Chapter 7
Towards a Grammar of Bayesian Confirmation*

Vincenzo Crupi, Roberto Festa, and Carlo Buttasi

7.1 Introduction

A long standing tradition in epistemology and the philosophy of science sees the
notion of confirmation as a fundamental relationship between a piece of evidence E
and a hypothesis H. A number of philosophical accounts of confirmation, moreover,
have been cast or at least could be cast in terms of a formally defined model c(H, E)
involving evidence and hypothesis. !

Ideally, a full-fledged and satisfactory confirmation model c¢(H, E) would meet
a series of desiderata, including the following: (1) ¢(H, E) should be grounded on
some simple and intuitively appealing “core intuition”; (2) ¢ (H, E) should exhibit a
set of properties which formally express sound intuitions; (3) it should be possible
to specify the role and relevance of c¢(H, E) in science as well as in other forms of
inquiry.

In what follows we will focus on accounts of confirmation arising from the
Bayesian framework and we will mainly address issues (1) and (2). Bayesianism
arguably is a major theoretical perspective in contemporary discussions of reason-
ing in science as well as in other domains (Bovens and Hartmann 2003; Howson and
Urbach 2006; Oaksford and Chater 2007). As we will see, the Bayesian approach
to confirmation includes traditional and well-known proposals along with novel and
more recent variants. Despite all this, the exploration of points (1) and (2) still seems
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to lag behind a fully satisfactory level of detail and completeness. In trying to con-
tribute to a more systematic treatment, we hope to provide some useful conceptual
material to effectively tackle issue (3), ultimately bridging philosophical accounts
of confirmation back to practice.

7.2 How to Price a Horse: Intuitions Concerning Distance

In the 20s of the seventeenth century, Galileo Galilei was consulted by some Flo-
rentine gentlemen engaged in a “learned conversation” on the following question: a
horse is really worth a hundred crowns, one person estimated it at ten crowns and an-
other at a thousand; which of the two made the more extravagant estimate? A priest
named Tolomeo Nozzolini had argued that the higher estimate was more mistaken,
since “the excess of a thousand above a hundred is greater than that of a hundred
above ten”. In disagreement with that, Galilei submitted that the two estimates were
equally extravagant, “because the ratio of a thousand to a hundred is the same as the
ratio of a hundred to ten” (see Todhunter 1865, p. 5).

The Nozzolini-Galilei controversy reveals different intuitions about the correct
way to measure error and, more generally, the distance between quantitative val-
ues. In Bayesian confirmation theory, evidence E is seen as possibly increasing or
decreasing the initial probability of a hypothesis of concern H. As applied to the de-
parture of the final from the initial probability, Nozzolini’s and Galilei’s diverging
notions of “distance” seem to lie behind two of the most widely known Bayesian
measures of confirmation, i.e., the so-called probability difference and probabil-
ity ratio measures (first proposed by Carnap (1950/1962), and Keynes (1921),
respectively):

ca(H,E) = p(H|E)— p(H)
¢(H,E)=p(H|E)/p(H)

Indeed, a very similar debate involving diverging intuitions has occurred concerning
precisely ¢y (H, E) and ¢, (H, E). Sober (1994) has argued that the probability ratio
measure of confirmation conflicts with clear presystematic judgments by means of
numerical examples such as the following. Suppose that on one hand p(H;) = .1
and p(H;|E;) = .9, whereas on the other hand p(H,) = .0001 and p(H;|E3) =
.001. Then it can be computed that ¢, (H;, E;) = 9 < 10 = ¢, (H>, E>). However,
Sober claims, “surely a jump from .1 to .9 reflects a larger change in plausibility than
a jump from .0001 to .001”, contrary to what ¢, (H, E) implies (Sober 1994, 228). It
should be noticed that, as Festa (1999) has pointed out, complaints can be construed
which go in exactly the opposite direction. For now suppose that p(H;) = .000001
and p(H;|E;) = .1, whereas p(H,) = .7 and p(H;|E;) = .8. This time, the ratio
measure ¢, (H, E), in contrast to the difference measure ¢, (H, E), ranks the former
jump as larger, reflecting the arguably sound judgment that “the initial probability
increases from a ridiculously small value to a noticeable one” (Festa 1999, p. 66).



7 Towards a Grammar of Bayesian Confirmation 75

Although based on different ways to conceive distance, the difference and ratio
measures above share a common trait. Measures ¢4 (H, E) and c,(H, E) are both
meant to provide an answer to the question: how far has the probability of H gone
from its initial value (as an effect of E)? However, the probability of a hypothesis
enjoys the important property of having a clear-cut limiting case, i.e., certainty —
either of H being true or of it being false. As a consequence, one can legitimately
conceive confirmation in terms of a measure ¢, (H, E) of the “relative reduction of
the probability distance (difference) from certainty”, in a sense to be explained im-
mediately. The core intuition underlying a c¢,4-measure is the focus on the question:
to what extent is the initial probability distance from certainty concerning the truth
(falsehood) of H reduced by a confirming (disconfirming) piece of evidence E? Or,
in other terms: how much of such a distance is “covered” by the upward (downward)
jump from p(H) to p(H|E)?

A rather natural way to formalize ¢,y(H, E) is the following:

PUHIE) = ptH) o H1E) > pe)
1—p(H)
Crd(H’E) = HI\E H
P(H|E) - p(H) if p(H|E) < p(H)
p(H)

Previous appearances of ¢,4(H, E) include Rescher (1958, p 87), Shortliffe and
Buchanan (1975) and Mura (2006, 2008). Measure c,;(H, E) has also been advo-
cated by Crupi et al. (2007) as enjoying a set of interesting formal properties, on
some of which we will return later on. For the time being, we would like to point
out that, as far as we can see, ¢,4(H, E) is the only Bayesian alternative to ¢y (H, E)
and ¢, (H, E) which emerges as a relatively simple way to assess confirmation on
the basis of “distances” involving relevant probability values.

In probability theory, odds may work as measures of confidence under uncer-
tainty much as probabilities themselves. Both quantities are strictly related in a
perfectly well-known fashion: p(X) = o(X)/[l + o(X)] and 0(X) = p(X)/[1 —
p(X)]. Following an illuminating informal remark made by Joyce (2004), one can
conveniently illustrate the correspondence between “probability talk” and “odds
talk” as simply analogous to the correspondence between “we are two thirds of the
way there” and “we have gone twice as far as we have yet to go”. It so happens, thus,
that the difference-based and the ratio-based notions of distance can also be applied
to odds, thus having the following further pair of Bayesian confirmation measures:

cod(H.E) = 0(H|E) —o(H)
cor(H, E) = o(H|E)/o(H)

It is then interesting to notice that the odds ratio ¢, (H, E) itself — a largely known
notion, famously advocated by Good (1950) and others (e.g., Fitelson 2001) — can
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be seen as a distance-based confirmation measure. The odds difference measure
coqa(H, E) has also appeared in the literature, if only occasionally (see Festa (1999,
p 59), and Joyce (2004).)>

7.3 The Sharp Edges of Incremental Confirmation:
Basic Properties

An intuitively neat core intuition is a valuable basis, but still represents too feeble
a ground to meet the challenges of a satisfactory philosophical account of confir-
mation. We will now address various details of a proper “grammar” of (Bayesian)
confirmation which are often only separately analyzed (if at all). Indeed, Bayesian
confirmation theories are typically introduced in a rather cursory way, e.g., by sim-
ply pointing to the large class of functions mapping relevant probability values
involving H and E onto a number which is positive, null or negative depending
on p(H|E) being higher, equal or lower as compared to p(H). Other times a
different rather informal characterisation can be found, presumably capturing the
“incremental” nature of Bayesian confirmation: c¢(H, E) is then called an incremen-
tal measure of confirmation when increasing with the final probability p(H|E),
and — as it is sometimes added — decreasing with the initial probability p(H ). This
sort of approach may well be often pursued for the sake of simplicity and brevity. It
is surprising, however, that no complete formal characterisation of Bayesian incre-
mental confirmation seems to be available so far. In what follows, we will provide
such a characterisation as grounded in a small number of conditions, thus labelled
basic.

A few preliminary assumptions and points of notation will be useful. We will say
that a statement X is p-normal iff 0 < p(X) < 1 (see Kuipers 2000, p. 48). Also, we
will say that hypothesis H and evidence E represent a p-normal pair iff both are p-
normal. Further, we will assume that, for any p-normal pair (H, E), c¢(H, E) maps
the joint probability distribution p(£H A £FE) onto a real number. Importantly,
this requires that ¢ (H, E) be defined for p-normal pairs, but does not forbid it to be
defined for non- p-normal pairs as well.?

2 One can define a rather natural odds counterpart of the measure c,q(H, E) of the relative reduc-
tion of probability distance (from certainty). (An earlier occurrence of this measure appears in
Heckerman (1986).) As shown in Crupi (2008), however, such an odds counterpart turns out to be
ordinally equivalent to the simple odds ratio measure ¢, (H, E).

3 There are confirmation measures whose behavior is perfectly defined and identical for any
p-normal pair while being divergent for non-p-normal ones. To illustrate, consider the measure
advocated by Kuipers (2000), i.e., cx(H,E) = p(E|H)/p(E). Since for any p-normal pair
p(E|H)/p(E) = p(H|E)/p(H), in this class of cases ¢, (H, E) is identical to the probabil-
ity ratio measure ¢, (H, E) defined above. However, the latter is not defined whenever p(H) = 0.
On the contrary, ¢, (H, E) may be defined in this case as well, provided that E is p-normal and a
value for p(E|H) can be specified. (For more on this point, see the distinction between “inclusive”
and “non-inclusive” accounts of confirmation in Kuipers (2000); also see Festa (1999, pp 67-68).)
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It may be useful to consider that a reader who is familiar with standard pre-
sentations of Bayesian confirmation theory may already have expectations that
certain statements appear as eminently basic conditions. The following is a case in
point:

(IFPD) Initial and Final Probability Dependence
For any p-normal pair (H,E), c(H,E) is a real-valued function of p(H) and
p(H|E) only.

Indeed, to the extent that confirmation is thought of as capturing the direction
and amount of a change in the probability of hypothesis H as provided by evidence
E, (IFPD) should sound very natural. It will be shown shortly, however, that such
a principle needs not be assumed as primitive, as it can be promptly derived from a
set of conditions which we see as providing a more convenient theoretical basis.

In our proposed reconstruction, the first basic condition defining Bayesian incre-
mental confirmation is the following comparative principle concerning the depen-
dence on the final probability of hypotheses:

(FPI) Final Probability Incrementality
For any two p-normal pairs (H;, E;) and (H>, E>) such that p(H;) = p(H>),
c(H;.E)) >/ =/ <c(Hy Ep) iff p(H)|E)) >/ =/ < p(H:2|E>).

Condition (FPI) quite simply says that, for any fixed (non-extreme) value of
the initial probability of hypotheses, the degree of confirmation is higher for
higher values of the final probability, i.e., a strictly increasing function of the
latter.

The second basic condition is a somewhat parallel comparative principle con-
cerning the dependence of incremental confirmation on the initial probability of
hypotheses.

(IPY) Initial Probability Incrementality
For any two p-normal pairs (H;, E;) and (H;, E>):

(1) if p(H;|E;) = p(H2|E2) € ]0,1], then ¢(H;, E;) > / =/ < c(Ha, Ey) iff

p(H)) </ =/> p(H>);
(2) if p(H||E;) = p(H2|E>) € {0, 1}, then:

(1) if p(H;) < p(H), then c(H;, E;) > c¢(H>, E»);
(i) if p(H;) = p(H2), then c(H;, E;) = c(H>, E»);
(lll) if p(HI) > p(Hz), then C(H], E]) < C(Hz, Ez).

Condition (IPI.1) requires that, for non-extreme values of the final probability of
hypotheses, the degree of confirmation is higher for lower values of the initial prob-
ability, i.e., a strictly decreasing function of the latter. On the other hand, (IP1.2)
weakens the requirement for extreme values of the final probability of hypotheses,
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implying only that the degree of confirmation is a non-increasing function of the
initial probability. The latter caveat is suggested by the remark that, for extreme val-
ues of the final probability, the concerned evidence allows full certainty about the
truth value of the hypothesis at issue. In such cases, one might arguably want the
degree of confirmation to depend on this final state of full certainty only, whatever
the initial probability.

The third basic condition concerns neutrality, i.e., the case in which the evidence
at issue does not affect the credibility of the hypothesis of concern:

(EN) Equineutrality
For any two p-normal pairs (H;, E;) and (H>, E) such that p(H,|E;) = p(H))
and p(Hz|E2) = p(H>), c(H;, E;) = c(Hz, E>).

Condition (EN) dictates that all p-normal pairs involving probabilistically inde-
pendent statements should be assigned a unique numerical value. As compared to
principles (FPI) and (IPI) above, equineutrality may appear less transparent in its
intuitive basis. It can be defended, however, by the crucial role it plays in the deriva-
tion of desirable properties to which we will turn shortly. For the time being, let us
point out that

Theorem 1. The basic conditions (FPI), (IPI) and (EN) are logically independent.4

7.4 Some Derived Properties of Incremental Confirmation

As a consequence of the basic properties specified by the three basic conditions
above, incremental confirmation measures share several interesting derived proper-
ties. Some of them are established by the following principles, which will thus label
derived conditions.

A first important derived condition is the following, showing how incremen-
tal measures naturally discriminate among confirmation, neutrality and disconfir-
mation:

(QD) Qualitative Discrimination
There exist a real number ¢ such that for any p-normal pair (H, E):

(1) ¢c(H,E) > tiff p(H|E) > p(H);

(2) c¢(H,E) =tiff p(H|E) = p(H);
(3) ¢(H.E) < tiff p(H|E) < p(H).

4 The Appendix provides proofs of this as well as all subsequent theorems.
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Principle (QD) states that the fixed quantity 7 indicating neutrality acts as a threshold
separating cases of confirmation from cases of disconfirmation. The precise value
of ¢ is largely a matter of convenience, usual choices being either O or 1. It is easy
to see that:

Theorem 2. (QD) follows from the basic conditions (FPI) and (EN).

It should be noticed that (QD) is sometimes taken as an appropriate general
definition for Bayesian confirmation measures. Strictly speaking, this is quite un-
satisfactory though, as we will now see by discussing a number of further derived
properties. To begin with, consider once again the following:

(IFPD) Initial and Final Probability Dependence
For any p-normal pair (H,E), c(H,E) is a real-valued function of p(H) and
p(H|E) only.

It can be shown that:

Theorem 3. (IFPD) follows from each of the basic conditions (FPI) and (IPI).

Thus, the fulfilment of (IFPD) amounts to an important derived property of
Bayesian incremental confirmation measures. However, (IFPD) does not follow
from (QD). As a matter of fact, it can be proven that:

Theorem 4. (QD) and (IFPD) are logically independent.

Furthermore, consider the following principle:

(FPI-H) Final Probability Incrementality with Fixed Hypothesis
For any two p-normal pairs (H, E;) and (H, E,), c(H,E;) >/ =/ < c(H,E))
iff p(H|E;) >/ =/ < p(H|E>).

According to Eells and Fitelson (2000, p. 670), “it is not an exaggeration to say
that most Bayesian confirmation theorists would accept (FPI-H) as a desideratum for
Bayesian measures of confirmation”. For one thing, as Eells and Fitelson (2000) also
point out, (FPI-H) is crucially involved in classical Bayesian analyses such as the
solution of the ravens paradox provided by Horwich (1982, pp 54-63). Yet (FPI-H)
itself can not be derived from (QD), as implied by the following demonstrable fact:

Theorem 5. (QD) and (FPI-H) are logically independent.

On the contrary, our basic conditions for incremental confirmation do yield (FPI-
H) as specifying a derived property. Indeed, it is very easy to show that:

Theorem 6. (FPI-H) follows from basic condition (FPI).
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Once the “fixed hypothesis” version of final probability incrementality is consid-
ered, a natural “fixed evidence” counterpart promptly comes to mind, i.e.:

(FPI-E) Final Probability Incrementality with Fixed Evidence
For any two p-normal pairs (H;, E) and (H>, E) such that p(H;) = p(H>),
c(H, E)> [ =] < c(Hy E)iff p(H/|E) > | = | < p(H3|E).

It is easy to show that this extremely plausible principle is again no more than a
straightforward consequence of the basic condition (FPI), thus indicating a further
derived property of Bayesian incremental confirmation:

Theorem 7. (FPI-E) follows from basic condition (FPI).

It should also be pointed out that — much as with (FPI-H) above — the often men-
tioned condition (QD) is not sufficient to yield (FPI-E), as implied by the following
demonstrable fact:

Theorem 8. (QD) and (FPI-E) are logically independent.

Further important remarks about incremental measures involve the notion of pre-
dictive success. We will say that the predictive success of hypothesis H concerning
evidence £ amounts to the quantity g(H,E) = p(E|H)/p(E). It can be shown
that (FPI-H) is logically equivalent to the following condition linking confirmation
to the predictive success of a given hypothesis:?

(PS) Dependence on Predictive Success
For any two p-normal pairs (H, E;) and (H, E,), ¢c(H,E;) >/ =/ < c¢(H,E>)
itf g(H,E;) >/ =/ <q(H,E).

Theorem 9. (FPI-H) and (PS) are logically equivalent.

From (PS), in turn, the following “surprise bonus” principle for successful de-
ductive prediction of hypotheses can be easily derived:®

(SB) Surprise Bonus for Successful Deductive Predictions
For any two p-normal pairs (H, E;) and (H, E,) such that H|= E;, E», ¢(H,E;)
>/ =/<cH.E)iff p(E)) </ =/> p(E).

Theorem 10. (PS) implies (SB).

3 (PS) essentially amounts to a statement that Steel (2007) labels LP1 and identifies as one among
two possible renditions of the “likelihood principle”. While departing from his terminological
choices, we concur with Steel’s argument that (PS) is a compelling principle for Bayesians.

 We borrow the term “surprise bonus” from Kuipers (2000, 55).
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(SB) states that hypothesis H is more strongly confirmed by the occurrence of the
most surprising (unlikely) among its deductive consequences, a rather widespread
principle in the philosophy of science which is often said to reflect a basic tenet of
scientific methodology.

In order to appreciate the relevance of the foregoing analysis, it should be noticed
that confirmation measures have been proposed in the literature which, although
broadly consistent with the Bayesian framework, notably lack some of the basic
and derived properties of incremental confirmation. As an illustration, consider the
following well-known measure, proposed by Nozick (1981, 252):

cn(H.E) = p(E|H) — p(Ef-H)

It can be easily shown that such a measure does satisfy the basic equineutrality
condition (EN). As far as the derived properties above are concerned, it also satisfies
the qualitative discrimination condition (QD) along with condition (FPI-E). Yet it
does not generally satisfy the basic incrementality conditions (FPI) and (IPI), and
it ends up violating all other derived conditions as well, i.e., (IFPD), (FPI-H), (PS)
and (SB).”

7.5 Sorting Out the Grammar: from Basic to Structural
Properties

7.5.1 The Ordinal Versus Quantitative Level

By definition, all incremental confirmation measures share the basic and derived
properties presented above. Yet one or more specific incremental measures may
be characterized by further interesting features to be called structural properties, as
specified by appropriate structural conditions. Once the class of structural properties
of incremental confirmation is so identified, it may serve for grounding a thorough
and unified discussion of a variety of issues already addressed or touched upon in
the literature in a less systematic fashion. We will outline such a discussion shortly,
soon after introducing a further useful distinction, i.e., that between ordinal level
and quantitative level structural properties.

For our purposes, two confirmation measures ¢(H,E) and c*(H,E) will
be said ordinally equivalent iff, for any two p-normal pairs (H;, E;) and
(Hz, E2), c(H;, Ep) > [ =/ <c(Ha, Ep)iff c*(H;, Ep) > [ =/ < c*(H2, E2).
Isotone transformations of a given confirmation measure yield measures whose
detailed quantitative behavior (including domain and neutrality value) may vary
widely, but such that rank-order (for p-normal pairs) is strictly preserved. To

7 Detailed proofs are omitted here, but see Steel (2003, 219-221), Crupi et al. (2007, 246), and
Tentori et al. (2007, 109), for relevant remarks.
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illustrate, the measures in the following list are all ordinally equivalent variants:®

¢r(H,E)= p(H|E)/p(H) domain : [0,4+00) neutrality value : 1
H|E)— p(H
¢/ (H,E) = M domain : [-1,1) neutrality value : 0
p(HIE) + p(H)
H|E)—- p(H
¢*(H,E) = PHIE) — p(H) domain : [—1, +00) neutrality value : 0
p(H)
p(H|E)

¢ (H,E) = domain : [0, 1) neutrality value : 1/»

p(HIE) + p(H)

Both Fitelson (1999) and Festa (1999) emphasized that probabilistic confirmation
measures are not generally ordinally equivalent — not even properly incremental
ones. As a consequence, at the ordinal level of analysis of the notion of confirma-
tion one can already find conceptually remarkable properties that are, in our current
terms, structural and not basic. Ordinal level structural properties are simply invari-
ant upon classes of ordinal equivalence, i.e., c(H, E) will enjoy the property at issue
if and only if any ordinally equivalent ¢*(H, E) does. If that is not the case, then
the property at issue posits constraints operating at a more fine-grained quantita-
tive level, thus being sensitive to the quantitatively different behavior of ordinally
equivalent measures. In this section, we will mainly address a sample of signifi-
cant ordinal level structural properties. As a final point, we will also touch upon the
quantitative level of analysis by reference to one illustrative example.

7.5.2 “Laws” of Likelihood

A widely known and discussed principle in probabilistic analyses of confirmation is
the so-called “law of likelihood” (or “likelihood principle”), whose rendition in our
present framework is the following:

(LL) Law of Likelihood
For any two p-normal pairs (H;, E) and (H», E), ¢(H;,E) > | = | <
¢(Hy, E) iff p(E|H)) > / = / < p(E|H»).”

Principle (LL) certainly amounts to an important structural property of incre-
mental confirmation. Structural, and not basic, for many incremental confirmation
measures are well-known not to satisfy (LL). More generally, it can be shown that:

8 For ¢*(h, e) and ¢* (h, e) see Festa (1999, 64) and Finch (1960), respectively.
9 (LL) essentially amounts to a statement that Steel (2007) labels LP2 and identifies as the second
possible renditions of the “likelihood principle”. (See footnote 5.)
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Theorem 11. (LL) is logically independent from incrementality, i.e., from the set of
basic conditions (FPI), (IPI) and (EN).

(LL) is also a principle concerning the ordinal level of analysis. Indeed, it has
been seen by Bayesian confirmation theorists as isolating (incremental) confirma-
tion measures ordinally equivalent to the probability ratio measure (see Milne 1996)
as well indicating some significant limitations of this very class of measures (see
Fitelson 2007).

Interestingly, despite being independent from incrementality, (LL) is a suffi-
ciently powerful and committing principle to imply by itself conditions appearing
above as derived for incremental measures:

Theorem 12. (LL) implies the derived condition (FPI-E).

Now consider the following claim:

(WLL) For any two p-normal pairs (H;, E) and (H>, E), if p(E|H;) >
p(E|H,) and p(EH;) < p(EF-H3), then c(H;, E) > ¢(H>, E).

“WLL” stands for “weak law of likelihood”, according to the following fact:
Theorem 13. (LL) implies (WLL).

Joyce (2004) has argued that (WLL) “must be an integral part of any account of
evidential relevance that deserves the title ‘Bayesian™’. In a similar vein, according
to Fitelson (2007, 479), “(WLL) captures a crucial common feature of all Bayesian
conceptions of relational confirmation”. In light of these statements, it is thus of
interest to point out that the following also holds:

Theorem 14. (WLL) is logically independent from incrementality, i.e., from the set
of basic conditions (FPI), (IPI) and (EN).

As a consequence we submit that, as plausible as it may seem in a Bayesian per-
spective, (WLL) — just as (LL) — counts as a properly structural (not basic) condition
for Bayesian theories of incremental confirmation. Joyce’s and Fitelson’s statements
are only contingently supported in the sense that, to the best of our knowledge, all
incremental confirmation measures which have been historically proposed and seri-
ously defended do in fact satisfy (WLL).

7.5.3 Confirmability and Disconfirmability

Assuming a fixed confirmation measure c(H, E), we will use Cy(H) to denote the
confirmability of a particular hypothesis H, amounting to the maximum degree of
confirmation that H could possibly receive (given its current probability). It is easy
to see that, by the derived condition (FPI-H) above, Cy(H) = ¢(H, H) for any incre-
mental measure. That is, for incremental measures the confirmability of a given H
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corresponds to the degree of confirmation provided in the limiting case of H itself
having been ascertained. Notably, our basic conditions for incremental confirmation
leave the following quite natural question unanswered: does Cy(H;) = Cy(H3)
generally hold for any two distinct p-normal hypotheses H; and H,? The follow-
ing statement amounts to an ordinal level structural condition implying a positive
answer:

(ECy) Equiconfirmability
For any two p-normal hypotheses H; and H,, Cy(H;) = Cy(H>).

By a parallel line of argument, let Dy(H) = c¢(H, —~H) be the disconfirmability
of H (again given the fixed incremental measure considered), by which the following
condition can be stated:

(EDy) Equidisconfirmability
For any two p-normal hypotheses H; and H», Dy(H;) = Dy(H>).

Kemeny and Oppenheim (1952, 309) seem to have at least implicitly advocated
(ECy) and (EDy). More recently, Fitelson (2006, 502) has approvingly mentioned
a condition, named logicality, apparently implying both principles, i.e., “c(H, E)
should be maximal (minimal) when E|= H(E|=—H)”. Kuipers (2000, 54-55), on
the other hand, has argued in favour of confirmability being hypothesis specific,
i.e., in favour of:

(HCy) Hypothesis Specific Confirmability
For any two p-normal hypotheses H; and H,, if p(H;) # p(H;), then

Cy(H;) # Cy(Hy).
whose analogue for disconfirmability is of course the following:

(HDy) Hypothesis Specific Disconfirmability
For any two p-normal hypotheses H; and H,, if p(H;) # p(H;), then

Dy(H;) # Dy(H>).

Quite clearly:

Theorem 15. (ECy) and (HCy) are logically inconsistent, as well as (EDy)
and (HDy).

A less obvious fact to be pointed out is that:

Theorem 16. (ECy) and (EDy) are logically independent, as well as (HCy)
and (HDy).
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7.5.4 Confirmation and Complementary Hypotheses

As a final point, we would like to illustrate how one can shift from a derived to a
structural ordinal property, and from the latter to a structural quantitative one by
subsequently strengthening a given condition. Consider the following similar but
increasingly strong principles connecting the confirmation and disconfirmation of
pairs of complementary hypotheses:

(CCO-H) Confirmation Complementarity: Ordinal with Fixed Hypothesis
Let (H, E;) and (H, E;) be two p-normal pairs such that p(H |E;) > p(H) and
p(H|E;) > p(H).Thenc(H,E;) > c¢(H, E,) iff c(—H,E;) < c(—H, E;).

(CCO) Confirmation Complementarity: Ordinal (General)

Let (H;, E;) and (H>, E;) be two p-normal pairs such that p(H;|E;) >
p(H;) and p(Hz|E;) > p(H3). Then c¢(H;, E;) > c(H,, E>) iff ¢(—H;, Ej) <
C(—'Hz, EZ)-

(CCQ) Confirmation Complementarity: Quantitative
For any p-normal pair (H,E), c(H,E) = —c(—H,E).

First of all, as suggested above, it is quite easy to show that:
Theorem 17. (CCQ) implies (CCO), which implies (CCO-H).
Moreover, it turns out that:
Theorem 18. (CCO-H) follows from the basic condition (FPI).

Thus (CCO-H) describes a derived property of incremental measures: the confir-
matory impact of evidence on one given hypothesis (be it positive or negative) is a
decreasing function of its impact on the negation of that hypothesis.

By contrast, (CCO) is a structural condition at the ordinal level — demonstra-
bly violated, for instance, by any measure ordinally equivalent to the probability
ratio ¢, (H, E) — stating that one hypothesis is better confirmed than another iff the
negation of the former is more severely disconfirmed.

Finally, as far as or third condition (CCQ) is concerned, consider the following
measures:

* __o(H|E)—o(H)
Cor-B) = o E) T o(H)
sy 20D —ot)

ci(H.E) = p(H|E) — p(H)
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Measures ¢.(H, E) and ¢* (H, E) are ordinally equivalent to the odds ratio measure
cor(H, E) but distinct from the third measure listed, i.e., the simple probability dif-
ference ¢4 (H, E). (Also, all three measures listed have 0 as their neutrality value.)
It can be shown, however, that ¢).(H,E) and c4(H, E) satisfy condition (CCQ),
whereas c¢*(H,E) does not. This shows that (CCQ) is a properly quantitative
structural condition, as it specifies one particular form of the decreasing function
connecting c(H, E) and c¢(—H, E), whose fulfilment is orthogonal to the ordinal
equivalence relationship among measures.

To the best of our knowledge, conditions (CCO-H) and (CCO) have never been
explicitly discussed in the literature. By contrast, it is interesting to notice that the
strongest condition (CCQ) has a rather long history: it was first clearly stated as
an adequacy condition by Kemeny and Oppenheim (1952, 309), then more recently
defended by Eells and Fitelson (2002, 134) and by Crupi et al. (2007) in a more
general framework.'?

Let us conclude this discussion by a final remark. Being presented with the de-
rived condition (CCO-H) above, some reader might have wondered about its “fixed
evidence” counterpart, i.e., about the following rather appealing principle:

(CCO-E) Confirmation Complementarity: Ordinal with Fixed Evidence
Let (H;, E) and (H», E) be two p-normal pairs such that p(H;|E) > p(H;)
and p(Hz|E) > p(H;). Thenc(H;, E) > ¢(H,, E) iff c(—H;, E) < c(—H>, E).

Just as its counterpart (CCO-H), (CCO-E) is also a consequence of the more
general condition (CCO), i.e.:

Theorem 19. (CCO) implies (CCO-E).

However, unlike (CCO-H), condition (CCO-E) specifies a property which is not
derived but only structural for incremental confirmation measures. Once again it
is demonstrably violated by measures ordinally equivalent to the probability ratio
¢r(h, e). This is not by chance, as the probability ratio measure satisfies the law of
likelihood (LL), which in turn contradicts (CCO-E), i.e.:

Theorem 20. (LL) and (CCO-E) are logically inconsistent.

Notice that, by contradicting (CCO-E), (LL) also contradicts both (CCQ) and
(CCO), which are logically stronger (by Theorems 17 and 19). This illustrates fur-
ther how strong a constraint the law of likelihood is as a structural property for
incremental confirmation.

10 A major issue in Crupi et al. (2007, 236-242) is a thorough analysis of so-called “symmetries
and asymmetries” in Bayesian confirmation theory (see Eells and Fitelson 2002). In our current
terms, their convergent symmetries are all ordinal structural conditions, whereas their divergent
ones are all quantitative structural conditions.
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7.6 Concluding Remarks: the Call for a Grammar

The foregoing analyses were meant as laying the foundations of a set of theoretical
tools for the formal analysis of reasoning, i.e., a detailed grammar of Bayesian con-
firmation. Our present results are preliminary, and still already telling, we submit,
as suggested by the graphical summary appearing in Fig. 7.1 below.

We would like to conclude with a few remarks indicating why we see the endeav-
our outlined here as fruitful.

To begin with, the distinction between basic/derived and structural properties
may serve as a firm guide for differentiating issues concerning Bayesian incremen-
tal confirmation as such as compared to relatively more subtle puzzles involving
its many variants. In particular, the appeal (or lack thereof) of basic and derived
features should be seen as a crucial benchmark for the assessment of the notion
of Bayesian incremental confirmation per se, as distinct from its diverse possible
formalizations. On the other hand, debated issues such as the so-called irrelevant
conjunction problem (see Hawthorne and Fitelson 2004; Crupi and Tentori forth-
coming), Matthew effects (Festa forthcoming), so-called “likelihoodist” principles
(Fitelson 2007; Steel 2007) and symmetries and asymmetries (Eells and Fitelson
2002; Crupi et al. 2007) can all be seen as examples in which specific and possi-
bly alternative structural conditions (or sets thereof) are formally investigated and
arguments are scrutinized concerning their more or less compelling nature. In this

basic
conditions

derived
conditions

structural
conditions

Fig. 7.1 A graphical representation of the currently investigated logical relationships among basic,
derived and structural conditions for Bayesian incremental confirmation. Arrows indicate rela-
tionships of logical implication. Dotted lines denote relationships of logical independence. Links
marked with a bar (/) represent logical inconsistencies. Figures refer to corresponding theorems in
the text
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connection, a fully developed grammar of confirmation would contribute in clarify-
ing which options are theoretically viable and which are not, by pointing out, say,
that one cannot logically satisfy both the law of likelihood (LL) and the confirmation
complementarity condition (CCO), so that such a pair of principles would amount
to an inconsistent set of desiderata.

To sum up, the investigation of the logical relationships among basic, derived
and structural properties as defined above seems to represent an appropriate gen-
eral framework of inquiry for a number of analyses and discussions surrounding
confirmation and Bayesian confirmation in particular.
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Appendix: Proofs of Theorems

Theorem 1. The basic conditions (FPI), (IPI) and (EN) are logically independent.

Proof. Logical independence amounts to both consistency and non-redundancy.
As for consistency, it can be shown that all confirmation measures presented in
Section 7.2. (i.e., measures ¢g, Cr, Crq4, Cod, and c,,) jointly satisfy all three condi-
tions (FPI), (IPI) and (EN). As for non-redundancy, consider the following functions
of a joint probability distribution p(+H A +E):

() p(H|E)/p(H)?

(i) p(H)[p(H|E) — p(H)]
(i) [1 - p(H|E)l[p(H|E) — p(H)]
Non-redundancy is proven by the following set of easily demonstrable facts: (i)

satisfies both (FPI) and (IPI) but violates (EN); (ii) satisfies both (FPI) and (EN) but
violates (IPI); (iii) satisfies both (IPI) and (EN) but violates (FPI).

Theorem 2. (QD) follows from the basic conditions (FPI) and (EN).

Proof. (EN) immediately implies (QD.2). Then, since by (FPI) c¢(H, E) is a strictly
increasing function of p(H |E), both (QD.1) and (QD.3) follow.
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Theorem 3. (IFPD) follows from each of the basic conditions (FPI) and (IPI).

Proof. For any p-normal pair (H, E), a joint probability distribution p(+H A +E)
is completely determined in a non-redundant way by p(H), p(H|E) and p(E). As
a consequence, if ¢(H, E) is a function of p(+=H A £ E) but not a function of p(H)
and p(H|E) only, that is because it is a (non-constant) function of p(E) as well.
If that’s the case, however, probability models exist showing that c(H, E) violates
(FPI) as well as (IPI).

Theorem 4. (QD) and (IFPD) are logically independent.

Proof. Consider the following functions of p(£H A £ E):

(i) p(H|E) — p(H[-E)
(i) p(H|E)/p(H)?

It is easy to prove that: (i) (originally proposed by Christensen (1999, 449), and
Joyce (1999), Ch. 7, as a confirmation measure) satisfies (QD) while violating
(IFPD); (ii), on the other hand, violates (QD) while satisfying (IFPD).

Theorem 5. (QD) and (FPI-H) are logically independent.

Proof. Consider the following functions of p(£H A £ E):

(i) p(H|E) — p(HI-E)
(i) p(H|E)

It is easy to prove that: (i) satisfies (QD) while violating (FPI-H); (ii), on the other
hand, violates (QD) while (trivially) satisfying (FPI-H).

Theorem 6. (FPI-H) follows from basic condition (FPI).

Proof. (FPI-H) trivially follows from (FPI) in the special case H; = H,.
Theorem 7. (FPI-E) follows from basic condition (FPI).

Proof. (FPI-H) trivially follows from (FPI) in the special case E; = E.
Theorem 8. (QD) and (FPI-E) are logically independent.

Proof. Consider the following functions of p(+H A £ F):
(i) sin| 37 (p(H|E) — p(H))]
(i) p(H|E)

It is easy to prove that: (i) satisfies (QD) while violating (FPI-E); (ii), on the other
hand, violates (QD) while (trivially) satisfying (FPI-E).

Theorem 9. (FPI-H) and (PS) are logically equivalent.
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Proof. For any two p-normal pairs (H, E;) and (H,E,), p(H|E;) > /| =/ <
p(H|Ey) iffp(H|E;)/p(H) > /| =/ < p(H|E)/p(H) iff p(E;[H)/p(E;) >
/ =/ < p(E2|H)/p(E>)iff q(H.E}) > /| =/ < q(H,E).

Theorem 10. (PS) implies (SB).

Proof. Assume (PS). Then notice that, for any two p-normal pairs (H, E;) and
(H,E,), it H=E;, Es, thenc(H,E;) > / =/ < c(H,Ey) iffg(H,E;) >/ =/
<q(H,E>)iff p(E;|H)/p(E)) >/ =/ < p(E2|H)/p(E2)iff 1/p(E;) >/ =/
< 1/p(E>)iff p(E)) </ =/ > p(E2).

Theorem 11. (LL) is logically independent from incrementality, i.e., from the set of
basic conditions (FPI), (IPI) and (EN).

Proof. Consider the following functions of p(£ H A £ E):

(i) p(H|E)/p(H)
(i) p(E|H)— p(E)
(i) o(H|E)/o(H) = p(E|H)/p(EI=H)

It is easy to prove that: the probability ratio measure (i) satisfies both (LL) and all
basic conditions for incrementality; (ii) (originally proposed by Mortimer (1988),
Section 11.1, as a confirmation measure) satisfies (LL) while violating the basic
conditions for incrementality; the odds ratio measure (iii), on the other hand, violates
(LL) while satisfying all basic conditions for incrementality.

Theorem 12. (LL) implies the derived condition (FPI-E).

Proof. Assume (LL). Then notice that, for any two p-normal pairs (H;, E) and
(Hz, E),if p(H;) = p(H>), then c(H;, E) > / = / < ¢(H2, E) iff p(E|H;) >
/ =/ < p(E|Hy)iff p(E|H;)p(H,)/p(E) >/ =/ < p(E|H2) p(H>)/ p(E) iff
p(HI|E) > [/ =/ < p(H2| E).

Theorem 13. (LL) implies (WLL).

Proof. Assume (WLL) is false. Then there exist two p-normal pairs (H;, E) and
(H,, E) such that p(E|H;) > p(E|H3) while c(H;, E) < ¢(H3, E), so that (LL)
is violated.

Theorem 14. (WLL) is logically independent from incrementality, i.e., from the set
of basic conditions (FPI), (IPI) and (EN).

Proof. Consider the following functions of p(£H A £ E):

(i) cor(H.E) = o(H|E)/o(H) = p(E|H)/p(E-H)
(ii) p(E|H) —2p(EF-H)
(iii) p(H|E)'® — p(H)'
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It is easy to prove that: the odds ratio measure (i) satisfies both (WLL) and all basic
conditions for incrementality; (ii) satisfies (WLL) while violating the basic condi-
tions for incrementality; (iii), on the other hand, violates (WLL) while satisfying all
basic conditions for incrementality.

Theorem 15. (ECy) and (HCy) are logically inconsistent, as well as (EDy)
and (HDy).

Proof. Recall that c¢(H, E) is assumed to be a function of p(:+H A £F). Then
simply notice that, if (ECy) holds, then Cy(H) is a constant for any p-normal H.
If (HCy) holds, on the contrary, Cy(H ) must be a non-constant function of p(H).
A strictly analogous line of argument applies to (EDy) and (HDy).

Theorem 16. (ECy) and (EDy) are logically independent, as well as (HCy)
and (HDy).

Proof. Consider the following incremental measures:

oo _ o(hle) —o(h)

O O = e+ ot

(i) ca(h,e) = p(hle) — p(h)

p(=h) — p(—hle)

p(=h) + p(—hle)

p(hle) — p(h)

p(hle) + p(h)

Measure (i), proposed by Kemeny and Oppenheim (1952), is ordinally equivalent to
the odds ratio measure c,,(h, ¢) = o(h|e)/o(h) and can be easily shown to jointly
satisfy (ECy) and (EDy). This proves that (ECy) and (EDy) are consistent. On the
other hand, it is easy to show that the probability difference measure (ii) jointly sat-
isfies (HCy) and (HDy). This proves that (HCy) and (HDy) are consistent. Finally,
it is easy to show that: measure (iii) (ordinally equivalent to the one proposed by
Gaifman (1979)) jointly satisfies (ECy) and (HDy), thus violating both (HCy) and
(EDy); on the other hand, measure (iv) (ordinally equivalent to the probability ratio)
jointly satisfies (HCy) and (EDy), thus violating both (ECy) and (HDy). This proves
that (ECy) and (EDy) are non-redundant, as well as (HCy) and (HDy).

Theorem 17. (CCQ) implies (CCO), which implies (CCO-H).

Proof. Assume (CCQ). Then for any two p-normal pairs (H;, E;) and (H3, E3)
such that p(H;|E;) > p(H;) and p(H>|E>) > p(H»), c(H;, E;) > ¢(H>, E>)
iff c(—Hj;, E;) = —c(Hj, E;) < c¢(—H;, E;) = —c(H», E,). Moreover, simply
notice that (CCO-H) trivially follows from (CCO) in the special case H; = H>.

Theorem 18. (CCO-H) follows from the basic condition (FPI).

Proof. Assume (FPI) and recall that (FPI-H) follows (Theorem 6 above). Then
for any two p-normal pairs (H,E;) and (H, E,) such that p(H|E;) > p(H)
and p(H|E;) > p(H), ¢c(H,E;) > c(H,E,) iff p(H|E;) > p(H|E,) iff
p(—HI|E;) < p(~H|E>) iff c(—H, E;) < c(—H. E).

(iii) cz(h,e) =

@iv) cf(h,e) =
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Theorem 19. (CCO) implies (CCO-E).

Proof. (CCO-E) trivially follows from (CCO) in the special case E; = E.
Theorem 20. (LL) and (CCO-E) are logically inconsistent.

Proof. Consider the following probability distribution over p-normal statements
H;, H;and E : p(H1 /\Hg/\E) = .16, p(H1 /\Hg/\—1E) =0, p(H] AN—Hy A
E) = .04, p(H] AN—Hy; A —1E) =0, p(—'H] A Hy A E) = .24, p(—'H] A Hy A
—E)=.20,p(—H; A—H; AN E) = .06, p(—H; A —=Hy; A—=E) = .30. It can then
be computed that p(E|H;) = 1 > .67 = p(E|H,) and p(EH;) = .38 > .25 =
p(E}H,). Thus, by (LL), ¢(H;, E) > ¢(H, E) and ¢(—H;, E) > c(—H>, E),
contrary to (CCO-E).



