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The self-declared focus of Gordon Belot’s new book, Accelerating Expan-
sion: Philosophy and Physics with a Positive Cosmological Constant, is de
Sitter spacetime. Belot discusses its mathematical structure, the central role
which it plays in contemporary relativistic cosmology, and—perhaps most
importantly for the readers of this journal—the philosophical and conceptual
puzzles that arise from taking this central role seriously. The book aims to be
a graduate-student-friendly invitation to all things de Sitter, and the main
text is accompanied by mathematical exercises and more philosophically-
oriented open questions.

Before we continue, let’s set some notational conventions and recall the
definition of de Sitter spacetime. The Einstein equation of general relativity
(GR) with cosmological constant is

Gab + Λgab = 8πTab, (1)
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where Gab is the Einstein tensor, gab is the metric tensor, Tab is the stress-
energy tensor associated with material fields (that is, matter and radiation),
and Λ is the cosmological constant. For solutions with constant curvature,
Gab = −1

4
Rgab, where R is the Ricci scalar.1 So, if one sets 1

4
R = Λ and Tab =

0, one can treat such solutions as vacuum solutions to (1). In this setting, the
familiar Minkowski spacetime is the maximally symmetric vacuum solution to
(1) with R = 0 (and so Λ = 0), whereas de Sitter spacetime is the maximally
symmetric vacuum solution to (1) with R > 0 (and so Λ > 0).2

From a slightly different point of view, closer to Belot’s own presenta-
tion, an n-dimensional de Sitter spacetime can be defined as as a submani-
fold of an (n+ 1)-dimensional Minkowski spacetime with global coordinates
(t, x1, ..., xn): it is characterised by the equation −t2 + x2

1 + ...+ x2
n = 1, and

is equipped with the induced metric. It’s worth mentioning that the develop-
ment of this curved vacuum solution in 1917 by Willem de Sitter was the first
of three blows to the cosmological constant that led Einstein to denounce it
from relativistic field equations.3

Belot identifies a number of reasons, both from physics and from philoso-
phy, to study de Sitter spacetime (pp. 4–5).4 From the physics point of view:
insofar as we now believe that we live in a universe with positive cosmological
constant,5 we anticipate that de Sitter will be a ‘powerful attractor’ for late-
time cosmology, and therefore worthy of study in physics (more on that in
our discussion of Chapter 7 below). And from the philosophy point of view:
de Sitter spacetime can be treated as a ‘toy’ spacetime in the Λ > 0 regime,
just as Minkowski is for Λ = 0, and thus conducive for debates regarding, for
example, the nature of time and causality in light of relativity theory.

This review is structured as follows. First, we’ll present a chapter-by-

1See Hawking and Ellis (1973, p. 124). For further background on GR, see, for example,
Wald (1984).

2Let us note that concepts such as ‘constant curvature’ and ‘maximally symmetric
space’ are carefully expounded by Belot in Chapter 3.

3For a fascinating account of the history of cosmological constant’s role in relativity
theory, see Earman (2001). The other two blows—discussed by Earman (2001, §5)—
were: Eddington’s proof of the instability of the Einstein static universe (mentioned in
our discussion of Chapter 7 below), and Hubble’s redshift observations that indicated an
expanding universe.

4Throughout this review, unless otherwise stated, page references are to Belot’s book.
5See, for example, Peebles (2022, ch. 9). Note, however, that recent results from the

DESI Collaboration weaken the empirical support for a purely cosmological constant-based
model for dark energy, as Belot himself acknowledges (p. 4, n. 15).
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chapter survey, picking up on themes raised by Belot which we regard as
being of particular interest or importance. The book has nine chapters:
all them blend exposition of relevant physics and mathematics with some
philosophical and conceptual reflections, although in varying proportions.
Chapters 1 (on de Sitter spacetime), 3 (on curvature and symmetry), and
5 (on anti-de Sitter spacetime) are almost completely expository, whereas
chapters 8 (on underdetermination of cosmic topology) and 9 (on Boltzmann
brains) are more philosophically rich. The other chapters—2 (on time in de
Sitter spacetime), 4 (on elliptic de Sitter spacetime), 6 (on asymptotically
de Sitter spacetimes), and 7 (on stability and genericity)—are somewhere in
between. After our survey, we’ll provide some more general reflections on the
book, its style, and its ambitions. To break the narrative tension: overall,
our verdict will be very positive.

In Chapter 1, Belot introduces the technical background to de Sitter
spacetime. Belot’s approach is to present de Sitter spacetime as a subman-
ifold of a higher-dimensional Minkowski spacetime (as we did above). He
thereby emphasises that n-dimensional de Sitter spacetime (dSn) is related
to (n+1)-dimensional Minkowski spacetime (Mn+1) in a way that resembles
a more familiar relationship between an n-dimensional sphere and (n + 1)-
dimensional Euclidean space: geodesics of dSn arise from intersections of dSn

with hyperplanes of Mn+1, points of dSn are said to be antipodal when they
lie on a straight line in Mn+1 passing through the origin, and the isometry
group of dSn is a subgroup of isometries of Mn+1 that fix the origin. (There
are also differences, acknowledged by Belot, such as the fact that, unlike the
round n-sphere, dSn is not geodesically connected.)

Belot also introduces the notions of homogeneity and stationarity of
spacetime, and notes the consequences of the fact that de Sitter is not station-
ary (even though homogeneous), and so does not possess a timelike Killing
field: in de Sitter, it is difficult to make sense of the notion of conserved total
energy for the stress tensor of a matter field (such as Klein-Gordon), and
the notion of a particle for quantum field theories. This establishes the first
significant disanalogy with Minkowski spacetime. Finally, Belot introduces
Einstein’s static universe En,

6 and notes that de Sitter spacetime is confor-
mally equivalent to a subset of this (this relationship is discussed further in
Chapter 5). Overall, the chapter doesn’t go beyond quite standard material,

6Recall that the n-dimensional Einstein static universe En is a spacetime with topology
R×Sn−1 and metric ds2 = −dt2+dΩ2

n−1, where dΩ
2
n is the metric of the round n-sphere.
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although it’s worth noting that the presentation is deft, intuitive, and suf-
ficiently thorough for Belot’s discussion in subsequent chapters (and ample
references are provided for those who wish to cover this material in greater
depth).

Next, in Chapter 2, Belot considers how philosophical-foundational is-
sues of time and simultaneity play out in de Sitter spacetime. Recall that in
Minkowski spacetime, assuming the Einstein–Poincaré clock synchrony con-
vention, simultaneity is frame-relative. Moreover, there is a sustained and
long-running debate about whether simultaneity is also conventional (which
amounts to the question of whether the Einstein–Poincaré clock synchrony
convention is mandated in Minkowski spacetime).7 How, Belot asks, do these
issues transfer over to de Sitter spacetime? On this, he writes that

[...] since only events that can both signal and be signalled by
events on [the worldline of a freely falling observer] l can be con-
sidered to be Einstein-simultaneous with points on l, only events
in the causal diamond J+(l) ∩ J−(l) of l will be eligible for this
honour.

In Minkowski spacetime, all events are in the causal diamond of
the worldline of an eternal freely falling observer and Einstein-
simultaneity is an equivalence relation. The picture is different
in de Sitter spacetime. The causal diamond of a freely falling ob-
server covers only a fraction of the spacetime [...]—and since only
points in the interior of the causal diamond of an observer can
be Einstein-simultaneous with points on the observer’s worldline,
the surfaces of Einstein simultaneity of a de Sitter observer do
not partition de Sitter spacetime. (p. 27)

After discussing the Einstein–Poincaré method of defining simultaneity re-
lation on a causal diamond in de Sitter (resulting in the so-called ‘static
patch’), Belot presents three alternatives based on, respectively: (i) the set
of points that are invariant under all symmetries of dSn that fix a given point
on l and leave l invariant as a set,8 (ii) flat spacelike de Sitter hypersurfaces

7See, for example, Janis (2018) for recent discussion.
8This resembles the construction known from the ‘proof’ of the non-conventionality of

simultaneity offered by Malament (1977a). However, concerns about operationalising the
simultaneity relation in the world where there is one inertial observer in an otherwise empty
spacetime would seem to just as relevant, locally in de Sitter as globally in Minkowski
spacetime.
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orthogonal to any point in l (‘the cosmological patch’), and (iii) the inter-
section between dSn and level surfaces of t in ambient Mn+1 equipped with
inertial coordinates (‘the global patch’). None of these procedures allows one
to define the class of simultaneity slices in de Sitter spacetime that both (a)
covers the whole spacetime and (b) yields slices of minimum volume. Conse-
quently, Belot claims, “the transition from Minkowski spacetime to de Sitter
spacetime opens a new front [in philosophical and conceptual investigations
of time]” (p. 39).

The presentation of the technical material here is careful and highly ped-
agogical, but we don’t fully agree with Belot’s philosophical conclusion. In
particular, Belot’s dialectic proceeds as if it is the move from Minkowski
spacetime to de Sitter spacetime specifically (that is, from the Λ = 0 regime
to the Λ > 0 regime), rather than merely from special to general relativity,
that reveals new aspects of the philosophical debate about time and simul-
taneity in light of contemporary physics. We are not convinced by this.

For, in many general relativistic spacetimes (not just in de Sitter), there is
no timelike curve whose causal diamond covers the whole spacetime, so that
the Einstein–Poincaré convention cannot be applied globally. This has been
duly noted in the literature on the philosophy of time, and its implications
have been explored by, for example, Savitt (2015) and Aames (2022). Also,
there are many spacetimes which do not admit any global spatial slicing
that yields slices of minimal volume, and this has nothing to do with the
cosmological constant. So, it’s hard to see what is so special about de Sitter
in this regard.

Moving on: in Chapter 3, Belot provides some further technical back-
ground on spaces of constant curvature, of which de Sitter, anti-de Sitter,
and their elliptic variants, are just special cases. First, he presents the defi-
nition of constant sectional curvature and discusses its relationship with the
Riemann tensor. This is followed by a classification of other properties of
metric manifolds—maximal symmetry, isotropy, and homogeneity (as well as
their local versions)—in both Riemannian and Lorentzian settings. Finally,
Belot zooms into paradigmatic cases of maximally symmetric manifolds with
constant curvature (again: first Riemannian, then Lorentzian), treating them
as subsets of scalar product spaces Rn

k (that is, copies of Rn equipped with a
natural non-degenerate symmetric bilinear form ⟨ , ⟩ of signature (k, n− k))
with the induced metric, thereby following the classical treatment of O’Neill
(1983). In this manner, he introduces elliptic de Sitter (dS), anti-de Sitter
(AdS, defined as the universal cover of the anti-de Sitter hyperboloid), and

5



elliptic anti-de Sitter (AdS) spacetimes (and re-introduces de Sitter space-
time).

Since the chapter is focused solely of the technical material, there is noth-
ing objectionable here on philosophical grounds. From a more technical point
of view, the systematic introduction of de Sitter and anti-de Sitter spacetimes
and of their elliptic counterparts via subsets of scalar product spaces, is peda-
gogically very helpful—especially given that it is preceded by, and compared
with, an analogous discussion of the more familiar Riemannian case. Be-
lot’s presentation of the relationships between homogeneity and isotropy in
different settings is also comprehensive and insightful, and some of the rela-
tionships he describes are invoked in subsequent chapters.

Chapter 4 continues along these lines, by undertaking a specific study of
elliptic de Sitter spacetime (dS), which stands to de Sitter spacetime as the
elliptic plane stands to the sphere (recall that the elliptic plane results from
identifying antipodal points of the sphere, whereas dS results from identify-
ing antipodal points of dS). First, Belot investigates these relationships in
greater detail, discussing, among other things, an alternative way of defining
dS, analogous to that of defining the elliptic space by identifying antipodal
points on the boundary of a hemisphere.

Then, Belot notes that there are two main properties that distinguish de
Sitter spacetime from its elliptic counterpart. First, in elliptic de Sitter, but
not in de Sitter, pairs of distinct points always lie on exactly one geodesic
(pp. 73–4). Second, elliptic de Sitter, unlike de Sitter, is temporally non-
orientable (although it does not contain closed causal curves, as opposed to
the standard example of a temporally non-orientable spacetime given by, for
example, Wald (1984, p. 189)).

The first of these differences, which signifies the mathematical elegance
of dS, speaks in its favour among the geometers. But, perhaps more interest-
ingly, Belot also invokes a passage from Schrödinger’s Expanding Universes
(1956, p. 12) which turns this geometric fact into an argument for the phys-
ical superiority of dS over dS. The argument, as Belot remarks, is quite
idiosyncratic, but—we think—it is also philosophically rich and worthy of
further scrutiny.

Schrödinger notes that in dS (but not in dS, nor in Minkowski spacetime
for that matter) there are worldlines of observers that at some point share
their causal past, but after some point their causal futures become, and
forever remain, disjoint. He takes this to represent an impossible situation
where these observers share their possible experience at some point, but it
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is impossible that they will have shared their possible experience sometime
in the future. Let’s take for granted that this is indeed what is represented
by appropriate worldlines in dS. The key question then is: what justifies
Schrödinger in regarding such a situation as being impossible?

It’s difficult to extract Schrödinger’s own reasoning from this passage
(Belot glosses it as “a bracing Hegelian verificationism” (p. 76), but that is
hardly helpful), so we will proceed anachronistically. One possible justifica-
tion could be that our best understanding of the interplay between modal
and temporal operators renders such a situation dubious on purely logical
grounds. Consider the following reasoning: suppose it’s possible that two
observers share their experience. Then, by the widely-held S5 principle of
modal logic (that is: what is possible is necessarily possible), this is necessar-
ily so. Some philosophers argue forcefully that necessary truths are always
true.9 So, it should always be true that it’s possible for these observers to
share their experience. But this is not what happens in dS, so worlds with
spacetime structure of dS are not even metaphysically, let alone physically,
possible. (Of course, with some additional care in specifying what kind of
modality is at stake here, one could take this to be an argument against S5,
or against the claim that necessary truths are always true, but let’s set this
aside.)

One can quite easily identify a significant gap in this reasoning. For it
begins with an assumption that it’s possible that the two observers have the
same experience, which is different from the claim that these two observers
have the same possible experience (which is what happens in dS). Still,
under some interpretation of ‘possible’ relevant to this situation, these two
propositions can be considered equivalent. Suppose that to say that two
observers share their experiences at a point p (in a time-orientable spacetime)
is to say that their worldlines coincide at least up to p. And suppose that
to say ‘at p, possibly: observer o1 is F ’, is to say that F is true, at p, of
some observer o2 passing through p, whose velocity at p is equal to that of
o1’s (and, consequently, whose worldline lies in the union of causal future
and causal past of p). So, to say that something that happened at a point
q is a possible experience of o1 at p is to say that at p, it’s possible that
o1 traverses q. In that case, if, at p, it’s possible that o1 and o2 share their
experience, then their causal pasts must coincide. Conversely, if they have
the same possible experiences at p (and so their causal pasts coincide there),

9See, in particular, Dorr and Goodman (2020).
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then it’s possible that they share the same experience.
Admittedly, this line of reasoning is far from watertight: it’s not clear

why the past should be ‘modally open’ (that is, why o2 that witnesses ‘at
p, possibly o1 is F ’ only shares velocity with o1 at p, but not necessarily
its past worldline), nor—more importantly—how invoking this spacetime-
relative meaning of ‘possible’ coheres with the metaphysical notion of modal-
ity that underpins the acceptance of modal principles invoked before. Our
aim, however, is just to flag that Schrödinger’s argument, although idiosyn-
cratic, is not wildly implausible or completely incoherent.

Moving on to the second pertinent difference between dS and dS, Belot
states as a mark against the latter that “to this day, it is often taken for
granted that temporal orientability is a necessary condition for physical ad-
missibility” (p. 74), and so—Schrödinger’s argument notwithstanding—dS
cannot be considered a physically reasonable spacetime. Let’s look at this
remark in a little more detail.

The main motivation behind the claim that a physically reasonable space-
time must be time-orientable is that it seems difficult to make sense of time-
asymmetric laws in a temporally non-orientable world.10 And since some
physical laws are arguably time-asymmetric, and—moreover—we should ex-
pect any physically reasonable spacetime to be able to uphold such laws
(perhaps by definition of “physically reasonable”), this constitutes a defect
of temporal non-orientability. Admittedly, Belot notes that this is not a com-
pletely uncontroversial argument: he cites discussions by Sklar (1974) and
Earman (2002) (p. 74, n. 23), and invites the reader to ponder the question
whether time-asymmetric laws make sense in dS specifically (Question 4.3,
p. 78).

Indeed, a closer look at these sources, and some reflection upon the struc-
ture of dS as presented by Belot, indicates that one might be more sympa-
thetic toward temporal non-orientability that the main text suggests. Thus,
one might try to defend time-non-orientability of spacetime as follows: the
time-asymmetric laws in question can be determined only locally, so the
global structure of spacetime is irrelevant to the question of upholding such
laws. Moreover, locally, every relativistic spacetime is temporally orientable
(because every point has a simply connected neighbourhood that is always

10This argument has a somewhat ‘transcendental’ flavour, and one might wonder
whether time-orientability of spacetime can be tested empirically. The answer is far from
clear: see Lemos et al. (2023) and Bielińska and Read (2022) for further discussion from
the perspectives of, respectively, physics and philosophy.
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temporally orientable).11 So, there can be peaceful co-existence between
time-asymmetric laws and temporal non-orientability of spacetime.12

Earman (2002) responded to this kind of argument with “a more so-
phisticated kind of induction” (p. 257) which attempts to show that, under
certain reasonable assumptions about the universality of physical laws, the
co-existence of temporal non-orientability and time-asymmetric laws leads
to a contradiction. His argument, however, relies on the existence of closed
timelike curves in such spacetimes, and—as we’ve seen above—these do not
occur in dS. So, the possible stance that we take Belot to hint at (but, of
course, not necessarily endorse) by posing his Question 4.3 is this: one might
try to establish a peaceful co-existence between temporal non-orientability
and time-asymmetric laws by an appeal to the local character of laws, and
the induction method invoked by Earman to counter such claims cannot be
applied to dS. Consequently, it is even less obvious than one might have
initially supposed why the temporal non-orientability of elliptic de Sitter
spacetime should be treated as a mark against its physical admissibility.

Having by now spent quite some time considering de Sitter spacetime
and its elliptic cousin, in Chapter 5, Belot moves on to consider anti-de
Sitter spacetime: that is, the maximally symmetric vacuum solution to (1)
with negative cosmological constant (Λ < 0). (Perhaps it’s worth mentioning
that while the so-called anti-de Sitter hyperboloid (AdS) can be defined as a
subset of Rn+1

2 obeying ⟨x, x⟩ = −1 that is also equipped with the induced
Lorentzian metric, we take anti-de Sitter spacetime (AdS) to be the universal
cover of that hyperboloid. The pertinent difference is that the topology of
AdS is S1×Rn−1, while AdS has the topology of Rn; and whereas the former
admits closed timelike curves, the latter does not.) Then, Belot discusses the
fact that AdS has a timelike conformal boundary homeomorphic to an (n−1)-
dimensional Einstein static universe, En−1, and explores various oddities in
the behaviour of causal geodesics in AdS associated with this fact.13 This is
followed by a proposal to capture the geometry of the conformal boundary

11And elliptic dS is “locally time-orientable” even in a stronger sense: every proper open
subset of it is time-orientable, since it’s isometric to some proper subset of dS.

12For further discussion on this point, see Bielińska (2021), Earman (1991), Roberts
(2022), and Visser (1996).

13The existence of this boundary follows from the fact—neatly expounded by Belot (pp.
81–2)—that AdS is conformally equivalent to a portion of En where the spherical part
of its topology is replaced by an open hemisphere (and the boundary of this portion is
En−1).
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of AdS through the equivalence class of conformally related metrics, and a
short discussion of the symmetries of this object.

There are two aspects of Belot’s presentation of this material that invite
some philosophical comments. First, as the name suggests, the geometry
of the conformal boundary is determined up to a conformal transformation.
In light of this, Belot claims that a “more natural, intrinsic, and revealing
way” (p. 88) of describing the object ‘conformal boundary of spacetime’
is as a manifold equipped with an equivalence class of conformally related
metrics, which “may seem like a funny sort of object” (p. 88). We note
that there is a different meaning of an ‘intrinsic description (or formalism)’
of the theory’s models (or objects) present in the literature, according to
which an intrinsic description is one where symmetry-variant structure of an
object is reformulated as symmetry-invariant by means other than forming
an equivalence class under the symmetry transformation.14 So, in particular,
an equivalence class of conformally related metrics does not amount to an
intrinsic description of conformal boundary’s geometry in this sense. (Such
a description could possibly be given using conformal metric tensor densities
(which are invariant under conformal isometries): a more serious kind of
object, for some tastes at least.15)

Second, the fact that any open proper subset of the anti-de Sitter hy-
perboloid AdS is isometric to some open subset of any of its various covers
(including its universal cover, that is AdS) raises questions regarding the un-
derdetermination of spacetime’s topology—see, for example, the classic philo-
sophical discussion by Sklar (1974, ch. 2)—which is also pursued in greater
detail in Chapter 8. In particular, in his Question 5.1 (p. 84), Belot draws
attention to this possibility, and suggests both a “Reichenbachian” conven-
tionalist response (according to which there is no fact of the matter about
spacetime’s topology in this case) and a “Leibnizian” strategy of plumping
for the simplest amongst these spacetimes (clearly, one could also think of
this as an Occamist strategy). As Belot himself notes, these two options
map very well onto a recent catalogue of possible responses to cases of un-
derdetermination presented by Le Bihan and Read (2018), but we would add
that this discussion also invites further integration with recent philosophical

14This sense of ‘intrinsicality’ (inspired by, but distinct from, that of Field (1980)) was
recently discussed systematically by Jacobs (2022). For further discussion, see also March
(2024).

15For a discussion of conformal metric densities, and their role as an absolute object in
GR, see Pitts (2006).
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writings on spacetime conventionalism.16

In the final parts of the chapter, Belot introduces the idea (which will play
a more prominent role in Chapter 8) of ‘observer complementarity’. This is
the view that there is no objective way of adjudicating between different ob-
servers’ descriptions of what happens in their own causal patches (even when
these patches overlap, and the descriptions seem prima facie jointly inconsis-
tent), on the grounds that such an objective adjudication would presuppose
“the unphysical [and thus ill-founded] perspective of a global observer”.17

Observer complementarity is a generalization of ‘black hole complementar-
ity’, which is an attempted resolution of the information loss paradox pro-
posed by Susskind et al. (1993) along similar lines.18 Indeed, Belot weaves
his introduction of observer complementarity into a turbo-accelerated tour of
the Hawking effect, information loss paradox, and the AdS/CFT correspon-
dence. The tour is, as Belot acknowledges, “highly superficial [...] and highly
selective” (p. 89, n. 19), and a reader who’s not already familiar with these
issues won’t learn them from here. (To get a grip on them, additional to the
readings suggested by Belot (p. 89, n. 19), let us recommend—especially for
philosophers—Sections 5 and 6 of Curiel (2023).)

The chapter ends with a brief discussion of some physicists’ hope that a
suitable gauge-gravity correspondence will resolve the information loss para-
dox, followed by a sober reflection that finding such a correspondence in the
positive Λ regime has proven extraordinarily difficult, partly due to the fact
that the physical significance of disconnected conformal boundaries (which
arise from, for example, dS) hasn’t been sufficiently understood.

Chapter 6, which deals with asymptotically de Sitter spacetimes, begins
with some pedagogical remarks about the potential impact of a constant

16See, for example, Ben-Menahem (2006), Duerr and Ben-Menahem (2022), and Dürr
and Read (2024).

17Parikh et al. (2003, p. 1), quoted on pp. 92–3.
18Admittedly, one might adopt a weaker reading of black hole complementarity, namely

as an operational principle to the effect that no observer will be able to conduct an ex-
periment resulting in a violation of quantum theory. Read in this way, black hole comple-
mentarity might well be plausible, and able to assuage the most dangerous threat brought
about by the information loss paradox (or its Page-time version to be precise; see Wallace
(2021) for the relevant distinction), namely a detectable violation of quantum theory. But
those who want something more from physical theories than observational adequacy, and
do not wish to resort to some controversial metaphysical doctrines resembling fragmen-
talism (see Fine (2005)), would most likely remain dissatisfied. For further discussion of
these issues, see Muthukrishnan (forthcoming).
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term on the qualitative behaviour of solutions to partial differential equa-
tions (with an eye on the impact of Λ on the solutions to (1)). Then, Belot
invokes passages from Geroch (1977) and Penrose (1983) to illustrate the im-
portance of, as well as the difficulties connected with, the study of ‘isolated
bodies’ and the asymptotic behaviour of spacetimes in general relativity. The
situation in GR is contrasted with that in Newtonian gravitational physics,
where an ‘isolated body’ is one such that “its gravitational potential [...] falls
off as 1/r [approaches zero]” (p. 107). The discussion is vivid and sufficiently
detailed for the book’s purposes, but—before we move on—let us note that
the Newtonian picture is more complicated than Belot portrays it. For New-
tonian gravity admits a formulation that dispenses with the gravitational
potential and encodes gravitational effects in spacetime curvature (namely,
Newton-Cartan theory), and it’s likely that the relativistic difficulties with
the notion of an ‘isolated body’ will carry over to that setting.19 Since some
philosophers argue that it’s the Newton-Cartan theory which ‘gets things
right’ (as far as Newtonian gravity goes), the issue need not be merely tech-
nical.20

Setting Newtonian gravity aside, Belot’s main methodological point—
following Geroch (1977)—is that an adequate definition of asymptotic struc-
ture should play a specific theoretical role: in particular, its associated sym-
metry group should be able to recover conserved quantities necessary to
study physical phenomena that one wishes to model with such spacetimes.
This point is illustrated (pp. 109ff.) by two examples: a positive one, and a
negative one—both intended to be used to model gravitational radiation.

The positive example is the now-standard definition of (strongly) asymp-
totically Minkowski spacetimes, which are used to study gravitational radia-
tion. They are defined as solutions to (1) with Λ = 0 that admit a conformal
completion suitably similar to that of Minkowski’s own (p. 109, n. 20) and
with appropriate fall-off conditions for the stress-energy tensor. The sym-
metry group of the equivalence class of conformal boundaries of such space-
times is the infinite-dimensional BMS (Bondi-Metzner-Sachs) group, which
extends the Poincaré group by the so-called ‘BMS-supertranslations’ (which
are translations along integral curves generated by a distinguished null vector
field on the conformal boundary). The BMS group is the correct fit for the

19For an exposition of the Newton-Cartan theory, see Malament (2012, ch. 4). We
elaborate on this point further in footnote 21.

20For a defense of the superiority of the Newton-Cartan formulation, see Knox (2014).
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job: unlike the larger diffeomorphism group, it is sufficiently structured to
determine an algebra of conserved quantities necessary to study the relevant
physical phenomena. And, unlike the smaller Poincaré group, it allows for a
flux of conserved quantities to go through the boundary, as one would expect
with gravitational radiation.21

The negative example consists in the natural definitions of asymptotically
de Sitter spacetimes (‘natural’ in the sense that they mirror definitions for
the Minkowski case), which—Belot argues—are not suited to model gravita-
tional radiation. For the equivalence class of conformal boundaries of weakly
asymptotic de Sitter spacetimes is too broad: it has the diffeomorphism group
as its symmetry group. And the equivalence class of conformal boundaries
of strongly asymptotically de Sitter spacetimes is too narrow: its symmetry
group implies that no flux can pass through the boundary. A related problem
with those definitions, in contrast to the asymptotically Minkowski case, is
that the lack of global time translation prevents a natural definition of mass
(qua a quantity conserved under those translations). Even though for com-
pact binary systems that are usually modelled by astrophysicists, one can
safely brush off the complications arising from the positive cosmological con-
stant, there are cases of physical interest when this will not be possible, such
as the gravitational wave memory effect, or mergers of supermassive black
holes.22 So, how to make sense of mass and gravitational radiation in the
Λ > 0 regime is, indeed, a pressing question. On a more philosophical note,
we remark that the disparity between these regimes invites questions about
the extent to which one could carry over the analogies between gravitational
and electromagnetic radiation drawn in the asymptotically Minkowski sector
by, for example, Gomes and Rovelli (2024).

In Chapter 7, Belot discusses the concepts of stability, instability, and
(to a lesser extent) genericity, with a particular focus on the role they play
in different cosmological constant regimes, and hints at philosophical and
conceptual questions arising from these observations. After a brief, history-
oriented introduction and a quick review of the notions of ‘equilibrium’, ‘sta-
bility’, and ‘asymptotic stability’ of solutions to ODEs (with elementary ex-

21Prompted by the parallel between GR and Newton-Cartan theory from the previous
paragraph, one might ask whether there is a Newton-Cartan version of the BMS group.
The answer is ‘yes’ (see Batlle et al. (2017) and Delmastro (2017)), and—we think—
it shows that the parallels between these theories run deeper than one might initially
expect.

22See Ashtekar et al. (2015) for further details.
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amples), Belot turns to PDEs (with, of course, a specific focus on (1)—which,
in any given coordinate system, has the form of a system of second-order non-
linear PDEs).

The proper discussion begins with a distinction between stability of a
system of equations (so-called ‘Cauchy stability’) and stability of a solution
to some particular system of equations (so-called ‘global stability’). In the
former case, the equations are Cauchy stable just in case they have a well-
posed initial value problem—that is, when solutions to these equations vary
continuously whenever initial data uniquely generating them do. In the latter
case, a solution to some system of equations is globally stable whenever,
roughly, any initial data set similar to the initial data for the original solution
yields solutions sufficiently similar to the original one. Belot notes that both
definitions make essential use of the notion of initial data sets, as well as
full solutions, being “similar” or “varying continuously”, which presupposes
a particular choice of topology on the space of initial data sets, and the space
of full solutions. Yet, different choices can lead to different outcomes, and—
moreover—the prospects for selecting a single, most appropriate, all-purpose
topology are dim.23

Importantly, the question of choosing an appropriate topology for such
spaces is relevant not only to those definitions. As Belot notes (pp. 122–
3, Question 7.1), some physicists are tempted by the idea that physically
relevant properties of spacetimes are exactly those that are ‘stable’ under
perturbations of either initial data sets, or full solutions. We’ll call this idea
the ‘stability-physicality link’. But to make sense of these remarks, one has to
first settle the question of choosing an appropriate topology (or, perhaps, turn
the tables and say that the choice of topology depends on what properties
are taken to be the physically relevant ones, or—differently still—that the
arrow of dependency goes both ways). Moreover, different rationales for such
a stability-physicality link lead to different puzzles.24 Another issue raised by

23For a further discussion of this issue, see Fletcher (2016).
24For example, if one treats the stability-physicality link as an epistemological, or a

methodological, remedy for the intractability of unstable inverse problems, then there
is a question to what extent this might be a matter of absence of sufficiently powerful
mathematical techniques, and, as Belot points out (pp. 127–8, Question 7.6), there are
various regularization methods that allow one to overcome such problems in some domains.
This is true, but we would like to point out that this still does not address the main
epistemological/methodological motivation for the stability-physicality link, namely the
imprecision of measurements and observations. For further discussion of the principle of
stability (understood as an epistemological principle), see Fletcher (2020).
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Belot is whether there are interesting physical theories whose equations are
not Cauchy stable (p. 127, Question 7.5), and how such theories mesh with
a counterfactual similarity-based account of causation à la Lewis (2000).25

After posing this chain of philosophical questions, Belot goes on to report
that the Einstein static universe is globally unstable (as shown by Eddington
in 1930), whereas Minkowski and de Sitter spacetime are globally stable (he
also provides some insightful comments and useful references along the way).

Then, Belot turns to the ‘Cosmic No-Hair Conjecture’ (p. 133), which
explicates the sense in which de Sitter spacetime is a ‘powerful attractor’
for late-time cosmology. More precisely (but still rather informally), the
conjecture states that, for reasonable matter sources, generic geodesically
complete solutions for (1) with Λ > 0 are such that certain distinguished
spatial slices for late-time observers will become more and more similar to
flat spatial slices in the cosmological patch of de Sitter (discussed, recall, in
Chapter 2). The restriction to ‘generic’ (or ‘typical’) solutions is necessary:
the Einstein static universe, as well as Nariai spacetimes, do not meet the
conjecture’s criteria, but are not treated as counterexamples to it due to
their alleged ‘non-genericity’. Of course, there’s the question of how to expli-
cate such notions formally. Genericity can be treated measure-theoretically
(where ‘generic’ solutions will form a set of measure one in a given measure
space of solutions) or topologically (where ‘generic’ solutions will form a set
that is open and dense in a given topological space of solutions). But, even
setting aside the fact that these treatments need not be equivalent, there are
serious technical obstacles facing either approach.26 Belot also remarks that
the notion of genericity is employed heavily in the Cosmic Censorship con-
jectures (pp. 134–5, Question 7.7), although he does not connect this issue
explicitly with another major related philosophical chestnut, namely deter-
minism. The chapter closes with a report on the state-of-the-art results on
the global (in)stability of AdS.27

In Chapter 8, Belot turns his attention to a slightly more well-trodden
issue in the contemporary philosophy of spacetime: namely, the putative un-

25We’d like to remark that the first part of this question has been explored (and answered
in the affirmative) by, for example, James (2022), and Read and Cheng (2022).

26Topological obstacles are discussed above. For measure-theoretic obstacles, additional
to the references cited by Belot (p. 135, n. 51), we recommend consulting Curiel (2016).

27We add that there are some exciting recent results that relate the Strong Cosmic
Censorship to the negative value of Λ, which Belot does not discuss. For a review of those
results, see Kehle (2021).
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derdetermination of spacetime’s topology by all possible observations. This
question goes back at least to Glymour (1972), who writes that

[...] for each of a class of fashionable cosmological models there
is another (unfashionable) model different from the first in the
topology it ascribes to space-time, and there are good reasons to
think that any two such cosmological models are, both in fact
and in principle, experimentally indistinguishable. Any bit of ev-
idence which we can account for with one model, we can account
for with another, and conversely.28

This remark can be supported by various formal definitions of observational
(or empirical) indistinguishability together with formal results by Malament
(1977b) and Manchak (2009), which show that (rather broad) classes of
spacetimes would count as indistinguishable (in the relevant sense) from some
other spacetimes with different topological structures.29 As Belot notes (pp.
146–8), different precise definitions of ‘observational (or empirical) indistin-
guishability’ are not equivalent (and, consequently, differ as to how pernicious
the resulting form of underdetermination is). Still, since the underdetermi-
nation is quite pernicious in all cases, this is not so relevant for the broader
philosophical significance of Glymour’s remark, namely that we supposedly
have no epistemically secure grounds for inferring what is the topological
structure of our own universe. But there are two things to note here, and
both have to do with the fact that an epistemic warrant for believing a
proposition about empirical subject matter (such as one about the topology
of spacetime) might go beyond mere observability.

First, the techniques involved in establishing the indistinguishability re-
sults that we mentioned produce observationally indistinguishable counter-
parts of well-known spacetimes that are “irrelevant monstrosities by the stan-
dards of working cosmologists” (p. 147), and one might be tempted to dismiss
them as ‘physically unreasonable’. Yet it is notoriously difficult to precisify
and defend this claim. First, Manchak (2011) pointed out that what counts
as ‘physically reasonable’ cannot be justified by merely inductive reasoning.
Second, as argued by Butterfield (2014, §3.2), the usual auxiliary principle
that attempts to cut down on underdetermination in the case of the actual

28See Glymour (1972, p. 195). This passage is quoted by Belot on p. 138.
29Manchak’s result only aims at producing indistinguishable non-isometric spacetimes,

but it is clear from the construction in his proof (2009, p. 55) that these spacetimes will
also be non-homeomorphic.
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world (namely, the so-called ‘Cosmological Principle’, which will return be-
low) has a dubious epistemic status itself. Finally, an appeal to an otherwise
plausible idea that every physically reasonable feature of a system must be
accounted for by some physical process—championed recently by Cinti and
Fano (2021)—might not cohere so well with a relativity-friendly thought that
spacetime does not ‘come into being’ through any dynamical physical pro-
cess, but simply is there just the way it is.30 Perhaps one might try to save
this remark by arguing that simplicity or elegance are the guide to physical
reasonability, or by responding to some counterpoints mentioned above. But
we’ll leave it here.

Second, and perhaps more importantly, one might be warranted in be-
lieving some proposition over its empirically indistinguishable counterpart
through considerations about the typicality (or genericity) of the observations
that confirm these propositions (recall the discussion in Chapter 7). More
concretely, if I have the same evidence for mutually exclusive propositions p
and q, but I know that this evidence counts as ‘typical’ for p, but ‘atypical’ for
q, it seems that I am epistemically justified in believing p rather than q. Belot
illustrates this point with an example of two observationally indistinguish-
able two-dimensional spacetimes whose geometries are composed of strip-like
regions with de Sitter metric g0 and strip-like regions with spatially-deformed
de Sitter metric g1 that agrees with g0 on the boundary of the strip (pp. 143–
4). In one of these spacetimes, there is only one strip-like region with g0 and
infinitely many regions with g1, whereas in the other the proportions are in-
verted. Even though these spacetimes are observationally indistinguishable,
it seems that measuring local geometry to be g1 should count as evidence of
being in the former spacetime, where such geometry is ‘typical’.

We are hedging our claims here on purpose: the intuitions tell us that
it ‘seems’ that we’re justified to do so, but known attempts to precisify this
intuition yield some troublesome cases, and there are some detractors to
this overall view as well.31 One might wonder, however, to what extent this
example is even relevant to the main focus of this chapter, namely the un-
derdetermination of spacetime’s topology. For whereas it’s well-established
that we can locally measure the geometry of spacetime in a variety of ways—
using, for example, a ‘gravitational gradiometer’ (see Misner et al. (1973,

30This extends a point made by Curiel (2009, p. 26) against the demand that physically
reasonable spacetimes be inextendible since no physical process can ‘cut them short’.

31For further references, see (p. 205, n. 77).
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pp. 400–3))—and thus engage in such worries about typicality of our mea-
surements, the possibility of locally measuring spacetime’s global topology
remains unclear.32 In any case, the question of typicality will recur more
prominently in Chapter 9.

Still, even though it’s difficult to find a principled reason for dismissing
somewhat convoluted observationally indistinguishable alternatives to our
own universe, some might be sceptical of the fruitfulness of such debates in-
sofar as they don’t directly relate to contemporary cosmology. As noted by
Belot, Glymour’s concerns about spacetime’s topology were originally ani-
mated by the thought that, in universes sufficiently quickly expanding (that
is, in universes with Λ > 0 sufficiently large), there will always be parts of the
universe inaccessible to us.33 Thus, Belot declares that he “seek[s] to insti-
tute a back to Glymour movement by redirecting attention towards varieties
of indistinguishably endemic to cosmology” (p. 139). To do this, he draws
attention to the work of Ringström (2013), which shows that we “can find
interesting examples of underdetermination of topology by all possible evi-
dence without straying beyond possibilities taken seriously in contemporary
cosmology” (pp. 148–9).

The exposition begins with a highly enjoyable crash course on relativistic
cosmological models. Belot dissects the well-known FLRW solutions into a
kinematic-geometric part and a dynamical part. The former is given by the
so-called “Robertson-Walker manifold”, that is, a product manifold of an
open interval I of the real line and a space form (that is, a complete Rieman-
nian 3-manifold (Σ, hab) of constant curvature), with a Lorentzian metric of
the form gab := −dt2 + a(t)hab, where t : M → I. The latter is given by the
standard perfect fluid stress-energy tensor that satisfies the Einstein-Euler
equations. Only when a Robertson-Walker manifold satisfies such dynamics
is it said to be a “Friedman-Lemâıtre” solution. And only when a(t) behaves
appropriately at early and late times is such a solution said to be a “standard
cosmological model” (p. 153). Then, Belot shows that, for Robertson-Walker
manifolds based on Euclidean space forms, the existence of observationally
indistinguishable counterparts (that are themselves Robertson-Walker man-
ifolds based on a flat, but non-Euclidean, space form) depends on the a(t)
factor (pp. 155–8), and reports some facts about the topology of space forms

32One will find some discussion of this in Bielińska and Read (2022) and Lemos et al.
(2023), which were mentioned already in footnote 10.

33For further discussion of this issue, see, for example, Ellis (2014).
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(pp. 160–6).
This is followed by a discussion of Ringström’s own results, which are

motivated by the following insight: the restriction to space forms in the
construction of Robertson-Walker manifolds is motivated by the so-called
‘Cosmological Principle’, which states (roughly) that each observer sees an
isotropic and homogeneous space (and, since local isotropy is equivalent to
constant curvature for Riemannian 3-manifolds, one should restrict one’s
attention to space form). This principle, however, is not as well-motivated
as it might seem, since it does not follow from our own observations, even
jointly with some plausible assumptions about typicality. For we only see
that space is approximately isotropic and homogeneous, and if we conjoin this
fact with the so-called ‘Copernican Principle’, which states (roughly) that we
are not special as observers, all we can infer is that our universe should be
spatially approximately locally isotropic and homogeneous. And, then, it
no longer follows that we should restrict our attention to spatial geometries
given by space forms. Moreover, we can relax (or perhaps just alter—Belot
isn’t clear on this) our assumptions about how to model the matter content
of the universe: instead of treating it as a perfect fluid, we can treat it as
a collision-free gas. Then, the relevant dynamics will be specified by the
Einstein-Vlasov equations (which Belot presents on pp. 167–71).

Now, if we follow this line of thought—that is, liberate ourselves from
space forms and adopt the Einstein-Vlasov perspective—Ringström has shown
that, for any standard cosmological model (M, gab) for non-trivial matter with
Λ > 0 and a given Cauchy surface Σ ⊂ M , and any compact and oriented
Riemannian 3-manifold K, and any ϵ > 0, one can find a solution (M ′, g′ab)
of the Einstein-Vlasov equations with topology I×K (I ⊆ R), and a Cauchy
surface Σ′ ⊂ M ′ such that the causal future J+(Σ) of Σ and the causal fu-
ture J+(Σ′) of Σ′ are approximately observationally indistinguishable (that
is, for any observer in J+(Σ), their causal past will—in a certain technical
sense—“come ϵ short of being isometric” (p. 173) to the causal past of some
observer in J+(Σ′)). Belot notes—following Ellis (1971)—that these Cauchy
surfaces can be the surfaces of ‘last scattering’ of light for a given observer,
where that observer would not be able to obtain any direct information about
the causal past of such a surface, because all light emitted before it would
be scattered or absorbed by plasma (p. 159). This motivates the conclusion
that Ringström’s results illustrate a genuine and highly interesting case of
underdetermination of cosmic topology.

We think it would be useful to connect this kind of underdetermination

19



with other discussions of underdetermination in cosmology. First, let us note
that Ringström’s result might constitute an example of what Pitts (2010)
has dubbed ‘permanent underdetermination’—that is, a situation in which,
for any spacetime model (here, in a given sector of a theory), there will
always exist another model which is empirically distinguishable from it, but
which is also arbitrarily close in terms of its empirical content, so that the
underdetermination is more than merely transient.34 Going forward, it would
be interesting to compare this case of permanent underdetermination (if it
is indeed so) with the various cases considered by Pitts. Second, we would
like to flag that there is another case of underdetermination is contemporary
Λ > 0 cosmology, which invites a host of philosophico-foundational question,
(and so is highly relevant to Belot’s project!), namely the underdetermination
of dark energy physics.35 How this kind of underdetermination relates to the
underdetermination of geometry and topology treated by Belot seems to us
to be an issue worth exploring.

In Chapter 9, which is the final chapter of the book, Belot considers the
epistemological-sceptical challenge posed by so-called ‘Boltzmann brains’.
The challenge is this (we won’t quite follow Belot’s presentation here): it
seems that contemporary cosmology, in conjunction with quantum statis-
tical mechanics, implies that there are (or will be and have been, if one
prefers tensed language even in light of relativity theory) numerous distinct
microphysical histories of some systems in the universe that instantiate the
macrophysical history of my brain (plus, possibly, some extra things neces-
sary for mental activity to take place) over a relevant period of time. If the
mental supervenes on the (macro)physical, such systems, called ‘Boltzmann
brains’, will have the same mental states as I do over the relevant period of
time, which include: beliefs about the age of the universe and adequacy of
current scientific theories, sensation of pleasure in the fingertips when typ-
ing this review, and memories of a failed attempt to make an omelette for
breakfast.36

34As Pitts (2010, p. 264) writes in the context of models of different competing theories,
“it is helpful to observe that the physics literature suggests by example several slightly
weaker notions of empirical equivalence that, being weaker, are immune to the strategy of
being identified as one and the same theory and hence not rivals, yet strong enough that
there is no realistic prospect for distinguishing the two theories empirically.”

35See, in particular, Wolf and Ferreira (2023) and Wolf et al. (2024).
36In Remark 9.2, Belot rightly criticises various possible responses to the Boltzmann

brain puzzle that rely on extending the necessary period of time for a macroscopic system
to count as “having mental activity” in the relevant sense. This section also contains a

20



For such Boltzmann brains, however, these mental states would not be
veridical, because—among other things—they would not be causally con-
nected to their contents in the salient sense (for example, there was no mi-
crostate instantiating the ‘failed omelette’ macrostate in the relevant time-
period), and thus cannot constitute ‘evidence’ or ‘knowledge’. This invites
two interrelated questions. First, how do I know that I am not a Boltz-
mann brain and that (at least most of) my mental states are veridical? The
second question (less pronounced by Belot until p. 197 and Question 9.9 on
pp. 203–4) is this: if a scientific theory gives me reasons to believe that my
mental states are not veridical—because, for example, it predicts numerous
Boltzmann brains—then it seems to be self-undermining, for any evidence for
the theory is classified as ‘non-evidence’ by the theory’s own lights. Should
I always reject such theory?

After some opening remarks, Belot gives a lightning tour of Boltzmannian
statistical mechanics (pp. 181–4) which underpins the discussion of Boltz-
mann brains, including the notions of thermodynamic equilibrium, entropy,
Poincaré recurrence, ergodicity, effective ergodicity, the relationships between
them, and their consequences for the behaviour of macrophysical systems
(all in the classical setting so far). Unlike the earlier discussion of black hole
thermodynamics in Chapter 5, this lightning tour is quite self-contained and
seems sufficient to give a grasp of what’s going on to a reader unfamiliar with
the theory. A particularly illuminating part of Belot’s discussion, the signif-
icance of which re-emerges in the later part of the chapter, is that Poincaré
recurrence is compatible with periodic dynamics, which—Belot claims—is,
in turn, compatible with the lack of Boltzmann brains.37 So, to establish
the threat of Boltzmann brains, one needs something else, namely effective
ergodicity.

In what follows, Belot describes how physicists such as Eddington and

prima facie puzzling remark that Boltzmann brains would still pose an epistemological
challenge even if the mental did not supervene on the physical (p. 190). However, as Belot
has clarified in personal correspondence, the phrasing of the remark is misleading: its aim
was merely to reinforce the point that Boltzmann brains would still pose a problem even
if the mental states did not supervene on brain states, but only on more spatiotemporally
extended physical systems.

37Belot justifies his claim with an observation that inhabitants of universes with periodic
dynamics might not be “in the grip of surprisingly many false beliefs about the past and the
future” (p. 182). What he means by this, presumably, is that inhabitants of such periodic
trajectories will share sufficiently robust parts of macroscopic histories that sufficiently
many of their beliefs will be veridical (and thus we avoid any interesting sceptical scenario).
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Feynman invited us to take the Boltzmann brain hypothesis seriously, and
then how Eddington accepted a resolution of the puzzle with the help of the
expanding universe. For that kind of cosmological model vindicates the pos-
sibility that no given physical system must return to its initial state, since a
sufficiently rapid expansion of space can simulate the scenario where the sys-
tem evolves in an infinite space (p. 194). As Belot notes, this resolution was
widely accepted until the work of Dyson et al. (2002) who argued, on the ba-
sis of some assumptions about the viability of observer complementarity and
the significance of the holographic principle, that the salient spatial slicing of
de Sitter is given by the static patch, in which case the quantum version of
Poincaré recurrence applies, and the possibility of Boltzmann brains recurs
(or so it seems).

There are two things to note here, at least initially. The first is that—just
as in the classical setting—quantum Poincaré recurrence might be insufficient
for securing the existence of Boltzmann brains, and Belot offers a highly illu-
minating discussion of what this possibility hinges on in his Remark 9.3 (pp.
197–9). The second is that the idea of observer complementarity (mentioned
in our discussion of Chapter 5), which Dyson et al. (2002) use to justify
the restriction of the quantum state to the static patch of dS, is peppered
with an operationalist, observer-dependent outlook on quantum theory that
many (most?) researchers in quantum foundations do not find appealing.
Moreover, there is a live and interesting question to what extent less specu-
lative physics/philosophy, such as the standard ΛCDM model, gives rise to
Boltzmann brains. This, as pointed out by Carroll (2017, sec. 4), to large ex-
tent depends on the interpretation of the quantum vacuum state of dS (and,
more generally, of a stationary quantum state). We think that focusing on
that better-understood regime would be welcome.

Belot closes off this chapter, and the whole book, with a slew of questions
(thirteen!) which relate to some of the points we raised above, as well as much
more, including: various alternative routes to the problem of Boltzmann
brains, whether it is rational to believe in being a Boltzmann brain given
one’s total experience, and the question of dealing with self-undermining
scientific theories mentioned above.

At this point, then, let’s step back a bit and make some general points
on our overall impression of the book.

First, let’s return to the main stated aim of the book stated in its Preface—
that is, to present, in a compact and comprehensible form, a series of tech-
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nical results from contemporary theoretical physics that Belot regards as
being of philosophical and foundational interest. This is, most definitely,
done extraordinarily well. The relevant results are introduced with Belot’s
characteristic ability to maintain a good balance between rigour and insight,
and his pointers at philosophical and conceptual questions that arise from
such results are often non-obvious, and always intriguing.

On the other hand, one can question whether Belot was quite right to set
those aims as he did. In particular, there is very little attempt to answer the
questions that Belot sets out: usually they are stated but not returned to, and
there is little philosophical or conceptual through-line to the piece. We agree
that limiting oneself to teaching and stimulating the reader is a noble aim
and not so easy to achieve.38 But given Belot’s philosophical acumen (Belot
(2006, 2011, 2018) are just a few highlights) and his ability to put his points
crisply and tersely (as witnessed by, for example, his Remark 9.3), the reader
would certainly like to hear his takes on at least some of the philosophical
questions which he poses. We hope that our review evinces that, sometimes,
first-stab philosophical explorations of the questions raised in the book are
not so difficult to provide. So, in our view, five or ten more pages at the end of
each chapter, with a brief discussion of some of the philosophico-conceptual
issues raised, would have been very welcome.

We have a couple of further, although rather minor, points to make.
First, in the Preface, Belot pitches the book to graduate students in phi-
losophy. This undersells the technical level of the book, which realistically
will be appropriate only for technically-minded graduate students who have
already studied general relativity and differential geometry roughly at the
level of the first half of Wald (1984), and have a significant degree of math-
ematical maturity (at least for philosophy students). Second, some editorial
aspects of the book aren’t fully satisfactory. In particular, the Index contains
some amusing, although rather miscellaneous entries, but lacks a number of
highly relevant ones, for example: ‘curvature’, ‘stability’, ‘ergodicity’, ‘cos-
mic censorship’, or even ‘cosmological constant’. This is not to criticise the
occasional wit of the book, which—in addition to all the virtues we’ve de-
scribed already—makes it a fun read. But we think that it shouldn’t come
at the expense of usefulness to the reader.

38And it has great predecessors: recall the Preface to Wittgenstein’s Philosophical In-
vestigations: “I should not like my writing to spare other people the trouble of thinking.
But, if possible, to stimulate someone to thoughts of his own” (Wittgenstein 1968).
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In any case, none of this should detract from the fact that Belot’s book
will surely become the go-to resource, both for philosophers of physics and
(ideally) philosophically-minded physicists, on all things de Sitter. We very
much hope that the book will promulgate an expanding research programme
in the philosophy of physics, and we look forward to seeing its fruits in the
years to come.
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Diamonds and Gödel’s Philosophy of Time”. European Journal for Phi-
losophy of Science 12.3, pp. 1–24. doi: 10.1007/s13194-022-00471-z.
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