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ABSTRACT. In [Prade and Richard, 2009] a restricted study of analogy was developed through the
notion of analogical proportions, i.e. sequences of the form “a is fo b as c is to d”. They define
three kinds of analogical proportions: analogy, reverse analogy, and paralogy. In [Prade and
Richard, 2013] and [Prade and Richard, 2014] many kinds of analogy are defined but we highlight
four: analogy, reverse analogy, paralogy, and inverse paralogy. In all of these works analogy is
analyzed in a Boolean sense taking an account of analogy in a logical terms.

Our hypothesis is that if we take a restricted notion of analogy in the sense of the mentioned
works, analogy could be seen as a modal operator. We proceed as follows. In the first section we
present a background of the notion of analogical proportion, we take the main thesis of Henri
Prade and Gilles Richard in the mentioned works. Later, in the second part of the paper we present
the basic system of analogical proportions: the logic £,. We define a modal propositional lan-
guage with four basic modal operators, then, we present a model based on a relational structure
with two types of relations defined as two kinds of accessibility relations between states. Our
technique is to interpret analogical proportions as dyadic relations between pairs of objects holding
an inclusion relation. In this sense, the formulas related by the analogical modal operators are truth
in states that hold some analogical proportion.
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Introduction

In [Prade and Richard, 2009] a restricted study of analogy was devel-
oped through the notion of analogical proportions, i.e. sequences of the
form "a is to b as c is to d". They define three kinds of analogical propor-
tions: analogy, reverse analogy, and paralogy. In [Prade and Richard,
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2013] and [Prade and Richard, 2014] many kinds of analogy are defined
but we highlight four: analogy, reverse analogy, paralogy, and inverse
paralogy. In all of these works analogy is analyzed in a Boolean sense
taking an account of analogy in a logical terms.

Our hypothesis is that if we take a restricted notion of analogy in the
sense of the mentioned works, analogy could be seen as a modal operator.
We proceed as follows. In the first section we present a background of the
notion of analogical proportion, we take the main thesis of Henri Prade and
Gilles Richard in the mentioned works. Later, in the second part of the
paper we present the basic system of analogical proportions: the logic £,,.
We define a modal propositional language with four basic modal operators,
then, we present a model based on a relational structure with two types of
relations defined as two kinds of accessibility relations between states. Our
technique is to interpret analogical proportions as dyadic relations between
pairs of objects holding an inclusion relation. In this sense, the formulas
related by the analogical modal operators are truth in states that hold some
analogical proportion.

One of the main results of our approach is that we could dualize the
analogical proportions and define strong notions of analogy, paralogy,
reverse analogy, and inverse paralogy, respectively. That means that there
could be not only four modal operators of analogical proportions but eight.
Related to the previous issue, we can consider what are the advantages of
a semantics based on the notion of analogical proportion, and also how we
can construct a logical calculus adequate to the remaining semantics. An-
other result is given by the properties of the four analogical proportion, i.e.
reverse reflexivity, odd permutation, symmetry, bi-reflexivity, even permu-
tation, etc. These properties define some characteristic theorems of the
logic of analogical proportions, we analyze these issues in the final section.

Background on Analogy

My aim in this part is to offer a restricted notion of analogical propor-
tions. I follow Henri Prade and Gilles Richard in three of theirs works:
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"Analogy, Paralogy and Reverse Analogy: Postulates and Inferences";
"From Analogical Proportion to Logical Proportions"; and "From Analogi-
cal Proportion to Logical Proportions: A Survey". I only focus on the intui-
tive notion of analogical proportion and its Boolean interpretation, and
only in four kinds of analogical proportions, namely homogeneous analo-
gies. For this reason, I only take in account the definition of the four ana-
logical proportions.

The first paper ("Analogy, Paralogy and Reverse Analogy: Postulates
and Inferences") develops a three-sided view of analogy, in the author’s
words:

(...) we investigate constitutive notions of analogy and we highlight the existence
of two relations beside standard analogical proportion, namely paralogical propor-
tion and reverse analogical proportion (...) [Prade and Richard, 2009, p. 307]

Their starting idea is that "analogy is a matter of similarity and differ-
ence" [Idem.], this idea is the core of a definition of three types of analogy
with its respective "postulates". The basic definition of analogical propor-
tion given by them is "statements of the form a is to b as c is to d, usually
denoted a: b:: c: d" [Idem.]; for example “"numeral” is to "two" as "solid"
is to "cube"”; the words "numeral" and "two" are similar in the same sense
as "solid" and "cube" are, the first and the third refers to a conceptual entity
(a notion of numeral and a notion of solid) in this reference lies the similar-
ity, but the difference lies in the fact that one notion refers to an arithmeti-
cal concept and the other refers to a geometrical concept.

In this sense analogy is a binary relation between pairs of objects
that hold at the same time relations of similarity and dissimilarity, Prade
and Richard say that we may have to put two situations in parallel and
compare these situations by establishing a correspondence between them.
We may extend this correspondence to take a general intuitive definition of
analogy: "the way a and b differ is the same as the way c and d differ".
This definition of analogy is the base of the remaining definitions of paral-
ogy and reverse analogy, we put them together and get:
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a) Analogy between abcd: the way a and b differ is the same as the
way c and d differ,

b) Paralogy between abcd: what a and b have in common, ¢ and d
have it also,

c) Reverse analogy between abcd: the way a and b differ is the same
as the way d and c differ.

This three kinds of operations are studied in the first paper and Prade
and Richard give an interesting analysis of them, but in a later paper they
introduce many kinds of analogical proportions (in specific 120). In the
second citied paper Prade and Richard [2013, p. 445] resort to the notion of
"indicator" to define a group of four kinds of analogical proportions. An
indicator is a conjunction of two Boolean literals, holding some combina-
tion of negation and conjunction in its definition, giving rise to four differ-
ent combinations of which we have two types: similarity and dissimilarity
indicators. The four combinations are the following:

1) a/Ab and @Ab are similarity indicators,
2) aAb and a/Ab are dissimilarity indicators.

Prade and Richard take in account the properties and restrictions of this
indicators, but we only focus on the notions of similarity and dissimilarity.
Later in the paper they introduce the homogeneous analogies, proportions
that "do not mix different types of indicators" [Ibid.], these are: analogy,
reverse analogy, paralogy and inverse paralogy. The new element of the
group is the inverse paralogy. To the previous recapitulation of the ana-
logical proportions we introduce the new definition of inverse paralogy as
follows:

d) Inverse paralogy between abcd: what a and b have in common, ¢
and d miss it.

With this fourth type of analogical proportion we complete the frame-
work used to analyze the notion of analogy in modal terms. We continue in
the next section with the definition of the logic of analogical proportions.
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The Logic £,

This section presents the basic ingredients of the logic of analogical
proportions. This logic can be defined in an abstract sense by the structure
2,4 = (L, Cn) where L, is a structure and Cn an operation Cn: P(L,) —
P(Ly). The structure 8, = (L,, Cn) is called sometimes a consequence
system [Carneli, Coniglio, Gabbay, Goubeia & Sernadas, 2008, p. 4]. We
present an alternative characterization of this logic focused on the semantic
elements of a relation of logical consequence, but we show later how the
relation of logical consequence induces the operation of consequence and
vice versa. Later we see how we may construct a logical calculus based on
the semantics defined here. Fist we present some basic definitions of the
language and some comments to the notation.

Definition 2.1 (Relational structure) A relational structure is a tuple §&
whose first component is a non-empty set W called the universe of &, and
whose remaining components are relations on W.

Definition 2.2 A modal similarity type is a pair T = (0, p) where O is
a non-empty set and p is a function p: 0 — N. The elements of O are
called operators. The function p assigns to each operator A € O a finite
arity, indicating the number or arguments A can be applied to.

Definition 2.3 (The language L,) Let 7= ({:), () (1), (i), p) a modal
similarity ~ type  (with  p(:)) =p(G) =p((D) =p((D =4 ),
C ={=, A V, -, 1} a set of logical connectives, and A a non-empty set
of proposition atoms. An alphabet is a set X =7 UC U A of symbols.
A formula ¢ is a sequence of symbols of the alphabet X closed by the fol-
lowing production rule:

p:==p|LloVle > Ple

0GR eI o6)

The language L, is the set of all formulas.
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Let's remark on some aspects of the language starting with the alpha-
bet. The novelty of the language is the introduction of a set of operators of
analogical proportions: analogy : ), paralogy (; ), reverse analogy (!), and

"

inverse paralogy (;). A formula like "(;) :) ( zp) could be read as "a and

[ are analogous to ¢ and Y ", the remaining formulas are read in an
"analogous" way: "(g) ;) (3)" may be read as "« and [ are paralogous to

@ and Y", (z) " (I‘Z) may be read as "a and [ are reverse analogous to ¢

and Y", and "(;) (i) (I‘Z)" may be read as "a and [ are inverse paralogous

to ¢ and 1". The main difference with another modal operators is that their
arity is equal to four, that is, they range over four arguments. In this sense
they are applied to four formulas. We could write {; }(a, B, ¢, ¥) instead of

(g) (i) (1‘/’;), and in fact we must write so if we want to be strict with the

concatenation notation of the modal operators, but we think that it is more
convenient to take our "binomial" notation at least for two simple reasons.
First, as we want to represent relations of pairs of elements, we think that
the binomial notation represents perfectly the visual interaction between
the elements in relation, i.e. two items related. Second, we may exploit this
two-sided representation to manipulate pairs of formulas in a context of
binary relations. Despite this, we must not forget that we are facing a qua-
ternary relation.

Definition 2.4 (t-frame) Let be § a relational structure, we call & a 7-
frame where § be a tuple consisting of the following:

a) A non-empty set S,

b) A relation <C S?,

¢) A relation ~C (S x S)2.

We write § = (S, <, =) to denote a T -frame.

The set S is called the set of meta-states and is defined as © =
{x e P(S):if yExand z € x,theny < zor z < y}, that is, the meta-
states are subsets of S in which its elements hold the contention relation <.
The elements of S are called meta-states (m-states in the following). The
relation C (& x $)? is a relation between m-states, but is hold by pairs
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which first element is a m-state and its second element is a state belonging
to the m-state in question. In symbols (b, s) = (b,,s), where b and b,, are
m-states belonging to &, and s is some states present in both b and b,,. We
consider also another kind of states that we will call complement states. We
define a complement state as follows. Let be s € S some state, its comple-
ment state is the set 5 = § — s. Intuitively we may understand a comple-
ment state 5 as the set formed by all the states without s.

Definition 2.5 A t-model for L, is a pair M = (F, V) where § is a 7-frame
and V is a valuation V: A +— P(S).

Definition 2.6 Let be M = (&, V) a model for L,, we define a formula ¢
satisfied at a m-state b € S and at a state s € S in a model M = (§, V) as
follows:

a) M, b,s - p iff seV(p)

b) I, b,s IFL never

c) M, b,s Ik —p iff not M, b,w I p

d)W,b,sI- pvy iff WM,b,s - @orW,b,s I+ @
e)M,b,sIF ¢ - iff notW,b,sIF @orIN,b,s I+ @
W, b,s - o AP iff W,b,s - @and M,b,s I @

g) M, b, s IF (z) ) (:Z) iff 3b,, € & with (b, s) = (b,,, s) and,

M, b,s; IFa
L (S<s; <85, M, b, s, I-FL
3s;s, € b,3s;5, € b, with {s <s, <5 such that M,b,,, 5, I @
M, by, 5, IFY
h) M, b, s IF (g) ) (;;j) iff 3b, € & with (b, s) ~ (b,,, s) and,
M, b,s; IFa
N M, b,s, I
3s;s, € b, 3545, € b,, with {s <5, <5y such that M,b,,, 5, IF @

M, 0,8, IFY



80 JOSE DAVID GARCIA-CRUZ

i)y, b,s I+ (g) (1) (;g) iff 3b,, € G with (b, s) ~ (b,,, s) and,

M, b,s; IFa

L (<555, M,b,s, B
3s;s, € b, 3545, € b,, with {s <3 <sp such that M, b, 9, I @
M, b,, 8, IFY

WM, b, s Ik (g) () (;;j) iff 3b, € & with (b, s) ~ (b,,, s) and,

M, b,s; IFa

N M, b,s, -

3s;s, € b,3s;5, € b, with {s <5 <5, such that M, b, 5, I @
M, b, 5, IFY

Definition 2.7 A formula ¢ is global satisfied (or global true) in a model
M (notation M I+ ¢) if it is satisfied in all states of all m-states in Mt (that
is Vb € S and Vs € § we have I, b,s IF ¢). A formula ¢ is satisfied in
a model 9t if it is satisfied in some state in a m-state in I, it is refuted
in a model if its negation is satisfied. A set of formulas I is global satis-
fied in a model M if M, b, s I+ T for all m-states and all states in It.

Definition 2.8 (Logical consequence) Let T be a modal similarity type and
M a class of 7-models M. Let be I a set of formulas and ¢ a formula of L,
we say that @ is a logical consequence of I' over M (in notation I' Iy @) if
VIt e M, Vb € Sand Vs € Sif M, b, s I- I then M, b, s I- ¢.

A logic may be defined as a pair &, = (L, IF) where L, is a structure
and IF is a relation IFS P(L,) X L,. We show that this relation induces
a consequence operation on the same universe and vice versa. Consider
a logical consequence relation Ity defined as above and a consequence
operation Cn: P(L,) — P(L,), we say that a consequence relation Cn
induces a logical consequence relation Iy such that for every I' € L, and
every @ € Lg:

['IFg@iff o € Cn(l)
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On the other side, we say that a logical consequence relation |- in-
duces a consequence operation Cn such that for every I' € L, and every
@ € Ly:

Cn() ={@ € Ly:T I+ ¢}

In this sense a logic may be defined also as a pair £, = (L,, Cn). Let’s
turn to the meaning of the operators of analogical proportion defined here,
in the next section we analyze this questions in detail.

Some questions about the Logic £,

In this section we analyze some issues concerning the meaning of the
operations defined in the previous part. In the first place, what does it mean
that some formulas hold an analogical proportion relation? Specifically,
how does the semantics works. In the second place, we consider the option
to dualize the four operators to get the "strong" operations of analogical
proportions.

A similarity type is a tuple with a number of operations and a function
that assigns to all operators its arity. When we want to define an operator
semantically we use the arity of the operator to assign a relation with
an + 1 arity, when the arity of the operator is n. In our case the relational
structure (t-frame) has two dyadic relations although the modal operators
are tetradic. Strictly speaking we must assign a pentadic relation to an op-
erator with tetradic arity, but the application of the operators does not meet
a pentadic relation.

We believe that the best image representing the behavior of operators
is two dyadic relations interacting. The main reason is related with the
meaning of the notion of “analogical proportion”. This operation is exe-
cuted by pairs of objects which in turn are pairs of other objects, this opera-
tion is not carried out by four objects related simultaneously with a fifth
object, thus a pentadic relation do not represent this operator. Instead, we
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believe that the best image of an analogical proportion relation in a modal
semantics is given by a two dyadic relations of different level.

The first relation (<) ranges over objects of the universe S (states), the
second relation ranges over sets of states b,, € S (m-states). We consider
the first relation as a “partial contention” or “preservation of information”
between states, that is, a state x is partially contained in a state y, or a state
y preserve all the information that preserve the state x (in symbols x < y).
The second relation "=" is similar to the first but it satisfies some restric-
tions. It is a relation of partial order but the objects over the relation applies
to are neither states nor meta-states, but pairs composed by one meta-state
and a state, in this order. Intuitively we say that two m-states are related (in
symbols (b, s) = (b, s)) if and only if they contain the same information
“until" s, where s is some state. As the states and meta-states satisfy
a partial order, a state may serve as “separator”’ of identical m-states gen-
erating disjoint (forked) meta-states. In this sense, we consider the relation
between m-states as a connection, that is, we say that the m-states are con-
nected by a state. Let b and b,, be two meta-states, we say that b and b,, are
connected if and only if they have the same information until s “is given”
and "beyond" s they differ at least in one portion of information (a state).

The next issue is connected with the following section; I refer to the
dualization of the operators. As we can see in the definition we have two
quantified parts, and the question is in which quantifier we apply the duali-
zation? Our thesis is that we must apply the dualization to the quantifier
that operates on the part of the definition that describes the behavior of the
m-states. We have three main reasons to maintain this idea and we explain
each one in detail.

In the first place, as we say we interpret analogy as a dyadic relation
between pairs, in this sense analogy must be, in our interpretation, a rela-
tion (let say “(dis)similarity”) between m-states composed by states related
by another relation (let say “contention”). The main relation in this ap-

' Or an "identifier" of non-identical m-states, as we will see in the final example of
Central Permutation Theorem.
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proach is (dis)similarity and the objects related are m-states, therefore we
conclude that we must change the quantifier that operates on the m-states
in the dualization process. In the second place, when quantifying univer-
sally on m-states we include states as elements of the objects in which
quantifiers operate (m-states). The opposite does not hold, if we operate
only in states, we not obey m-states. Finally, in the operator’s definition we
use two dyadic relations chained with a link. This link indicates that the
relation of the first pair of items (the states) define the other relation be-
tween pairs of states (in the binomial notation the link between relations is
clear). In this two relational link we have a dominant relation and a deri-
vate relation. The dominant relation is referred to the link between pairs of
states (or in the definition between pairs of m-states/states), and the deri-
vate relation is a basic order relation between states. In this sense is natural
to think that the quantifier affected by the dualization is that represent the
dominant relation. On the contrary, if we take the quantifier that represents
the derivate relations we do not have a very important property of duality
i.e. transposition; therefore, we must change the quantifier that ranges over
m-states. In the next section we follow with this argument considering how
to define a tableaux calculus for the logic £,.

A Calculus for the Logic £,

The basic rules are the usual rules for classical propositional logic. We
extend the calculus of classical propositional logic adding sixteen rules of
tableaux, two for each operator, one for the affirmative operator and one
for the negative version of the operator. In the explication of the rules we
proceed as follows. We present the two rules of weak and strong analogy
operator and based on this presentation we explain the restrictions of the
rules of the other analogical proportion operators, which in fact are "analo-
gous" to these two first rules.
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i (;) (:) (3) (hip.), by, s

l
(bg,Sg) = (by,S0)
S0<5 =<5,
v N

2. @ (1),bg,81 @ (1),by, 5,
3. B (1),by,s2 ¥ (1),by,5;

Fig. 1

The first two rules are of the weak operator of analogy, the first is the
rule of the affirmative analogy operator (Fig. 1). The rule has three compo-
nents as it is common in the tableaux: the numeration of the sequences of
formulas, the sequences of formulas properly said, and the justification of
the sequences of formulas. In this case the novelty of our rules lies in the
justification. As in the case of basic modal logic we add to the justification
the “possible world” in which the justified formula is true. In our rules we
have states (sy) and m-states (b,) instead of “worlds”, and by this reason
we add also the m-state in which the formula and the state belongs. For
example, the first formula is true at a state s, in the m-state by.

Our rules are divided in two groups, the rules that separate the compo-
nent formulas and the rules that send the external negation of the main
formula to the component formulas without separating. This example is of
the kind of rules that separate the formula to which we apply the rule in its
component formulas, and as in the case of basic modal logic (again) this
separation generates an interaction between the entities in which the for-
mula is true, “possible worlds” in the case of basic modal logic and states
and m-states in this case.

When we remove the operator of the formula the first thing to do is to
relate the m-states, as we see in the rule ((bg,Sg) = (by,Sg)). This link
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is stated by the relation "~" between pairs composed by a m-state and
a state (in this order). When this link has been stated we need a relation
between states, but we need some restrictions to the states related. First we
need that all the states related include the state by which the m-state is
related, that is the state until the two m-states coincide, we will call this
state “the actual state”. In our example the actual state is sy. In the second
place the states must be related by the relation of inclusion. The states are
divided in pairs, belonging to each m-states as in the example see with
s1 < 55 in both sides, the former belongs to by and the latter belongs to b;.
The first specification of this rule, which establishes the variation between
conditions stated by each rule, is that the two states related must be a state
that includes the actual state and a complement state that is equal or in-
clude the actual state. In other words, in this rule the relation between
states is satisfied by pairs “state/complement state” in this order, as we can
see in the example with s; and 5. Finally, the formulas are “sent” to the
corresponding states when we disjoin the formula.

In this rule also we restrict the use of states (and m-states). In the case
of the weak operators the restriction consists in using a new m-state to
relate them with the actual m-state, and therefore we use new states be-
longing to the new m-state to generate the inclusion relations. That is, the
m-states and states related in the proof should not appear previously. Now
let’s move on to the second rule (Fig. 2).

1. - (;) () (z) (hip. ), By, So

l
2 () @

Fig. 2
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This rule takes the same operations as the basic modal logic rules of
equivalence between the diamond and the box (for example—Op =0 —p),
the external negation becomes internal and the operator changes by its
dual. In our rule the external negation is transferred to the component for-
mulas, the negation should be transferred to each one of the four formulas
related by the operator because the operator is tetradic and no dyadic as we
mistakenly may assume. As we say in the presentation of the syntax of our
system the interpretation of the formulas with binomial notation is only
a symbolic resource, and we do not forget that we are facing with a quater-
nary relation. The last feature of the rule is the change of the operator by
his dual. As this rule has no interaction between m-states and states, the
resulting formula of the application of the rule does not change from state
to state (and the same with m-states). Now we present the strong versions.

The two rules are very similar to the previous one but only satisfy the
next restrictions. In the case of the rule for the positive version of strong
analogy operator the interaction states’ and m-states’ interaction must be
previously generated, and the states used in the previous part of the proof
may be present in the application of this rule. As we may have seen in the
Fig 3, the vertical arrow states that the nexus between m-states and states
has been made and only we sent the formulas to the states in question.

() E1(5) ip)Boso

(bp,So) = (by,Sp)
S0<5, <55,
l
v N
2. @ (1), bo,8: @ (1), D4,5¢
3. ﬁ (1)Jb0: S2 Ip (1): bl: S2

Fig. 3
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On the other side, in the rule of the operator with external negation the
application of the rule has the same properties as in the case of the weak
version as we see in the (Fig. 4). The external negation is sent to the com-
ponent formulas and the operator is changed by its dual, and again there is
no interaction between states. We finalize this section with a presentation
of the remaining twelve rules pointing out the pattern followed by the in-
teraction between states in each rule and the behavior of the branches,
inasmuch as, this is the main differences between all the rules.

1. - (;) L] (3) (hip-), bo, 56

l
2 (902 @

Fig. 4

As we see, the rules can be divided in two groups: rules of weak and
rules of strong operators. In the previous example we take the two types of
rule. Now we use another division, the rules that branch the proof when the
main formula is disjoined and rules that do not branch the proof. The pre-
vious examples were of the first type, i.e. these rules branch the proof. In
the following we see that we have rules that do not ramify either. The main
difference between the rules is the way in which the states are related and
the way in which we separate the component formulas. The way in which
the states are related follow some patterns showed in (Fig. 5). In the picture
we can see the operator, then down we can see the pattern of the relation
between states followed by the rule, and in the bottom we se some arrows
that represent if the rule branch or if not.
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¢) R S
s SR sy T2 0
{ \ .L 50551552 SU
v N
Fig. 5

IA 1A

IAIA

We conclude with the rules and some main theorems of this logic. In
the appendix we present a proof as example of the use of the rules and we

explain some properties of the theorems.

1; (;) ;) (z) (hip.), by, So
l

(bg,s9) =~ (by,5¢)
So =851 =5,
a (1),bg, 51

2.

3. B (1),bo,5;
4. ¢ (1),by,5
B

¥ (1),by, 5,

Fig. 6

1. - (g) ¢) (Z’,) (hip.), by, 5o

l
2. (:z) ] (:f;) (1), 5,5

Fig. 7
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1 () 61(;) ipdboso

(b[]; SO) ~ (b‘]_t S[])
So =51 55

l
2. (:g) ¢ (:jj) (1), 5o, 5

Fig. 9

VYo (?) ip),o
1 ()0 () Gipdbos,
l
(bo,So) = (by,Sq)

S50 <5, <5,

S0<§5 <85
2. a (1),by,5,;

3. B(1),b, 5,

4. ¢ (1),by, 5
5.9 (1),by, s,

Fig. 10
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1. - ((g) i) (f;)) (hip.), o, o

l
2. (:;) [i ] (:f;) (1), B0, S0
1 (;) [i] (f;) (hip.), by, S,

l
(bo,So) = (by,So)
S50 851 =5;
S0 <5 <85,
2. a (1),bg,s;
3. B (1),b0,5,
4. ¢ (1),by, 5
5. Y (1),by, 5,

Fig. 12
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1 (Zf) <!>(f2) (hip.), by, 5o

)
(bg,S0) = (by,50)
50<5, <5,
Sp =85 =5,
v N
2. a (1),bg,5; @ (1),by,s;
3. B (1)1130:52 'p (1),b1, S2

1. ﬂ((;)a)(l‘;)) (hip.), b, So
!
L (50(%) o
1 () 1(5) @in)bos,
!

(bg,5g) =~ (by,5p)
S0<5 =55,
S0 <51 <5,
v N
2. a (1),bg,s7 @ (1),by,5;
3' 3 (1):50152 'P (1)1b1132

Fig. 16
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L((5)m(3)) cmus

l
2 (25)0(5) ®os,
Fig. 17

Theorems

1.(2) ) (&) Reflexivity

2.(9)() () Reflexivity

3'((5)(:)(3)) - ((Z)C) 5,)) Central permutation

2.((5)0(5) = ((9) ¢ (5)) Symmeny

5.(5) () Re

6. (Z)(') (g) Re

()
Yo (s
B

verse reflexivity

(

(
verse reflexivity
)) Odd permutation
)

)= (B
)= (o6

B ) ) Symmetry

)( )( ) Bi-reflexivity
)( )( Bi-reflexivity

8.

10.(3

((2) ¢)) ((ﬁ )6) 1‘,‘;)) Even permutation
12.((5)6)(5)) = ((5) 6 (5)) Symmerry
13.((5) 0 (1) = (( )<') (4)) Eaquivalence 1
14-((17,)( >(‘§)) ( 9)6) j’;)) Equivalence 2
15.((2) 0 () = ((5)0)(5)) Eavivalence 3
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Conclusion

We present a brief recapitulation of the notion of analogical propor-
tion, in specific of the four homogeneous analogies, i.e. analogies that not
mix different kind of indicators. These ideas extracted from some works of
Henri Prade and Gilles Richard served as a base to the presentation of our
system of logic. We have presented the language and the needed syntactic
elements to understand our modal interpretation. The novelty of our analy-
sis was the use of binomial notation in the representation of analogical
relations. Then we continued offering an interpretation of the language and
defining the operators of analogy semantically based on two relations that
interact simultaneously. Finally, in this section we have presented the rela-
tion of logical consequence and we have showed how this relation induce
a consequence operation.

In the following section we have analyzed some consequences of our
definitions, specifically on the meaning of the operators of analogy and on
the possibility of dualize them. In this part we conclude with an effective
way to generate the dual operators and we clarify some questions linked to
the relations with we define the operators semantically. Finally, we have
present a logical calculus based on the semantics defined, the main novelty
is the double reference to a one state and a one m-state, and the relation of
non-identical m-states.

Although we have analyzed many questions we consider that there are
some open questions related with this issue, we mention some of them. In
the first place what is the philosophical relevance of the notion of comple-
ment state? Is it possible to offer a more restrictive definition that generates
different behavior of the operators? Also, how we make more clear the
relation between states and m-states? And finally, what versions of the
“classical” modal systems may be defined in the logic presented here?
These important questions escape the reach of this work and the answers
are left to a future research.
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Appendix 1

We present a proof of a theorem of the logic £, we call this theorem
the Central Permutation Theorem (CPT) that represents the so called prop-
erty of the analogy operation. We analyze all the elements of the proof and
we explain the main features of the rules defined above.

L+(0)00) - (O00) w.os
2 (0)00) s
3. - <(f) ¢) (Z)) (1,55,
w (DY) wbs

(by,51) = (by,59)
§1 <5, <53
VAR
5- p, (2)'51'52 T, (2),[)2,52
6. q, (2)151'53 S, (2)'b2153
7. =p, (2),by,83 —r, (2),b,,5;3
VAR VAR
51=53=5;

8. v, (4),by,52 —q, (4)by 53 -p, (4),by,s3 g, (4),by,s;
9. —|T, (4),b1,$3 —|S, (4),52,52 —|T, (4),b1,$2 —|S, (4),b2,$3
10. b, (4')' b1'53 q, (4)'b2'52 b, (4)' b1152 q, (4)'b1153
X X X X
(5.8) (6,8) (5,9 (6,9)

This formula is a representation of the property of central permutation
of the analogy operation [Prade and Richard, 2009a, p. 132]. The property
states that if A and B are analogous to C and D, we may conclude that
A and C are analogous to B and D. The first line of the proof contains the
formula properly said but negated, as this formula is a conditional the fol-
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lowing lines 2 and 3, has the antecedent of the formula and the consequent
of the formula, respectively. The step 4 is obtained from the application of
the weak analogy operator negated. Between lines 4 and 5 are the operator
restrictions that states the link between m-states and states.

The lines 5 — 7 contain the resulting formulas from the application of
the rule of elimination of the analogy operator affirmed, this rule is applied
to the formula in line 2. As we have been mentioned, this rule has as result
two branches in which the two pairs of component formulas are sent. In
this case p and g are sent to the left branch where p is present in s, and
q in s3; and r and s are sent to the right, and r is present in s, and s in s3.
An important and restrictive issue of the application of this rule is the pres-
ence of the —p and —r formulas in each branch, this fact is debt to the
relation of the states with its complement. In this case s, is related with the
53 and the information on s, (p) is preserved in $3, but not in s3, and for
this reason the negation of p is sent to them. The same situation happens
with r in s, and its negation s3. This fact causes that in each branch are
present three formulas and not only two.

Between the steps 7 and 8 we have a new interaction between states,
the reason of this restriction is that the relation of information inclusion
between states satisfy properties in the same sense of the modal systems K,
T, S4, S5, etc. In this case, the relation is transitive and symmetric, there-
fore, it is plausible to think that this is a theorem of an extended version of
S4. We explain briefly the properties in the example. We have a previous
link between s; to s,, and from s, to §3; and we have a strong operator that
“recycles” the mentioned link. We assume the properties of transitivity and
symmetry, and we know that the formula with strong operator (step 4) is
present in s;. By transitivity we relate s; with $3, and with symmetry we
relate state §3 with s,, and in this state the formulas of the center of the
branches are present (center permutation). Insomuch as this restriction only
affects the central branches, and as the formulas in this branches take ad-
vantage of the symmetry and transitivity to generate the contradictions
needed to close all the branches of the tree, this relation between states is
the one that represents central permutation.

We think that this procedure is justified at least in the following idea.
When we generate the symmetric and transitive link between the three
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states, the two m-states become the same m-state, that is, this link serve as
"identifier" of m-states. As s;is related with $3 state, and s; serve as sepa-
rator of the m-states, we invert the separation and identify the two m-states
when we relate §3 with s,. The (Fig. 18) shows how we could think this
interaction.

Fig. 18
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