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�I come more and more to the conviction, that the necessity of our [Euclidean] geometry can-
not be proven, at least not by human understanding nor for human understanding. Perhaps
in another life we come to di�erent insights into the essence of space, that are now impossible
for us to reach. Until then, we should not put geometry on the same rank with arithmetic,
which stands purely a priori, but say with mechanics.�

Carl Friedrich Gauss, in a letter to Olbers from 1817

Abstract. An argument is given that Euclidean geometry is a priori in the same way
that numbers are a priori, the result of modelling, not the external world, but the inter-
nal world of our activities. The argument also shows that exactly Weyl's system of axioms
re�ects a priori intuition (hence mathematical intuition) about Euclidean geometry while
the original Euclidean system of axioms re�ects a posteriori intuition (hence physical intu-
ition) about Euclidean geometry. Consequently, the argument explains the equal status of
number systems and Euclidean geometry in modern mathematics as well as why in modern
mathematics the Weyl's system of axioms is dominant to Euclid's system of axioms.
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Until the appearance of non-Euclidean geometries, Euclidean geometry and numbers had
an equal status in mathematics. Indeed, until then, mathematics was described as the science
of numbers and space. Whether it was thought that mathematical objects belong to a special
world of ideas (Plato), or that they are ultimate abstractions drawn from the real world
(Aristotle), or that they are a priori forms of our rational cognition (Kant), mathematical
truths were considered, because of the clarity of their subject matter, a priori objective truths
that are not subject to experimental veri�cation. Descartes in Meditations (1641) writes: �I
counted as the most certain the truths which I conceived clearly as regards �gures, numbers,
and other matters which pertain to arithmetic and geometry, and, in general to pure and
abstract mathematics.�. Even Hume considered mathematics to be a non-empirical science
that deals not with facts but with relations of ideas.

It seems that Euclid himself, judging by the way he formulated the �fth postulate, con-
sidered that the postulate does not have the status of obvious truth like other postulates.
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The reason is that the postulate speaks of very distant parts of the plane about which we
have no clear idea. Unsuccessful attempts to prove the �fth postulate from the remaining
postulates (Saccheri, Lambert), which would establish its unquestionability, eventually re-
sulted in the development of non-Euclidean geometries (Lobachevsky, Bolyai, Gauss) (see,
for example, [Tor78]). In the 19th century, it became clear that non-Euclidean geometries
were equal to Euclidean geometry both in their internal consistency and as candidates for
the �true� geometry of the world. Mathematics ceases to be a set of unquestionable truths
about the world and an era of a di�erent understanding of its nature begins. Euclidean
geometry loses its mathematical status equal to numbers. Plato's motto "God geometrizes"
turns into Dedekind's motto "Man arithmetizes" [Ded88]. The period of arithmetization of
mathematics begins � the di�erential and integral calculus is separated from the hitherto
dominant geometric intuition and is logically based on number systems and sets. In Rie-
mann's work [Rie67], geometry is also arithmetized. It is no longer seen as a priori truth
but as a mathematical basis for examining real physical space. Arithmetic and set theory
are becoming mathematically well-founded theories, primarily in the works of Dedekind and
Cantor. The numbers themselves are beginning to be seen as human creations, and the
mathematics based on sets is beginning to be considered a priori in a new sense, as a free
creation of the human mind (Dedekind [Ded88], Cantor [Can83]). The beginning of this
transformation of mathematics as well as the view of its nature can be most strongly con-
nected with the Göttingen circle (Gauss, Dirichlet, Riemann, Dedekind, and even Cantor -
see [Fer07]). In parallel, geometry is increasingly seen as part of physics, the science of real
space (Riemann [Rie67], Helmholtz [Hel68], Cli�ord [Cli73]) in which mathematics has the
same role as it does in all natural sciences � it considers various mathematical models for the
theoretical description of physical phenomena. Thus Euclidean geometry loses the status of
a priori mathematical theory and becomes only one of the possible models for physical space
distinguished only by the fact that it is a good approximation of the space in which practical
science takes place.

Contrary to the proclaimed separation of the mathematical status of Euclidean geom-
etry and numbers, in real mathematical practice they still have equal status. Geometric
intuition is still an inexhaustible source of mathematical ideas, and it is certainly not the in-
tuition of non-Euclidean but of Euclidean geometry. Euclidean structures permeate modern
mathematics as much as number structures. For example, to visualize the various abstract
spaces of functions, we look for an Euclidean structure in them rather than a structure of
non-Euclidean geometry. Note that this is the Euclidean structure determined not by the
Euclid's system of axioms but by the Weyl's system of axioms which describes it as an a�ne
space with a positively de�nite scalar product on the associated vector space [Wey18]. This
geometry, which permeates the mathematical way of thinking itself and which is an internal
mathematical means of modelling, I will call mathematical geometry. It should be distin-
guished from physical geometry as the science of real physical space. Of course, mathematical
models of physical geometry are very important, but here Euclidean geometry is only one
of the models. Contrary to this, Euclidean geometry forms the very core of mathematical
geometry. I consider that we cannot explain this by the fact that very important notions
of linearity and approximation have a simple formulation in Euclidean structures, nor by
Poincare's conventionalism according to which Euclidean geometry has a prominent role be-
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cause it is the simplest geometry. In my opinion, such a situation can arise only if Euclidean
geometry is a priori in some sense. Furthermore, in mathematical Euclidean geometry Weyl's
system of axioms is dominant to Euclid's system of axioms. Although Euclid's system of
axioms is taught in school, Weyl's system of axioms is used in modern mathematics, physics
and engineering.1 Today, Weyl's system of axioms is one of the essential synthesizing tools
of modern mathematics while Euclid's system is of a secondary importance. My explanation
of this phenomenon, which I will defend below, is that this happens because the original
Euclidean system of axioms re�ects a posteriori intuition (hence physical intuition) about
Euclidean geometry while Weyl's system of axioms re�ects a priori intuition (hence mathe-
matical intuition) about Euclidean geometry.

I will argue below that Euclidean geometry is a priori in the same sense in which numbers
are a priori, and that its a priori nature is expressed precisely by Weyl's axioms. This
will explain why the core of mathematical geometry is precisely Euclidean geometry, why
Euclidean geometry is equal to number systems in modern mathematics, and why it is
structured by Weyl and not Euclidean axioms. I will argue that just as number systems
are idealized conceptions derived from intuition about our internal activities of counting
and measuring, so too is Euclidean geometry an idealized conception derived from intuition
about our internal spatial activities. By our internal activities, I mean activities that we
organize and design according to our human measure, and over which we have strong control
(e.g., movements in space, grouping and arranging small objects, writing on paper, painting,
playing music, ...). By our internal spatial activities I mean our inborn ability to move and
construct in space, regardless of the environment in which we �nd ourselves. Here by �a
priori� I mean �based on our internal activities�.

The cognitive science also deals with the question of whether humans possess an in-
nate mathematical intuition, and thus an innate geometric intuition. It seeks answers in
the experimental study of animals, children and adults from the positions of anthropology,
developmental psychology and neuroscience. Concerning geometry, analysing the latest �nd-
ings on this topic, De Cruz in [DC07] provides arguments for the following claims: �(1) that
humans have innate, evolved and species-universal cognitive adaptations to deal with space,
and (2) that these intuitions constrain and govern the development of formal geometry�. My
analysis of our internal spatial activities will not be based on the scienti�c study of the hu-
man mind but on my human experience of the human mind. However, the obtained results
can be veri�ed experimentally.

My argument that Euclidean geometry is a priori has two parts. The �rst part concerns
our internal spatial activities. Internal spatial activities should be distinguished from external
spatial activities. The former are conditioned by our human nature, the latter additionally by
the world around us. At �rst glance, it seems di�cult, almost impossible, to draw a clear line
between these two types of activities, However, for some activities we can clearly determine
that they belong to external spatial activities. For example, mountain climbing is an external
spatial activity because it involves orientation in a given landscape and taking care of the
con�guration of the terrain on which we move. Of course, there is also the ubiquitous
gravitational force that makes us one direction in space prominent, which we especially have
to take care of. However, the vary fact that we consider this direction to be prominent

1It follows from this fact that an appropriate reform of school geometry needs to be made.
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suggests that a priori all directions are the same to us. When we are on di�erent parts of a
mountain road, di�erent spatial situations will require di�erent responses. However, as far
as our ability to react itself is concerned, it is the same in all places and in all directions. If
we have to light a �re by placing twigs so that they form a cone, or make a shelter out of
wooden bars and reeds, our approach to geometric construction will be the same, whether
we are making a small or large �re. This shows that our ideas of spatial constructions are
independent of the units we use in the construction. If for some choice of units there is
some change that a�ects the construction, we will attribute it to some external factor. If in
this way we try to identify the nature of our internal spatial activities, as invariants to the
di�erent spatial situations in which we �nd ourselves, then we are very close to Delboeuf's
analysis [Del60]. He considers what remains when we ignore all di�erences of things caused by
their movements and mutual interactions. According to Delboeuf, in the ultimate abstraction
from all diversities of real things we gain the homogeneous (all places are the same), isotropic
(all directions are the same), and scale invariant (geometric constructions are independent
of size) space � the true geometric space which is di�erent from the real space. However,
for Delboeuf this geometry is the background geometry of real space while for me it is the
geometry of our a priori activities in space. We can come to the same conclusion if instead
of an external argument, seeking common ground in all our external spatial activities, we
use an internal argument, analysing directly our internal spatial activities, independently of
the external world. A simple introspection shows that we do not distinguish di�erent places,
di�erent directions and di�erent units for spatial constructions until the outside world forces
us to distinguish them. To eliminate the presence of gravity on the Earth's surface we must
look for examples where it is negligible. In addition to the extravagant situation of free fall,
these can be examples of activities that take place approximately in the horizontal plane
or three-dimensional examples in which gravity is not important. For example, a child will
make the same construction from the Lego bricks of his imaginary monster, regardless of
where he worked on the construction, how he oriented the construction in space and what
dimension of the basic Lego bricks he used. The same indi�erence to location, direction,
and size is present when we rearrange Rubik's cube. Our most basic approach to space, the
approach inherent to us, is an a priori ignorant approach to space: all places are the same to
us (the homogeneity of space), all directions are the same to us (the isotropy of space) and
all units of length we use for constructions in space are the same to us (the scale invariance
of space). These three principles of symmetry express our basic a priori intuition about our
internal spatial activities. Any deviation from these symmetries we attribute to the external
world. Thus, it is precisely these principles of symmetry that determine a clear boundary
between our internal and external spatial activities.

The importance and validity of the three symmetry principles, the homogeneity of space,
the isotropy of space, and the scale invariance of space, has been recognized a long time
ago. William Kingdon Cli�ord in [Cli73] and [Cli85] considers the three symmetry principles
as the most essential geometrical assumptions. He considers that the principles are based
on observations of the real space. Hermann von Helmholtz has the same opinion for the
�rst two symmetry principles which he uni�es in his principle of the free mobility of rigid
bodies ([Hel68]). Henri Poincaré, in his analysis of the real space [Poi02], comes to the
conclusion that the �rst two symmetry principles are the most essential properties of the so
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called geometric space which for him is not the real space but a �conventional space� � the
most convenient description of the real space. An interesting explanation of the validity of
the three symmetry principles comes from Joseph Delboeuf ([Del60]), as explained above.
However, for my argument about the a priori nature of Euclidean geometry, it is crucial that
my interpretation of these principles is a di�erent one: they are not a posteriori principles,
the result of analysing the real space, but they are a priori principles, the result of analysing
our internal activities in space � they express our a priori ignorant approach to space.

The second part of my argument that Euclidean geometry is a priori is a mathematical
result. In [�ul17], an elementary system of axioms of Euclidean geometry is developed. The
system on the one hand is directly founded on the three principles of symmetry described
above, while on the other hand, through the process of algebraic simpli�cation, gives an
equivalent Weyl's system of axioms of Euclidean geometry. In this way, Euclidean geometry
is characterized by these three principles of symmetry without any additional assumptions
(except the idea of continuity). Also, the background symmetry of Weyl axioms is explicated.
The system is brie�y described in the Appendix.

The connection of Euclidean geometry with the three symmetry principles has a long
history. In 17th century John Wallis proved, assuming other Euclid's postulates, that the
scale invariance principle �For every �gure there exists similar �gure of arbitrary magnitude.�
is equivalent to the Euclid's �fth postulate [Wal99]. Wallis considered his postulate to be
more convincing than Euclid's �fth postulate. Tracing back to the famous Riemann lecture
Über die Hypothesen welche der Geometrie zu Grunde liegen" ([Rie67]) at Göttingen in 1854,
it is well known that among all Riemann manifolds Euclidean geometry is characterized by
the three symmetry principles. However, this characterisation is not an elementary one
because it presupposes the whole machinery of Riemann manifolds. As I am aware, there is
no an elementary description (a description in terms of intuitive relations between points) of
Euclidean geometry that is based on the three symmetry principles. The system of axioms
developed in [�ul17] provides such an elementary description.

Showing that (i) our a priori approach to space, the world of our internal spatial activities,
is characterized by the three principles of symmetry described above, (ii) that the three
principles of symmetry immediately support the system of axioms described in the Appendix,
and that (iii) the described axioms, through algebraic simpli�cation, entail Weyl's axioms of
Euclidean geometry equivalent to them, I gave the argument that Euclidean geometry is a
priori and that Weyl's axioms express its a priori nature.

After the appearance of non-Euclidean geometries, there were several attempts to re-
establish Euclidean geometry as a priori geometry. They di�er from the approach presented
in this article both in the meaning of the term a priori2 and in the extent to which it
was possible to explicitly identify Euclidean geometry as a priori (in the given meaning of
the word) geometry. Most of these approaches are attempts to modify Kant's conception
of mathematics to take into account the changes brought about by modern mathematics
[Fol18]. Among them, Cassirer's modi�cation of Kant based on Dedekind's philosophy of
mathematics stands out, a modi�cation in which, as in this paper, numbers and geometry

2The very concept of a priori knowledge as the independence of that knowledge of experience, when it
comes to specifying, leads to a whole range of concepts [Jen08].
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have the same a priori basis (in Cassirer it is Dedekind's logicism), and the same status in
mathematics [Car10, Hei11]. However, in Cassirer's philosophy, Euclid's geometry is not at
all prominent in relation to other geometries. As far as I know, there is only one elaborate
attempt to establish the a priori nature of Euclidean geometry. This is the protogeometry of
Lorenzen that has its roots in Dingler's ideas. This geometry is conceived �as a theory about
the conditions under which spatial measurements are possible� [Lor87]. Protogeometry is also
based on symmetry. However, this symmetry is not an expression of basic geometric intuition,
which is equal in its depth to arithmetic intuition, but a special intuition about plane,
parallelism and orthogonality. Lorenzen shows how plane, parallelism, and orthogonality can
be de�ned using symmetry, and how these concepts lead to Euclidean geometry. However, in
his derivation, he uses existence axioms: �For each plane E and each point P there exists a
unique plane parallel to E through P , and similarly there exists a unique line through P and
orthogonal to E.� [Lor87]. These axioms are not justi�ed by anything, and that devalues his
a priori foundation of Euclidean geometry. Furthermore, Lorenzen himself writes that �other
standards of length measurement are possible� [Lor87], ie that other (non-Euclidean) a priori
constructions are also possible as preconditions for spatial measurements. The conclusion is
that, even if the a priori nature of Euclidean geometry were shown in such a way, that a priori
nature would be of a specialized nature for mathematics and not the core of mathematical
geometry.

I hope that the argument developed in this article that Euclidean geometry is a pri-
ori could satisfy Gauss who expressed in the quote from the beginning of the article his
dissatisfaction with the epistemic status of Euclidean geometry.

Appendix

The axiom system presented here have an immediate support (i) in intuitive ideas about a
relation between two points, (ii) in the three symmetry principles, and (iii) in the idea of
continuity of space.

The primitive terms of the system of axioms are (i) equivalence of pairs of points (arrows):
AB ∼ CD, with the intuitive meaning that the position of the point B relative to the point
A is the same as the position of the point D relative to the point C, (ii) multiplication of a
pair of points (an arrow) by a real number: λ,A,B 7→ λ ·AB, with the intuitive meaning of
stretching the arrow and of iterative addition of the same arrow, and (iii) distance between
points: A,B 7→ |AB| ∈ R. The multiplication could be avoided. Although, from the point
of view of the foundation of the theory, it is better to de�ne multiplication, the procedure
is somewhat lengthy and I prefer to introduce the multiplication as a new primitive term.
Also, it is more simple to introduce the distance function (to add an arbitrary unit of
measurement) as a new primitive term than to introduce congruence between pairs of points
as a new primitive term and de�ne the distance function relative to the choice of a unit of
measurement.

Axioms and de�nitions with brief comments follow.

By the very idea to be in the same relative position:
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Axiom (A1). ∼ is an equivalence relation.

Concerning the relative positions of points to a given point A we can easily describe the
equivalence relation ∼: by the very idea of the relative position of points, di�erent points
have di�erent relative positions to A:

Axiom (A2). AB ∼ AC → B = C.

Basic operations with arrows are to invert an arrow and to add an arrow to another
arrow. The de�nitions follow:

inverting arrow: AB 7→ −AB = BA

addition of arrows; AB, BC 7→ AB +BC = AC

Because of axiom A2 we can extend addition of arrows:

generalized addition of arrows; AB +CD = AB +BX, where BX ∼ CD, under the
condition that there is such a point X.

By the homogeneity principle, the operations are invariant under the equivalence of arrows:

Axiom (A3.1). AB ∼ A′B′ → BA ∼ B′A′.

Axiom (A3.2). AB ∼ A′B′ ∧ BC ∼ B′C ′ → AC ∼ A′C ′

Until now, we know only that AB is equivalent to itself (re�exivity of ∼) and to no other
arrow from the point A (axiom A2). All other axioms are conditional statements. It remains
to describe the equivalence of arrows originating from di�erent points. Multiplication of an

arrow by a real number will give us a description of the equivalence of arrows originating
from di�erent points. It is a new primitive operation based on an idea of stretching arrows
and of an idea of iterative addition of the same arrow (numbers will be labelled with letters
from the Greek alphabet):

· : R× S2 → S2 λ,AB 7→ λ · AB

Sometimes, since it is a common convention, we will not write the multiplication sign at all.
The very idea of the multiplication as stretching arrows is formulated in the next axiom:

Axiom (A4). ∀λ,A,B ∃C λ · AB = AC.

By the homogeneity principle, multiplication of an arrow by a number is invariant under
the equivalence of arrows:

Axiom (A5). AB ∼ CD → λAB ∼ λCD.

For a point C such that AC = λ · AB we will say that it is along AB. Also, for arrow
AC we will say that it is along AB.

The very idea of the multiplication as addition of the same arrow leads to the next axiom:

Axiom (A6.1). 1 · AB = AB.
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By the homogeneity principle, we can translate any arrow along AB to any point along
AB. So, we can add such arrows. Specially, we can add λ · AB and µ · AB and the result
will be λ · AB + µ · AB = ν · AB for some number ν. Moreover, by the very idea of the
multiplication as iterative addition of the same arrow, ν = λ+ µ. This is the content of the
next axiom:

Axiom (A6.2). λ · AB + µ · AB = (λ+ µ) · AB.

Let's note that with this equation we postulate also that the left side of the equation is
de�ned.

If we stretch an arrow along AB the result will be an arrow along AB, too. So, λ · (µ ·
AB) = ν · AB, for some number ν. Moreover, from the very idea of the multiplication as
iterative addition of the same (stretched) arrow it follows that ν = λ · µ. This is the content
of the next axiom:

Axiom (A6.3). λ · (µ · AB) = (λ · µ) · AB.

Let's note that with this equation we postulate also that λ · (µ · AB) is along AB.
The last axiom (and the most important one) expresses the scale invariance principle.

Axiom (A7). (the scale invariance axiom)

If AC = λ · AB and AC ′ = λ · AB′ then CC ′ ∼ λ ·BB′. (Fig.1)

Figure 1:

Of the special interest is a somewhat modi�ed special case of the scale invariance axiom,
for λ = 2:

Theorem (A'5). (the elementary scale invariance law)

AB ∼ BC and AB′ ∼ B′C ′ → ∃ P CP ∼ PC ′ ∼ BB′. (Fig.2)
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Figure 2:

This theorem has two important consequences:

Theorem (T3). (the unique translation of arrows law)

∀B,B′, C ∃!P BB′ ∼ CP .

Figure 2 gives a hint for the construction of point P .
The unique translation of arrows law enables us to add arbitrary arrows, without any

condition, as we have done before.

AB + CD = AB +BX, where BX ∼ CD

Theorem (T4). (the parallelogram law)

AB ∼ A′B′ → AA′ ∼ BB′. (Fig.3)

Figure 3:

The basic geometric measure is a measure of the distance between points, the function
| | : S2 → R. This is the next and the �nal primitive term. The real number |AB| will be
termed the length of the arrow AB or distance from the point A to the point B.
By the homogeneity of space the length of an arrow must be invariant under equivalence
relation ∼:

Axiom (A8). AB ∼ CD → |AB| = |CD|.
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By the very idea of measuring distance:

Axiom (A9.1). |AA| = 0.

Every point B ̸= A determines a direction in which we can go from A. Because of the
isotropy of space, the algebraic sign of distance must be always the same � distance must
be always negative or always positive or always zero. The zero case gives a trivial measure
which does not make any di�erence between arrows, so, it is a useless measure. Thus, the
two other possibilities remain. Technically speaking they are mutually equivalent choices,
but by the very idea of measuring it is natural to choose a positive algebraic sign:

Axiom (A9.2). B ̸= A → |AB| > 0. (positive de�niteness)

By the isotropy of space we also have:

Axiom (A9.3). |AB| = |BA|.

For every direction from a point A determined with a point B ̸= A we already have a
measure of distance. If we take AB as a unit of measure, than we can take the number
λ > 0 as a measure of distance of AC where AC = λAB. Note that such a choice of measure
along every direction need not be isotropic. However, along every direction the measure of
distance A,B 7→ |AB| must be in accordance with this λ measuring (although it must be
more than this):

Axiom (A10). |λAB| = λ|AB|, for λ > 0,

We can express axioms A9.1, A9.3 and A10 in a uniform way by the next equivalent
proposition:

Theorem (7). (compatibility of distance with multiplication)

|λAB| = |λ||AB|, for every real number λ.

The description of distance function we have achieved until now enables us to compare
distances in a given direction with distances in the opposite direction and with distances in
parallel directions. What remains is to solve the main problem: how to compare distances
along arbitrary directions in an isotropic way. Let's take, in a given plane, along every
direction from a point S, a point at a �xed distance r > 0 from S. The set of such points is
the circle with centre S and radius r, C(S, r) = {T : |ST | = r}. Let's choose two points A
and B on the circle and consider the unique line p(A,B) through these points (Fig.4):

Figure 4:
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Let's take an arbitrary point T on the line p(A,B) and consider how the distance d(T ) from
T to the centre S of the circle varies with the choice of T . Thereby, we will use the idea of
continuity of space and of continuity of function d(T ). Because of the isotropy of space, the
function d(T ) must be symmetrical with respect to the relative position of the point T to
the points A and B (directions SA and SB). For example, the values of the function in the
points A and B are the same (equal to r). Also, the function must have the same value in
a point we reach when we move a certain distance from A to B as well as in the point we
reach when we move the same distance from B to A (Fig.5):

Figure 5:

Because of this symmetry, the function d(T ) must have a local extreme value in the midpoint
of AB. To determine more precisely the character of the extreme point we will exploit
knowledge of a special case, when the points A and B are diametrically opposite on the
circle, that is to say, when the centre S of the circle lies on p(A,B). In that case, if we
�move� a point T from A to B (or from B to A), the distance d(T ) from the centre S of the
circle decreases and it is smallest in the midpoint (S). Furthermore, if we move T from A
in the direction opposite to the direction to B (or from B in the direction opposite to the
direction to A), the distance increases. Therefore, the midpoint S is a unique point of the
global minimum of the function d(T ). If we drag the point B slightly along the circle into
the point B′, the centre S of the circle will no longer be on the line p(AB′), but, because
of continuity, the behaviour of the function d(T ) will remain the same. That is to say, the
midpoint P of AB′ will remain a unique global minimum of the function on the line (Fig.6):

Figure 6:

Because of continuity, for every two points A and B′ on the circle the function d(T ) will
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have a unique global minimum on line p(AB′) exactly in the midpoint of AB′. Thus, by the
isotropy principle and the idea of continuity of space it follows:

Axiom (A11). If a line has two common points with a circle, points A and B, then the
midpoint P of AB is the point on the line nearest to the centre of the circle. (Fig.7)

Figure 7:

From the axiom it follows immediately that a line can not have more than two common
points with a circle.

Let a line p have exactly one common point with a circle, a point A. If we drag the point
A slightly along the circle in one direction onto a point Al, and in another direction onto a
point Ad, then the line p is dragged onto the line p(Al,Ad). By axiom A11 the midpoint
P of AB is the point on p(Al,Ad) nearest to the circle. By continuity of space, the point
A must be the point on p nearest to the centre of the circle (Fig.8). Thus, by the isotropy
principle and the idea of continuity of space it follows:

Figure 8:

Axiom (A12). If a line has exactly one common point with a circle, then the common point
is the point on the line nearest to the centre of the circle. (Fig.9)
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Figure 9:

Theorem (7'). For every point S not on a line p there is a unique point P on p which is
the point on p nearest to S.

The point on the line p nearest to the point S we term orthogonal projection of the
point S on the line p. Orthogonal projection enables us to de�ne the scalar orthogonal pro-
jection of an arrow onto another arrow. Let C ̸= D, and let points A and B be orthogonally
projected on line p(CD) into points A′ and B′ (Fig.10). Then A′B′ ∼ αCD for some real
number α.

Figure 10:

We de�ne the scalar orthogonal projection of the arrow AB onto the arrow CD to
be the number α|CD|. In simpler terms, it is just the ± length of the orthogonal projection
of the arrow AB onto the line p(CD), where the sign is + if the projection is in the direction
of CD, − otherwise. In the extreme case of null arrow CC it is convenient to take zero for
the value of the scalar projection on CC. We will denote ABCD as the scalar projection of
AB onto CD.

For two equally long arrows with the same initial point, because of the isotropy of space,
the scalar projection of the �rst arrow on the second arrow must be the same as the scalar
projection of the second arrow on the �rst arrow. This is the content of the last axiom:

Axiom (A13). |AB| = |AC| → ABAC = ACAB. (Fig.11)

13



Figure 11:
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