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�Entities are not to be multiplied without necessity�

attributed to William of Ockham

Abstract. A simple interpretation of quantity calculus is given. Quan-
tities are described as two-place functions from objects, states, or processes
(or some combination of them) into numbers that satisfy the mutual measur-
ability property. Quantity calculus is based on a notational simpli�cation of
the concept of quantity. A key element of simpli�cation is that we consider
units to be intentionally unspeci�ed numbers that are measures of exactly
speci�ed objects, states, or processes. This interpretation of quantity calcu-
lus combines all the advantages of calculating with numerical values (since
the values of quantities are numbers, we can do with them everything we
do with numbers) and all the advantages of calculating with standardly con-
ceived quantities (calculus is invariant to the choice of units and has built-in
dimensional analysis). This also shows that the standard metaphysics and
mathematics of quantities and their magnitudes are not needed for quantity
calculus. At the end of the article, arguments are given that the concept of
quantity as de�ned here is a pivotal concept in understanding the quantita-
tive approach to nature. As an application of this interpretation of quantity
calculus, an easy proof of dimensional homogeneity of physical laws is given.
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Quantity calculus is a relatively easy calculus but with unclear interpre-
tation. We calculate with quantities (some prefer to say the magnitudes of
quantities) and units in the same way as with numerical variables. However,
the problem is how to justify this calculus, and, generally, how to interpret
quantities and units, as well as operations with them. A clear historical
survey of the problem is given in [dB95]. However, in my view, the survey
also shows that the various o�ered answers involve unnecessary metaphysics
and mathematics. In this article, the concept of quantity is analysed and a
simple interpretation of quantity calculus is given: quantities are functions
from objects, states or processes (or some combination of them) into numbers
that satisfy the mutual measurability property (de�ned below), while units
are intentionally unspeci�ed numbers that are measures of exactly speci�ed
objects, states or processes. Consequently, only ratios of values of a quantity
function are determined without reference to units. This interpretation has
three straightforward but signi�cant consequences:

1. Quantities of objects, states or processes are not (additional) metaphysical
entities � they are just numbers associated to objects, states and processes
by de�nite functions (quantities or quantity functions). Consequently,
there is no need for additional mathematical objects � the so-called mag-
nitudes of quantities.

2. We can calculate with quantities of objects, states or processes and with
units as with numbers, because they are numbers.

3. Because units are unspeci�ed numbers, we can only �nd ratios of the
values of a quantity. However, this is just a proper level of abstraction,
because only ratios of the values are important. Everything else would be
unwanted overspeci�cation.

An analysis of the concept of quantity follows. The analysis gives the
interpretation of quantity calculus described above, as a notational simpli�-
cation of the concept of quantity. It is shown how this interpretation solves
the standard requirements on quantity calculus. This interpretation also
shows that the usual metaphysical nad mathematical concepts related to
quantity calculus are unnecessary for its explanation. At the end of the ar-
ticle, arguments are given that the concept of quantity as de�ned here is a
pivotal concept in understanding the quantitative approach to nature.
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Already in primary school we got instructions how to manipulate units
when calculating physical quantities: calculate with units in the same way as
you calculate with variables in algebraic expressions. For example, if I drive

uniformly at a speed of v = 90
km

h
for t = 10 min then I will cover a path

whose length s is

s = v · t = 90
km

h
· 10 min = 900

km · min

h

(to calculate further I must know that h = 60 min)

= 900
km · min

60 min

(we can cancel min now)

= 15 km

We manipulated with length s of the path, velocity v of the car and time t of
the motion, which are usually called physical quantities or magnitudes (I will
use the term values of quantities), and with units km, h and min as they are
all unknown numbers. The manipulation is the same as with variables which
are also considered as unknown numbers. For example, we cannot simplify
a

b
because we do not know which numbers they name, but we can simplify

a

a
= 1 although we do not know which non-zero number is named by variable

a. In the same way, we cannot simplify
km

h
but we can simplify

min

min
= 1.

The main goal of this article is to show that we can manipulate the values
of quantities and units as numbers precisely because they are numbers.

Because of this similarity in manipulation of quantities and units with
variables, the signi�cance of variables in thinking will be brie�y explained.
The attention here will be restricted to numbers but the observation is gen-
eral. Variables are names of intentionally unspeci�ed numbers. In this way
we gain generality in thinking. For example, we use variable �x� to denote an
unspeci�ed number x. Whatever we conclude about x, because we do not use
anything speci�c about x, is true �for all x�. Thanks to this unspeci�ed part,
the mechanism of variables allows the transition in thinking from statements
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about concrete numbers to thinking with universal laws about numbers, keep-
ing the simplicity of thinking with concrete numbers. It will be shown that
a similar kind of abstraction enables a simple quantity calculus.

Analysis of quantity calculus must �rst answer the question of what quan-
tities are. Einstein wrote in [Ein36] that �The whole of science is nothing more
than a re�nement of everyday thinking�. We can apply this to the concept
of measurement, too. The model for each measurement is the measurement
of lengths of geometrical segments. That is why I will start the analysis
with this paradigmatic example. We always measure a segment S1 (what we
measure) by comparing it with another segment S2 (by which we measure).
The result is a positive number which will be denoted l(S1, S2). The func-
tion S1, S2 7→ l(S1, S2) will be termed the length function. It is a function
l : S × S −→ R+, where S is the set of all segments and R+ is the set of
positive real numbers. From an analysis of the process of measurement there
follows the characteristic property of the length function, that it is a homo-
geneous function with degree of 1 in the second argument, in the following
sense: for segment U which is α times greater than segment V (α = l(U, V ))
the value l(S, V ) of the length function is also α times greater then the value
l(S, U): l(S, V ) = αl(S, U). If we substitute l(U, V ) for α, we get a simple
expression for homogeneity:

l(S, V ) = l(S, U)l(U, V )

Following this paradigmatic example, we should look at all other quan-
tities, as numerical functions that are characterized by the aforementioned
property which I will call mutual measurability property. In some places, I
will call these functions quantity functions to distinguish them more clearly
from other more standard meanings of the word quantity. The de�nitions
follow.

A positive quantity (or positive quantity function) is a two-place function
from some non-empty set W of objects, states ad processes (or some combi-
nation of them) to positive real numbers, the function Q : W ×W −→ R+

such that for all W,V, U ∈ W

Q(W,V ) = Q(W,U)Q(U, V )

I will term this property the mutual measurability property. The value
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Q(W,V ) will be termed the relative measure of W in respect to V , or more
simply the value of the quantity (function) when applied to W and V . For
simplicity, I will call the objects, states, and processes belonging to the quan-
tity function domain its arguments or parts of reality. Note that in addition
to standard quantities, e.g. the mass of an object, this de�nition also includes
ordinary counting � relative measures are then rational numbers.

The de�nition of any quantity function, whose value can be any real
number (not necessarily positive), due to the presence of zero, requires some
modi�cation. The existence of zero value means that some arguments of this
function cannot measure other arguments, so they cannot be on the second
input of the function Q. Therefore, we de�ne a general quantity (quantity
function) as a function S × S1 −→ R, where S1 is a nonempty subset of S,
so that in addition to the measurability property, a special condition on the
arguments of measure zero also applies:

(Q(W,V ) = 0 for some V ∈ S1)↔ W 6∈ S1

Argument W such that Q(W,V ) = 0 for some V , that is, the argument
that can occur only at the �rst input of the function Q, we will call null
carrier, and the other arguments we will call unit carriers. When we write
Q(W,V) there is a tacit agreement that this expression makes sense, that is,
that V is necessarily a unit carrier, so this will not be particularly emphasized.
The relative measure of a unit carrier will be termed unit.

From the measurability property it easily follows that for a null carrierW
is Q(W,U) = 0, for each unit carrier U . Indeed, by de�nition of null carrier,
there is V such that Q(W,V ) = 0. Thus, for an arbitrary unit carrier U from
the measurability property it follows

0 = Q(W,V ) = Q(W,U)Q(U, V )

Since U is a unit carrier (Q(U, V ) 6= 0), it follows from the above equation
that Q(W,U) = 0.

Also, using measurability property it is easy to show that for each unit
carrier U what we expect is valid: Q(U,U) = 1. Namely, if we put in
measurability property W = V = U , we get
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Q(U,U) = Q(U,U)Q(U,U)

Since U is a unit carrier, Q(U,U) 6= 0, then by cancelling Q(U,U) on both
sides of the equation we get that Q(U,U) = 1.

If we compare the measurements with two unit carriers U and V , it is
easy to see that the relative measures in relation to these two carriers always
di�er by the same multiplicative factor. k = Q(U, V ):

Q(W,V ) = k ·Q(W,U)

ie that the ratios of relative measures are independent of the choice of unit
carriers:

Q(W1, V )

Q(W2, V )
=
Q(W1, U)

Q(W2, U)

Although relative measures are numbers, in order to have a simple quan-
tity calculus as we use it in practice, we need additional notational sim-
pli�cation that will hide the fact that an argument W has in�nitely many
relative measures Q(W,V). If we were completely explicit, then, for example,
we would have to write v(P,U) for the velocity of the particle P in relation
to a reference moving object U . We should describe each value in quantity
calculus in the same way and it would be unnecessarily cumbersome. True,
in quantity calculus, we do not usually write the measured argument W , but
only its relative measure. For example, the velocity of an object is usually
denoted by v, where we assume which velocity it is. If there are several
velocities in the calculus, we usually distinguish them by adding subscripts.
Not writing the measured argument W gives the �rst simpli�cation:

Q(W,V ) 7→ QV

But even then, the notation is unnecessarily bulky because we are constantly
pulling a reference unit carrier in the notation. Of course, if we chose one unit
carrier as the standard then each argument would have a unique measure.
We could then remove the selected reference from the notation and get a
simple record: QV 7→ Q. But it is an overspeci�cation that we want to
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avoid. Although we need a unit carrier for measuring, there is no theoretical
reason to prefer any unit carrier. We want to work in a simple notation
simultaneously with all relative measures of a given argument. We want
a simple quantity calculus invariant to unit carriers. And we can achieve it
because the measurability property gives us a simple connection between unit
carriers, as we shall now see. Let U be some salient unit carrier, and V any
other unit carrier. The relative measures of an argument W in relation to
these two unit careers di�er, by measurability property, up to a multiplicative
constant:

Q(W,V ) = Q(W,U)Q(U, V )

We will not write the measured argument W , as explained above, and the
relative measure (the unit) of the unit carrier U in relation to another unit
carrier V , Q(U, V ), we will denote by uV . In this notation the measurability
property becomes:

QV = QU · uV

Since this relation is valid for any unit carrier V , we will �forget� it and get
the notation:

Q = QU · u

The position QU next to u, the unit of U , carries the information that this
number depends on U , so we do not have to emphasize this � we can remove
the index U from the notation. The relative measure of Q in a given unit of
measure is usually denoted by {Q}. Thus we get the standard notation of
quantity calculus:

Q = {Q} · u

Let us emphasize once again its interpretation: the relative measure Q of
the object W in relation to any unit carrier V is equal to the product of the
relative measure {Q} in relation to a salient unit carrier U and the relative
measure (the unit) u of the unit career U relative to V . It is nothing but
a measurability property in a simpli�ed notation. The di�erence from the
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standard interpretation of quantity calculus is that they are all numbers, not
magnitudes of quantities, as described in International Vocabulary of Metrol-
ogy � Basic and general concepts and associated terms (VIM3) [VIM12]. It
follows from the nature of measurement that only {Q} is a de�nite number
while Q and u are indeterminate up to the choice of unit of measurement.
Thus u, like any other unit, is an unspeci�ed value (number) of a precisely
speci�ed unit carrier: u = Q(U, V ), where U is a speci�ed unit carrier while
V is an unspeci�ed �any� unit carrier. Just as we consider a variable to be
the name of an intentionally unspeci�ed object, so we can think of the unit
u as an intentionally unspeci�ed relative measure (because we did not spec-
ify the unit carrier V ) of a precisely speci�ed unit carrier U . Just as the
mechanism of variables allows us abstraction in thinking, so the mechanism
of units allows us the right level of abstraction for a simple quantity calculus.
It allows us to simultaneously calculate in a simpe way with all the relative
measures of given arguments.

Let us illustrate this interpretation on the example of measuring the
length of a segment using some standard unit carrier, e.g. the prototype
of the metre which is kept at the International Bureau of Weights. Let's call
m > 0 (metre) the length of the prototype (relative to any other unit carrier).
Then we can express the length l of any segment using m. For example, if
in measuring a segment S by a carrier of metre, the carrier can be posit just
3 times on S then the length l of S is always l = 3 · m whatever segment
we take for the �o�cial� unit segment (whatever value for m we use). The
choice of an o�cial unit segment determines only what number is m. If we
take the metre carrier as the o�cial unit carrier then m = 1 and l = 3. If we
take the foot carrier as the o�cial unit carrier then m ' 3.28 and l = 3 ·3.28,
because we can posit a carrier of foot approximately 3.28 times on a metre
carrier. However, it is not important at all what number is m. Knowing
that m is a number associated with the de�nite segment (a metre carrier )
is enough: then we know exactly how much is 3m � it is the length of the
segment in which a metre carrier posits exactly three times. Because of this
we do not need to choose any segment as an o�cial unit segment � we can
work with �any� o�cial unit segment. How many times we can posit such
a chosen unit segment on a metre carrier will be denoted as m, on a foot
carrier as ft, etc. lt is not important at all what numbers these are, because
we can express all lengths of segments by them. Also, we have formulas to
transform these units, independently of their values in the chosen unit seg-
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ment. It is always m ' 3.28 · ft as well as l = 3 ·m ' 9.84 · ft. In this way we
get the simple unit invariant theory just by associating constant symbols to
various unit carriers. The values of these constants are measures of speci�ed
unit carriers although these values are unspeci�ed. And this is just a proper
level of abstraction, because only relative measures (ratios) are signi�cant.
The speci�cation of these constants (the choice of de�nite unit carriers) is an
unnecessary speci�cation which destroys the nature of measuring.

This interpretation of quantity calculus combines all the advantages of
calculating only with numerical values in a given selection of units, which
dominated physics until the 1920s, and all the advantages of calculating
with quantities as products of numerical values and units, which began to
dominate physics thanks primarily to Wallot's works [Wal26, Wal57]. This
transition lasted for a long time precisely because of the insu�ciently clear
interpretation of the quantity of calculus.

In addition to a clear interpretation, computing only with numerical val-
ues allow any mathematical operation, as opposed to computing with clas-
sical quantities. For example, we need to �nd a derivative of a function
x(t) where x is the position of a particle in a moment t, using the so called
di�erentiation by taking logarithms. Calculating with classically conceived
quantities does not allow the application of logarithm because it makes no
sense to talk about the logarithm of one metre, just as it does not allow
many other mathematical operations that occur naturally in mathematical
processing of functions and equations that connect numerical values. In the
interpretation developed in this article, the values of quantities and units
are numbers so that we can do with them everything we do with numbers �
there is no additional limitation as with the classically interpreted quantity
calculus. Also, when zero is obtained in numerical computation, it is always
the same number, while in classical quantity calculus we have in�nite zeros.
We should even write not only 0, but, if it is not a dimensionless quantity, 0
meters or 0 joules, etc [Bal99].

On the other hand, calculation with numerical values is connected to a
certain choice of units and thus loses a very important properties of quan-
tity calculus � the invariance to the choice of units, easy transition from one
system of units to another, distinguishing quantities of di�erent types and
kinds, and dimensional analysis.1 The interpretation developed in this ar-

1These advantages and disadvantages of computing with numerical values are clearly
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ticle shows that the invariance to the choice of units, as well as the simple
transition from one unit to another, can be achieved without introducing the
classical concepts of quantity and magnitude. Also, as will now be shown,this
interpretation distinguishes quantities of di�erent types and kinds, and thus
enables dimensional analysis. Quantities (quantity functions) that have the
same unit of measure are said to have the same dimension. It is easy to
see that this is an equivalence relation that gives the partition of the set of
all quantities into equivalence classes. The dimension of a quantity can be
de�ned as the equivalence class to which the quantity belongs. Within the
same dimension we can de�ne when two quantities (quantity functions!) are
of the same kind � when they have the the same unit carrier in their domains,
such as the potential and kinetic energy of a body. Otherwise, their domains
do not have a common unit carrier but, since they have the same unit, in
every domain there is a unit carrier of that unit. Such are, for example,
energy and moment of force. Of course, this division of quantities into di-
mensions, as well as the division into the same or di�erent kinds within the
same dimension, is relative � it depends on the physical theory and measure-
ment conventions we have set. For example, in the theory of relativity it is
natural that spatial and temporal distances are measured by the same mea-
sure and not by di�erent measures as in non relativistic physics. Therefore,
in relativistic theories, it is natural to assume that these are quantities of
the same dimension and type, while in classical physics they are of di�erent
dimensions.

Thus we see that the interpretation of quantity calculus described here
on the one hand allows unlimited application of operations with numbers,
and on the other hand retains important dimensional criteria. Since the
interpretation rests on quantity functions whose values are numbers, there is
no need for standard metaphysics and mathematics of in�nitely many types
of quantities (magnitudes of quantities in other terminology) to interpret
quantity calculus, as described in [dB95], for example.

The concept of quantity as a two-place function from objects, states or
processes into numbers that satisfy the mutual measurability property is not
only a basis for a simple interpretation of quantity calculus. In my opin-
ion, it is a pivotal concept for understanding the quantitative approach in

seen in Bridgman's book [Bri22], which alternates masterful parts, where numerical val-
ues are important, and burdened parts, when units of measure must be included in the
discussion.
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the study of nature. I will argue this claim to some extent below. First,
one terminological note: what is commonly considered under �quantity� in
the term �quantity calculus� is commonly called �magnitude� or �quantity
value� in a broader context, and I will stick to this terminology below. The
standard terminology mentions phenomena, quantitative properties of phe-
nomena, magnitudes of the properties and numbers as proportions of the
magnitudes. For example, the �o�cial position� on these terms in metrology
is given in the International Vocabulary of Metrology � Basic and general
concepts and associated terms (VIM3) [VIM12]: �quantity: property of a
phenomenon, body, or substance, where the property has a magnitude that
can be expressed as a number and a reference�. I will argue below that all
we need are quantity functions.

Let us focus on the usual concept of quantity. In The Cambridge Dictio-
nary of Philosophy [Aud15], under the entry magnitude we �nd: �A quantity
is an attribute that admits of several or an in�nite number of degrees, in
contrast to a quality (e.g., triangularity), which an object either has or does
not have.� I will call this description the idea of quantity because the concept
of quantity requires to specify what degrees it can take. Thus, the concept of
quantity should be described by a certain structure that includes both objects
that have that property and the degrees to which they have that property.
However, in determining magnitudes (degrees) we can identify only the rela-
tionships between magnitudes and not the magnitudes themselves. Magni-
tudes are, as Dasgupta writes in [Das13], undetectable like absolute velocities
in physics and should therefore be discarded on Occamist grounds. Moreover,
relationships between magnitudes are based on relationships between entities
that have given quantity. Since the equivalence relation �to have the same
magnitude� is a standard component of the structure on the entities associ-
ated with a given quantity, these magnitudes can be formally described by
the corresponding equivalence classes. In this way, any structure over entities
can be transferred to a structure over magnitudes and vice versa. Thus, from
a mathematical point of view, there is also no need for magnitudes. There-
fore, we can consider that the term quantity should be described by a certain
structure on the set of entities that have that quantity, and not on the set
of its magnitudes. In [Edd13] an overview of the various structures proposed
for the description of quantities is given. Since we are looking here at struc-
tures that allow us to associate numbers with entities, we come to the �eld
of representational measurement theory [Sup51, SS58, Sup02], which consid-
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ers structures that can be homomorphically mapped into numbers. These
structures enable the construction of homomorphisms, and homomorphisms
themselves are determined up to a group of transformations of numbers.
Here I will limit myself to the quantities associated with standard measure-
ment processes � the quantities that occur in the quantity calculus. I will
call them physical quantities. They are associated with structures that al-
low classical measurements [Sup51]. Each selection of a unit of measurement
(the object to which the number 1 will be associated) generates a homo-
morphism into numbers. These homomorphisms di�er from each other up
to the multiplicative constant. The associated group of transformations is
formed by multiplications by a non-zero number - it is the group of similarity
transformations. Thus, every object V by which we can measure generates
such a homomorphism QV (W ). If we de�ne the function Q(W,V ) = QV (W )
we get exactly the quantity function. Conversely, when we have a quantity
function, then we can use it to de�ne only an equivalence relation on the set
of its arguments � the corresponding equivalence classes are sets of entities
that have the same relative measure. We cannot de�ne a structure on the
set of its arguments that would provide a measurement procedure. Math-
ematically, it is possible to imagine di�erent structures that allow di�erent
procedures for measuring the same quantity function. Therefore, these struc-
tures are too detailed for the concept of quantity. The concept of quantity
only needs to ensure which entities have this property and which measure
is associated with them. And that's exactly what quantity functions give.
In addition, the concept of quantity function goes beyond the concept of a
structure that allows measurement. It is a function that does not have to be
given by structures that allow a universal measurement procedure, but can
be given by various partial measurement procedures, which do not even have
to be direct, or is identi�ed within a theory rather than by a measurement
procedure. From a mathematical point of view, quantity functions are much
simpler objects than structures that allow measurement. From a scienti�c
point of view, the basis of a quantitative approach to the world is measure-
ment, and measurement determines quantity functions, whether we consider
that we construct them or approximate them by measurement itself. Because
of all the above, I think we need to identify the concept of physical quantity
with the concept of quantity function. Conversely, when we have a quantity
function, we easily reproduce the ingredients of the basic idea of quantity:
the �rst arguments of a quantity function have that property, and the values
of the quantity function are the relative degrees of that property.
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As an application of this interpretation of quantity calculus, an easy proof
will be given of dimensional homogeneity of physical laws which are formu-
lated in the quantity calculus, that is, the laws that are the unit invariant.
Let's take a coherent system of units. For example, we can take metre (m),
kilogram (kg) and second (s) in classical mechanics which determine the de-
rived units, for example, the unit of force N = kg m s−2. Let's denote such
unit for quantity q with uq. For the sake of simplicity, instead of general
proof, a simple case will be taken when quantity y depends only on one
quantity x:

y = f(x)

It will be shown that function f has the property of dimensional homogeneity,
i.e. it obeys the law:

f(uxx) = uyf(x)

Let's remember that units are unspeci�ed numbers, so this relation really
gives the scaling factors. The scaling factor for each quantity is exactly its
unit of measure! For example, for Newton's second law

F = f(m, a) = ma

we have the scaling condition

f(kg m,ms−2 a) = kgms−2f(m, a)

For example, if we take s = 2, m = 5 and kg = 8, then it means that if we

want ms−2 =
5

4
times greater acceleration and kg = 8 greater mass then we

must have kgms−2 = 10 times greater force.

The proof is easy. Let y = f(x). It means that in the chosen units

ynuy = f(xnux) (1)

where xn and yn are numerical values of x and y in the chosen units. However,
when we take all basic units to be 1, then all the derived units will be one.
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So, in this choice ux = uy = 1 and yn = f(xn). Substituting this expression
for yn in (1) we get

f(xn)uy = f(xnux)

i.e.

f(uxxn) = uyf(xn)

Because xn is any number, we get what we want to prove:

f(uxx) = uyf(x)
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