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"Entities are not to be multiplied without necessity”
attributed to William of Ockham

Abstract. A simple interpretation of quantity calculus is given. Quan-
tities are described as functions from objects, states or processes (or some
combination of them) into numbers that satisfy the mutual measurability
property. Quantity calculus is based on a notational simplification of the
concept of quantity. A key element of the simplification is that we consider
units to be intentionally unspecified numbers that are measures of exactly
specified objects, states or processes. This interpretation of quantity calcu-
lus combines all the advantages of calculating with numerical values (since
the values of quantities are numbers, we can do with them everything we
do with numbers) and all the advantages of calculating with standardly con-
ceived quantities (calculus is invariant to the choice of units and has built-in
dimensional analysis). This also shows that the standard metaphysics of
quantities and their magnitudes, as described in International Vocabulary of
Metrology, is irrelevant to quantity calculus. As an application of this inter-
pretation of quantity calculus, an easy proof of dimensional homogeneity of
physical laws is given.
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Quantity calculus is a relatively easy calculus but with unclear interpre-
tation. We calculate with quantities (some prefer to say the magnitudes of
quantities) and units in the same way as with numerical variables. However,
the problem is how to justify this calculus, and, generally, how to interpret
quantities and units, as well as operations with them. A clear historical
survey of the problem is given in [dB95|. However, in my view, the survey
also shows that the various offered answers involve unnecessary metaphysics
and mathematics. In this article, the concept of quantity is analysed and a
simple interpretation of quantity calculus is given: quantities are functions
from objects, states or processes (or some combination of them) into numbers
that satisfy the mutual measurability property (defined below), while units
are intentionally unspecified numbers that are measures of exactly specified
objects, states or processes. Consequently, only ratios of values of a quantity
function are determined without reference to units. This interpretation has
three straightforward but significant consequences:

1. Quantities of objects, states or processes are not, (additional) metaphysical
entities — they are just numbers associated to objects, states and processes
by definite functions (quantities or quantity functions). Consequently,
there is no need for additional mathematical objects — the so-called mag-
nitudes of quantities.

2. We can calculate with quantities of objects, states or processes and with
units as with numbers, because they are numbers.

3. Because units are unspecified numbers, we can only find ratios of the
values of a quantity. However, this is just a proper level of abstraction,
because only ratios of the values are important. Everything else would be
unwanted overspecification.

An analysis of the concept of quantity follows. The analysis gives the
interpretation of quantity calculus described above, as a notational simplifi-
cation of the concept of quantity. It is shown how this interpretation solves
the standard requirements on quantity calculus. This interpretation also
shows that the usual metaphysical concepts related to quantity calculus are
unnecessary for its explanation.

Already in primary school we got instructions how to manipulate units
when calculating physical quantities: calculate with units in the same way as



you calculate with variables in algebraic expressions. For example, if I drive

k
uniformly at a speed of v = 90 Tm for t = 10 min then I will cover a path

whose length s is

km ) km - min
s:vt:90T10mln:9OOT

(to calculate further I must know that h = 60 min)

:900km- min

60 min

(we can cancel min now)

= 15 km

We manipulated with length s of the path, velocity v of the car and time ¢ of
the motion, which are usually called physical quantities or magnitudes (I will
use the term values of quantities), and with units km, h and min as they are
all unknown numbers. The manipulation is the same as with variables which
are also considered as unknown numbers. For example, we cannot simplify

a
— because we do not know which numbers they name, but we can simplify

a . . .
— = 1 although we do not know which non-zero number is named by variable
a
km min
a. In the same way, we cannot simplify N but we can simplify — = 1.
min
The main goal of this article is to show that we can manipulate the values

of quantities and units as numbers precisely because they are numbers.

Because of this similarity in manipulation of quantities and units with
variables, the significance of variables in thinking will be briefly explained.
The attention here will be restricted to numbers but the observation is gen-
eral. Variables are names of intentionally unspecified numbers. In this way
we gain generality in thinking. For example, we use variable ”2” to denote an
unspecified number z. Whatever we conclude about x, because we do not use
anything specific about z, is true "for all ”. Thanks to this unspecified part,
the mechanism of variables allows the transition in thinking from statements
about concrete numbers to thinking with universal laws about numbers, keep-



ing the simplicity of thinking with concrete numbers. It will be shown that
a similar kind of abstraction enables a simple quantity calculus.

Analysis of quantity calculus must first answer the question of what quan-
tities are. Einstein wrote in [Ein36] that “The whole of science is nothing more
than a refinement of everyday thinking”. We can apply this to the concept
of measurement, too. The model for each measurement is the measurement
of lengths of geometrical segments. That is why I will start the analysis
with this paradigmatic example. We always measure a segment S; (what we
measure) by comparing it with another segment Sy (by which we measure).
The result is a positive number which will be denoted (S, S2). The func-
tion Sp, Sy — 1(S1,S2) will be termed the length function. It is a function
[:8%xS8 — RT, where S is the set of all segments and R™ is the set of
positive real numbers. From an analysis of the process of measurement there
follows the characteristic property of the length function, that it is a homo-
geneous function with degree of 1 in the second argument, in the following
sense: for segment U which is « times greater than segment V' (a = [(U,V))
the value [(S, V) of the length function is also « times greater then the value
1(S,U): (S, V) = al(S,U). If we substitute (U, V) for a, we get a simple
expression for homogeneity:

L(S,V)=1(S,U)(U,V)

Following this paradigmatic example, we should look at all other quan-
tities, as numerical functions that are characterized by the aforementioned
property. This view of quantities differs from the usual view that is officially
expressed in the International Vocabulary of Metrology—Basic and general
concepts and associated terms (VIM3) [VIM12|: “quantity: property of a
phenomenon, body, or substance, where the property has a magnitude that
can be expressed as a number and a reference”. This view is based on the
standard metaphysics of quantity as a special kind of property and which
originates from Aristotle. However, I will not deal with a critique of that
metaphysics, but my goal in this article is to show that this metaphysics is
not needed at all for quantity calculus. VIM3 also reflects the common con-
fusion present in describing these terms. What defines quantity as a special
property in the VIM3 description is that it has its own magnitude. And what
is magnitude? It is what can be expressed by number and reference. Let’s
leave aside the inaccuracy of this formulation and ask ourselves what the



reference is. In VIM3 under NOTE 2 it says: “A reference can be a measure-
ment unit, a measurement procedure, a reference material, or a combination
of such”. And what is a measurement unit? It says in VIM3: “measurement
unit: real scalar quantity, defined and adopted by convention, with which
any other quantity of the same kind can be compared to express the ratio of
the two quantities as a number”. Thus in VIM3 the term quantity is defined®
by the term quantity. If we discard all unnecessary elements in this whole
description, which is ultimately vague and logically unacceptable, what re-
mains important and unquestionable is reality and the numbers we get by
measuring reality. The part of the reality that is being measured and the
part of reality by which we measure participate in the measurement, and the
measurement gives a number for the result. We also know that there are dif-
ferent types of measurements. The same type of measurement can be applied
to different parts of reality and it determines the function from such parts of
reality into numbers. These functions are what matter. We determine them
by measuring processes or we postulate them within the framework of some
physical theory. They connect parts of reality and numbers. Further analysis
will show that everything needed for quantity calculus is in these functions -
neither quantity as a special kind of property, nor for every quantity a spe-
cial kind of magnitude, are needed, as described in VIM3. 1 will call these
functions quantities or quantity functions®. I find that the previous analy-
sis justifies the following definitions of terms positive quantity and general
quantity (quantity function in alternative terminology).

A positive quantity (or positive quantity function) is any function from
some non-empty set YW of objects, states ad processes (or some combination
of them) to positive real numbers, the function @ : W xW — R" such that
for all W, V,U e W

QW,V) =W, U)Q(U,V)

I will term this property the mutual measurability property. The value
Q(W, V) will be termed the relative measure of W in respect to V', or more
simply the value of the quantity (function) when applied to W and V. The

!'The authors of VIM3 consider this to be a definition and not a description of the
concept of quantity.

2the name which allows readers who prefer the metaphysical term quantity to avoid
collisions of names



relative measure of a unit carrier will be termed unit. For simplicity, I will
call the objects, states, and processes belonging to the quantity function
domain its arguments or parts of reality.

The definition of any quantity function, whose value can be any real
number (not necessarily positive), due to the presence of zero requires some
modification. The existence of zero value means that some arguments of this
function cannot measure other arguments, so they cannot be on the second
input of the function Q). Therefore, we define a general quantity (quantity
function) as a function S x S' — R, where S is a nonempty subset of .S,
so that in addition to the measurability property, a special condition on the
arguments of measure zero also applies:

(Q(W, V) =0 for some V € Sl) M IS

Argument W such that Q(W, V) = 0 for some V| that is, the argument
that can occur only at the first input of the function (), we will call null
carrier, and the other arguments we will call unit carriers. When we write
Q(W,V) there is a tacit agreement that this expression makes sense, that is,
that V' is necessarily a unit carrier, so this will not be particularly emphasized.

From the measurability property it easily follows that for a null carrier W
is Q(W,U) = 0, for each unit carrier U. Indeed, by definition of null carrier,
there is V such that Q(W, V') = 0. Thus, for an arbitrary unit carrier U from
the measurability property it follows

0=QW,V)=W,U)Q(U,V)

Since U is a unit carrier (Q(U, V) # 0), it follows from the above equation
that Q(W,U) = 0.

Also, using measurability property it is easy to show that for each unit
carrier U what we expect is valid: Q(U,U) = 1. Namely, if we put in
measurability property W =V = U, we get

Since U is a unit carrier, Q(U,U) # 0, then by cancelling Q(U,U) on both
sides of the equation we get that Q(U,U) = 1.



If we compare the measurements with two unit carriers U and V, it is
easy to see that the relative measures in relation to these two carriers always
differ by the same multiplicative factor. k = Q(U,V):

QW,V) =k-QW,U)

ie that the ratios of relative measures are independent of the choice of unit
carriers:

QW V) _ QW,U)
QWa,V)  Q(W,U)

Although relative measures are numbers, in order to have a simple quan-
tity calculus as we use it in practice, we need additional notational sim-
plification that will hide the fact that an argument W has infinitely many
relative measures Q(W,V). If we were completely explicit, then, for example,
we would have to write v(P,U) for the velocity of the particle P in relation
to a reference moving object U. We should describe each value in quantity
calculus in the same way and it would be unnecessarily cumbersome. True,
in quantity calculus, we do not usually write the measured argument W, but
only its relative measure. For example, the velocity of an object is usually
denoted by v, where we assume which velocity it is. If there are several
velocities in the calculus, we usually distinguish them by adding subscripts.
Not writing the measured argument W gives the first simplification:

QW,V) = Qv

But even then, the notation is unnecessarily bulky because we are constantly
pulling a reference unit carrier in the notation. Of course, if we chose one unit
carrier as the standard then each argument would have a unique measure.
We could then remove the selected reference from the notation and get a
simple record: @y — (). But it is an overspecification that we want to
avoid. Although we need a unit carrier for measuring, there is no theoretical
reason to prefer any unit carrier. We want to work in a simple notation
simultaneously with all relative measures of a given argument. We want
a simple quantity calculus invariant to unit carriers. And we can achieve it
because the measurability property gives us a simple connection between unit



carriers, as we shall now see. Let U be some salient unit carrier, and V' any
other unit carrier. The relative measures of an argument W in relation to
these two unit careers differ, by measurability property, up to a multiplicative
constant:

QW,V) =W, U)Q(U,V)

We will not write the measured argument W, as described above, and the
relative measure (the unit) of the unit carrier U in relation to another unit
carrier V', Q(U, V), we will denote by wy. In this notation the measurability
property becomes:

Qv = Qu - uy

Since this relation is valid for any unit carrier V, we will “forget” it and get
the notation:

Q=CQu-u

The position QQy next to u, the unit of U, carries the information that this
number depends on U, so we do not have to emphasize this — we can remove
the index U from the notation. The relative measure of () in a given unit of
measure is usually denoted by {@Q}. Thus we get the standard notation of
quantity calculus:

Q={Q} u

Let us emphasize once again its interpretation: the relative measure @) of
the object W in relation to any unit carrier V' is equal to the product of the
relative measure {@} in relation to a salient unit carrier U and the relative
measure (the unit) u of the unit career U relative to V. It is nothing but
a measurability property in a simplified notation. The difference from the
standard interpretation of quantity calculus is that they are all numbers,
not magnitudes of quantities, as described in VIM3. It follows from the
nature of measurement that only {Q} is a definite number while @ and u
are indeterminate up to the choice of unit of measurement. Thus u, like
any other unit, is an unspecified value (number) of a precisely specified unit



carrier: v = Q(U,V), where U is a specified unit carrier while V' is an
unspecified “any” unit carrier. Just as we consider a variable to be the name
of an intentionally unspecified object, so we can think of the unit v as an
intentionally unspecified relative measure (because we did not specify the unit
carrier V') of a precisely specified unit carrier U. Just as the mechanism of
variables allows us abstraction in thinking, so the mechanism of units allows
us the right level of abstraction for a simple quantity calculus. It allows us
to simultaneously calculate in a simpe way with all the relative measures of
given arguments.

Let us illustrate this interpretation on the example of measuring the
length of a segment using some standard unit carrier, e.g. the prototype
of the metre which is kept at the International Bureau of Weights. Let’s call
m > 0 (metre) the length of the prototype (relative to any other unit carrier).
Then we can express the length [ of any segment using m. For example, if
in measuring a segment S by a carrier of metre, the carrier can be posit just
3 times on S then the length [ of S is always [ = 3 - m whatever segment
we take for the "official” unit segment (whatever value for m we use). The
choice of an official unit segment determines only what number is m. If we
take the metre carrier as the official unit carrier then m = 1 and [ = 3. If we
take the foot carrier as the official unit carrier then m ~ 3.28 and [ = 3-3.28,
because we can posit a carrier of foot approximately 3.28 times on a metre
carrier. However, it is not important at all what number is m. Knowing
that m is a number associated with the definite segment (a metre carrier )
is enough: then we know exactly how much is 3m — it is the length of the
segment in which a metre carrier posits exactly three times. Because of this
we do not need to choose any segment as an official unit segment — we can
work with "any” official unit segment. How many times we can posit such
a chosen unit segment on a metre carrier will be denoted as m, on a foot
carrier as ft, etc. 1t is not important at all what numbers these are, because
we can express all lengths of segments by them. Also, we have formulas to
transform these units, independently of their values in the chosen unit seg-
ment. It is always m ~ 3.28 - ft as well as [ = 3-m ~ 9.84 - ft. In this way we
get the simple unit invariant theory just by associating constant symbols to
various unit carriers. The values of these constants are measures of specified
unit carriers although these values are unspecified. And this is just a proper
level of abstraction, because only relative measures (ratios) are significant.
The specification of these constants (the choice of definite unit carriers) is an



unnecessary specification which destroys the nature of measuring.

This interpretation of quantity calculus combines all the advantages of
calculating only with numerical values in a given selection of units, which
dominated physics until the 1920s, and all the advantages of calculating
with quantities as products of numerical values and units, which began to
dominate physics thanks primarily to Wallot’s works [Wal26, Wal57|. This
transition lasted for a long time precisely because of the insufficiently clear
interpretation of the quantity of calculus.

In addition to a clear interpretation, computing only with numerical val-
ues allow any mathematical operation, as opposed to computing with clas-
sical quantities. For example, we need to find a derivative of a function
x(t) where x is the position of a particle in a moment ¢, using the so called
differentiation by taking logarithms. Calculating with classically conceived
quantities does not allow the application of logarithm because it makes no
sense to talk about the logarithm of one meter, just as it does not allow
many other mathematical operations that occur naturally in mathematical
processing of functions and equations that connect numerical values. In the
interpretation developed in this article, the values of quantities and units
are numbers so that we can do with them everything we do with numbers —
there is no additional limitation as with the classically interpreted quantity
calculus. Also, when zero is obtained in numerical computation, it is always
the same number, while in classical quantity calculus we have infinite zeros.
We should even write not only 0, but, if it is not a dimensionless quantity, 0
meters or 0 joules, etc.

On the other hand, calculation with numerical values is connected to a
certain choice of units and thus loses a very important property of quan-
tity calculus — the invariance to the choice of units, easy transition from one
system of units to another, distinguishing quantities of different types and
kinds, and dimensional analysis.® The interpretation developed in this ar-
ticle shows that the invariance to the choice of units, as well as the simple
transition from one unit to another, can be achieved without introducing the
classical concepts of quantity and magnitude. It will be shown below that

3These advantages and disadvantages of computing with numerical values are clearly
seen in Bridgman’s book [Bri22], which alternates masterful parts, where numerical val-
ues are important, and burdened parts, when units of measure must be included in the
discussion.
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this interpretation also enables distinguishing quantities of different types
and kinds, and dimensional analysis.

Quantities (quantity functions) that have the same unit of measure are
said to have the same dimension. It is easy to see that this is an equivalence
relation that gives the partition of the set of all quantities into equivalence
classes. The dimension of a quantity can be defined as the equivalence class
to which the quantity belongs. Within the same dimension we can define
when two quantities (quantity functions!) are of the same kind — when they
have the the same unit carrier in their domains, such as the potential and
kinetic energy of a body. Otherwise, their domains do not have a common
unit carrier but, since they have the same unit, in every domain there is a
unit carrier of that unit. Such are, for example, energy and moment of force.
Of course, this division of quantities into dimensions, as well as the division
into the same or different kinds within the same dimension, is relative — it
depends on the physical theory and measurement conventions we have set.
For example, in the theory of relativity it is natural that spatial and temporal
distances are measured by the same measure and not by different measures
as in non relativistic physics. Therefore, in relativistic theories, it is natural
to assume that these are quantities of the same dimension and type, while
in classical physics they are of different dimensions.

We will now show how we can conduct dimensional analysis in this inter-
pretation of quantity calculus. For this purpose, we will define the concept
of magnitude which is different from the classical (VIM3) concept of mag-
nitude. In the classical interpretation, the magnitude of a quantity is the
product of a numerical value and a unit of that quantity. This description
makes no sense here, because a unit is also a number, although intentionally
unspecified. By that description, any number would be a magnitude and all
magnitudes would have the same dimension. But the intended concept of
magnitude can be obtained here by the following construction. For each unit
u we define the corresponding magnitude function o — au. For Q = au
we say that it is the magnitude associated with the numerical value « in
a given unit u, or abbreviated, as usual, that au is a magnitude. So, we
call the values of magnitude functions magnitudes just as we call the values
of logarithmic functions logarithms, although these are, outside the given
context, only numbers. Magnitudes (more precisely, magnitude functions)
can also be classified into dimensions that correspond to the dimensions of
quantity functions. Namely, we will define that two magnitudes generated
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by the units v and v are equivalent if those units belong to the same quantity
function (differ up to a multiplicative constant). It is easy to see that this is
an equivalence relation that classifies magnitude into appropriate classes that
can be considered dimensions of magnitudes. These dimensions are closely
related to the dimensions of quantity functions so we can identify them. Now
we can easily show which combinations of magnitudes are also magnitudes:

1. The product of magnitudes is a magnitude. Indeed, au-fv = afuv, which
means that the product of the magnitudes generated by the units u and
v is the magnitude generated by the unit u - v. Analogously, the quotient
is shown to be a a magnitude, too.

2. The sum of magnitudes is a magnitude if and only if they have the same
dimension. To prove it, consider when it can be au + Sv = yw. Since we
are actually talking about magnitude functions, this must be valid for all
a and S (v depends on a and ). If we put 5 = 0, we get that fv = yw.
Therefore, v and w differ up to the multiplicative constant. In the same
way, putting S = 0 we get that v and w differ up to the multiplicative
constant. This means that the sum of magnitudes is also a magnitude
if and only if they have the same dimension. Then their sum is also of
the same dimension. The analogous result is valid for the difference of
magnitudes.

Thus we see that the interpretation of quantity calculus described here
on the one hand allows unlimited application of operations with numbers,
and on the other hand retains important dimensional criteria.

As an application of this interpretation of quantity calculus, an easy proof
will be given of dimensional homogeneity of physical laws which are expressed
in the quantity calculus, that is, the laws that are the unit invariant. Let’s
take a coherent system of units. For example, we can take metre (m), kilo-
gram (kg) and second (s) in classical mechanics which determine the derived
units, for example, the unit of force N = kg m s=2. Let’s denote such unit
for quantity ¢ with u,. For the sake of simplicity, instead of general proof, a
simple case will be taken when quantity y depends only on one quantity x:

y = f(x)

12



It will be shown that function f has the property of dimensional homogeneity,
i.e. it obeys the law:

fluzz) = uy f ()
Let’s remember that units are unspecified numbers, so this relation really
gives the scaling factors. The scaling factor for each quantity is exactly its
unit of measure! For example, for Newton’s second law

F = f(m,a) =ma

we have the scaling condition

f(kg m,ms™? a) = kgms > f(m, a)

For example, if we take s = 2, m = 5 and kg = &, then it means that if we

want ms—2 = 1 times greater acceleration and kg = 8 greater mass then we

must have kgms ™2 = 10 times greater force.

The proof is easy. Let y = f(z). It means that in the chosen units

YnlUy = f(znuy) (1)

where x,, and y,, are numerical values of z and y in the chosen units. However,
when we take all basic units to be 1, then all the derived units will be one.
So, in this choice u, = u, =1 and y,, = f(x,). Substituting this expression
for y, in (1) we get

f(@n)uy = f(enus)

l.e.

Because x,, is any number, we get what we want to prove:
flugx) = ny(x)
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