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“..numbers are free creations of the human mind;
they serve as a means of apprehending more easily and more sharply the
difference of things.”

Richard Dedekind [Dedekind, 1888, p. vii]

Abstract. Analysing several characteristic mathematical models: nat-
ural and real numbers, Fuclidean geometry, group theory, and set theory, I
argue that a mathematical model in its final form is a junction of a set of
axioms and an internal partial interpretation of the corresponding language.
It follows from the analysis that (i) mathematical objects do not exist in
the external world: they are imagined objects, some of which, at least ap-
proximately, exist in our internal world of activities or we can realize or
represent them there; (ii) mathematical truths are not truths about the ex-
ternal world but specifications (formulations) of mathematical conceptions;
(iii) mathematics is first and foremost our imagined tool by which, with cer-
tain assumptions about its applicability, we explore nature and synthesize
our rational cognition of it.
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The basic problem of the philosophy of mathematics (not mathematics
itself) is to answer the following intertwined questions:

e Are there mathematical objects, and if so, in what way?



e What is mathematical truth and how do we establish it?

e How is mathematics applied?

This paper presents a solution that can be considered an elaboration of
Dedekind’s quotation from the beginning of the article. The basic theses
that I intend to argue in this article are the following:

e Mathematical objects do not exist in the external world. They are
imagined objects, some of which, at least approximately, exist in our
internal world of activities or we can realize or represent them there.

e Mathematical truths are not truths about the external world but spec-
ifications (formulations) of mathematical conceptions.

e Mathematics is first and foremost our imagined tool by which, with
certain assumptions about its applicability, we explore nature and syn-
thesize our rational cognition of it.

[ will try to make clear what is absolutely clear to the famous physicist Percy
W. Bridgman: “It is the merest truism, evident at once to unsophisticated ob-
servation, that mathematics is a human invention.” [Bridgman, 1927, p. 60].
Having practised mathematics all my life, by vocation and by profession,
just as breathing was natural to me, so it was natural for me to consider
mathematics as a human invention and a free creation of the human mind
whose purpose is to be a tool for our rational cognition and rational activi-
ties in general.! When I decided to clarify to myself what human invention
mathematics was, it proved to me, I believe, a far more difficult task than
explaining what breathing is. In this article, I have outlined what I came up
with along the way.

In most of the article T will explain and argue the view of mathematics
as an imagined tool for rational cognition. In sections 1 to 6 I will consider
as illustrative examples classical, but still most important, mathematical
models: the natural number system, the real number system, and Euclidean
geometry, as well as today’s standard mathematical models: group theory,
and set theory. To quote the famous mathematician Saunders Mac Lane:
“...a philosophy of Mathematics is not convincing unless it is founded on an

LOf course, many mathematicians do not share my opinion that mathematics is a free
creation of the human mind.



examination of Mathematics itself.” [Mac Lane, 1986, p. 60]. I will then set
out the basic characteristics of the view of mathematics as an imagined tool
for rational cognition (Section 7), explain how mathematical objects possi-
bly exist (Section 8) and how mathematics is applied (Section 9). Section
10 describes how the whole structure of mathematics can be understood as
an imagined tool for rational cognition, In the last part of the article I will
expose this view of mathematics to Benacceraf dilemma [Benacerraf, 1973,
p. 661], Bueno’s five desiderata [Bueno, 2009, p. 63] and Quine-Putnam in-
dispensability argument [Colyvan, 2019| (Section 11), as well as determine
its place on the map of different views of mathematics (Section 12).
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The terms “intuition”, “idea”, "conception”, “model” and "theory” will de-
note more and more precise stages in modelling certain thoughts. The terms
“model” and “theory” will eventually acquire a precise meaning that deviates
from the standard meaning in mathematical logic. They will be synonymous
here and will denote a set of axioms in a language together with a partial
interpretation of the language. In doing so, I will give preference to the term
“model” when the emphasis is on interpretation and to the term “theory”
when the emphasis is on axioms. By “internal world of activities” I mean the
world that consists of activities over which we have strong control and which
organize and design by our human measure. For example, these include
movements in safe space, grouping, arranging and connecting small objects,
spatial constructions and deconstructions with small objects, talking, writ-
ing and drawing on paper, shaping and transforming manipulative material,
making choices and combining and repeating actions, dynamics of actions
and changes in the environment subordinated to us, painting, singing, ....
This does not include activities with objects over which we have no strong
control or our activities are significantly limited by the environment, such as
e.g. climbing steep rocks, building a house, .... Although each person has
her own specific way of organizing and designing internal activities, which
depends on her as well as on the environment to which she belongs, due to
the generality of further considerations, it does not matter whether we mean
the internal world of activities of an individual person or the internal world
of activities of the entire human species. The internal world of activities
will be discussed in more detail in Section 7. I would also note here that
all imagined objects are considered as concrete and not abstract objects. In
Section 7 it will be argued that language is the bearer of abstraction and not
objects.



1 Natural numbers

Natural numbers are the result of modelling our intuition about the size of a
collection of objects. We measure the collection by process of counting, and
natural numbers are objects for counting. To start counting we must have
the first number, to associate it to the first chosen object in the collection. To
continue counting, after each number we must have the next new number, to
associate it with the next chosen object in the collection. There is no special
reason to sort out some particular objects as natural numbers. Merely for
the needs of calculation we sort out a particular realization, in the past
collections of marbles on an abacus, and today sequences of decimal digits
on paper and of bits in a computer. It means that for counting it is not
important how numbers are realized, but only the structure of the set of
natural numbers which enables us to count is important. It seems that they
exist in the same way as chess figures, in the sense that we can always realize
them in some way. However, the structure of natural numbers, as opposed to
the structure of chess, brings in itself an idealization. To be always possible to
continue counting, each natural number must have the next natural number.
Therefore, there are infinitely many natural numbers. So, although we can
say for small natural numbers that they exist in some standard sense of that
word, the existence of big natural numbers is in the best case some kind of
idealized potential existence.

In order to precisely formulate the conception of natural numbers, we
need a corresponding sufficiently precise language, a mathematical language,
or even better, a first-order language. Among other symbols, that language
should contain the symbol “ 1”7 for the first number and the function sym-
bol “ S 7 for the immediate successor operation (n — S(n)). This allows
us to name each number. What exactly the names name is not so impor-
tant to us as it is important to us that what they name fulfils the required
structural role of natural numbers (they can even name themselves). We
further specify the structure that is important to us by certain claims of
the language itself. This is necessary because, although we have the inter-
pretation of the language, the recursively defined truth value of sentences
is not a computable function due to the infinite domain of the interpre-
tation. It is not necessary to precisely specify these claims here, nor the
language in which they were made.? In that language, the claims must ex-

2The standard formulation consists of Peano’s axioms and recursive conditions for
addition and multiplication in the first-order language of arithmetic [van Dalen, 2013,
p- 82].



press, inter alia, (i) that 1 is the first number, (ii) that each number n has
its successor S(n) which is a new natural number in relation to all previous
natural numbers, and (iii) that any natural number can thus be obtained.
I will hereinafter call these claims axioms of natural numbers. In my view,
the axioms of natural numbers are neither true nor false, just as the ax-
ioms that would describe the game of chess would be neither true nor false.
They are simply a means of specifying our ideas about the objects we use
for counting.®> However, Gédel’s incompleteness theorems [Gddel, 1931] and
Lowenheim-Skolem theorems [Léwenheim, 1915, Skolem, 1920] tell us that
we cannot have a complete specification in a first-order language, even if we
include sets in the specification.* Therefore, in addition to the axiomatic
specification, it is necessary to have an interpretation of the language, too.
In the case of natural numbers it is a partial internal interpretation — a par-
tial interpretation in our internal world of activities. The interpretation is
partial due to the idealization of the existence of extremely big numbers.
The interpretation belongs to our internal world of activities because num-
bers are our imagined constructions that we can partially, to the point of
isomorphism, realize in the world available to us: using marbles on abacus,
tallies on paper, .... Since we can never construct all numbers, the overall
structure of natural numbers does not exist in the literal sense of the word.
There is only the conception of natural numbers, specified by axioms, and
partially realized in our internal world of activities. This is the final result —
mathematical model — of modelling our intuition about natural numbers as
objects for counting. It carries with it incompleteness and the ever-present
tension in mathematics between basic intuition and the constructed model,
as well as between the axiomatic specification and the constructive content
of mathematical concepts. This tension is a positive source of accepting new

axioms as well as improving intuition.?

3In [Ferreiros, 2016, Chapter 7] Ferreiros argues that Peano’s axioms are self-evident
truths about our practice of counting. Our practice of counting is not a natural process
but a voluntary activity. That is why, in my opinion, the truth of Peano’s axioms does
not derive from that practice, but from the fact that they norm that practice, especially
since they introduce an element of idealization into the practice.

4 Although in the classical set theory all structures of natural numbers are mutually
isomorphic, according to Lowenheim-Skolem theorems, the classical set theory itself has
non-isomorphic interpretations [van Dalen, 2013, p. 105-106].

This tension took a more dramatic form in the historical conflict between modern and
classical mathematics, primarily in the confrontation between Dedekind’s modern concep-
tualist approach and Kronecker’s classical constructivist approach, as well as in the crisis
in the foundations of mathematics — in the conflict between Hilbert’s program in the foun-
dations of mathematics and Brouwer’s intuitionism (see, for example, [Ferreiros, 2008]).
How much this tension is present in Hilbert’s program itself can be read in [Sieg, 1999].



2 Real numbers

Through real numbers we organize and make precise our intuition about the
process of measuring.> While natural numbers are imagined as objects for
counting, real numbers are imagined as results of the process of measuring.
However, we can imagine (idealized) situations in which the process of mea-
suring never stops — we generate a potentially infinite list of digits, with no
consecutive repetition of the same group of digits after some step. If we
want to have the results of such processes of measuring, we must introduce,
in addition to rational numbers, new results of measuring — irrational num-
bers. As opposed to natural numbers whose existence we can understand at
least as some kind of an idealized potential existence, we cannot explain the
existence of irrational numbers in this way. Although we can approximate
irrational numbers by rational numbers with arbitrary precision, their exis-
tence is outside our means of construction — we have just imagined irrational
numbers.

As with natural numbers, the final mathematical model of real numbers
is a junction of axiomatic specification” and partial internal interpretation
of the corresponding language. For example, in the mathematical model we
can identify Euler number e, the irrational number to whom the sequence

TN .
(1 + —) is closer, as we increase natural number n. Although we can
n
approximate number e with arbitrary precision by constructions in our in-

ternal world of activities, it certainly does not exist in the same way as my
dog. Tt exists in the same way as an idealized material point in classical
mechanics, as non-existing phlogiston in a wrong theory about chemical re-
actions, and as Snow White in the classical fairy tale Snow White and the
Seven Dwarfs. However, although our language usually has only a partial
interpretation, the classical logic of using the language assumes that it is a
semantically complete language — that it has a complete interpretation: each
name names an object, each predicate symbol refers to a binary predicate,

5Tn my opinion, this is the main role of real numbers, as a tool for rational cogni-
tion. Various practices with real numbers and their central role in mathematics are nicely
described in [Ferreirés, 2016, Chapter 8|.

"The axiom of completeness ensures that any idealized measurement process has a
result. A variant of the axiom corresponding to this approach postulates that every
decimal expansion ag,ag.a1,ao.a1az,... (where ai,as,... are decimal digits, whereas ag
is an integer) has a limit and that every real number is a limit of such an expansion. All
other variants of the completeness axiom postulate in other ways these imagined objects:
see, for example [Deveau and Teismann, 2014| — the variant with decimal expansions has
the label CA18.



and each function symbol refers to a function.® Because of this assumption,
in thinking itself there is no difference whether we think of objects that re-
ally exist or we think of objects that do not really exist. That difference can
be registered only in a “meeting” with reality. And for mathematics there
is no such a meeting: a mathematical model creates its own reality in our
internal world of imagination. However, unlike erroneous physical models,
the mathematical model of real numbers can be realized approximately in
our internal world of activities in the same way that correct physical models
are realized approximately in the external world or children’s fairy tales in
real theatrical performances.

3 Euclidean geometry

With the appearance of non-Euclidean geometries in the 19th century, Eu-
clidean geometry loses the status of a priori mathematical theory and be-
comes only one of the possible models for physical space, distinguished only
by the fact that it is a good approximation of the space in which practical
science takes place (see, for example, [Torretti, 1978]). Contrary to such a
view, according to which Kuclidean geometry is part of physics, 1 will ar-
gue here that just as number systems are idealized conceptions derived from
intuition about our internal activities of counting and measuring, so too is
Euclidean geometry an idealized conception derived from intuition about our
internal spatial activities. Since the view of Euclidean geometry presented
here is not standard, the argumentation will be more detailed than in the
sections above.

Internal spatial activities should be distinguished from external spatial
activities. The former are conditioned by our human nature, the latter ad-
ditionally by the world around us. At first glance, it seems difficult, almost
impossible, to draw a clear line between these two types of activities, How-
ever, for some activities we can clearly determine that they belong to external
spatial activities. For example, mountain climbing is an external spatial ac-
tivity because it involves orientation in a given landscape and taking care
of the configuration of the terrain on which we move. Of course, there is
also the ubiquitous gravitational force that makes us one direction in space
prominent, which we especially have to take care of. However, the vary fact
that we consider this direction to be prominent suggests that a priori all

8For complete interpretations of the first-order languages see, for example,
[van Dalen, 2013, Section 3.4]



directions are the same to us. When we are on different parts of a mountain
road, different spatial situations will require different responses. However, as
far as our ability to react itself is concerned, it is the same in all places and
in all directions. If we have to light a fire by placing twigs so that they form
a cone, our approach to geometric construction will be the same, whether
we are making a small or large cone. This shows that our ideas of spatial
constructions are independent of the units we use in the construction. If for
some choice of units there is some change that affects the construction, we
will attribute it to some external factor. If in this way we try to identify the
nature of our internal spatial activities, as invariants to the different spatial
situations in which we find ourselves, then we are very close to Delboeuf’s
analysis [Delboeuf, 1860]. He considers what remains when we ignore all
differences of things caused by their movements and mutual interactions.
According to Delboeuf, in the ultimate abstraction from all diversities of
real things we gain the homogeneous (all places are the same), isotropic (all
directions are the same), and scale invariant (geometric constructions are
independent of size) space — the true geometric space which is different from
the real space. However, for Delboeuf this geometry is the background ge-
ometry of real space while for me it is the geometry of our internal activities
in space. We can come to the same conclusion if instead of an external
argument, seeking common ground in all our external spatial activities, we
use an internal argument, analysing directly our internal spatial activities,
independently of the external world. A simple introspection shows that we
do not distinguish different places, different directions and different units for
spatial constructions until the outside world forces us to distinguish them.
To eliminate the presence of gravity on the Earth’s surface we must look for
examples where it is negligible. In addition to the extravagant situation of
free fall, these can be examples of activities that take place approximately in
the horizontal plane or three-dimensional examples in which gravity is not
important. For example, a child will make the same construction from the
Lego bricks of his imaginary monster, regardless of where he worked on the
construction, how he oriented the construction in space and what dimen-
sion of the basic Lego bricks he used. The same indifference to location,
direction, and size is present when we rearrange Rubik’s cube. I beleive
that our most basic approach to space, the approach inherent to us, is an a
priori ignorant approach to space: all places are the same to us (the homo-
geneity of space), all directions are the same to us (the isotropy of space)
and all units of length we use for constructions in space are the same to us
(the scale invariance of space). These three principles of symmetry express
our basic intuition about our internal spatial activities. Any deviation from



these symmetries we attribute to the external world. Thus, it is precisely
these principles of symmetry that determine a clear boundary between our
internal and external spatial activities.”

In [Culina, 2018], an elementary system of axioms of Euclidean geometry
is developed. The system on the one hand is directly founded on the three
principles of symmetry described above, while on the other hand, through
the process of algebraic simplification, gives an equivalent Weyl’s system
of axioms of Euclidean geometry (the axioms of Euclidean affine space)
[Weyl, 1918, Chapter 1|. In this way, Euclidean geometry is characterized
by these three principles of symmetry without any additional assumptions
(except the idea of continuity). Thus, I gave the argument that Euclidean
geometry is an idealized mathematical model derived from intuition about
our internal spatial activities.

I consider this interpretation in space of our human internal activities
the primary interpretation of Euclidean geometry. However, we can preserve
the sentence part of the theory but change the interpretation. Then it does
not need to be a mathematical conception any more. It depends on a new
interpretation, be it an exterior or an internal one. If we ask ourselves
does the physical space obeys the axioms of Euclidean geometry we must
extract from space what we consider as points (maybe enough localized parts
of space), as directions (maybe directions of light rays), and the distance
between two points (maybe the time needed for light to pass from one point
to another). If in such an interpretation the physical space satisfies the
axioms of Euclidean geometry then we have got an experimentally verifiable
theory. Its sentence part is the same as in our mathematical theory of the
space of our human activities, so we can transfer all results to the structure
of physical space. Ouly the interpreted part is different. It does not belong to
mathematics any more, but it is the base for an experimental verification of
the theory about the external world. However, we can change an interpreted
part of the originally imagined Euclidean geometry in a way that it will be
still a mathematical theory. And it happens in mathematics often. Namely,
when we investigate complex mathematical objects which we cannot perceive

9The importance of these principles is recognized a long time ago in works of Delboeuf
[Delboeuf, 1860], Helmholtz [Helmholtz, 1868], Clifford [Clifford, 1873, Clifford, 1885] and
Poincaré [Poincaré, 1902], but in a different interpretation than the one described here.
In 17th century John Wallis proved, assuming other Euclid’s postulates, that the scale
invariance principle “For every figure there exists similar figure of arbitrary magnitude.”
is equivalent to the Euclid’s fifth postulate [Wallis, 1699]. Also, it is well known that
among all Riemann manifolds Euclidean geometry is characterized by these three symme-
try principles (see, for example, [Clifford, 1873]).



so easily, for example a set of functions of some kind, it is useful to find
Euclidean structure in it. Then we can transfer our geometric intuition to
that set — think of functions as points, measure how distant two functions
are, etc. In that way we can visualize them and succeed to think about them
more easily and effectively.

The example of Euclidean geometry witnesses that only the axiomatic
part of a theory can belong to mathematics, while interpretation does not
have to. Also, mathematical interpretation does not have to be an idealized
direct interpretation in our internal world of activities, but it can also be an
interpretation in some other mathematical model (theory).

4 Group theory

Group theory, in addition to being an elementary part of more complex
mathematical theories, models above all our intuition about symmetry as in-
variance to certain transformations. Since different situations have different
symmetries, unlike previous mathematical models which have an intended
interpretation, this theory does not have an intended interpretation, but has
intended non isomorphic interpretations. Thus, some mathematical models
are simply sets of axioms without a specific interpretation. However, if they
are modelling some important inner intuition about our approach to the
world, as group theory does, then they are usually very important. Prob-
ably, the most famous example is Riemann conceptions about geometry as
a manifold with a metric [Riemann, 1883]. These models found their appli-
cation half a century after their invention with the appearance of Einstein’s
general theory of relativity. Today, manifolds are an essential ingredient of
mathematics and physics. Although the application was realized so late, it
had to happen, because manifolds model successfully the basic mathematical
idea about coordinatization of investigated objects, an idea that generalize
such an efficient idea of measuring. Although, due to their generality, the
theory of groups and the theory of Riemannian manifolds have no interpre-
tation in our world of internal activities, they grew out of intuition about the
world of internal activities, the former on the ideas of transforming objects
and combining transformations, the latter on the idea of coordinatization of
objects.

In the language of group theory, due to the existence of non-isomorphic
interpretations, we sometimes think of a definite, and sometimes of an in-
definite (“any”) interpretation. However, the very use of language and its

10



logic requires that when we think in the language we necessarily assume
that it is a semantically complete language, no matter how we imagine the
interpretation. The situation is the same as when we use variables in our
thinking. Whether we attach a certain value to a variable or not, in think-
ing within classical mathematical language we necessarily assume that it has
some value. However, if we think of groups in the language of set theory,
then the groups themselves are the values of variables, not interpretations
of the whole language as described above, and we think of them differently.
The language of set theory allows us to connect and compare groups with
each other, without having to know the true nature of individual groups,
but possibly their isomorphic copies in the world of sets without urelements.
Thus, the process of modelling the initial intuition and the way of working
with the constructed models depends on the language in which we model the
intuition.

5 Mathematical models from other disciplines

The source of mathematical models does not have to be an intuition about
our internal world of activities but they can be “borrowed” from other disci-
plines. The nature of our thought and use of language, as well as the way
how we manage a vast complexity of the world, leads to extracting a certain
structure from such a domain. We extract from the subject certain objects,
relations and operations and we describe their properties. If we have thus
obtained an important model from that field then its sentence (axiomatic)
part is a mathematical model important for examination. For example, we
can use classical mechanics. Although particles, motion and forces do not
belong to mathematics, mathematics can take the structural properties of
phenomena (usually described as a set of sentences in an appropriate lan-
guage) and formally investigate them: the consequences (for example, in
the problem of three bodies), the equivalent formulations (for example, La-
grangian and Hamiltonian formulations of Newtonian mechanics emerged in
this way), etc.

6 Set theory

In the consideration of any objects, the consideration of the sets (collection)
of those objects naturally occurs. In mathematics, this step has a deeper
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meaning. Namely, the foundational mathematical modelling should model
just the intuition about mathematical and general thought modelling itself.
In the process of thought modelling, we extract a structure from a set of
objects, that is to say, we extract some distinguished objects, and some re-
lations and functions over the set of objects. Therefore, the subject of the
foundational modelling must be the structures themselves and their parts.
We can reduce the description of the structures to the description of their
parts. It is the standard result of mathematics that we can describe distin-
guished objects by functions, functions by relations, and relations by sets.
In this way we can reduce the foundational modelling to the analysis of sets.
From sets we can build all structures. Also, we can compare such structures
using functions between them. The language of sets provides simple means
for describing structures and constructing new structures from old ones. In
this way, sets give us the universal language for mathematics. Besides this,
sets are often necessary for specification. For example, the specification of
natural numbers requires the axiom of induction, which, in its most gen-
eral formulation, needs the notion of set. Likewise, the specification of real
numbers requires the axiom of continuity and the specification of Fuclidean
geometry requires Hilbert’s axiom of maximality, and they both need the
notion of set. However, in what way are there the set of natural numbers,
the set of real numbers, and the set of space points, when they are infinite?
Moreover, when we think of sets, we also consider sets of sets. If we want to
have an elegant, rounded and universal set theory, infinite sets are naturally
imposed on us, truly the whole infinite hierarchy of infinite sets, together
with infeasible operations on them.'® How can we understand the existence
of such sets and operations? Should we reject this theory which has proven
to be very successful because its objects can be realized only when they
are finite? Hilbert, who certainly knew what is good mathematics, said on
Cantor’s set theory of infinite sets:'! “This appears to me to be the most ad-
mirable flower of the mathematical intellect and in general one of the highest
achievements of purely rational human activity,” [Hilbert, 1926, p. 167].12

The language of set theory presupposes an intended interpretation. In
addition to the fact that we can only partially realize it, the interpretation
itself is not clear to us in many ways. It is clear that the idea of a set derives

0An elegant exposition of the standard ZFC set theory can be seen, for example, in
[Enderton, 1977].

' Cantor’s exposition of his set theory can be seen in [Cantor, 1883|.

2The complicated and at times dramatic historical development of set theory is de-
scribed in detail in [Ferreiros, 2007].
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from our activities of grouping, arranging and connecting objects and that
set theory is an idealized mathematical model for these activities. However,
in the very finite part, when we talk, for example, about the set containing
three concrete objects o1, 02 and o3, it is not clear what kind of object the set
itself is, let’s call it s = {01, 02,03}. Formally, we can describe the situation
by saying that we have added a new object to the objects, which we call
the set of these objects and which has the unique property that only the
objects o1, 02 and o3 belong to it, and no other. Such a description would
correspond to a combinatorial approach and obviously has a structuralist
overtone — the very nature of sets is not important but their relationship
to other objects is important. However, another description s = {z|z =
o1 or x = 0y or x = og} of the same set has a different connotation. Now
the set is given by a predicate, so it is a kind of extensional abstraction
of a one-place predicate. In this view of sets, as extensions of one-place
predicates, they have no structural role but have their individual nature in
our world of meaningful linguistic forms, in the same way that points and
directions have their individual nature in the geometry of our world. Let us
note that both the structural and individual view of sets change the initial
intuition about the impossibility of realizing infinite sets. In the structural
view, the set of all natural numbers is a new object equal to finite sets — the
only difference is that infinitely many objects enter with it into the relation of
belonging. In the individual view, the set of all natural numbers is also equal
to finite sets — the only difference is that infinitely many objects satisfy the
condition “to be a natural number”. The idea that a set must be “made” of its
elements is not present here at all, an idea according to which we can never
make an infinite set. Despite all the doubts related to the notion of a set, the
constructed mathematical model is very successful. Today ZFC axioms form
its axiomatic part, and the model has an intended interpretation, although
there are doubts as to what the interpretation is, what we can realize and
how we can realize. Here we only have a more pronounced tension between
the basic intuition and the final model, which can ultimately lead to model
refinement, model change, or even separation into multiple models.!?

13Tn addition to other models of set theory that complement, weaken or change
the ZFC axioms (see [Fraenkel and Bar-Hillel, 1958] and, for newer alternatives,
[Apostoli et al., 2009]), the multiverse view in set theory has recently been developed,
according to which there is no “true” mathematical model for the concept of set, but there
are various equally acceptable models [Hamkins, 2012].
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7 What mathematics is

The conceptions described above bring all the essential characteristics of
mathematical conceptions. First of all, mathematical conceptions have a
clearly defined purpose — to be successful tools in the process of rational
cognition, and in rational activities in general. This purpose significantly
influences their design and determines their value. We can use mathemati-
cal conceptions directly like the use of numbers, through an ideal model of
interaction with the world. We can use them indirectly: (i) like the use of
Euclidean geometry — by changing the interpreted part of the theory into an
external interpretation, (ii) like the use of group theory — by giving just the
axioms and their consequences regardless of interpretation, which could be
the external one, or (iii) like the use of set theory — by organizing effectively
other mathematical tools. Also, we use mathematical conceptions indirectly,
(iv) as ingredients of more complex mathematical conceptions — as it is, for
example, the case with Euclidean space as a tangent space on a Riemann
manifold, or (v) we use them indirectly in the way described above with Eu-
clidean geometry — to interpret them in collections of complex mathematical
objects for the purpose of making them more intuitive and more manageable.
A multitude of specific mathematical models that are used to model specific
problems should also be mentioned here. Such a model is applied directly,
its purpose is concrete, and its design and evaluation largely depend on the
problem it models.'*

The conceptions described above witness that mathematics is an inner
organization of rational cognition and knowledge, a thoughtful shaping of
the part of the cognition that belongs to us. For example, we organize
possible results of measurement in an appropriate number system. The inner
organization needs to be distinguished from (but not opposed to) the outer
organization of rational cognition, a real shaping of an environment that
comprises construction of a physical means for cognition (for example, an
instrument for measuring temperature). Mathematics is a process and result
of shaping our intuitions and ideas about reality of our internal activities,
into thoughtful models which enable us to understand and control better the
whole reality. For example, we shape our sense for quantity into a system of
measuring quantities by numbers. Thoughtful modelling of other intuitions
about our internal human world of activities, for example intuitions about

YTn the book [Carrier and Lenhard, 2017], mathematics is analyzed as a means of build-
ing specific mathematical models, while in the book [Fenstad, 2018] a general model of
such use of mathematics is given.
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symmetry, flatness, closeness, comparison, etc., leads to other mathematical
models. This claim will gain its full meaning only when I explain what the
terms “internal world of activities”, “intuition” and “mathematical model”
mean. That’s the content of the rest of this section.

In the introductory part, I briefly described our internal world of activ-
ities as the world that consists of activities over which we have strong con-
trol and which organize and design by our human measure. The examples 1
listed there are activities that we can easily recognize in free children’s play.?
These activities form the basis of the world of internal activities of adults.
With growing up, activities develop, but this is primarily the development
of their design and conceptualization. Their presence in early development
indicates their biological basis.'® They are a unique characteristic of the
human species, an essential part of our evolutionarily developed abilities by
means of which, unlike other species that adapt to the environment, we adapt
the environment to ourselves.'” Of course, cultural evolution and social con-
text play a decisive role in designing and conceptualizing these activities.'®
There are many examples of highlighting the importance of these activities.
Dedekind talks about “the ability of the mind to relate things to things, to
let a thing correspond to a thing, or to represent a thing by a thing, an abil-
ity without which no thinking is possible” [Dedekind, 1888, p. viii|]. Hilbert
see the source of his finitist mathematics in “extralogical concrete objects
that are intuitively present as immediate experience prior to all thought”,
and these i+objects are “the concrete signs themselves, whose shape ...is
immediately clear and recognizable” [Hilbert, 1926, p. 171|. Feferman writes
that the source of mathematical conceptions “lies in everyday experience in
manifold ways, in the processes of counting, ordering, matching, combining,
separating, and locating in space and time” [Feferman, 2014, p. 75]. Hersh
writes “To have the idea of counting, one needs the experience of handling

5Tn [Culina, 2022], it is argued that, contrary to the narrow standards of mathematics
education, we best help children in mathematical development by providing them with an
environment in which they will, in free play, and with our unobtrusive help, develop their
internal world of activities, design it, conceptualize it and apply it in solving problems.

6The book [Lakoff and Nuiiez, 2000, p. 28| discusses: “ordinary cognitive mechanisms
as those used for the following ordinary ideas: basic spatial relations, groupings, small
quantities, motion, distributions of things in space, changes, bodily orientations, basic
manipulations of objects (e.g., rotating and stretching), iterated actions, and so on.”

17%Man is a singular creature. He has a set of gifts which make him unique among the
animals: so that, unlike them, he is not a figure in the landscape — he is a shaper of the
landscape.” [Bronowski, 1974, p. 19].

18See, for example, [Kitcher, 1983] for the influence of cultural evolution and
[Hersh, 1997, Ernest, 1997] for the influence of human society.
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coins or blocks or pebbles. To have the idea of an angle, one needs the
experience of drawing straight lines that cross, on paper or in a sandbox”
[Hersh, 1979, p. 46]. And so on. Internal activities are concrete activities
with concrete objects: they take place in space and time, and in a given
environment — on the table with a pencil and paper, in a ballroom, or on a
sandy beach. They are experiential activities, but it is not an experience of
the external world, but an experience of our actions in the world available
to us and subordinated to us. We experiment not with the objects of the ex-
ternal world but with the possibilities of our actions in the world adapted to
us. In this world, Piaget distinguishes two types of knowledge [Piaget, 1970,
p. 16-17]. An example of the first type of knowledge is when we pick up two
objects and determine that one is heavier. This knowledge arose from our ac-
tion on objects and its source is in these objects: it is knowledge about these
objects — knowledge about the world. Piaget calls such knowledge “physical
knowledge”. But when we order objects, for example by weight, this order
was created by our actions and its source is in our activities and not in the
objects. The knowledge that has its source in such activities, for example
that there are always the same number of objects no matter how they are
ordered, is called by Piaget “logical mathematical knowledge”. Mathematical
knowledge has its source in the world of internal activities precisely in this
way: it springs from these activities themselves and not from the objects of
these activities. Feferman writes: “Theoretical mathematics has its source
in the recognition that these processes are independent of the materials or
objects to which they are applied and that they are potentially endlessly re-
peatable.” |Feferman, 2014, p. 75]. However, we cannot completely separate
activities from the objects of the activities: generally speaking, they depend
on the objects. For internal activities, it is important that this connection is
weak, that our control over these activities dominates, and not the influence
of objects on them. Likewise, it is not possible to draw a clear line where
the world of internal activities ends and activities become external. Take for
example constructing and deconstructing objects. When a child does this
with legos, it is surely an internal activity. Although the structure of Lego
blocks affects the possibilities of construction, these are activities over which
we have strong control and the possibility of designing according to our own
measure. Constructing and deconstructing stone walls without mortar is cer-
tainly not an internal activity, because it requires experience working with
weights, centers of gravity and forces in contact. But both of these activities
are the source of the same mathematical idea, the idea of analysis and syn-
thesis of what we are researching: let’s examine the phenomenon by breaking
it into parts, study those parts and synthesize the knowledge thus acquired
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into knowledge about that phenomenon. This idea is a mathematical idea
because it has its source in our approach to the world, not in the world itself.
Although it is present in both mentioned activities, in the internal activity
it takes a clear and separate form, while in the other activity it is connected
with the physical content. Because of the freedom we have in the world sub-
ordinated to us, I believe that we can always internalize external activities,
represent them with internal activities in which the mathematical idea will
come to full expression. To conclude, although it is about concrete activities
in a real environment, due to the subordination of that environment to our
activities and due to the strong control over these activities and the strong
possibilities of their shaping, we can talk about these activities as our inter-
nal world of activities, and even about a certain kind of a priority of that
world.

The concept of intuition is not an intuitive concept. In [Kitcher, 1983,
p. 49] Kitcher writes: “ 'Intuition’ is one of the most overworked terms in the
philosophy of mathematics, Frege’s caustic remark frequently goes unheeded:
"We are all too ready to invoke inner intuition, whenever we cannot produce
any other ground of knowledge." ”.'9 In [Hersh, 1997, p. 61-62|, Hersh gives
a whole list of different and unclear meanings of this term, but also empha-
sizes its central role in the philosophy of mathematics: “1. All the standard
philosophical viewpoints rely on some notion of intuition., 2. None of them
explain the nature of the intuition that they postulate., 3. Consideration of
intuition as actually experienced leads to a notion that is difficult and com-
plex, but not inexplicable., 4. A realistic analysis of mathematical intuition
should be a central goal of the philosophy of mathematics.”. However, intu-
ition about our internal world of activity is completely clear, it is intuition
in the original sense of that word — “immediate awareness” — devoid of any
ambiguities and misunderstandings. In my opinion, mathematical intuition
is precisely this intuition.

Major mathematical models, like the models described above, arise from
intuition about our internal activities and organization. It is from these
concrete activities that the idea of an idealized world emerges, the world

For example, Brouwer in his First act of intuitionism [Brouwer and Heyting, 1975,
p. 509]writes: “...intuitionist mathematics is an essentially languageless activity of the
mind having its origin in the perception of move in time, i.e. of the falling apart of a
life moment into two distinct things, one of which gives way to the other, but is retained
by memory. If the two-ity thus born is divested of all quality, there remains the empty
form of the common substratum of all two-ities. It is this common substratum, this empty
form, which is the basic intuition of mathematics.”.
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that expands and supplements the internal world of activities.?’ In his book
[Mac Lane, 1986]|, Sounders Mac Lane describes this process on a multi-
tude of examples. The table on page 35 of the book shows a whole list
of examples of activities from which certain ideas are born, and from ideas
mathematical concepts and models. For example, from movements comes
the idea of change, whose formulation leads to the concepts of rigid motion,
transformation group and rate of change; estimating leads to the ideas of
approximation and closeness, and their formulation to the concepts of conti-
nuity, limes and topological space. However, what is the nature of idealized
mathematical models? What is the nature of the irrational numbers that
Dedekind “creates” to fill the "gaps” in the linearly ordered field of rational
numbers [Dedekind, 1872]7 Hilbert writes about infinity as a paradigmatic
example of an ideal mathematical element: “...nowhere is the infinite re-
alized; it is neither present in nature nor admissible as a foundation in our
rational thinking ... The role that remains to the infinite is, rather, merely
that of an idea — if, in accordance with Kant’s words, we understand by an
idea a concept of reason that transcends all experience and through which
the concrete is completed so as to form a totality ...” [Hilbert, 1926, p. 190].
In |[Feferman, 2014, p. 4| Feferman writes: “The basic conceptions of mathe-
matics are of certain kinds of relatively simple ideal world pictures that are
not of objects in isolation but of structures” and “The basic objects of math-
ematical thought exist only as mental conceptions”. For Hersh, mathemat-
ical objects are “mental objects with reproducible properties” [Hersh, 1997,
p. 66]. I consider all the above descriptions of mathematical objects and
concepts to be insufficiently clear because they refer to insufficiently clear
psychological terms. The same applies to other descriptions, which I found
in the literature, of mathematics as a human invention. My view of the
nature of mathematical models stems from my view of the essential role of
language in thinking. It has its source primarily in the works of von Hum-
boldt [Humboldt, 1836] and Whorf [Carroll, 1956], and is explained in detail
in [Culina, 2021]. According to this view, language is not only a medium for
expressing and communicating thoughts, but a medium in which thoughts
are realized, a medium in which thoughts take their completed form. In
the words of von Humboldt: “Language is the formative organ of thought.
Intellectual activity, entirely mental, entirely internal, and to some extent
passing without trace, becomes, through sound, externalized in speech and

20The very creation of ideas is largely an unconscious process: “Most thought is un-
conscious ...inaccessible to direct conscious introspection. We cannot look directly at
our conceptual systems and at our low-level thought processes.” [Lakoff and Nufiez, 2000,

p. 5.
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perceptible to the senses. Thought and language are therefore one and in-
separable from each other. But the former is also intrinsically bound to the
necessity of entering into a union with the verbal sound; thought cannot
otherwise achieve clarity, nor the idea become a concept. The inseparable
bonding of thought, vocal apparatus and hearing to language is unalterably
rooted in the original constitution of human nature, which cannot be further
explained ... without this transformation, occurring constantly with the help
of language even in silence, into an objectivity that returns to the subject,
the act of concept formation, and with it all true thinking, is impossible.”
|[Humboldt, 1836, p. 50]. It is also important to point out here that, con-
cerning thinking, the abstractions are the language abstractions, and not
thinking about so-called abstract objects. We talk about concrete objects
(which can be real or imagined), and abstraction is achieved by extracting
certain predicate and function symbols with which we talk about objects. For
example, we count using concrete objects. Thus, the language of arithmetic
talks about concrete objects (whose nature is not important to us), and with
the language itself we achieve the appropriate abstraction.The language of
arithmetic separates what is important to us when we use objects as num-
bers (first number, successor, predecessor, comparison, ... ) from what is not
important (e.g., size of marbles if we use collections of marbles for numbers,
or font of decimal digits if we use sequences of decimal digits for numbers).
In this way of looking at the nature of thinking, which in its final effect is
the creation and use of language, we can only realize mathematical mod-
els by building an appropriate mathematical language. By choosing names,
function symbols and predicate symbols, we shape the initial intuition into
one structured conception. Since the conception usually goes beyond our
constructive capabilities, the constructed language has only partial interpre-
tation, and that interpretation is internal — the interpretation in our internal
world of activities. Since the interpretation is only partial, and because the
imagined domain of interpretation is usually infinite, we cannot determine
the truth values of all sentences of the language. Therefore, we must fur-
ther specify the conception by appropriate choice of axioms. Thus, the final
mathematical model (theory) is a junction of axioms and partial internal
interpretation of an adequate language. Sometimes, as we have seen on the
example of the theory of groups, a mathematical model can be reduced to
a set of axioms without an internal interpretation, although it arose from a
corresponding intuition about the world of internal activities. Sometimes,
the internal interpretation can be a total interpretation in another mathe-
matical theory, as we have seen on the example of FKuclidean geometry. This
way of looking at mathematical models can be acceptable to those who be-
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lieve that mathematical concepts exist even without language. Given the
concrete nature of language, unlike the vague nature of mental phenomena,
they can accept mathematical language as a convenient representative of
mental conceptions. I would also like to point out here that viewing abstract
thinking as the creation and use of language does not mean denying the com-
plex thought processes that take place behind it. This is a functional view:
only the final effect of thinking is considered. However, we must not forget
that although a mathematical model is the final product of modelling an in-
tuition about our internal world of activities, in real mathematical practice
it is never isolated from the source from which it originated. This is espe-
cially important because a mathematical model, generally speaking, is not
complete — there are multiple interpretations that are extensions of partial
interpretation and that satisfy axioms; and intuition always leaves room for
completion. In addition to testing a mathematical model as a means of ratio-
nal cognition, it is also tested by how well it models the initial intuition, how
well its consequences correspond to the intuition from which it emerged. In
[Lakatos, 1976], Lakatos clearly demonstrated the importance for mathemat-
ics of this internal testing and revision of mathematical models (Lakatos calls
this activity quasi-empirical mathematics). Feferman |Feferman, 2014 dis-
tinguishes mathematical conceptions by how close they are to everyday prac-
tice. The more distant they are, the less clear he considers them. For those
conceptions that are completely clear, such as the conception of natural num-
bers, he considers that the appropriate logic is first-order classical logic, and
for those at the other end of clarity, such as set theory, he considers that the
appropriate logic is semi-intuitionistic. Similarly, Ferreiross [Ferreiros, 2016]
distinguishes mathematical conceptions according to whether their truth is
based in our cognition and practice, such as the conception of natural num-
bers (Ferreiros then speaks of elementary mathematics) or require additional
hypotheses, such as the conception of the continuum (Ferreiros then talks
about hypothetical advanced mathematics). Although I consider it impor-
tant how strongly mathematical models are connected to the internal world
of activities, my view of mathematical models is more uniform. In my opin-
ion, the basic criterion for evaluating mathematical models is their success
as a tool of rational cognition. Seen in this way, there is no difference, for
example, between arithmetic and Hilbert spaces, although their connection
to the internal world of activities is different. Also, in my opinion, there is
no difference in the meaning of the truth of different mathematical models.
To me, all mathematical statements are specifications, whether they specify
what we will do with natural numbers in our internal world of activities,
or whether they specify the truth of the continuum hypothesis. From such
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an understanding of the truth of mathematical concepts, it follows that the
logic of mathematical models is uniform, classical logic, although perhaps in
some situations, related to the problem that is being solved, it makes sense
to look at mathematical models with non-classical logics. The newer phi-
losophy of mathematics, the so-called philosophy of mathematical practice,
devotes special importance to these processes of interaction of mathemati-
cal models and basic intuitions, as one of the main sources of mathemadtics
(see, for example, [Mancosu, 2008, Ferreiros, 2016]). Likewise, mathematical
models are not isolated from each other. Set theory is a natural environment
for formulating and comparing mathematical models. In such an approach,
axioms become the definition of a certain type of structure. However, set
theory analyses the described structures in a uniform way, without going into
their nature, whether they are extracted from the external world or from the
internal world of our activities. Thus, although it gives an elegant mathe-
matical description, set theory can also hide the true nature of mathematical
models.

Mathematics is, in a great part, an elaborated language. The “magic”
of mathematics is, in a great part, the “magic” of language. Inferring logi-
cal consequences from axioms, we establish what is true in a mathematical
model. This can be very creative and exciting work and it seems that we
discover truths about some existing exotic world, but we only unfold the
specification. The key difference with scientific theories is that the inter-
pretation here is in our internal world of activities and not in the external
world. The external interpretation of a scientific theory enables us to test
the theory, whether it has a power of rational cognition of nature. If the
theory has such power then at least some objects of the theory exist in
the primary sense of the word and at least some sentences of the theory
are truths about nature. If the language does not have such a part, and
that is the case with mathematics, then the objects we are talking about
exist only within the conception (story), although they do not exist in the
external world. Equally, if the language does not have an experimentally
verifiable part then sentences we consider true within the conception are not
true in the external world. We cannot experimentally verify that ||+ || = |||
(2 +2 = 4), not because it is an eternal truth of numbers, but because it
is the way we add tallies. Likewise, we cannot experimentally verify that
(22)" = 22 because it is the consequence of how we imagined real numbers
and functions. Mathematical objects are, possibly, through a partial internal
interpretation, objects extracted from our internal world of activities, and
mathematical truths are, possibly, through a partial internal interpretation,
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truths about our internal activities.?! We are free to imagine any mathe-

matical world. The real external existence of such a world is not important
at all; all that matters is to be a successful thought tool in the process of
rational cognition. In Cantor’s words, “the essence of mathematics lies pre-
cisely in its freedom” [Cantor, 1883, p. 66]. The only constraint is, inside
classical logic, that conceptions must not be contradictory. For Hilbert, in
mathematics to exist means to be free of contradictions. In Hilbert’s words:
“the proof of the consistency of the axioms is at the same time the proof of
the mathematical existence”, [Hilbert, 1900, p. 265]. In Dedekind’s words,
‘“numbers are free creations of the human mind” |Dedekind, 1888, p. vii|.
These views are in sharp contrast with historical views that mathematical
truths exist really in some way and that we discover them and not create
them. Historically, this change of view occurred in the 19th century with
the appearance of non-Euclidean geometries. The new philosophical view of
mathematics has freed the human mathematical powers and it has caused
the blossom of modern mathematics. It is a nice example of how philosophi-
cal views can influence science in a positive way. According to the old views
mathematical truths are a particular kind of truths about the world. An
exemplar is Kuclidean geometry — according to the old views, it discovers
the truths about space. The appearance of non Euclidean geometries which
are incompatible with Fuclidean geometries but are equally logical in think-
ing and equally good candidates for the “true” geometry of the world has
definitely separated mathematics from the truths about nature. It has be-
come clear that mathematics does not discover the truths about the world.
If it discovers the truths at all they are in the best case the truths about
our own activities in that world. From my personal teaching experience, 1
know that looking at mathematics as a free and creative human activity is
a far better basis for learning mathematics than looking at it as an eternal
truth about some elusive world. Claims that mathematical objects exist in
the external world, real or special, and that mathematical truths are truths
about such a world, are unfounded and lead to religion. Such a belief can
of course be very inspiring and can produce very powerful mathematics, but
mathematics itself is a human creation, ultimately, a junction of axioms and
partial internal interpretation of an adequate language.

21Some statements get their truth through the partial interpretation of language, for
example that 242 = 4, while for some statements the partial interpretation is not enough
to determine their truth (e.g. the axiom of the completeness of real numbers or the
continuum hypothesis). Then the assignment of truth to these statements is, at least
in part (the axiom of the completeness of real numbers) o completely (the continuum
hypothesis), a specification of an idea that transcends the internal world of activity.
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8 On the existence of mathematical objects

I will now analyse in more detail the question of the existence of mathemat-
ical objects. The key to the answer is in understanding the essential role of
language in our thinking. In [Culina, 2021] it is shown how we synthesize our
rational cognition of the world through language. An ideal language is, for
example, an interpreted language of the first-order logic in which we know
the semantic values of all non logical primitive symbols of the language as
well as the semantic values of all descriptions and sentences in the language.
However, in a real process of rational cognition, we use names for which we
do not know completely what they name, predicate and function symbols for
which we do not know completely what they symbolise, and quantified sen-
tences for which we do not know if they are true or not. For a theory to be a
scientific one, at least some names and some function and predicate symbols
must have an exterior interpretation, an interpretation in the exterior world,
not necessarily a complete one. This partial external interpretation enables
us to perform at least part of the binary experiments described by atomic
sentences. This allows nature to put its answers into our framework, so that
we can test our conceptions experimentally. Without this part the theory is
unusable. On the other hand, due to the partial external interpretation of
the language and the impossibility to perform all binary experiments deter-
mined by atomic sentences, we necessarily complete the theory with a set of
sentences that we consider true in a given situation (axioms of the theory).
Thus, scientific theory is also a junction of axioms and partial external in-
terpretation of language. Viewed at the level of the final product, scientific
and mathematical theory differ in that the former has an external partial
interpretation and the latter an internal one. As I already mentioned when
I considered how Euler’s number e exists, although our language usually
has only a partial interpretation, the logic of using the language assumes
that it is a semantically complete language, i.e. that it is an ideal language
in the sense as I described at the beginning of this paragraph. Because of
this assumption, in thinking itself there is no difference whether we think
of objects that really exist or we think of objects that do not really exist.
That difference can be registered only in a “meeting” with reality. Thus
the question of the existence of the objects we speak and think about is
completely irrelevant as long as we do not try to connect language with the
external world. Because of the “encounter” with reality, at least some of the
objects that scientific theory speaks of must exist in the primary sense of
the word, as objects from the external world. What about the other objects
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that scientific theory talks about? Since the early 19th century, physicists
and chemists have used the assumption of the existence of atoms to explain
many phenomena in matter. Atoms were initially only imagined objects,
and in the end it was established that they really exist. Unlike an atom,
the ether was initially an imagined object, and in the end it was established
that it does not exist. From this example we see that in science imagined
objects can be potentially existing objects. For the next example, let us
take a material particle in classical mechanics, the particle occupying a sin-
gle point in space. It is imagined from the beginning as an idealized object,
which does not really exist, but real objects can approximate it. Let us not
forget that the basic laws of classical mechanics speak precisely of material
particles. Eg. Newton’s law of gravitation speaks of the gravitational force
between two material particles. Only by applying these idealized laws do
we obtain laws of the behaviour of real objects: we “deconstruct” real object
into material particles, apply idealized laws to material particles, in order to
obtain laws about real objects. Perhaps the notion of a material point can
be avoided in the formulation of classical mechanics, but that formulation,
if it exists at all, would be unnecessarily complicated. The above examples
show that imagined objects together with statements that we consider true
for them are very important for scientific theory. If we were to ban their use,
we would literally cripple scientific theories. They are a necessary linguistic
tool of scientific theories and their status can change over time. However,
I would point out that their significance follows exclusively from their con-
nection with the objects of the theory that exist in the external world. The
situation is analogous to mathematical theories, only here we have a partial
interpretation in our internal world of activities. Just as physical models
are idealizations and approximations of real processes in the external world,
mathematical models are idealizations and approximations of processes in
our internal human world of activities. However, as with physical models,
the importance of mathematical models also stems from the success of their
application in rational cognition. Here the ontological situation is even bet-
ter than in the case of scientific theories, because mathematical theories are
completely under our control, in the sense that we determine what will be
true and what will not be true in such a theory, not the external world.
Unlike objects from the outside world, which are under the authority of na-
ture, we create mathematical objects, and the truths about them are in fact
their specifications. Some mathematical objects are determined up to iso-
morphism, such as natural numbers. We realize these objects internally as
part of the (partial) realization of the corresponding structure. Some math-
ematical objects can be completely realized, such as not too large natural
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numbers, or up to a satisfactory approximation, as irrational numbers. Some
mathematical objects have a more specific nature, such as sets. We realize
them through their close representatives, for example, sets with appropriate
one-place predicates (linguistic forms of a certain language). Representation
is a kind of isomorphism. However, the difference is that not all isomor-
phic structures are equal to us, but we have a certain, perhaps not entirely
clear interpretation as with sets, to which we look for “close” representatives.
Some mathematical objects have a completely determined nature, such as
geometric objects in the primary interpretation of Euclidean geometry. We
realize them approximately, but directly (not through isomorphism or rep-
resentation) in the world of our internal activities.

There is another way we can understand the existence of mathematical
objects. If a theory is consistent, from Henkin’s [Henkin, 1949| proof of
the completeness of a deductive system follows the existence of a canonical
model whose objects are classes of equivalence of the corresponding terms
of the language. Since this model is homomorphically embedded in any
interpretation that satisfies axioms, this means that we can always represent
a finite portion of imagined mathematical objects through their proper names
in the language in which we speak of those objects.

To summarize, let us start from the fact that the question of the exis-
tence of the objects of language is irrelevant to the formation and use of
language in the process of thinking, until the moment when we apply lan-
guage to the external world. For a scientific theory, at a given stage of its
development, the existence of parts of language that speak of objects whose
existence in the outside world has not been established and about which the
theory makes certain claims can only be evaluated through the way these
parts relate to the experimentally verifiable part of the theory. Through this
interaction with the experimentally verifiable part of the theory, it can be
shown that such objects exist or do not exist, and thus their ontological sta-
tus is revised. However, for some objects, such as material particles, it can
be shown that they are imagined objects that enable an efficient, perhaps
necessary, linguistic synthesis of rational cognition. In the latter case we
may regard them as mathematical objects, our imagined tools for rational
cognition. Thus we can equate them with the parts of language that belong
to mathematics and reduce the problem of their existence to the problem
of the existence of mathematical objects. Since mathematical language, i.e.
mathematical models, do not have an experimentally verifiable part, from
that point of view, the question of the existence of mathematical objects is
irrelevant, and mathematical truths are only the specifications of imagined
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objects.?? The only thing that matters is how we apply mathematical lan-
guage in rational cognition. Thus, in the broadest view, a view that does not
restrict mathematical freedom, a mathematical model is a set of sentences of
a language that we declare to be true and that has possibly a partial internal
interpretation. Thereby, it is important that mathematical model is intended
to be a successful tool for rational cognition or rational activities in general.
It is the success of a mathematical model that determines its quality. And
for a mathematical model to be successful, its language must somehow be
related to the language we use to describe the outside world. For example,
when we count, basically, with the words “ one ”, “ two 7, “ three ”, ..., we
associate the objects we are counting. We don’t need to know at all what
those words name and whether they name something at all. Of course, we
imagine the language of numbers so that these words name objects in some
structure of numbers (we can assume that these words themselves form that
structure). But the point is that we can count without knowing what those
words name. Let us imagine another situation, that someone gave us axioms
of real numbers without us ever hearing about real numbers. By deriving
statements from these axioms and defining new words using existing ones,
we may understand that this language allows us to describe the measure-
ment process and express the measurement results in it. In this way, that
language (that theory) itself becomes a successful tool of rational cognition,
regardless of what the objects of the language are and whether they exist
at all. T have given these extreme cases to show that in the broadest view
of a mathematical model, as a consistent set of axioms in a language, the
question of what that theory is talking about need not be important at all
for its use. The set of axioms can even have multiple interpretations. And if
you just want to have some interpretation, we can build a canonical model
from the very strings of the language of the theory. But real and success-
ful mathematical models do not arise in such a way. As I described in this
article, they are the results of modelling intuition about activities from our
internal human world — that world gives life and power to a mathematical
model and in that world the mathematical model have its own partial inter-
pretation which significantly reduces the incompleteness of the model. To
conclude, the best I can say is that mathematical objects do not exist in the
external world — they are our internally imagined objects, some of which, at
least approximately, exist in our internal world of activities or we can realize
or represent them there.

22The specifications are rarely complete in the sense that they determine the truth value
of each statement.
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9 How mathematics is applied

It remains to explain in more detail, how is it possible that something imag-
ined can contribute to rational cognition of the world? At the beginning of
Section 7 I stated that we can use mathematical models directly or indirectly.
There I also stated how mathematical models are used indirectly. I think
their indirect use is clear enough, so in this section I will only deal with the
direct use of mathematical models.

My understanding of the direct use of mathematical models stems from
my view of rational cognition as a kind of synthesis of us and nature that
takes place through the use of language, as it is explained in detail in
[Culina, 2021]. Let’s look at the simplest statement about the world of the
form P(a) where “a” is the name of an object and “P” is a predicate symbol.
For example, “a” is my dog’s name and “P” stands for “is afraid of thunder”.
The structure of the statement P(a) reflects our innate approach to the world
which we divide into objects (elements upon which something is done) and
into predicates (which determine what is done). To my knowledge, Whorf is
the first one to recognise that the object-predicate dualism is a prominent
feature of Indo-European languages: “Our language thus gives us a bipolar
division of nature. But nature herself is not thus polarized.” [Whort, 1940,
p.247]. He also recognizes that the dualism and the way we analyse nature
is not inherent to nature but to our approach to nature: “We dissect nature
along lines laid down by our native language. The categories and types that
we isolate from the world of phenomena we do not find there because they
stare every observer in the face; on the contrary, the world is presented in
a kaleidoscopic flux of impressions which has to be organized by our minds
— and this means largely by linguistic systems in our minds. We cut na-
ture up, organize it into concepts and ascribe it significance as we do, ...”
[Whorf, 1940, p.231]. To determine whether a statement P(a) is true, for
example whether my dog is afraid of thunder, knowing the meaning of the
symbols “a” and “P” is necessary but not sufficient. I still have to do an ap-
propriate experiment, let nature give its contribution, to determine that it is
a true sentence. These binary investigations (“experiments”) are the starting
point for the overall rational cognition. We make the question and offer two
possible answers, the so-called truth values termed True and False, and na-
ture selects an answer. The selected truth value does not belong exclusively
to us nor does it belong exclusively to nature. It is the objective result of
the synthesis of us and nature in the process of rational cognition: it dis-
criminates what is and what is not. This synthesis is also extended to more
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complex linguistic forms, according to the meaning we give to these forms.
The truths that we achieve are not truths about the world itself — they are
truths of our rational interaction with the world. In this process we form
a rationalized reality. The rationalized reality is the result of our synthesis
with nature through the creation and use of language in the process of ra-
tional cognition. As Whorf writes: [Whortf, 1941, p.285]: “We don’t think
of the designing of a radio station or a power plant as a linguistic process,
but it is one nonetheless.” The role of mathematics in rational cognition is
precisely the one I stated in the second pregraph in Section 7: mathematics
is an inner orgamnization of rational cognition and knowledge, a thoughtful
shaping of the part of the cognition that belongs to us. Using the example
of real numbers, natural numbers, and a first order language, I will show
how mathematical models are directly used in rational cognition understood
in this way. My view of the essential role of language is set out in detail in
[Culina, 2021].

Real numbers are imagined as the results of the process of measuring. In
the process of measuring, we connect them with the external world, enabling
nature to select one of the offered numbers as its answer. The number itself
is not real (in the sense that it does not belong to the external world) but
nature’s selection is real. Numbers belong to our inner organization of the
measurement process but nature’s selection is a truth about the external
world. For example, in the process of measuring the speed of light, between
all numbers, nature selects the number c. The selected number ¢ possibly
exists as our internal construction. Whether it is a rational or irrational
number depends on the choice of units of measurement. However, that c
is the speed of light is the idealized truth about the external world which
is synthesized in the process of measuring. Idealized, because we assume
that ¢ is the result of an idealized process of measurement to which the
actual measurement is only an approximation. In the same way, the simple
assertion about natural numbers, that 2 + 2 = 4, is a true sentence about
the imagined world of natural numbers, and not a truth about the external
world. However, through the real process of counting, we can use assertions
about numbers to obtain synthesizing assertions about the external world.
For example, when we put two apples in a basket which already contains two
apples, we predict that there will be 2 42 = 4 apples in the basket. This is
the prediction about reality deduced from the mathematical assertion that
2 4+ 2 = 4 and the assumption that the mathematical model of counting
and adding one set of things to another set is applicable in this situation.
However, we must distinguish the mathematical assertion that 2 + 2 = 4
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from the assertion about reality that when we add 2 apples to 2 apples there
will be 4 apples. The best way to see the difference is to imagine a situation
where we add 2 apples to 2 apples and get 5 apples. It would mean that
it is not always true, as we have thought, that adding 2 apples to 2 apples
gives 4 apples, but in some situations, according to as yet unknown physical
laws, an additional apple emerges. However, this situation would not have
any influence on the world of numbers. In that world it is still true that
242 = 4. It only means that in some real situations we cannot apply
the mathematical model of counting and addition. The natural numbers
model of counting as well as the real numbers model of measuring or any
other mathematical model have their assumptions of applicability. For the
natural numbers model we assume that we can associate the number of
elements to a collection of objects by the process of counting. For the real
number model we assume that we can always continue to measure with
ten times smaller unit, if it is necessary. A real process of measuring, for
example, of the distance of point B to point A, must stop in some step,
because the passage to a ten times smaller unit would not be possible with
an existing measuring instrument or that passage revises our understanding
of what we are measuring at all. For example, in measuring the distance
between points A and B marked by pencil on a paper, the passage to the
one hundredth part of millimetre requires a microscope. Looked at under
a microscope A and B are not points any more, but diffused flecks. And
what are we measuring now? The distance between the closest points of the
two flecks? If we continue to magnify, we will see molecules which constitute
flecks and which are in constant vibrations. And if we went to more tiny
parts we would come to the world of quantum mechanics in which classical
notions, on which our conception of measuring distance is based, are not
valid any more. However, the question whether it is possible to apply the
mathematical model of measuring in reality is not a mathematical question
at all. Only when the assumptions of the model of measuring are (at least
approximately) fulfilled can we employ the mathematics of real numbers to
the real world. Likewise, only when the assumptions of the model of counting
are fulfilled can we employ the mathematics of natural numbers to the real
world. Only then we have at our disposal the whole mathematical world that
can help us in asserting truths about the real world. We have at our disposal
an elaborate non-verifiable language which we can connect with a verifiable
language, mathematical truths which we can synthesize into truths about the
external world. If contradictions occurs in an interaction with the verifiable
part of the language, it does not mean that the mathematical model is false
(the concept of the real truth and falsehood does not make any sense for the
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model), but that the assumptions about its applicability in that situation
are false.

A first-order language is a mathematical model constructed for the use
in rational cognition just like natural numbers are constructed for count-
ing.?® This model is the result of thoughtful modelling of intuition about
our natural language. A first-order language has the external assumptions
of its use. These are: 1) existence of the domain of interpretation, 2) every
name names an object, 3) every function symbol symbolizes a function which
applied to objects gives an object, and 4) every predicate symbol symbolizes
a predicate which applied to objects gives one of the two possible results,
“true” or “false”. Only when these assumptions are fulfilled can we employ
the first-order language model to the real world: all the first order logic to-
gether with computability theory to examine external structure and derive
truths about it.?*

Quine [Quine, 1951] in his naturalized epistemology considers that every
part of the web of knowledge is liable to experiment, including logic and
mathematics. That is true, but there are qualitative differences between sci-
ence on one side and logic and mathematics on other. Experimental evidence
can affect the truth values of scientific sentences but not the truth values of
mathematical and logical sentences. It can only question the applicability or
adequacy of mathematical models and language frameworks in some parts of
science. Scientific theories are true or false of something while mathematical
models are good or bad of something.

10 The structure of mathematics

Various mathematical models are not mutually disconnected but they are
interwoven. Moreover, we express these connections also by corresponding
mathematical models. First of all, there is a not so big collection of prim-
itive mathematical models (“mother structures” in Bourbaki’s terminology
[Bourbaki, 1950]) that model the basic intuitions about our internal world
of activities, intuition about near and remote (topological and metric struc-
tures), about measuring (spaces with measure), about straight and flat (lin-
ear spaces), about symmetry (groups), about order (ordered structures) etc.

23See, for example, [van Dalen, 2013] for a detailed description of the syntax and se-
mantics of first-order languages.

24Tn my reading of Fenstad [Fenstad, 2018], this is exactly the general scheme of meaning
and application of mathematics that he proposes.
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We use them as ingredients of more complex mathematical models. The
complex mathematical models enable us to realize some simple and impor-
tant mathematical ideas (for example, we use normed linear spaces to realize
an idea of the velocity of change) or they have important applications (like
Hilbert spaces which, among other things, describe the states of quantum
systems). Therefore, the world of mathematics is built of some primitive
models which model our ideas about our internal world of activities and of
various ways of comparing and combining these models into more complex
models. Corresponding mathematical theories are interpreted mutually or
have internal interpretations. If a theory has an external interpretation then
only its sentence part belongs to mathematics. For example, classical me-
chanics is a theory about the world. However, if we ignore its externally
interpreted part we get a set of sentences which we can investigate mathe-
matically. Hence, we can say that mathematics is concerned with the internal
models and internal properties of external models, or more simply, it is con-
cerned with that part of rational cognition that belongs to us. Furthermore,
such diverse mathematical models are the basis for secondary mathematical
models that model how to compare structures (set theory and category the-
ory) and in what language to describe them (mathematical logic). However,
regardless of the complexity of the world of modern mathematics, mathe-
matics is an inner organization of rational cognition based on the modelling
of the intuition about our internal world of activities. In constructing math-
ematical worlds the criteria of real truth and falsehood have no meaning,
although every such world has its inner truths and falsehoods which shape
and express the underlying conception. However, in the process of rational
cognition we synthesize mathematical objects and truths into truths about
the real world (for example, into Newton’s law of universal gravitation). In
the construction of mathematical worlds the criteria of simplicity and beauty,
almost artistic criteria, are of real importance as well as how well the con-
structed theories model the original intuition and ideas. The fulfilment of
these criteria is a good indicator, as experience shows, that the main criteria
will also be fulfilled, the criteria of the direct or indirect usefulness of those
worlds as our thought tools in the process of rational cognition. If the ideas
are good and if they are well modelled mathematically, sooner or later they
will certainly find a successful application, as we have seen in the example
of Riemann’s manifolds.

31



11 Some tests for the view of mathematics as an
imagined tool for rational cognition

I consider that this view of mathematics satisfies both concerns of Benacerraf
dilemma |Benacerraf, 1973, p. 661]|: “(1) the concern for having a homoge-
neous semantical theory in which semantics for the propositions of mathe-
matics parallel the semantics for the rest of the language, and (2) the concern
that the account of mathematical truth mesh with a reasonable epistemol-
ogy.”. I have shown in Section 8 that the only difference between mathe-
matical and scientific language is whether it is a partial interpretation of
language in the internal world of activities or in the external world. Since
we are the creators of the mathematical worlds, their epistemological status

is unquestionable.

Also, I consider that the analysis conducted in this article has shown
that this view of mathematics fully meets Bueno’s [Bueno, 2009, p. 63] “five
desiderata that an account of mathematics should meet to make sense of
mathematical practice (my brief answers are in parentheses): (1) The view
explains the possibility of mathematical knowledge (yes — we create mathe-
matical knowledge). (2) It explains how reference to mathematical entities
is achieved (yes - they are imagined objects, some of which, at least approxi-
mately, exist in our internal world of activities or we can realize or represent
them there). (3) It accommodates the application of mathematics to science
(yes — this is most explicitly shown in Section 9). (4) It provides a uni-
form semantics for mathematics and science (yes — this is explained in the
paragraph above). (5) It takes mathematical discourse literally (yes — this is
most explicitly explained in Section 9 when describing what a mathematical
model is).”

Concerning Quine-Putnam indispensability argument for existence of
mathematical objects as it is spelled in [Colyvan, 2019|, this view of math-
ematics fully supports the second premise “Mathematical entities are indis-
pensable to our best scientific theories.” and rejects the first premise “We
ought to have ontological commitment to all and only the entities that are
indispensable to our best scientific theories.”. I have shown above in the
simplest example of counting, which is certainly indispensable to our best
scientific theories, that one can use the language of numbers to count in (sci-
entific) application without even knowing what numbers are and whether
they exist at all.
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12 Mathematics as an imagined tool for rational
cognition and other views of mathematics

Since I am a mathematician by profession, it was difficult for me to find
suitable philosophical terms to explain my view of mathematics. It is even
more difficult for me to compare my view with the multitude of existing
philosophical views on mathematics. As far as I am aware, the view of
mathematics presented in this paper has a certain originality, if nothing else,
because on the one hand it elaborates some insufficiently elaborated views of
mathematics, and on the other hand, it encompasses some prominent views
of mathematics but, as a whole, avoids their one-sidedness.

It is clear that this view of mathematics has nothing in common with re-
alistic views of mathematics, according to which mathematical objects and
mathematical worlds belong to the external world. In my opinion, such
views are full of metaphysical ghosts to which I cannot add any value, and
which, on the other hand, can be dangerous to rational cognition, in the
same way that religion can be dangerous.?® In the view of mathematics de-
scribed in this paper, the human being and the human community create
mathematics, just as they create, for example, works of art. This view of
mathematics is close to Hersh’s humanistic philosophy of mathematics and
Ernest’s social constructivist philosophy of mathematics, and can be consid-
ered a certain elaboration of their views in that part where their views are
insufficiently developed. According to them, the basis of all mathematics is
real mathematical activity, individually performed, and socially supported
and maintained. In [Hersh, 1997, p. 63| Hersh writes “A world of ideas ex-
ists, created by human beings, existing in their shared consciousness. These
ideas have objective properties, in the same sense that material objects have
objective properties.”, and that “any mathematical object you like — ex-
ists at the social-cultural-historic level, in the shared consciousness of people
(including retrievable stored consciousness in writing). In an oversimplified
formulation, "mathematical objects are a kind of shared thought or idea."”.
In [Ernest, 1997] Ernest writes: “Social constructivism adopts an approach to
mathematical objects perhaps best described as nominalist, regarding them
as linguistic/conceptual objects.” (page 261), and in more detail, “Accord-
ing to the social constructivist view the discourse of mathematics creates a
cultural domain within which the objects of mathematics are constituted by

2T accept that such views can be inspiring and motivating for one’s mathematical
activity, but I cannot accept them as truths about mathematics.
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mathematical signs in use. Mathematical signifiers and signifieds are mu-
tually interacting and constituting, so the discourse of mathematics which
seems to name objects outside of itself is in fact the agent of their cre-
ation, maintenance, and elaboration, through its use.” (page 193). From the
above, it is clear how important the linguistic component of mathematics is
in Ernest’s approach, as well as in mine. However, I consider Hersh’s and
Ernest’s descriptions of mathematical objects to be insufficiently clear. Per-
haps the notion of a mathematical model developed in this paper could serve
as a clarification of their views on mathematical objects and concepts. On
the other side, the humanistic view of mathematics complements the view
of mathematics described in this paper. Likewise, the embodied mind and
embodied cognition approach to mathematics, as they are vividly describe
in [Lakoff and Nufiez, 2000|, complement the view of mathematics described
in this paper. These approaches show the importance of the biological com-
ponent of mathematics and show the connection of the mathematical ideas
with our biological predispositions and activities. Research in this area se-
riously dis-confirms realistic conceptions of mathematics and confirms the
thesis that mathematical ideas are deeply rooted in our behaviour and that
mathematics is created rather than discovered. Likewise, Kitcher’s historical
explanation of mathematics [Kitcher, 1983] and emphasis on the importance
of mathematical practice [Mancosu, 2008, Ferreiros, 2016| complement my
views. These are very important aspects of mathematics that shape cur-
rent mathematical conceptions but I do not find in these works an elaborate
view of what mathematical conceptions are. All those who think, like me,
that mathematics is a human invention, face the same problem — what kind
of human invention is mathematics? The notion of a mathematical model
explained in this paper is the answer I came up with.

I consider that the view of mathematics presented in this paper belongs
in large part to the tradition which has begun with Dedekind, Cantor and
Hilbert. The creationist and structuralist views of Dedekind about mathe-
matics have spread into mathematics community through works of Emmy
Noether, van der Waerden and Bourbaki, and they have become the trade-
mark of modern mathematics. I was surprised when I saw what attention
philosophical community did pay to the Benacceraf’s article “What num-
bers could not be” (|Benacerraf, 1965]) because what is in the article I have
thought is well known from the time of Dedekind. The subject of discussion
is whether and in what form psychologism is present in Dedekind’s work,
also in the quotation from the beginning of the article (see [Reck, 2003] for
a detailed analysis). If Dedekind, under the free creation of natural numbers
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(as well as other numbers), considered their creation as a creation of abstract
thoughts then that is different from the view of mathematics set out here.
In this view, mathematical objects are always imagined as concrete objects,
because that is how our language works, regardless of whether we can realize
them in our internal world of activities or not. We already do abstraction
with language itself, which ensures that we consider only those properties of
mathematical objects that interest us. Thus, language is the bearer of the
required abstraction and not the objects of language.

In the view of mathematics presented in this paper the final mathematical
model (theory) is a junction of axioms and partial internal interpretation of
an adequate language. Thus this view encompasses formalism (in the part
related to axioms) and constructivism (in the part related to partial internal
interpretation). The subject of formalism is formal systems and the subject
of constructivism is the internal world of our activities. But if we do not look
at them as methodological approaches but as philosophies, they are one-sided
— formalism limits mathematics to formal manipulations of language forms
and constructivism to the internal world of activities.

Logicism, regardless of its success or failure, or its modern reincarna-
tion in classical set theory, is also a one-sided view of mathematics. In my
view of mathematics, logicism and set theory are only large (and important)
mathematical models in which “ all 7 mathematical models can possibly be
represented up to an isomorphism but which neglect the existence of partic-
ular interpretations. For example, in set theory we can use ordered triples of
real numbers to realize the structure of three-dimensional Euclidean space
but we cannot reconstruct Fuclidean geometry in its primary interpretation,
as the structure of the space of our internal activities.

This view of mathematics can fit into naturalism, if we understand it
in the broader sense of the word,?® because human cognition is basically
holistic and every part, even mathematics, can be properly perceived only in
relation to that whole. However, it cannot fit into naturalism in the narrower
sense of the word which sets ontological conditions in the first premise of the
Quine-Putnam indispensability argument and does not respect the difference
between logic and mathematics on the one hand and the natural sciences on
the other, as I commented at the end of Section 11.

The structuralism that is part of this view of mathematics is structural-
ism that is present in mathematical practice. It is deprived of all philosoph-

%6In [Paseau, 2016] one can see how many different variants of naturalism there are.
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ical additions on the nature of mathematical structures and mathematical
objects by which various structuralist views in the philosophy of mathemat-
ics are distinguished, as nicely dissected in [Reck and Price, 2000]. In what
follows, by structuralism I will mean precisely this structuralism. The ap-
proach in mathematics according to which only the structure of objects is
important is named in [Reck and Price, 2000] structuralist methodology and
is described as follows: “Mathematicians with a structuralist methodology
stress the following two principles in connection with them: (i) What we
usually do in mathematics (or, in any case, what we should do) is to study
the structural features of such entities. In other words, we study them as
structures, or insofar as they are structures. (ii) At the same time, it is (or
should be) of no real concern in mathematics what the intrinsic nature of
these entities is, beyond their structural features.”. I consider that structural-
ism is only one, although very important, aspect of mathematical modelling
but we cannot reduce all mathematics to it. As I stated above, the nature of
our thought and use of language, as well as the way how we manage a vast
complexity of the world, leads to extracting a certain structure from such
a domain. Thus, in the study of a phenomenon, we limit ourselves to the
study of a certain structure of that phenomenon. However, structuralism is
an approach that studies structures formally and does not enter into their
nature. It thus naturally falls under mathematics, and the language of set
theory is a natural language for the study of structures. However, not only
do the structures we extract from the outside world (and thus do not belong
to mathematics) have their content, but mathematical structures can also
have their content. We have seen that only structural properties are impor-
tant for natural numbers, and here the whole mathematics is covered by the
structural approach. However, what about sets, for example? Although we
do not have a completely clear interpretation of what sets are, we do not
think that only structure is important for sets, but that they have additional
content. The situation is even more pronounced with Euclidean geometry
which I consider to be a mathematical model of space of our human ac-
tivities and which is on an equal footing to number systems, and not part
of physics. Its objects are completely determined in our internal world of
spatial activities and are not just “places” in a certain structure. Although
we can study various structures of the same type as the structure of Eu-
clidean geometry, or connect it with isomorphic structures, thus we cannot
exhaust the mathematical content of Euclidean geometry. So, if we do not
look at structuralism as a methodological approach but as a philosophy, it
is one-sided, or as Machover says in [Machover, 1983], it is “alienated”.
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The main difference between fictionalism and this view of mathematics
is that fictionalism considers that mathematical objects do not exist (or at
least that it does not matter whether they exist at all) and that mathematical
claims are not true, while I consider that mathematical objects are imagined
objects that we can at least partially realize in the world of our internal activ-
ities and that mathematical truths are specifications of mathematical ideas,
possibly idealized truths about the world of our internal activities. This
connection between mathematics (mathematical objects and mathematical
truths) and our world of internal activities is crucial — it is the source from
which mathematics arises and the environment in which it is applied. Fur-
thermore, I believe that fiction is always linguistic fiction. And I do not think
that when we use mathematical language, we pretend that there are mathe-
matical objects and pretend that what we say about them is true. The very
nature of language use requires us to assume the existence of the objects we
are talking about. Only when we step out from that language can we question
the existence of these objects (in this new language), as Carnap explained
long ago in [Carnap, 1950]. In my opinion, fictionalism has two different
versions. In one version, fictionalism does not take mathematical language
literally but figuratively, according to Field [Field, 1980] as a conservative
extension of a content language, while Yablo [Yablo, 2002] considers it as
representational aid. The second version (Balaguer |Balaguer, 1998|, Leng
[Leng, 2010], Bueno [Bueno, 2009] takes the mathematical language literally.
Since I, too, take mathematical language literally, my view of mathematics
may have common points only with the second version of fictionalism, and I
will here refer to this version. I have shown above by the example of natural
and real numbers how a mathematical model can be applied purely linguis-
tically without even knowing what its objects are and whether they exist at
all. This way of using mathematics is in line with fictionalism and it shows
that, if we look at the final product, fictionalism is very close to formalism.
However, such an approach to mathematics is artificial and limiting - neither
mathematics is practiced in this way nor can all mathematical activities be
reduced to such an approach. It is a partial internal interpretation that gives
and sustains life to mathematical models.
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