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�I come more and more to the conviction, that the necessity of our [Euclidean] geometry can-
not be proven, at least not by human understanding nor for human understanding. Perhaps
in another life we come to di�erent insights into the essence of space, that are now impossible
for us to reach. Until then, we should not put geometry on the same rank with arithmetic,
which stands purely a priori, but say with mechanics.�

Carl Friedrich Gauss, in a letter to Olbers from 1817

Abstract. An argument is given that Euclidean geometry is a priori in the same way
that numbers are a priori, the result of modelling, not the world, but our activities in the
world.
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Until the appearance of non-Euclidean geometries, Euclidean geometry and numbers had
an equal status in mathematics. Indeed, until then, mathematics was described as the science
of numbers and space. Whether it was thought that mathematical objects belong to a special
world of ideas (Plato), or that they are ultimate abstractions drawn from the real world
(Aristotle), or that they are a priori forms of our rational cognition (Kant), mathematical
truths were considered, because of the clarity of their subject matter, a priori objective truths
that are not subject to experimental veri�cation. Descartes in Meditations (1641) writes: �I
counted as the most certain the truths which I concieved clearly as regards �gures, numbers,
and other matters which pertain to arithmetic and geometry, and, in general to pure and
abstract mathematics.�. Even Hume considered mathematics to be a non-empirical science
that deals not with facts but with relations of ideas.

It seems that Euclid himself, judging by the way he formulated the �fth postulate, consid-
ered that the postulate does not have the status of obvious truth like other postulates. The
reason is that the postulate speaks of very distant parts of the plane about which we have no
clear idea. Unsuccessful attempts to prove the �fth postulate from the remaining postulates
(Saccheri, Lambert), which would establish its unquestionability, eventually resulted in the
development of non-Euclidean geometries (Lobachevsky, Bolyai, Gauss) (see [Tor78]). In
the 19th century, it became clear that non-Euclidean geometries were equal to Euclidean
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geometry both in their internal consistency and as candidates for the �true� geometry of the
world. Mathematics ceases to be a set of unquestionable truths about the world and an
era of a di�erent understanding of its nature begins. Euclidean geometry loses its mathe-
matical status equal to numbers. Plato's motto "God geometrizes" turns into Dedekind's
motto "Man arithmetizes" [Ded88]. The period of arithmetization of mathematics begins
� the di�erential and integral calculus is separated from the hitherto dominant geometric
intuition and is logically based on number systems and sets. In Riemann's work [Rie67],
geometry is also arithmetized. It is no longer seen as a priori truth but as a mathematical
basis for examining real physical space. Arithmetic and set theory are becoming mathemat-
ically well-founded theories, primarily in the works of Dedekind and Cantor. The numbers
themselves are beginning to be seen as human creations, and the mathematics based on sets
is beginning to be considered a priori in a new sense, as a free creation of the human mind
(Dedekind [Ded88], Cantor [Can83]). The beginning of this transformation of mathematics
as well as the view of its nature can be most strongly connected with the Göttingen circle
(Gauss, Dirichlet, Riemann, Dedekind, and even Cantor - see [Fer07]). In parallel, geometry
is increasingly seen as part of physics, the science of real space (Riemann [Rie67], Helmholtz
[Hel68], Cli�ord [Cli73]) in which mathematics has the same role as it does in all natural
sciences � it considers various mathematical models for the theoretical description of physical
phenomena. Thus Euclidean geometry loses the status of a priori mathematical theory and
becomes only one of the possible models for physical space distinguished only by the fact
that it is a good approximation of the space in which practical science takes place.

Contrary to the proclaimed separation of the mathematical status of Euclidean geometry
and numbers, in real mathematical practice they still have equal status. Geometric intuition
is still an inexhaustible source of mathematical ideas, and it is certainly not the intuition of
non-Euclidean but of Euclidean geometry. Euclidean structures permeate modern mathe-
matics as much as number structures. For example, to visualize the various abstract spaces
of functions, we look for an Euclidean structure in them rather than a structure of non-
Euclidean geometry. Note that this is the Euclidean structure determined by Weyl's vector
axioms and not Euclidean axioms. This geometry, which permeates the mathematical way
of thinking itself and which is an internal mathematical means of modeling, I will call math-
ematical geometry. It should be distinguished from physical geometry as the science of real
physical space. Of course, mathematical models of physical geometry are very important,
but here Euclidean geometry is only one of the models. Contrary to this, Euclidean geometry
forms the very core of mathematical geometry. I consider that we cannot explain this by the
fact that very important notions of linearity and approximation have a simple formulation in
Euclidean structures, nor by Poincare's conventionalism according to which Euclidean geom-
etry has a prominent role because it is the simplest geometry. In my opinion, such a situation
can arise only if Euclidean geometry is a priori. Furthermore, in mathematical Euclidean
geometry the Weyl's system of axioms is dominant to the Euclid's system. Although the
Euclid's system of axioms for Euclidean geometry is taught in school, the Weyl's system of
axioms is used in modern mathematics, physics and engineering.1 Today, the Weyl's system
of axioms is one of the essential synthesizing tools of modern mathematics while Euclid's
system is of a secondary importance. My explanation of this phenomenon, which I will

1It follows from this fact that an appropriate reform of school geometry needs to be made.
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defend below, is that this happens because the original Euclidean system of axioms re�ects
a posteriori intuition (hence physical intuition) about Euclidean geometry while the Weyl's
system of axioms re�ects a priori intuition (hence mathematical intuition) about Euclidean
geometry.

I will argue below that Euclidean geometry is a priori in the same sense in which numbers
are a priori, and that its a priori nature is expressed precisely by Weyl's axioms. This will
explain why the core of mathematical geometry is precisely Euclidean geometry in Weyl's
axiomatics. I will argue that just as number systems are idealized conceptions derived
from intuition about our internal activities of counting and measuring, so too is Euclidean
geometry an idealized conception derived from intuition about our internal spatial activities.
By our internal activities, I mean activities that we organize and design according to our
human measure. In [�20] I argued that our internal world of activities is the source of
mathematics and that mathematics is precisely in this sense a priori � it is the result of
modelling not the world but our activities in the world.

My argument that Euclidean geometry is a priori has two parts. The �rst part concerns
our internal spatial activities. Internal spatial activities should be distinguished from external
spatial activities. The former are conditioned by our human nature, the latter additionally by
the world around us. At �rst glance, it seems di�cult, almost impossible, to draw a clear line
between these two types of activities, However, for some activities we can clearly determine
that they belong to external spatial activities. For example, mountain climbing is an external
spatial activity because it involves orientation in a given landscape and taking care of the
con�guration of the terrain on which we move. Of course, there is also the ubiquitous
gravitational force that makes us one direction in space prominent, which we especially have
to take care of. However, the vary fact that we consider this direction to be prominent
suggests that a priori all directions are the same to us. When we are on di�erent parts of a
mountain road, di�erent spatial situations will require di�erent responses. However, as far
as our ability to react itself is concerned, it is the same in all places. If we have to light a
�re by placing rods so that they form a cone, our approach to geometric construction will
be the same, whether we are making a small or large �re. This shows that our ideas of
spatial constructions are independent of the units we use in the construction. If for some
choice of units there is some change that a�ects the construction, we will attribute it to some
external factor. If in this way we try to identify the nature of our internal spatial activities,
as invariants to the di�erent spatial situations in which we �nd ourselves, then we are very
close to Delbauf's analysis [Del60]. He considers what remains when we ignore all di�erences
of things caused by their movements and mutual interactions. According to Delboeuf, in the
ultimate abstraction from all diversities of real things we gain the homogeneous, isotropic,
and scale invariant space � the true geometric space which is Euclidean and which is di�erent
from the real space. However, for Delbouf this geometry is the background geometry of real
space while for me it is the geometry of our a priori activities in space. We can come
to the same conclusion if instead of an external argument, seeking common ground in all
our external spatial activities, we use an internal argument, analysing directly our internal
spatial activities, independent of the external world. A simple introspection shows that we
distinguish di�erent places, di�erent directions and di�erent units for spatial constructions
empirically, on the basis of external information, and not a priori, with our approach to
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space. Our most basic approach to space is an a priori ignorant approach to space: all
places are the same to us (the homogeneity of space), all directions are the same to us (the
isotropy of space) and all units of length we use for constructions in space are the same to
us (the scale invariance of space). These three principles of symmetry express our basic a
priori intuition about our internal spatial activities. Any deviation from these symmetries
we attribute to the external world. Thus, it is precisely these principles of symmetry that
determine a clear boundary between our internal and external spatial activities.

The importance and validity of the three symmetry principles, the homogeneity of space,
the isotropy of space, and the scale invariance of space, has been recognized a long time
ago. William Kingdon Cli�ord in [Cli73] and [Cli85] considers the three symmetry principles
as the most essential geometrical assumptions. He considers that the principles are based
on observations of the real space. Hermann von Helmholtz has the same opinion for the
�rst two symmetry principles which he uni�es in his principle of the free mobility of rigid
bodies ([Hel68]). Henri Poincaré, in his analysis of the real space [Poi02], comes to the
conclusion that the �rst two symmetry principles are the most essential properties of the so
called geometric space which for him is not the real space but a �conventional space� � the
most convenient description of the real space. An interesting explanation of the validity of
the three symmetry principles comes from Joseph Delboeuf ([Del60]), as explained above.
However, for my argument about the a priori nature of Euclidean geometry, it is crucial that
my interpretation of these principles is a di�erent one: they are not a posteriori principles,
the result of analysing the real space, but they are a priori principles, the result of analysing
our internal activities in space � they express our a priori ignorant approach to space.

The second part of my argument that Euclidean geometry is a priori is a mathematical
result. In [�17] , an elementary system of axioms of Euclidean geometry is developed. The
system on the one hand is directly founded on the three principles of symmetry explained
below, while on the other hand, through the process of algebraic simpli�cation, gives an
equivalent Weyl system of axioms of Euclidean geometry. In this way, Euclidean geometry
is characterized by these three principles of symmetry without any additional assumptions
(except the idea of continuity). Also, the background symmetry of Weyl axioms is explicated.
The system is brie�y described in the Appendix. In [�17] it has been shown in detail that
each axiom is based on the corresponding principle of symmetry, the Weyl system of axioms
has been derived by appropriate algebraization of the system, and it has been proved that
these axiom systems are equivalent.

The connection of Euclidean geometry with the three symmetry principles has a long
history. In 17th century John Wallis proved, assuming other Euclid's postulates, that the
scale invariance principle "For every �gure there exists similar �gure of arbitrary magnitude."
is equivalent to the Euclid's �fth postulate [Wal99]. Wallis considered his postulate to be
more convincing than Euclid's �fth postulate. Tracing back to the famous Riemann lecture
Über die Hypothesen welche der Geometrie zu Grunde liegen" ([Rie67]) at Göttingen in 1854,
it is well known that among all Riemann manifolds Euclidean geometry is characterized by
the three symmetry principles. However, this characterisation is not an elementary one
because it presupposes the whole machinery of Riemann manifolds. As I am aware, there is
no an elementary description (a description in terms of intuitive relations between points) of
Euclidean geometry that is based on the three symmetry principles. The system of axioms
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developed in [�17] provides such an elementary description.
Showing that (i) our a priori approach to space, the world of our internal spatial activities,

is characterized by three principles of symmetry, (ii) that the three principles of symmetry
immediately support the introduced system of axioms, and that (iii) the introduced axioms,
through algebraic simpli�cation, entail Weyl's axioms of Euclidean geometry equivalent to
them, I argued that Euclidean geometry is a priori.

As far as I know, there is only one elaborate attempt to establish the a priori nature of
Euclidean geometry. This is the protogeometry of Lorenzen that has its roots in Dingler's
ideas. This geometry is conceived �as a theory about the conditions under which spatial
measurements are possible� [Lor87]. Protogeometry is also based on symmetry. However,
this symmetry is not an expression of basic geometric intuition, which is equal in its depth
to arithmetic intuition, but a special intuition about plane, parallelism and orthogonality.
Lorenzen shows how plane, parallelism, and orthogonality can be de�ned using symmetry,
and how these concepts lead to Euclidean geometry. However, in his derivation, he uses
existence axioms: �For each plane E and each point P there exists a unique plane parallel
to E through P , and similarly there exists a unique line through P and orthogonal to E.�
[Lor87]. These axioms are not justi�ed by anything, and that devalues his a priori foundation
of Euclidean geometry. Furthermore, Lorenzen himself writes that �other standards of length
measurement are possible� [Lor87], ie that other (non-Euclidean) a priori constructions are
also possible as preconditions for spatial measurements.The conclusion is that, even if the a
priori nature of Euclidean geometry were shown in such a way, that a priori nature would
be of a specialized nature for mathematics and not the core of mathematical geometry.

I hope that the argument developed in this article that Euclidean geometry is a pri-
ori could satisfy Gauss who expressed in the quote from the beginning of the article his
dissatisfaction with the epistemic status of Euclidean geometry.

Appendix

The axiom system presented here have an immediate support (i) in intuitive ideas about a
relation between two points, (ii) in the three symmetry principles, and (iii) in the idea of
continuity of space.

The primitive terms of the system of axioms are (i) equivalence of pairs of points (arrows):
AB ∼ CD, with the intuitive meaning that the position of the point B relative to the point
A is the same as the position of the point D relative to the point C, (ii) multiplication of a
pair of points (an arrow) by a real number: λ,A,B 7→ λ ·AB, with the intuitive meaning of
stretching the arrow and of iterative addition of the same arrow, and (iii) distance between
points: A,B 7→ |AB| ∈ R. The multiplication could be avoided. Although, from the point
of view of the foundation of the theory, it is better to de�ne multiplication, the procedure
is somewhat lengthy and I prefer to introduce the multiplication as a new primitive term.
Also, it is more simple to introduce the distance function (to add an arbitrary unit of
measurement) as a new primitive term than to introduce congruence between pairs of points
as a new primitive term and de�ne the distance function relative to the choice of a unit of
measurement.
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Axioms and de�nitions with brief comments follow.

By the very idea to be in the same relative position:

Axiom (A1). ∼ is an equivalence relation.

Concerning the relative positions of points to a given point A we can easily describe the
equivalence relation ∼: by the very idea of the relative position of points, di�erent points
have di�erent relative positions to A:

Axiom (A2). AB ∼ AC → B = C.

Basic operations with arrows are to invert an arrow and to add an arrow to another
arrow. The de�nitions follow:

inverting arrow: AB 7→ −AB = BA

addition of arrows; AB, BC 7→ AB +BC = AC

Because of axiom A2 we can extend addition of arrows:

generalized addition of arrows; AB +CD = AB +BX, where BX ∼ CD, under the
condition that there is such a point X.

By the homogeneity principle, the operations are invariant under the equivalence of arrows:

Axiom (A3.1). AB ∼ A′B′ → BA ∼ B′A′.

Axiom (A3.2). AB ∼ A′B′ ∧ BC ∼ B′C ′ → AC ∼ A′C ′

Until now, we know only that AB is equivalent to itself (re�exivity of ∼) and to no other
arrow from the point A (axiom A2). All other axioms are conditional statements. It remains
to describe the equivalence of arrows originating from di�erent points. Multiplication of an

arrow by a real number will give us a description of the equivalence of arrows originating
from di�erent points. It is a new primitive operation based on an idea of stretching arrows
and of an idea of iterative addition of the same arrow (numbers will be labelled with letters
from the Greek alphabet):

· : R× S2 → S2 λ,AB 7→ λ · AB

Sometimes, since it is a common convention, we will not write the multiplication sign at all.
The very idea of the multiplication as stretching arrows is formulated in the next axiom:

Axiom (A4). ∀λ,A,B ∃C λ · AB = AC.

By the homogeneity principle, multiplication of an arrow by a number is invariant under
the equivalence of arrows:

Axiom (A5). AB ∼ CD → λAB ∼ λCD.
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For a point C such that AC = λ · AB we will say that it is along AB. Also, for arrow
AC we will say that it is along AB.

The very idea of the multiplication as addition of the same arrow leads to the next axiom:

Axiom (A6.1). 1 · AB = AB.

By the homogeneity principle, we can translate any arrow along AB to any point along
AB. So, we can add such arrows. Specially, we can add λ · AB and µ · AB and the result
will be λ · AB + µ · AB = ν · AB for some number ν. Moreover, by the very idea of the
multiplication as iterative addition of the same arrow, ν = λ+ µ. This is the content of the
next axiom:

Axiom (A6.2). λ · AB + µ · AB = (λ+ µ) · AB.

Let's note that with this equation we postulate also that the left side of the equation is
de�ned.

If we stretch an arrow along AB the result will be an arrow along AB, too. So, λ · (µ ·
AB) = ν · AB, for some number ν. Moreover, from the very idea of the multiplication as
iterative addition of the same (stretched) arrow it follows that ν = λ · µ. This is the content
of the next axiom:

Axiom (A6.3). λ · (µ · AB) = (λ · µ) · AB.

Let's note that with this equation we postulate also that λ · (µ · AB) is along AB.
The last axiom (and the most important one) expresses the scale invariance principle.

Axiom (A7). (the scale invariance axiom)

If AC = λ · AB and AC ′ = λ · AB′ then CC ′ ∼ λ ·BB′. (Fig.1)

Figure 1:

Of the special interest is a somewhat modi�ed special case of the scale invariance axiom,
for λ = 2:

Theorem (A'5). (the elementary scale invariance law)

AB ∼ BC and AB′ ∼ B′C ′ → ∃ P CP ∼ PC ′ ∼ BB′. (Fig.2)
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Figure 2:

This theorem has two important consequences:

Theorem (T3). (the unique translation of arrows law)

∀B,B′, C ∃!P BB′ ∼ CP .

Figure 2 gives a hint for the construction of point P .
The unique translation of arrows law enables us to add arbitrary arrows, without any

condition, as we have done before.

AB + CD = AB +BX, where BX ∼ CD

Theorem (T4). (the parallelogram law)

AB ∼ A′B′ → AA′ ∼ BB′. (Fig.3)

Figure 3:

The basic geometric measure is a measure of the distance between points, the function
| | : S2 → R. This is the next and the �nal primitive term. The real number |AB| will be
termed the length of the arrow AB or distance from the point A to the point B.
By the homogeneity of space the length of an arrow must be invariant under equivalence
relation ∼:

Axiom (A8). AB ∼ CD → |AB| = |CD|.
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By the very idea of measuring distance:

Axiom (A9.1). |AA| = 0.

Every point B 6= A determines a direction in which we can go from A. Because of the
isotropy of space, the algebraic sign of distance must be always the same � distance must
be always negative or always positive or always zero. The zero case gives a trivial measure
which does not make any di�erence between arrows, so, it is a useless measure. Thus, the
two other possibilities remain. Technically speaking they are mutually equivalent choices,
but by the very idea of measuring it is natural to choose a positive algebraic sign:

Axiom (A9.2). B 6= A → |AB| > 0. (positive de�niteness)

By the isotropy of space we also have:

Axiom (A9.3). |AB| = |BA|.

For every direction from a point A determined with a point B 6= A we already have a
measure of distance. If we take AB as a unit of measure, than we can take the number
λ > 0 as a measure of distance of AC where AC = λAB. Note that such a choice of measure
along every direction need not be isotropic. However, along every direction the measure of
distance A,B 7→ |AB| must be in accordance with this λ measuring (although it must be
more than this):

Axiom (A10). |λAB| = λ|AB|, for λ > 0,

We can express axioms A9.1, A9.3 and A10 in a uniform way by the next equivalent
proposition:

Theorem (7). (compatibility of distance with multiplication)

|λAB| = |λ||AB|, for every real number λ.

The description of distance function we have achieved until now enables us to compare
distances in a given direction with distances in the opposite direction and with distances in
parallel directions. What remains is to solve the main problem: how to compare distances
along arbitrary directions in an isotropic way. Let's take, in a given plane, along every
direction from a point S, a point at a �xed distance r > 0 from S. The set of such points is
the circle with center S and radius r, C(S, r) = {T : |ST | = r}. Let's choose two points A
and B on the circle and consider the unique line p(A,B) through these points (Fig.4):

Figure 4:
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Let's take an arbitrary point T on the line p(A,B) and consider how the distance d(T ) from
T to the center S of the circle varies with the choice of T . Thereby, we will use the idea of
continuity of space and of continuity of function d(T ). Because of the isotropy of space, the
function d(T ) must be symmetrical with respect to the relative position of the point T to
the points A and B (directions SA and SB). For example, the values of the function in the
points A and B are the same (equal to r). Also, the function must have the same value in
a point we reach when we move a certain distance from A to B as well as in the point we
reach when we move the same distance from B to A (Fig.5):

Figure 5:

Because of this symmetry, the function d(T ) must have a local extreme value in the midpoint
of AB. To determine more precisely the character of the extreme point we will exploit
knowledge of a special case, when the points A and B are diametrically opposite on the
circle, that is to say, when the center S of the circle lies on p(A,B). In that case, if we
�move� a point T from A to B (or from B to A), the distance d(T ) from the center S of the
circle decreases and it is smallest in the midpoint (S). Furthermore, if we move T from A
in the direction opposite to the direction to B (or from B in the direction opposite to the
direction to A), the distance increases. Therefore, the midpoint S is a unique point of the
global minimum of the function d(T ). If we drag the point B slightly along the circle into
the point B′, the center S of the circle will no longer be on the line p(AB′), but, because
of continuity, the behaviour of the function d(T ) will remain the same. That is to say, the
midpoint P of AB′ will remain a unique global minimum of the function on the line (Fig.6):

Figure 6:

Because of continuity, for every two points A and B′ on the circle the function d(T ) will
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have a unique global minimum on line p(AB′) exactly in the midpoint of AB′. Thus, by the
isotropy principle and the idea of continuity of space it follows:

Axiom (A11). If a line has two common points with a circle, points A and B, then the
midpoint P of AB is the point on the line nearest to the center of the circle. (Fig.7)

Figure 7:

From the axiom it follows immediately that a line can not have more than two common
points with a circle.

Let a line p have exactly one common point with a circle, a point A. If we drag the point
A slightly along the circle in one direction onto a point Al, and in another direction onto a
point Ad, then the line p is dragged onto the line p(Al,Ad). By axiom A11 the midpoint P
of AB is the point on p(Al,Ad) nearest to the center of the circle. By continuity of space,
the point A must be the point on p nearest to the center of the circle (Fig.8). Thus, by the
isotropy principle and the idea of continuity of space it follows:

Figure 8:

Axiom (A12). If a line has exactly one common point with a circle, then the common point
is the point on the line nearest to the center of the circle. (Fig.9)
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Figure 9:

Theorem (7'). For every point S not on a line p there is a unique point P on p which is
the point on p nearest to S.

The point on the line p nearest to the point S we term orthogonal projection of the
point S on the line p. Orthogonal projection enables us to de�ne the scalar orthogonal pro-
jection of an arrow onto another arrow. Let C 6= D, and let points A and B be orthogonally
projected on line p(CD) into points A′ and B′ (Fig.10). Then A′B′ ∼ αCD for some real
number α.

Figure 10:

We de�ne the scalar orthogonal projection of the arrow AB onto the arrow CD to
be the number α|CD|. In simpler terms, it is just the ± length of the orthogonal projection
of the arrow AB onto the line p(CD), where the sign is + if the projection is in the direction
of CD, − otherwise. In the extreme case of null arrow CC it is convenient to take zero for
the value of the scalar projection on CC. We will denote ABCD as the scalar projection of
AB onto CD.

For two equally long arrows with the same initial point, because of the isotropy of space,
the scalar projection of the �rst arrow on the second arrow must be the same as the scalar
projection of the second arrow on the �rst arrow. This is the content of the last axiom:

Axiom (A13). |AB| = |AC| → ABAC = ACAB. (Fig.11)
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Figure 11:
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