
in its own right.??> Today this goes under the name of simple type theory and
its formulation was subsequently simplified by Church (1940). Simple type
theory seems sufficient to block all set theoretic paradoxes; however, it does
not eliminate all impredicativity. The second move, ramification, has the ef-
fect of eliminating all impredicativity.?* As discussed above, for Russell one
of the lessons of the paradoxes was that impredicative totalities, as, for ex-
ample, the totality of all propositions, are illegitimate; hence quantification
over them makes no sense. He therefore introduced, alongside a notion of
level for ranges of significance of propositional functions, a notion of order
for propositional functions, and required that a propositional function can
only quantify over propositional functions of lower order than its own. Thus
in ramified type theory, one has first order propositional functions, second
order ones, etc.; in addition, the second order propositional functions can
quantify on the first order ones, but not on propositional functions of order
higher than one, and so on.

In this way one apparently blocks not only the set theoretic paradoxes,
but semantic paradoxes as the Liar, too. This is analyzed as follows by
Russell (1908, p. 238):

if Epimenides asserts “all first-order propositions affirmed by
me are false”, then he asserts a second order proposition; he
may assert this truly, without asserting truly any first order
proposition, and thus no contradiction arises.

While ramified type theory fully complies with predicativity, it also turns
out to make the development of mathematics awkward. This may be seen by
considering again the definition of natural number discussed above, which

238ee (Chwistek 1922, Ramsey 1926).
24Gee (Hodes 2015) for a discussion of the reasons that might support Russell’s (and
Whitehead’s) choice of a ramified type theory over a simple type theory.
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requires a universal quantifier over properties of the natural numbers. When
appropriately re-formulated in a ramified context, this definition gives rise
to only partial renderings of the notion of natural number, one for each
order of propositional functions, and therefore it does not offer a general
definition of the concept of natural number. As a consequence, many proofs
by induction do not carry through in their usual form, as they would re-
quire the full generality of universally quantified statements; for example,
in ramified type theory we can not prove in full generality that if m and n
are finite numbers, so is m +n.2% These difficulties prompted Russell (1908)
to introduce the axiom of reducibility, which, however, has the effect of re-
instating impredicativity. Reducibility is so presented in (Russell 1908, p.
242-3): “every propositional function is equivalent, for all its values, to some
predicative function”, where a function ¢ of one argument x is predicative
if it is “of the order next above x”.26 This axiom was strenuously criticized
for being introduced for purely pragmatic reasons and for being ad hoc.?”
For example, Weyl (1949, p. 50) wrote:

Russell, in order to extricate himself from the affair, causes
reason to commit harikari, by postulating the above assertion
[the axiom of reducibility] in spite of its lack of support by
any evidence.

2.2. Das Kontinuum. With (Weyl 1918) we have another approach to
predicativity which also played a significant role for the subsequent logical
analysis of predicativity, and especially Feferman’s work. Weyl’s (1918) aim
was to develop a predicative form of analysis, founded on a concept of set
which is immune from paradoxes and vicious circularity. Weyl’s concern
was that impredicativity affected not only set theory in general, but it was
to be found already at the heart of analysis, as the Least Upper Bound

253ee (Russell 1908). See also (Myhill 1974). See (Feferman 2000, Coquand 2015) for
introductory expositions of the ideas underlying ramified type theory and the difficulties
it encounters.

26R ussell (1908, p. 243) also writes: “Thus a predicative function of an individual
is a first-order function; and for higher types of arguments, predicative functions take
the place that first-order functions take in respect of individuals. We assume, then, that
every function is equivalent, for all its values, to some predicative function of the same
argument.”

2TWilfried Sieg has informed me about perceptive discussions by Hilbert and Bernays on
predicativity and Russell’s logicism, including the axiom of reducibility. See e.g. Hilbert’s
lecture notes from 1917/18 entitled “Prinzipien der Mathematik” and those from 1920
entitled “Probleme der mathematischen Logik” published in (Ewald & Sieg 2013). See
also (Sieg 1999) for discussion. Sieg (1999) also draws important correlations between
(Weyl 1918) and Hilbert and Bernays’ work around 1920. As suggested by Sieg, the
relations between Hilbert and Bernays’ writings and Weyl’s (1918) deserve more thorough
investigations.
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principle (LUB) requires impredicative reasoning.?® One of Weyl’s funda-
mental achievements was to show how to circumvent this difficulty without
resorting to ramification or reducibility.? The result is a predicative (in
fact, arithmetical) treatment of large portions of 19th century analysis.

Weyl (1918) expounds in detail a concept of predicative set: a set is the
extensional counterpart of a property and may be seen as if it were con-
structed step by step from some primitive domain of objects by application
of elementary operations over it. The “production” of sets from an initial
domain is expressed first in full generality, and then specialized to the par-
ticular case of the natural numbers as starting domain, which is of relevance
for the development of analysis. One begins with an initial domain (or basic
category) of objects, and “certain individual, immediately exhibited ‘prim-
itive’ properties” which apply to the objects of this domain (Weyl 1918, p.
28).%° One then considers derived properties which arise from the primitive
ones (as clarified below) and takes sets to be the extensional counterparts of
primitive and derived properties. Weyl (1918, p. 20) writes: “to every prim-
itive or derived property P there corresponds a set (P)”, the set of all the
objects which have the property P. Crucially sets are identified extension-
ally, that is, “the same set corresponds to two such properties P ad P’ if and
only if every object (of our category) which has the property P also has the
property P'.” (Weyl 1918, p. 20) The step from primitive properties to de-
rived ones is discussed in the first section of “Das Kontinuum”, where Weyl
describes the formation of judgments.®! The starting point is once more a
given basic domain of objects and some primitive properties which apply to
the objects of that domain. One then forms simple (i. e. atomic) judgments
affirming that the primitive properties hold of the objects of the basic do-
main. The next step is given by taking combinations of these judgments
by means of the ordinary logical operations, but with the crucial constraint
that quantifiers are only allowed to range over the basic domain.>?> In this
way one essentially obtains first-order definable properties of the objects of
the initial domain; sets then arise as extensions of such properties (modulo
extensionality). Weyl calls “mathematical process” (Weyl 1918, p. 22) the
formation described above of a new “system” of sets from a basic initial
domain and certain primitive properties of its objects.

28The (LUB) states that every bounded, non—empty subset M of the real numbers has
a least upper bound. See (Feferman 1964, Feferman 1988b) for discussion.

2%Weyl, in particular, made use of sequential rather than Dedekind completeness, the
first being amenable to predicative treatment. See also (Feferman 1988b).

3%In addition to properties, Weyl (1918) also considers relations, here omitted for
simplicity.

31The notion of “judgment” is so clarified by (Weyl 1918, p. 5): a “judgment affirms
a state of affairs”.

32Wey1 also considers a principle of substitution (Weyl 1918, p. 10). In addition, in
the paradigmatic case of the natural numbers as basic domain, one also applies a principle
of iteration, as further discussed below.
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A particularly important application of the mathematical process arises
when the initial domain is the natural numbers. Here, from the contem-
porary logician’s perspective, Weyl’s concept of set gives rise to subsets of
the natural numbers obtainable by application of the comprehension schema
restricted to arithmetical formulas, that is, to those formulas that do not
quantify over sets (but may quantify over natural numbers). This restric-
tion to number quantifiers in the comprehension principle aims at preventing
vicious—circular definitions of subsets of the natural numbers.??

An aspect of particular foundational interest is that Weyl, as Poincaré
before him, takes the natural numbers with full mathematical induction as
starting point, as intuitively given.** The comparison with Russell is in-
structive, as Russell aimed at a definition of the natural number concept,
to witness its logical nature. Instead both Poincaré and Weyl criticized any
attempt at founding the concept of natural number (and in particular the
principle of mathematical induction) on logic or on the concept of set, given
the fundamental role the natural numbers play within all of mathematics.
Weyl (1918, p. 48) wrote: “ the idea of iteration, i.e., of the sequence of the
natural numbers, is an ultimate foundation of mathematical thought, which
can not be further reduced”. The natural numbers, for Weyl, are “individ-
uals”, in the sense that they can be characterized uniquely by means of
their properties: starting from an initial element, the iteration of the suc-
cessor operation allows us to characterize uniquely each natural number in
elementary terms, and by exclusive appeal to its predecessors. Weyl (1918,
p. 15) also writes that “it is impossible for a number to be given other-
wise than through its position in the number sequence, i.e. by indicating
its characteristic property.” This also justifies Weyl’s adoption of bivalence
for statements on the natural numbers and their assumption as paradig-
matic initial domain for the mathematical process. The latter now gives rise
to a system of sets as extensions of arithmetical properties of the natural
numbers.

It is important to clarify why Weyl takes sets as extensions of first-order
definable properties. Weyl (1918, p. 20) writes:

33As remarked by Feferman (1988b) (see also Feferman 2000) it is not completely
clear how strong is the system Weyl sketches in (Weyl 1918). Feferman has, however,
verified that system W of (Feferman 1988b), which is inspired by (Weyl 1918), suffices to
carry out all of Weyl’s constructions in “Das Kontinuum”. System W is a conservative
extension of Peano Arithmetic, PA (Feferman & Jager 1993). As clarified in section 3.3,
Feferman has also shown that W allows for the development of a more extensive portion
of contemporary analysis, compared with (Weyl 1918).

34Poincaré (see e.g. Poincaré 1906b) states that mathematical induction is synthetic a
priori. Note also that Weyl expresses mathematical induction by appeal to a principle
of iteration. See (Feferman 1998, p. 264-5) for discussion. Poincaré and Weyl fully
realized the significance of the assumption of unrestricted mathematical induction. This is
further clarified by a comparison with approaches to predicativity which instead introduce
restrictions on induction (Nelson 1986, Parsons 1992).
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Finite sets can be described in two ways: either in individ-
ual terms, by exhibiting each of their elements, or in general
terms, on the basis of a rule, i.e., by indicating properties
which apply to the elements of the set and to no other ob-
jects. In the case of infinite sets, the first way is impossible
(and this is the very essence of the infinite).

He also writes (Weyl 1918, p. 23):

No one can describe an infinite set other than by indicating
poperties which are characteristic of the elements of the set.
And no one can establish a correspondence among infinitely
many things without indicating a rule, i.e. a relation, which
connects the corresponding objects with one another.

Weyl’s “arithmetical” sets are the extensional counterparts of arithmetical
rules or laws, and may be seen as if they were obtained through application
of a fixed set of elementary operations starting from the natural numbers
(with iteration). This is contrasted by Weyl with the concept of arbitrary set
which had recently emerged within set theory, and which is characterized by
the absence of any requirement of law or rule of formation. In his criticism of
the concept of arbitrary set Weyl is once more in agreement with Poincaré,
who drew a direct connection between the debate on impredicativity and the
lack of explicit definability of impredicatively defined sets (Poincaré 1912).
An arbitrary set for Weyl (1918, p. 23) is “a ‘gathering’ brought together
by infinitely many individual arbitrary acts of selection, assembled and then
surveyed as a whole by consciousness” and, as such, it is “nonsensical”.
(Weyl 1918) instead shows how predicative sets may be “produced” step by
step from the safety of the natural numbers by application of a rule or a
uniform condition.

Weyl’s remarkable achievement in the second part of (Weyl 1918) was to
show that his arithmetical concept of set suffices to develop a fundamental
portion of 19th century analysis. (Weyl 1918) is also particularly interesting
from a philosophical perspective, as it clearly puts forth a predicativist po-
sition: Weyl is adamant that what can not be predicatively accounted for,
needs to be relinquished.

3. THE LOGICAL ANALYSIS OF PREDICATIVITY GIVEN THE NATURAL
NUMBERS

Interest in predicativity declined after (Weyl 1918) for a number of rea-
sons, like, for example, the realization that simple type theory was appar-
ently sufficient to block the set-theoretic paradoxes.®® In addition, the rapid
accreditation of impredicative set theory as standard foundation, especially

35See (Chwistek 1922, Ramsey 1926).



PREDICATIVITY AND FEFERMAN 13

in the form of the Zermelo-Fraenkel system with choice, ZFC, played a cru-
cial role in the downfall of predicativity.*

The technical results obtained in (Russell 1908, Whitehead & Russell
1910, 1912, 1913, Weyl 1918), however, paved the way for subsequent work
in mathematical logic which eventually gave rise to a new phase for pred-
icativity starting in the 1950’s: a logical analysis of predicativity. A crucial
point to note is that the motivation prompting the new discussions on pred-
icativity differed profoundly from the ones which had given rise to the first
debates on predicativity outlined above. In this respect, already Goédel pro-
posed a shift of attitude in his influential appraisal of Russell’s contribution
to mathematical logic in (Godel 1944). There Godel clearly expressed the
view that predicativity is a fruitful concept which can give rise to mathemat-
ical progress, but that it should be pursued “independently of the question
whether impredicative definitions are admissible.”?” Godel’s observations
mark the beginning of a study of predicativity which, although of relevance
for the philosophical debates on the foundations of mathematics, is carried
out independently of predicativism; its principal aims are no more to se-
cure the ultimate justification of (a portion of) mathematics, but to draw a
clearer demarcation of the boundary between predicative and impredicative
mathematics. We may distinguish two main objectives: (1) the determina-
tion of a theoretical limit of predicativity; and (2) the clarification of the
extent of predicative mathematics.

It is important to recall the notion of predicativity that has been so in-
vestigated. This takes inspiration from Poincaré and, especially, Weyl’s
writings, and is characterized by the assumption, at the start, of the natural
numbers with full mathematical induction.?® For this reason it has been
termed “predicativity given the natural numbers”, and, as in Weyl, it uses
classical logic.?® A difference with Weyl’s approach is that the new logi-
cal analysis of predicativity also aims at exploring how far can we extend
beyond the natural numbers in a predicatively justified way; it therefore fo-
cuses on a notion of predicativity given the natural numbers that stretches
beyond Weyl’s arithmetical predicativity. In fact, Russell’s original idea of
ramification and a distinctive use of ordinals (and ordinal notations) played
a crucial role in setting out this form of predicativity.

3.1. The limit of predicativity. The literature from the 1950’s and 1960’s
witnesses the complexity of the task of clarifying the limit of predicativity,
which saw the involvement of a number of prominent logicians, as Feferman,

36See also (Feferman 2005) for additional thoughts on what “pushed predicativity to
the sidelines.”

37Godel (1944) also mentions a prominent example of the fruitfulness of predicativ-
ity: the constructible hierarchy (Godel 1938, Godel 1940), inspired by Russell’s idea of
ramification.

38See also section 3.4 for more on the notion of predicativity given the natural numbers.

39The use of classical logic marks a crucial difference with the form of predicativity
that is to be found in e.g. Martin-Lof type theory (Martin-Lof 1975).
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Gandy, Kleene, Kreisel, Lorenzen, Myhill, Schiitte, Spector and Wang. The
first attempts at a logical analysis of predicativity focused on issues of de-
finability of sets of natural numbers and highlighted a connection between
predicativity and the recently developed concept of the hyperarithmetical
hierarchy.*® This consists of a hierarchy of sets of natural numbers which can
be equivalently characterized in a number of ways. The simplest characteri-
zation is in terms of definability, and sees the hyperarithmetical sets as those
sets of natural numbers that can be defined equivalently by a ¥1 and by a
I} formulas, also called the Al sets.*! Given this characterization of the
hyperarithmetical sets, the relation between the hyperarithmetical hierarchy
and predicativity might at first seem problematic, as a hyperarithmetical set
is defined by formulas with unrestricted set quantifiers. However, a more
constructive rendering of the hyperarithmetical sets was given by Kleene in
terms of iteration of the so-called Turing jump through the recursive ordi-
nals.*?

Another way of bringing the relation with predicativity to light is by
drawing a correlation between the hyperarithmetical hierarchy and (a frag-
ment of) the ramified analytic hierarchy. The latter essentially represents
an implementation of Russell’s idea of ramification to the particular case of
second order arithmetic, now, however, with orders extending into the trans-
finite. The idea is to define a hierarchy analogous to Godel’s constructible
hierarchy (Godel 1938, Godel 1940), but at successor steps to collect defin-
able subsets of the natural numbers. More precisely, let Def?(X) be the
set of all those A C N such that A is definable over X in second order
arithmetic, that is, there is a formula ¢(z) of second order arithmetic such
that for all n, n € A <= (p(n))*. Here the notation (¢(n))* indicates
that all second-order quantifiers in ¢ range over X. Then we let Ry := 0,
and R,i1 := Def?(R,); at limit ordinal A, we take Ry := U€<)\ Re. It is
clear that the step from each level of the ramified analytic hierarchy to its
successor is predicatively justified, as all second order quantifiers range over
previous levels of the hierarchy. However, the ramified analytic hierarchy as
a whole is problematic from a predicative perspective, since it presupposes

40The hyperarithmetical hierarchy has a central place in the development of mathemat-
ical logic because of its prominence within a number of fundamental areas in mathematical
logic: definability theory, recursion theory and admissible set theory. This witnesses the
centrality within logic of themes that pertain to the predicativity debate, and further
explains the interest of this notion form a logical point of view.

41y the language of second order arithmetic, a ¥} formula is one of the form: 3X ¢(X),
with ¢ an arithmetical formula, that is, a formula that does not quantify over sets (but
may quantify over natural numbers). Note that here the upper case letter X denotes a
second order variable, standing for a set of natural numbers. A II} formula is one of the
form VX ¢(X), with ¢ an arithmetical formula.

42See (Kleene 1959), see also (Sacks 1990). See (Kreisel 1960, Feferman 1964) for
further clarification of why this may be seen as offering a predicative justification for this
kind of second order quantification. Kreisel (1960) offers additional considerations that
directly relate to Poincaré’s notion of invariance discussed above.
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the notion of “arbitrary” ordinal, i.e. “arbitrary” well-ordering relation,
which, from a predicative perspective, is “as meaningless as the notion of
‘arbitrary’ set” (Feferman 1964, p. 9). To overcome this difficulty a first
thought was to introduce a “proviso of autonomy” on the ordinals used as
indexes of the hierarchy: each ordinal used is to be determined by a well-
ordering relation of the natural numbers that, considered as a set of ordered
pairs, is already admitted as predicative (Feferman 1964, p. 9). We may call
the resulting (suitably specified) ordinals “predicatively definable ordinals”
(Feferman 2005); then it turns out that by crucial results by Spector (1955)
and Kleene (1959) the predicatively definable ordinals do not go beyond the
recursive ordinals. In particular, Kleene (1959) showed that R cx = HY P,
where w{'® is the first non-recursive ordinal. These results brought Kreisel
(1960) to tentatively identify the predicatively definable sets with those de-
finable within Rwch and thus also with the hyperarithmetical sets.*3

The proposed identification of the realm of predicativity with the hyper-
arithmetical hierarchy, however, turned out to rely on the assumption of the
countable ordinals up to the first non-recursive ordinal, wf K along which to
iterate the construction of the ramified analytic hierarchy. Feferman (2005)
writes:

Though the considerations leading to the identification of
the predicative ordinals, resp. sets of natural numbers, with
the recursive ordinals, resp. hyperarithmetical sets, have a
certain plausibility, they ignored one crucial point if predica-
tivity is only to take the natural numbers for granted as a
completed totality, namely that they involve in an essential
way [...] the impredicative notion of being a well-ordering
relation.

For these reasons a new phase in the logical analysis of predicativity be-
gan, which was prompted by another suggestion by Kreisel (1958). Kreisel
(1958) put forth a hierarchy of formal systems that would canonically rep-
resent predicative reasoning and called for the determination of its limit. A
remarkable consequence of this new course of inquiry is that it shifted the fo-
cus of research from definability issues to provability issues.** The celebrated
upshot of that research was the determination of the limit of predicativity
by Feferman and Schiitte (independently) (Feferman 1964, Schiitte 1965,
Schiitte 1965a) by means of proof-theoretic techniques. Russell’s original
idea of ramification had once more a crucial role, as a transfinite progres-
sion of systems of ramified second order arithmetic indexed by ordinals was
introduced as a tool for determining a precise limit of predicativity by appeal

43Gee also (Wang 1954).
44Gee also the review by Gandy (1967).
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to ordinal analysis.*> The subsystems of second order arithmetic that make
up the levels of the hierarchy, RA,., are characterized by principles of ram-
ified comprehension which express closure under the appropriate ramified
definitions and essentially give rise to a formal version of the conditions we
saw for the ramified analytic hierarchy. Each level of the hierarchy, there-
fore, can be seen as predicatively justified, since quantification is suitably
restricted to previous levels. Once more, a fundamental issue turned out to
be how to specify the iteration that justifies the ascent to higher levels of
the hierarchy. Here one introduces a suitable “boot-strapping” condition. A
crucial difference with the previous attempts is in that the ordinals indexing
the hierarchy are not only those that can be defined by well-ordering rela-
tions within the hierarchy, but those which can also be proved to be such
relations at previous stages of the hierarchy. That is, one carefully intro-
duces a notion of predicatively provable ordinal, which has the purpose of
guaranteeing that one progresses up along the hierarchy to a stage a only
if « has already been recognized as predicative, i.e. if at a previous stage
of the hierarchy we have a proof that it is an ordinal. The fundamental
contribution of Feferman and Schiitte was to determine that the least non-
predicatively provable ordinal is an ordinal known as I'g.*6 Therefore, in
proof theory I'g is often referred to as the limit of predicativity.

It is important to note that the limit of predicativity so determined
is an “external limit”. As clearly acknowledged by Feferman (see, e.g.,
Feferman 1964), one takes an impredicative stance and attempts to clarify
the limit of predicativity from “the outside”. The convinced predicativist
will not recognize the limit I'g, as it lies beyond his reach, its very defini-
tion being impredicative. Gandy (1967) writes: “The role played by T’y for
predicative systems is closely analogous to that played by €y for finitist sys-
tems. I'g is not a predicatively definable ordinal, but he who understands I’y
understands the consistency, the potentialities and the limitations of pred-
icative proof.” This once more clarifies the deep change in attitude between

45Here ordinals are not to be considered set-theoretically, rather as notations from
a suitable ordinal notation system. See (Pohlers 2009) for details on ordinal notation
systems.

465ee e.g. (Pohlers 2009, Ch. 1) for details. In the branch of proof theory known
as ordinal analysis, suitable (countable) ordinals, termed “proof-theoretic ordinals”, are
assigned to theories as a way of measuring their consistency strength and computational
power. The “proof-theoretic strength” of a theory is then expressed in terms of such ordi-
nals. The countable ordinal I'y is the proof-theoretic ordinal assigned to the progression
of ramified systems mentioned above. It is relatively small in proof-theoretic terms. As a
way of comparison, it is well above the ordinal ¢y which encapsulates the proof-theoretic
strength of Peano Arithmetic, but it is much smaller than the ordinal assigned to a well—
known theory, called 1D, of one inductive definition. The latter ordinal is known in the
literature as the Bachmann-Howard ordinal (Buchholz, Feferman, Pohlers & Sieg 1981).
The strength of I D; is well below that of second order arithmetic, which is in turn much
weaker than full set theory. For surveys on proof theory and ordinal analysis see, for
example, (Rathjen 1998, Rathjen 1999, Rathjen 2006).
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the early discussions on predicativity and its logical analysis, as the latter
is an attempt at understanding predicativity rather than arguing for it as a
foundational stance.

3.2. Proof-theoretic reducibility. Feferman has explored a number of
alternative perspectives over the years, as a way of corroborating the anal-
ysis of predicativity. In particular, one of the aims was to avoid direct
appeal to the idea of ramification, which is particularly artificial and dis-
tant from mathematical practice. For example, already in the fundamental
article (Feferman 1964), Feferman introduced a progression of formal sys-
tems which are based on a Hyperarithmetic Comprehension principle, there-
fore exploiting the previous observation of an important connection between
predicative subsets of the natural numbers and hyperarithmetical sets. In
that paper Feferman also introduced a single formal system IR which does
not make direct reference to provability or definability.*” Feferman (1964)
then established that also these two approaches give rise to Iy as limit.*3
The fact that a number of distinct approaches to predicativity converged to
the ordinal I'g was then seen as confirmation of the thesis that I'g marks
the limit of predicativity, in a similar way as the convergence of different
characterizations of computability are usually taken to support Church’s
thesis. The study of alternative routes to predicativity was also suggested
by the desire to clarify which parts of mathematics can be given predicative
form. As ramified systems are cumbersome to work in, one needs a way
of assessing the predicativity of other systems which are better suited to
the practical needs of a codification of ordinary mathematics. The notion
of proof-theoretic reducibility was therefore appealed to for this purpose.*’
In order to assess the predicativity of a formal system T it suffices to ap-
propriately “translate” it in (that is, proof-theoretically reduce it to) one of
the ramified systems. The latter, thus, act as canonical systems of reference
in terms of which the predicativity of other systems can be assessed. The
outcome is a notion of predicative justification: a formal system is consid-
ered predicatively justified if it is proof-theoretically reducible to a system
of ramified second order arithmetic indexed by an ordinal less than I'g. In
addition, a notion of locally predicative justification was introduced, which
applies to the case in which a system T is proof-theoretically reducible to
the union of all the RA,. In this case each theorem in 7" may be considered
predicative, although the system T in its whole is not predicatively justified.

47See (Howard 1996, p. 283) for discussion.

48Further approaches to predicativity were explored, for example, in (Feferman 1966,
Feferman 1968b, Feferman 1974, Feferman 1979, Feferman 1982). See also (Feferman
1975). More recently, Feferman has developed the notion of “unfolding”; see (Feferman &
Strahm 2000, Feferman & Strahm 2010) and (Strahm 2017). See also (Cantini & Fujimoto
& Halbach 2017) for relations between Feferman’s work on predicativity and theories of
truth.

49See e.g. (Feferman 1993b) for discussion of this notion, and (Feferman 2005) for an
informal account of its application to an analysis of predicativity.
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A well-known locally predicatively justifiable system is Friedman’s system
AT Ry, which has been extensively studied in the Reverse Mathematics pro-
gramme (Friedman 1976, Simpson 1999).

3.3. Predicativity and ordinary mathematics: the extent of pred-
icativity. Weyl’s aim in “Das Kontinuum” was to clarify how far can we
proceed in developing analysis from the bare assumption of the natural num-
bers with full induction and by iterating elementary properties and relations
over them. His work gives a first, partial answer, to the important question
of the relation between predicative mathematics with ordinary, or everyday,
mathematics.*”

A number of mathematical logicians in the 1950’s felt that the early
debates on impredicativity had left unresolved the question of which role
impredicativity plays within ordinary mathematics. Wang (1954, p. 244)
clearly expressed this concern, when he observed that the use of uncount-
able (or indenumerable) and impredicative sets “remains a mystery which
has shed little light on any problems of ordinary mathematics. There is
no clear reason why mathematics could not dispense with impredicative or
absolutely indenumerable sets.”

In his fundamental article, Feferman (1964, p. 3-4) writes:

It is well known that a number of algebraic and analytic
arguments can be systematically recast into a form which can
be subsumed under elementary (first order) number theory.
[...] It is thus not at first sight inconceivable that predicative
mathematics is already (formally) sufficient to obtain the full
range of arithmetical consequences realized by impredicative
mathematics.

As Feferman quickly clarifies, not every elementary statement can be so ob-
tained. The logical analysis of predicativity in (Feferman 1964) readily pro-
vides us with a counterexample: the very arithmetical statement expressing
the consistency of predicative analysis. However, Feferman suggests that
one could argue that “all mathematically interesting statements about the
natural numbers, as well as many analytic statements, which have so far
been obtained by impredicative methods can already be obtained by predica-
tive ones”.

The fundamental question of whether predicative mathematics is “already
(formally) sufficient to obtain the full range of arithmetical consequences
realized by impredicative mathematics” has been addressed by combining
an appeal to the notion of proof-theoretic reducibility (that enables us to

50The expression “ordinary mathematics” refers to mainstream mathematics, and has
been so characterized, for example, by (Simpson 1999, p. 1): “that body of mathematics
which is prior to or independent of the introduction of abstract set-theoretic concepts”.
That is: “geometry, number theory, calculus, differential equations, real and complex anal-
ysis, countable algebra, the topology of complete separable metric spaces, mathematical
logic and computability theory”.
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work in syntactically convenient systems) with a careful case by case logical
analysis of ordinary mathematics. Here Weyl’s pioneering work in “Das
Kontinuum” has been a fundamental reference, especially for Feferman’s
investigations (Feferman 19885, Feferman 2005). More precisely, Feferman
(1988b) has carefully analysed Weyl’s text and proposed a system, W, which
codifies in modern terms Weyl’s system in “Das Kontinuum”. System W is
particularly weak proof-theoretically, as it is as strong as Peano Arithmetic;
as a consequence, it lies well within predicative mathematics. Feferman
has verified that large portions of contemporary analysis can be carried out
on its basis, in fact “most of classical analysis and substantial portions of
modern analysis” (Feferman 2013); therefore he has significantly improved
on Weyl’s (1918).

Another source of insight is the research carried out within Friedman
and Simpson’s program of Reverse Mathematics (Simpson 1999), which has
analyzed large portions of ordinary mathematics from a logical point of view.
The principal outcome of these studies is a further confirmation that large
parts of ordinary mathematics can be framed within predicative systems.>!
More surprisingly, it typically turns out that if a theorem can be established
predicatively, it can already be carried out within a system not stronger
than Peano Arithmetic. In fact, a finitary system suffices for most cases.??

The outcome of this research is that, once analyzed in detail, the prima
facie necessity of abstract features of ordinary mathematics turns out to be
avoidable in many cases. As a consequence, a substantial portion of ordinary
impredicative mathematics is eliminable in favor of predicative mathematics.
This is a striking result, highly unexpected from the perspective of Weyl’s
contemporaries. In fact, as suggested by Feferman, these insights have the
potential of enriching the philosophy of mathematics in a number of ways.
For example, they may have an impact on current discussions on indispens-
ability of mathematics to science. Feferman (1993b) has argued that the case
can be made that all scientifically applicable mathematics can be codified
by predicative theories (in fact, by system W). The above mentioned work
has brought Feferman to formulate the following “working hypothesis”:

All of scientifically applicable analysis can be developed predicatively.

If, indeed, weak predicative systems turned out to be formally sufficient
to develop all of scientifically applicable mathematics, this would imply the
dispensability, at least from a formal point of view, of impredicative mathe-
matics - when we restrict consideration to the mathematics that is required
by our best scientific theories. This could then imply that an appeal to indis-
pensability arguments to support the belief in the existence of mathematical
entities would only grant, in the most favorable case, a rather limited on-
tology. As a consequence the above research might contribute to a more

51See (Simpson 1999) for details and (Simpson 2002) for independence results.
52Gee (Feferman 1988b, Feferman 2005, Simpson 1988) for informal discussions and
further references.
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careful assessment of the possible outcomes of indispensability arguments,
and the kind of platonism they might support, if they were to succeed.?

3.4. Predicativity given the natural numbers. I conclude with some
remarks on the notion of predicativity given the natural numbers that is
the focus of the logical analysis of predicativity. At first the logical analysis
of predicativity aimed at clarifying the notion predicatively definable from
the natural numbers. In section 3.1 I have emphasized that a shift of focus
occurred at the end of the 1950’s, so that predicativity given the natural
numbers aimed at explicating a notion of predicatively provable presuppos-
ing the natural numbers (Gandy 1967). From a philosophical perspective,
it is natural to wonder how we should read the presupposition of the nat-
ural numbers. As it turns out, the relevant literature provides us with a
number of different answers to this question. As reviewed above, Weyl, for
example, suggested that the natural numbers, and in particular the idea of
iteration, are “an ultimate foundation of mathematical thought”, in fact, a
“pure” intuition (Weyl 1918, p. 48). In particular, the natural numbers are
“individuals”, classical logic applies to them and they can act as domain of
quantification; therefore they can be employed for building predicative sets
step-by-step by repeated application of elementary operations over them.

In Feferman’s writings on predicativity one sometimes reads that the
natural numbers (with full mathematical induction) can be regarded as
“given” in some sense.”* Sets are instead considered as no more than def-
initions, facons de parler, or convenient idealizations; as such they need to
undergo appropriate constraints to avoid vicious circularity in definitions
(Feferman 1964, p. 1-2).5°

Sometimes the distinction between predicative and impredicative defini-
tions or entities is presented in epistemological terms, and predicativity is
seen as an instrument for clarifying what is implicit in our understanding of
the natural numbers.’® Feferman (1987, p. 449) writes:

53Note that Feferman draws different conclusions on the impact of the logical research
on indispensability arguments in the philosophy of mathematics (Feferman 1993b).

540 the following I shall often omit explicit reference to the unrestricted principle
of mathematical induction, and simply write “the natural numbers”; however, 1 shall
presuppose that in the case of predicativity given the natural numbers full induction is
also assumed.

55Feferman (Feferman 1964, Feferman 2005) also describes the predicativist position
as one that takes the natural numbers as a “completed totality”, and views the rest in
potentialist terms. However, I could find no further elucidation of the notion of complete
totality, beyond the claim that we can use classical logic to reason about it. In (Feferman
2004a, Feferman 2009), Feferman proposes to read the “giveness” of the natural numbers in
terms of realism in truth value (restricted to the natural numbers). A fundamental theme
that emerges within Feferman’s discussions on predicativity is an opposition, analogous
to Weyl’s, to arbitrary sets, and in particular to the powerset of an infinite set (see e.g.
Feferman 2004b).

565ee e.g. (Kreisel 1958, Feferman 1996).
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That there is a fundamental difference between our under-
standing of the concept of natural numbers and our under-
standing of the set concept, even for sets of natural numbers,
seems to me undeniable. The study of predicativity, as what
is implicit in accepting the structure of natural numbers, is
thus of special foundational significance. This is not to say
that only what is predicative is ‘justified’. What we are deal-
ing with here are questions of relative conceptual clarity and
foundational status [...].

The latter point is significant, and demonstrates, once more, the crucial
difference between the attitude of the logicians that studied predicativity
from the 1950’s and that of the mathematicians that forged this notion at the
turn of the 20th century, in particular Weyl (1918). Perhaps it also explains
why there is insufficient clarity in the logical discussion on the philosophical
aspects: the aim of the logician is not a defence of predicativism but a
clarification of predicativity. In fact, the logician is primarily interested
in clarifying the consequences of given assumptions. A crucial question
is: which mathematical constructions and which portions of mathematics
can we develop from the assumption of certain mathematical entities and
operations over them? A conceptual clarification of the mathematical facts
is then seen as prior to a clarification of the underlying philosophical stances
that determine the choice of certain assumptions; Feferman (2005) writes:
“[t]he potential value for philosophy then is to be able to say in sharper terms
what arguments may be mounted for or against taking such a stance.”

In fact, a number of authors, including Feferman, have suggested that
the notion of predicativity is more profitably understood as a relative rather
than an absolute notion: we analyze what is predicative given some prior
assumption, as, for example, the natural numbers. One might take, how-
ever, different starting points. From this perspective Godel’s constructible
hierarchy may also be framed as an example of predicativity, one which may
be seen as reducing all kinds of impredicativity to one special kind: “the
existence of certain large ordinal numbers (or well-ordered sets) and the va-
lidity of recursive reasoning for them” (Godel 1944, p. 464). A weaker form
of predicativity, compared with predicativity given the natural numbers, is
instead obtained if one considers restrictions to the induction principle as in
(Nelson 1986, Parsons 1992, Parsons 2008).

Predicativity may now become a tool for an analysis of mathematics, help-
ing us distinguish different portions of the mathematical landscape, distinct
for the assumptions and the methodology they require. In other terms, the
logical analysis of (forms of) predicativity becomes an instrument for a finer
understanding of contemporary mathematics, which addresses the question
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of which concepts and methods are necessary for the development of given
portions of contemporary mathematics.®”

4. CONCLUSION

The history of predicativity is witness to a remarkable example of cross-
fertilization between philosophy of mathematics and mathematical logic. A
critical reflection on the new abstract concepts and methods that were in-
troduced in mathematics in the 19th century gave rise to proposals for the
development of mathematics on predicative grounds. Adherence to predica-
tivity was proposed as a way of avoiding vicious circularity in definitions and
resulted in Russell’s ramified type theory and Weyl’s predicative analysis.
A clarification of the notion of predicativity and its mathematical impli-
cations stimulated further technical advances, and saw the involvement of
prominent logicians, especially in the 1950-60’s. In particular, Feferman has
contributed to the determination of the limit of a notion of predicativity
given the natural numbers, and has attempted, over the years, new ways of
explicating this notion of predicativity.

Beyond the purely logical interest of predicativity, this notion may play
a role in the philosophy of mathematics. Compliance with predicativity re-
quirements enables us to carve a restricted concept of set; in particular, in
the case of predicativity given the natural numbers we have a concept of set
that is deeply rooted in the natural numbers. This, in turn, may be used to
assess which mathematical concepts and theories can be developed purely
on the basis of this more constrained concept of set, and which ones instead
require an essential appeal to more abstract and complex notions. The log-
ical analysis of predicativity has particularly highlighted the crucial role for
predicativity of two components: some initial entity, e.g. the natural num-
ber set with full mathematical induction, and the iteration of elementary
operations over it. This opens up the way for a number of notions of pred-
icativity, which may be employed to help us clarify the difference between
distinguishable conceptual spheres of mathematical activity.
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