Notes on Groups and Geometry, 1978-1986
by Steven H. Cullinane

Typewritten notes collected in a 40-page PDF document.

CONTENTS

01
0z

03
04

0a

08
o7
08
09
10
1
12
13
14
15
16
17
15
19
20

21
22
23
24
25
26
27
28
28
30
31
32
33
34
38
36
37
38
38
40

Web page URL:

1975-772-77
1978-10-7

1978-12-7
1881-11-03

1981-12-24

1982-05-12
1952-06-12
1982-08-12
1982-08-22
1882-12-27
19583-05-31
1983-06-21
19583-08-04
1982-08-26
19583-10-01
1983-10-16
19583-11-08
1983-11-10
1983-11-27
1984-01-05

1984-08-15
1954-08-25
1985-03-26
1955-04-05
1985-04-05
1955-04-25
1985-08-22
1985-11-17
1885-12-11
1956-01-11
1986-02-04
19586-02-20
1986-03-31
1956-04-26
1986-05-08
1956-05-26
1986-06-26
19586-06-11
1956-07-03
19586-07-11

"An invariance of symmetry" Rezearch announcement.

"Symmetry invariance in a diamond ring." AMS abstract
received Oct. 31, 1978,

"Orthogonality of Latin squares viewed az as skewness of lines"

"Patterns invariant, modulo rigid motions, under groups of
discontinuous transformations: two examples"

"Solid symmetry"-- "Motions of each cell induce
motions of the entire pattern.”

"Map svstems" Definition.

"Inscapes" Definition.

"A symplectic array”

"Inscapes I1" Generalized definition.

"Group =corez" Definition.

"Decompositions of group enveloping algebras"

"An invariance of svmmeiry" Group actions on a 4x4x4 cube.

"Group identity algebras" Definition.

"Transformations over a bridge" Definition and problem.

"Portrait of 0" Action of the octahedral group.

"Study of 0" Group actions on two-color cubes.

"Compound groups" Definition and problem.
"Group compounds" Definition and problem.
"Table groups" Definition and problem.

"Linear operators in geometiric function spaces"
Definition, theorem, problem.

"Diamonds and whirls" Blocks illustrate group actions.
"Affine groups on small binary spaces" Theorem.
"Visualizing GL(2,p)" Example on a 3x3 array.
"GL(2,3) actions on a cube"

"Group actions on partitions" Definition and problem.
"Generating the octad generator”

"Svmmetry invariance under M12" Theorem.

"A group bridge" Definition and problem.

"Dynamic and algebraic compatibility of groups" Problems.

"Geometry of partitions IT" A foray into analysis.
"Tnscapes I1I: PG(2,4) from PG(3,2)"

"The relativity problem in finite geometry"

"Group topologies" Definition and problems.
"Picturing the smallest projective 3-space”

"A linear complex related to M24"

"The 2-subsets of a 6-set are the points of a PG{3,2)"
"21 projective partitions" A 6-set model of PG(2,4).

"An outer automorphism of 36 related to M24"
"Picturing ocuter automorphizms of 38"

"Inscapes IV: Inner and outer group actions"

http//finitegeometry.org/zc/gen/typednotes himl



AN INVARIANCE OF SYMMETRY (Written sometime in 1978.)
BY STEVEN E. CULLINANE

Wo present a simple, surprising, and beautiful combinatorial
invarisnce of geometric symmetry, in an algebralc setting.
DEFINITION. A delta transform of a square array over a l-set is

any pattern obteined from the array by a l-to-1 substitution of the

four diagonally=divided two-color unlt squares for the l-seot elomenta.

~— X ERPAA ..

THEOREM, Every delta transform of the Klein group table has

o

T

EXAMPLES.

ordinery or color=interchange symmebry, and remaing symmetric under
the group G of 322,560 transformations generated by combining

permatations of rows and columms with permatations of guadrants.

EXAMPLE. IS: ;} ’ "3y ’ .;'f = = |2 X
4 il

PROOF (Sketch). The Klein group is the sdditive group of GF(l);
this suggests we regard the group's table T aa-a matrix over that
Tield. So regarded, T is g linecar conbination of thres (0,1)-matrices
that indicate the locations, In T, of the 2-avhsets of field elemsnta,
The structural symmetry of these matrices accounts for the symmetry
of the delta transforms of T, and Is invariant undsr G.

All delta transforms of the }° matrices in the algebra generated by
the images of T under G mre symmetric; there are many such algebras.

THEOREM. If 1<m<n®+2, there is an algebra of L™
Zn x 2n matrices over GF(l) with all delts transferms symmetric.

An induction proof constructs sets of basis matrices that yield
the desired symmetry and ensure closure under multiplication.

REFERERGE

S. H. Gullinane, Diamond theory (preprint).



Notices of the American Mathematical Society, February 1979,
Issue 192, Volume 26, Number z, pages A-193-A-194:

T9T=-AZT Steven Hasllten Cullinape . B
i} try iovarisnce in & dismond ring., Praliminary reporc.

Wa rogard the four-diamond figure D as o &Xé array of J-color tiles much as E Let G be
tha group of 322,%60 permutations of thene L& tiles generated by arbitrarily mixing pandem
o perautations of rove and of coluens with rapdes permutations of the four X7 quadrants.
THECREM: Every G-image of D has scme ordinary of color-interchange symmetry.

. 5 as s $ '.:'\l $| - ’<: = g {where g€ & im & product of

- W two disjoint 7-cycles).

Bate that Dy has rovatlomal color=interchange symmetry like that of the famous fin-yang synhal,
EEMARES: O im iwoworphic to the affine group on Vg (GF(2)). The 15 structures of the B4O=13 34
G-imagss of D ave dsoserphic to the 15 lines in the J-dimensicoal projective space over OF({1);
orthogonality of strettures corvesponds Lo shewness of lines, Wa can dafips sess and produdcs so that
the G=imagan of D genavate an ideal (1,034 patterns charscteriond by all bovisontal or veriical "puia"
badng uninterrupted) of & ring of 4,098 symmetric patcerna. There Lo an infinite Tamily of sush
"diamand” rings, isemorphic to rings of matrices ovar CF(4}- (Received October 31, L7H.)




STEVEN H. CULLINANE
Orthoponality of Letin sguares wiewed aga skewness of linea.

Shown bolow is & wey to ombed the six order-l} Latin sguarea thot have
orthogonal Latin mates in & act of 35 arrays so that orthogenality in the
set of arreys corresponds to skewness in the set of 35 linss of PG(3,2}.

Each array yields a 3-set of dimgrams that show the lines separating
complementary P-aubsets of {0,1,2,31 ; each diagram 1s the symatric
differenge of the other two. The 3-asts of dliagrams corrcopond to the
lines of PG(3,2). Two arrays are orthogonal 1ff thelr 3-seta of diesgrams
are disjeint, i.e. i{f the cerresponding lines of FG(3,Z) are skew.

This 1s m mew way of viewlng ortheogonality of Latin sguaras, gquite
different from thelr relatlienahip to projective plansen.

FROBLEN: To what sxtent ecan this result be generallzed? {Dec. 1978)
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Srveven H. Cullinane

Patterns invariant, modulo rigid motions, under croups of discentinucus
transformations: two examples. Research note. November 5, 1981,

In fig. 1, rigid moticns of each cell in a pattern induce rigid motions
of the entire pattern. In fig. 3, permutations of cells produce various
secticnal views of the same (module rigid motions) infinite plane pattern.
These permutations are derived, as in Fig. 2, from motions of a cube.
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Steven H. Cullinana
Solid symmetry. Expository note. December 24, 1981.

In pattern A, motions of each cell induce motions of
the entire pattern; likewise in B.




Steven H. Cullinane

Map gsystems. Query. May 12, 1982,

pefiniticn: Suppose every map ¢ into a given ring M can be
written as §= % e;(%.*¢) ., where N is a fixed positive
integer, the e; are fixed elements of M, and the 0y are fixed
functions from M to P, a proper subset of M.

Let A = (s, ... %4}, 0= {el. SR ﬁu}.

The guintuple (M, A, P, 0, N} is a map system.

Example: Using hexadecimal labels for the elements of GF(16),

let (M, A, B, 0, W) = (er(16), A, {0,7,E,9}, (6, B, P), 3},

where the functions in A are specified by giving inverse images:
{0,1,3,21=10} {o0.4,c.,8y=(0} {o0,5 F,ak=(c}
f4,5.7,6}=47} (1,5,0,9)=(9} {(1,4,E,B}~IE)
[chrFrE}"'[B]. iaiTJF;BJ"""{?} 'ﬂ.-sp_au'crgi"'[g]‘ - {x“‘w’_: 'Na 1 1
{8,9,B,A}={9}, (2.6,E,A)={E}, [2,7,D,8}=(7}

{Multiplication in GF{16) is here defined via the irreducible

polynomial =% + % + 1.)

Remarks: Harmonic analysis allows a complicated map to be
broken down into, or built up from, simpler maps.

Map systems are a different means to the same end.

Query: What is known about such Systems?



Steven H. Cpnllinane
Inscepes. Query. June 12, 19582,

Definition: Let R be an n-ary aymuetrie relotion on = set of

t subsetas of a t-38t; where n<t =uv, Tor positlve integers n,bt,u,v.
Represent each of the t subsets by the 1l's in & uxv array a,

over GF(Z2), where 1l=1<t, An Ingeape of R 13 a uxv array A of the
a4 such thet R ia trus for n of the &y {that 1=, for the subssts

represented by theses ay) 4f and only iIf the arrangsment of tha ag

within A is the same as the arrangement of the 1's 1n some a3+ ¢ .

Examnlea: (Light and dark represent 0's and 1l'a.)

NN | MR
w0 =Dk
=== Ml
OO0 PR AT

Remarks: Inacapesa are uaeful for visusllzing reletlons in certain

Tinlte geomstries. The sbove sxamples, for instance, lllustrate
ralations among the 15 hyperplanea of PG(3,2) and among the 15 lines
fized undar a particular symplectic polarity of PG(3,2).

Guery: What iz lmown about combinetorisl ayatems of this sort?

Note: For some other properties of the a3 in the second example,
seas B,F, Assms, Jr., and J.E, Novillo Sardl, "Generslized Steinsr
eyetems of type 3-(v, | b,6} ;1)", Finlte Geomatries snd Dasipns,
London Math. Soe. Lecture Hote Beries L9 (Cambridges Univ. Press,

Cambridge 1981}, pp. 16=21.



Stoven H. Cullinans
A symplectie array. Ressarch notes. September 12, 1982,

The 11x1l array below is formed by ndding (1light =0, dark =1,
1+1=0) the 10 nonempty squares in the flrat column to the 10
nonsmpty squarsea in the first row. Thesa squaras represant thes 10
palrs of lines Iinterchanged under a particular symplectiec polarity
of PG(3,2). The array is of intere=t for soveral reasons:

1) It serves to illustrate en slementary, but useful, way of
constructing a complicnted gombinatorial object from simpler
objects: make an addition table. (COlosure is not essential.)

2) Properties of arrays thus formod as addition tables may be of
soms usze in the study of 10xl0 Latin squares,

3} Sipee sach of the 121 lixl} squarss below represonts a sst of
points in & finite projective space; the array may serve to
1llustrate or to suggest properties of such apacos.
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Steven H. Culllnane
Inscapes II. Query, September 22, 15B82.

Given a set X of points, certein familles of subsets of X
may heve, a8 famllles, some property s. (Example: the familiaas
of spheres that are concentric.) It may be that we can assoolate
to each point of X a subaet of X; via an injectlon T:I—rEx,
in suech & way that the f-imege, in turn, of thia subset of X
(i.8., the famlly of f-Iimages of its pointa) 1s in fact one of
the families of subaets of X that have property B.
If the map [ glves rise 1n thla way to the ast 3 of gll such

g-families, we can write, in & eryptic but coneclss way,

S=1(f(X)), and =ay that £ 18 an inscape of 3.

Query: What lmomn results csn be stated, after the sppropricte

definition of 3, in the form "There exizts an inscepe of S"°?

Addendum of Qot. 10, 1982. 4 more preciss definition:

Let X be a non-empty set. Let P{X) donote the aset of all subseta
of X. Let S<P(P(X)). 3uppose there exists sn injection

f: X—=+P(X) such that, for any o< P(P(X}), o€ 8 1if and only if
AxeX such that o=£(f(x)) = {#(y)] yer(x)} .

Then T Is an inacape of 3.

This noticn arises naturally in studying the action of a
aymplectie polarity io a projective space. One of course

wonders whether it has arlsen previcualy in any other context.




Steven H. Cullinane
Group scores. Problem. Decembar 27, 1982.

Definition: Lat Gl bte a finites perrutation group.
Represent G, as m group of permutation matricea over GF(2),
the two-element Galols field, and let V;= wltul} denote

the enveloping nlgnhrn* af i}l. Suppeose there exist subalgebrza

VE and V., of ?1 such that

3
a) Vi isa transversal of the additive coasts of V5 in V; , and
b) Vy is the enveloping algebra of a subgroup E-E aof Gl.

Then (G, Vis Vo ?3, Gzl iz & group suure.

Example (Light and dark reprazsent O's gend 1'a):

P T ==L
] I 6 L = T L
A8 ] wiilh) Sle
) o 0 5 P | (M

This array A of matrices is a group score In which

Gl = 33,
'.Fl = A,
¥, = the first row of A,

?3 = the firat column of A, and

G, = the psrmutation matrices in the first column,
Nots that in the example nelther ‘li':g nor ?3 i3 an ideal of ‘Fl.

Problem: What group scores exist?

™
Soe Flath, AMS abstract 797-17-88, the related T97-20-130, and
H, Weyl, The classical groups, 2nd ed. (1946), Princeton, p. 79

10



Steven H, Gullinane e I
Dacompositions of group enveloping slgebras. Query. May 31, 19813.

Hotation:

Lat G be an abstract group, H & subgroup of G. Let »:G+M be

a representation of G s o group M of invertible endomorphisms of an
R-module V, where R is a commtative ring with unity, and let W= (H).
Denote the snveloping algebra of M (i.e., the R-linear closure of M)

by E{(M), or, more explicitly, by (E(M),+, *). For a,b in E(M) let
[a,bl= a*b - ben, and denote the resulting Lie slgebra by (E(¥),+,L] )

Quary:

1. How cen we relate decompositions of (E(M),+ ,* )
to the structure of G?

(In particular, when can we write E(M) as a direct sum
E(M)=E(N)4+ A,
where A is e pubalgebra of E(M)?)

2. How can we relate decompositions of (E(X),+ ,C1 ), where X=M or N,
to the atructure of G, when M 1s nonabelian?

(In particular, how sre the Levi direct sum ducnnq:-usit.iann*

E(¥)=R(M)+ L(M) &nd
E(N)=R(N)+ L(N),

where R(X) is the radical of (E(X),+,T1) and L(X) E(X)/R(X)
135 a semisimple Lie subalgebra of (E(X),+ ,CL3] ), related
to the structure of G7T) "

3. How should we restrict the natures of G, H, 9o, M, R, and ¥
in order to answer (1) or (2) above?

% gas A. I. Mal'cev, On semisimple subgroups of Lie groups (194L),
AMS Translations, series 1, volume 9 (1962).

11



Steven H. Cullinane j i
in invariance of symmetry. Research note. June 21, 1983,

Thesorem: There exlsts & trlply transitive group G of
1,290,157, 020,640 permtations of the 6l subcubss of B such that
every G-imoge of B haa a rigid-motieon symmatry.

(The marking on each subcube of B is identical; each is symmstrie
under reflectlon in its eenter.)

Proof:(sketch): We label the 6l sells of B with the pointa of ths
affine 6-space A over GF(2) in such & way bhat each hyperplans of A&

is left lovarisnt or ls earried to its complement under a group C

of 8 rigid motions generated by reflections in midplanes of B,

We then define tha group G as the group of affine transformations of A.
Under G, as under 0, the sst of hyperplenss and hyperplane-complements
is left invariant. This symmetry of hyperplanes 1s then faiply easlly
shown to underlie the remarkable invarienee of symmetry of E.

(For & geomstrically natural way to generats ( ses A¥S abatract 79T7-837.)

12



Steven H. Cullinans
Group identity algebrar., FProblem. August I, 1983,

Definition: Let (8, #) end (5, o) be groups with the same mat 5

of elesment-symbols but with different group tables.

If there is at least one algebrale identity I expressing a nontrivlal
rolationship betwesn # and o then (5, #, ©} 1is a sort of algebra,

which for lack of any other name we call a group identity algebra.

Example: Let S ={s,8,b,e} and let # and © be tha operationa
4+ and * {or jurtaposition) in the tables below,

.1:*
]
B|@

o
opoalo

oDoTRd

oOop o
Too
Poo

The following identity I holds. Y x,7,z,we {e,8,b,0},

((=y)+ (zw)) + ((x+7){z+w)}) =
((xz)+ (yw)) + ((x+z)(y+w)) =
((=w)+ (32)) + ({x+rw){z+z)).

The dual identity I' cobtalned by interchanging + and =
also holds,

(Note that in this case I and I' stats that certailn
algebrailec forms are invariant under the action of the

symmetric group on theilr indeterminates.)

Problem: Are there infinitely many finite group identity algebras?

{(Note the word "montrivial™ inm the definition.)

13



Steven H. Cullinane
Tranaformations over a bridge. Problem. August 16, 19683.

Lat (G,+ ;+* ) be the algebra (in thes sense of universal algsbra)
with underlying set G =[u,a,‘h,n‘i and npurl?l_.tion! a8 follows,.

b (We follow the notetional
conventions of writing * as
Juxtaposition and letting -
precede + to avold &
proliferation of parenthesea,)

oe o olo

DOR G|

(Such &n algebra (@, ,% ), where (#,% ) and (G,% ) are groupsa,
we call a bridge.)

Problem.
Part 1. What is the nature of the group T generated by permutations
of GxG of the form ¢t(p,q,r,8): (x,y)—» (px+ay, rx+8y) + (x,¥)
where p,q,r;8 € G 7
Note l.1. It appears that T 1s isomorphle to a subgroup of
the group of regular affine tra.nafnlj:'mntiuns of thes affine
=space over GF(2).
Fote 1.2. We can have %t(p,q,T,8)= t{t,u,v.w)
wherse [p,q,r,n];ﬁ (t,a,v,w)
since, for instance, ¥ (x,7)¢ GxG, ax+ay = cx +cy.
Part 2. Is there some reasonably simple algebraic expression
over (G, +,* ) for t(p,qa,r,s)o t(t,un,v,w) ?
Hote 2.1. Not every member of T can be written in
the form ¢t(p,q,r,s8). Example: {t[n,n,a,e”z-

14



pet. 1 '83.

Action of the octahedral group on a dlamond.

Steven H. Cullinane

Portralt of 0.
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Steven H. Cullinsne
Study of 0. October 16, 1963,

The 2l two-eclored 2x2x2 esubea below represent the alements of the
ootahedral group O, which isg viewed as meting in the aame way on each
of the 8 subcubesz of any glven 2x2x2 cube. The arrangement of the
2y celeorsd cubss may be of some Interest for ite comblnatorial

propertles.

16



taven H. Cullinane
Compound groups, Problem, November B, 1983,

Definition: Suppese a finite group G of order n can be represented as
a group of permatations Pys Pas sers P, on m objects, where m< n.
Suppose further that we can take thess m objects to be distinct
elements 812 Bos s=s» gm_uf G in such a way that the n producta

(p, (g4))(p; (B2)) «-n (p, (a))

- -
- L ]
- L

(p, (8 )) (P (8,)) +ue (pylg)))

are all distinct, i.e, constibute all of G.
If such & group G, compounded in this way from m of its elements,

exists, wa call G a compound group.

Froblem: Which (1f any) finite groups are compound?

17



Steven H. Culllnane
Group compounds, Problem. November 10, 1983.

Definition; Let P be & group of n permutations on & finlte
m-element set X, let G be a mltiplicative group, and let
T map X to G.

Let P={p,: 1<1<n} , let x:{xJ: 121<m} .

Define ¢ :P-+G by 4;ﬂ'|',pj.]: V& SE
The structure (P, G, T, ¢) is a group compound,

f(Pi{xJ :Ji

Problem:

(1} Let @ be given., For which P and f is ¢(P) a coset of soms
subgroup of G? When is ¢ a surjection?

(2) Let P be given. For which @ and f do inverse images under ¢

form a coset decomposition of P? When is lf" an injection?

18



Steven H. Cullinane
Table groups, Froblem., HNovember 27, 19813,

We regard the (unbordered) tables of groups of order m aa nxn arraya
over the symbols 1,2,...,n in which the rirsat row (read from left to
right) is the same as the first ocolumn {(read from top to bottom),

(The entry at top left reprasents the identity but noed not be the
aymbol 1. Thus we regard each of the arrays

1234 31214
2154 3 and 1&1;2 g8 a table of the four-group.
T T - 24 31
L3221 L2113

Such & table is determined (since it is = Latin square) by the
entries lylng below the first row and to the right of tha firat colum.
Call this {n-l)x(n~1) portion of & group table an n-box.

{Hote that the mumber B of m-boxes is in general greater than nliN,
where N is the number of noniscmorphic groupsa of order n. For fnstance,
for n=l} we have N=2, but B= (41 ) (L} rather than (4i}(2).)

For a gliven n, we may be able to see something of how the varlous
order-n groups are interrelated by studylng group actlons on n-boxes.

Definition: Let G(n) denote the direct product of (n-1)2 coplea of Sp
ond regard the components of an slement g of G(n) as arranged in an
{n~1}xﬁn-1] array. Such &n alement g ects componentwise in the obvious
way on an n-box to yleld an array that may or may not be an n-box.
Suppose there exists soms- subgroup T of Gin) such that T ia tranaitive
on some sat B(T) of n-boxes that includes N n-boxes representing the ¥
distinet (i.e. )inimiu nonisomorphie) groups of order n. (We do not
require that B{’T be glosed under the actlion of T, nor even thak

seach T-image of a member of B(T) be an n-box,) Wo call such a T

a table group for n,

Clearly for each n there 1s at least one table group T, namely Gi{n).
That smaller T's may exist 1s shown by the fellowing.

Example: A table group for l is generated by the following
elements of G(l).

LEa  proves  men
(12) (12) (12 (13) (13) (13 md {ud I

Problem: What 18 the crder of a samalleat table group for n? Is theare
some way to conatruect such groups that does not reguire knowledge of N7
(The oase for n a prims powsr seems of particular interest.)

£+
The example is of course not & smallest table group for
but 1s shown for its structural interest, e

19



Steven H. Cullinone

Linear opsrators in gecmetrie function spaces. Jan. 5, 1984.

Problam.

Let X ba A 2n-dimensional linear space over a fleld K.
Lat a map o take each subspace 8 of X to a funetion fg: X+ K
that is nonzero on 5 and zero slsswhsrs, (Hers fg is a sort of
characteristic function representing the subspsace 3.} Denote by
P = F({2n, K, o) the linear space over K spanned by the functiona fg.
We enll F a geometrie funotleon space.
Theorem: There is at least one F{2n, X, ¢) for which thers exista
a lipear operator T, acting on P, such that T takes the l-dimensional
subspaces of X {(i.e., functions fg representing such subspaces)

to distinct r+l1 -dimensional subspacea of X, for l=<r<2n-2.

Proof: The matrix T at rdght

sean
-—aoae
-
aB=0
1
-'l-.--h
o= -
i
e
[ < e —
-—e 0 -
e
g

represents such an operator when

X is the linear L-space over GF({2),

tha two-slement Galois fiald.

Cog=00=00=03000080 D=0D0

L]

as
e
== o0Goadondon~a
C0DOOe==DOO0S0DD0 =0
b=~3-0800OO0DDD=00
G0-—0=0000=3000pa O——0
pooDO0oBb0=0g==000
=000 0 =00 00=p0 008 ooo ~
D=0 o0=—00000=00000

FOOOBpBOBB——00=-p

=gl—0oppoQO0D—000
goeb=po—-peob=000
d=0000-0=00a00Ba0
~gp0BD0=00=000000
Ophdd-~b-poogd=pon

OB LD =0=D=00

Froblem; FPor what other aspaces F(2n, K, o) does such a T exlat?
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Steven H, Culllnane
Diamonds and whirls. Expository note. Sept. 15, 198lL.

Moduleo color-interchange and rotations, there are exactly 2 waya
(ase fig. 2) to color the & faces of & eube ao that
(a) emch face 1s split diapgonally into a blaek half and a white
half, and
(b) there are exactly l. distinet imagea of the colored cube
under tha group 0 of 2l rotational symmatries of the onba.

The rotational symmetries of eaech such coloring form an erdep=6
subgroup of 0 leeving invardent an inseribed hexapon s in fg. 1.
This subgroup of 0 consiste of the identity, robations of 120 mnd 240
degrees about a dlagonel of the cube, =nd léﬂ—dﬂgrﬂu rotatlons about
each of 3 axes Jolning midpoints of opposlte edges of the cube.

e
N4

Flg. 1 2

i 1 e,
Dlamond" and "whirl™ cubos

Identleal cepies of theas cubes, varlously oriented, can be
assembled Into larger cublcal patterns with remarkable symmstry

propertles,
g Fig. 3 ?’

L Eight diamoend euhes B: Bight whirl eubsz

Fatterns A4 and B in fig. 3 yleld a number of cther aymmetriec
patterna when their subeubes are permited (without retation) as

Tollowa.
v DD

Lot Sh act on the LI 1xI1x2 "bricks" in each of the 3 partitions
above; the group & 50 generated can be shown to be triply transitive,
of order 134, and isomorphiec to the affine group on the linear
3-spoce over the two-oclement finlte fleld.

THEOREY: Patterns A end B each heve 168 images under A. Each of
these images has some nontrivial aymetry (ordinary symmetry for
A-images, ordinary or color-interchenge symmetry for B-imagea) under
8t leapt cne of g group of € rigld motiens of the cuba.

© 198l sHC
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Steven H. Cullinane

Affine groups on emall binary spaces. Expository mote. Sept. 25, 198l.

Theoream:

The affine greup

AGL(2,2)
AGL(3,2)
AGL(lg, 2)
AGL(5,2)

AGL{6&, 2)

af oprder

2l

1,30l
122,560

319,979,520
1,290,157,42l, 640

1s generated by

EI]. acting on partitiona
A

A, B, G

A, 2, 3

A, B, C, 2, 3

A, By, G, 1, 2, 3.
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Steven H. Cullinane
Visunliring 6L(2,p). BExpository note. March 26, 1985.

"The typicsl example of a inite group 1s GL(n,q),
the genoral lipear gro up of n dlmensions over the
field with q elements = J. L. Alperin

=1

—
L
——
T

&l (2] BR

@ 6 ()

*
200 2[R2N

7
Eh Y B|LF

4

%
=
HE
,
%

o
e
& -
P
o
—
=

g

@ (@ (&) (Y (81) &) @y (e)

| [Z4

iy ) @ &) B 6Y By G2

The LA actions of GL(2,3) on & 3x3 coordinate-array A are
11lustrated above, The matrices shown right-emltiply the alements

of A, whers “'H: T

— " f T}
{ ‘.|{ 2,2} -
Actlons of GL{2,p} on p::p eoordinate-array have the aame sorts
of symmetries, whera p 1a any odd prime.
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groups.

Aprili 5, 1985,

ing verticenm of & cube (plotured hars

with a slight distortion, to avold overlapping limes).

Expository note,

%ﬁ disgrams below ifllustrate soms symmatries of GL({2,3) actions
nonZero vectors of the linear 2-space over the 3J-eloment flelid.
The dlagrams may have some heuristisc value for the study of groups

vectoras are viewed as labal
generated by mixing GL(2,3) ectiona with those of other

The
on tha

The

GL(2,3) notiona on a cuba,

Stoven H. Cullinane

——— — — —_— — ——
— de s o S - wind
€= H\\. de _\_,, = A == o
s, L ]
i
— rfi.u. . 3% »
= ! 3

S vAs

B S WG
goares
@% Y
%@%@%@

)
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Steven H. Cullinane
Group actions on partitions. Problem and query. April 5, 1985.

SO
%7 &
Z
B

A

Definition: Let G be. the group of degres 72 generated by mixing

(1) metions of the affine group AGL(2,3) on ths set of
nina 2x2x2 ¢cubes Iin partition A&,

{2) 1ike nctions of AGL(2,3) on each of thes eight 3x3 asctions in B,
(3) actlions of AGL(3,2) on the set of eight 3x3 sections in B, and
(4) 1ike mctiocns of AGL(3,2) on emch of the nine 2x2x2 cubes In A.

Problem: Whsat iz the order of G7

Query: Olearly many simllar problems could be posad.

What resmilts or methoda are known?

(Note: meny squivalent coordinate systems for the affine sctions
above are available via natural mappings of the reapective linear
spacea onto 3x3 or 2x2x2 arrays.)
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Steven H.

Cullinsne

Generating the octed generator.

a 1
= %51
%3 %41
w2y [

GF(8)

(mod x--x-1)

r’

)
A &
=

[r i

A Binger T-eyele
S, on GP(8)

Expoaltory note, April 28, 1965.

oomBaon]

Focalloaol

L~
gotaloal lravefion i r )
eraalotollitoelitay A i = 7
CRRR-A TR -2 R £ 1) i

The linear li-spacs
L over GF(2)

A linear map S5 on L
{ = 2 copien of 31]

51 and 87 soting on row 1 below yleld the Miracle Octad Generator [ad :

I T ™ P

L=E=deled

a9
L]

- n
-

13

B
i

7 b

(-]
P
.
offe

=38

R ERAL
SIE
]

[¥]
0

D
[

P R
B TN

&
-
W

[x]

]
& o

oo
s ]
[+]

Apert from 1ta use in studying the 759 octads of a Stelner system

5(5,8,2) —- and hence the Mathiteu group Mz

-=- the Curtis MOG nlecely

11lustrates a natural sorrespondence G {(Conwell [2], p. 72) between

(a)

the 35 partitions of an 8-sst H

{such ea GF(B) above, or Conwell's B "hepteds") into two l-seta, and

{b)

Twao
the same 13

Note that @
in edch row

Ll
24

Cemaron,
Commell,

3. Curtis,

the 15 partitions of L into four perallel effine planes.
of the H-partiticns have & common refinement Inte 2-sets 1If

true of bthe corresponding L-partiilons. (Camsren [1], p. 60)

1s particularly mature) in row 1, and that partitions 2-5
have =2imilar structures.

P.

a» PErallellsma of Complete Deslpgna,

G.Hy, The 3J-space PG(3,2) and its
Anm. of Math., 11 [(191G) &2-F

g

Comba . Pr. 1%76.

R.T., A new combinatorlael approach Lo Kz,
Math. Prog, Camb. Phil., Soc. 79 (1976) 25-l2.

26



Steven H. Cullinane
Symmetry invariance under M,,. Expository note. Aug. 22, 1985,

The quintuply transitive Mathiesu group My might be expected to
thoroughly scremble any neat pattern 1t aets on. However, recent
work by R. T+ Ourtla and J, H, Conway [1] has the following

remarkable eonsequence.

Theorem: The set of T infinite plane patterns below ia lnvarliant
(modulo rigld motiena of the plane, snd color-interchange) under

furtla-Conwey M5 actions on the lx3 motlfs shown as quadranta.

Note thet sach patternm has nontrivial aymetry, moduleo color-
interechange, (The motifs ars 7 of the 132 hexads in an S(5,6,12)

ingeniously constructed in [17 .)

REFERENCE
l. OCurtis; R. T., The 3teiner system 3(5,6,12}, the Mathieu group
M, and the "idtten," Computational CGroup Theory, ed. Mlcheal

D. Atkingon, Academis Preas, 198), 353-358.
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8. H. CULLINANE 11/11/85.

Finite groups of the sams order ars sometimes related by
& nontrivial ldentity.

Example:

Wo have, Y w, %, v, 2z €{a, 2, b, ¢},

(D) =+(y+z)=(x-7)+ (%-2)+ x, and hence

(X} ((wex)+ (gez)) + ({wex)elysz)) =
((wex) + {x=2}) * ({my)e(xs2)) =
((wez) + (xeg)) + ((wez)=(=sy)).

The dual identity I! obtained by interchanging+ and= in (I}
also holds,.

Such a structure -- two groupa jolned together by m nontrlvial
identity -= might be called a "bridge." Are there infinitely
many sorts of bridges? I am grateful to S. Comer for the
following reformulation of this rather vagpue quesaticon.

Definitions: Let B={(G,%,~): (G,») and (G,=) are groups} .
For a subvariety V=B let A denote the set of ldentities holding
in (G,#) for all (G,*,*)e V. Similarly, define A . For any ast
of identities A in the language for B let V(A ) denote the variety
of all members of B that satisfy A . Call a variety V reducible
ir V= V(a0 VIA,).

Problem: Are there infinitely many irreducible subvarletlea

of B1
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5. He. Cullinans :
Iynemie mnd algebrale compatibility of groups. Dee. 11, 1985,

(A) Observation -- Wonlsomorphic crder-n groups, sach
transitively 'permiting the seme n points, may generate
a group smaller than A .
Example -- The four group and Cys acting on the vertices
of & square, generate Dﬂ'

(B} Observation -- Honisomorphic order-n groups are somstimes

ralated by & nontriviael identity.

Example --
il ab o =|laab e
ale a b e alea ab g
alae ob alab o e
blbeoa Blbe an
cle bae cilesab ,
with xe{ytz)= (g} + (x*z)+ x Y x,¥,z efe,n,b,c} .

Problems:

(8) For which (n,k) are there k necniscmorphiec order-n groupa Gy
(each with ths sams elementa and the same identity element)
and regular permutation répresentations

1
<1116 )5 eenat (B0} < |4 | 2

(B) PFor which (n,k} are thers k nenizomorphic order-n groupa Gy

guch that

(each with the same elements and ths same ldentity elemant)

all interrelated by a nontrivial algebrale identity?

(e) Por which (n,k) are thars aclutiona to both (A) and (B)7
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5. H. Culllnana
Geomatry of partitions II. Problems. Jaruary 11, 1986,

Dafiniticna:

Given 0<aef, and a finite (or countably infinite} sequence
£ =(ay, @5y +ee) of positive real numbers such that o, =o
{or such that the partial sums of £ converge toa), call £ a
partition of a. Let L{L ) be the following surfacs:

Lt ) = ({x,7,2)e® ) x>0 and (xa) = }'_E‘ﬁﬂ-;‘l‘} 5
Thms L 15 & mapplng that lets ua represent partitions by surfacea.
(If the partisl sums of L diverge but the correspending surfaces
converga, one might defins L(E ) to be the 1imit surface.)

Theorem (Nicomachus-Bachet):

The surfaces L((1, 2, ..., n}} all interseot at (1,2,3).

Froblems @

1. Do any other "natural" families of partitions yleld

interasction theorema of a nontrivial natura?

2. Hew do Tamiliss of infinits-series partitions behave under L?
(Por example, 5= (1 , 2, wees 0 5 ses), for 8>1.)
3+ 1Ia the generallization of L by taldng (x,7v,z)< ca

inpeaslbly difficult?
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5. H. Gullinsane
Inseapes II1: PG(2,l) from FG{3,2). Expesltory note. Feb. I, 1986,

This note suggsats a way to visumlize the finite pgeometries reeenily
deseribed by A. Beutelspacher in sn excellent expositery mrbicls [11.

Notation -=- hexadeeimal charmeters for the 15 points of PG(3,2):

1=0001 L =0100 7=0111 A=1010 D= 1101
2= 0010 &= 0101 &=1000 B= 1011 E-= 1110
3= 0011 6=0110 9 =1001 €= 1100 F= 1111 .

Facta about P&{3,2), the projective 3=spane over GF[(Z2):

(A} Bach of the 15 points mey be expressed as a sum of a unimue
pair of points from the set S=41,2,3,1,8,01 .

(B) Fifteen of the 35 lines of FG(3,2) are digtinguished by ths fact
that thelr polnts erlise from partitions of 3 of the Torm 2+ 2 +2 :
Osfes 3= 11,2} {3,43U{8,0) yields the 1ine {3,L,7}=
{1+2, 8+C, 344} . (The remaining 20 11lnss arise from partiticns
of 3 of the form 3+ 3, by summing pairs in the 3—aata.?

() Six spreads, ssch consisting of 5 mutually skew (i.e,, disjoint)
lines, can be formed from the 15 dlatinguished lines in (Bi.

These faecta ean be expressaad graphileally as follows,.

IR ICILA Ll i|m’

1 a 3 145 3F TAD
H ] s 7 ic |89 LcE &BE

S DRI B
1

2 B E F GAE S8E 49F 2%A
(a) (B} ()
Pointa of PG(3,2). 15 distinguished 1lines, The & apresada in (B).
(Note symetric- {(Called an "insocapa® (Note correspondence
difference sums. ) becauae of part-whole with 5 in (4).)
relationship.)

Beutelspacher describes a construction of BG(Z2,l1)} with
21l polnts = the 6 points of 5 and the 15 distinguished 1ines (B}, end
21 1dnes = the & spreads (0} and the 15 point-paira (&).

REFERENCE

1. EBeutelspacher, A., 21 - 6=15; A connection between two
dietinguished geomstries, Am. Math. Menthly 93 (Jan. '86), 29-l1.
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8. H. Miﬂm %
The relativity problem in finite geomestry. Feb. 20, 1586.

Thia is the relativity problem: to fix objectively
a olass of squlvalent coordlnatizations end to
aaeertaln the group of trensformatlons 5 medliating
btetween them,
-= H. Weyl, The Classieal Groups,
Princeton Univ. Pr., 1946, p. 16

In finlte geomstry "points® ars often defined ms ordered
n-tuples of elements of a finlte {(i.e., Galeis) field GF(q).
What geometric structures ("framss of reference,” Iin Weyl's terms)
are coordinatized by such n-tuples? Weyl'!s unse of "objactively”
seems to meen that such strucbures should have certaln objective --
l1s84, purely geometrie -- properties Invariant under sach 3.

Thls note suggests such o frame of reference for the affine
lj-apace over GF(2), and a elass of 322,560 egqulwalent
coordinatizations of the frame.

The frame: A lxl array.

The invarisnt structure:

Tha following set of 15 pertitionz of the frame intc two 8~-sets.

miiil
i ™ O
===
) I

A repreasntative cocordinatization:

0000 0001 0010 QUll
0100 0101 €110 ¢111
1600 1001 1010 1011
1100 1101 1110 1111

The proup: The group AGL(L,2) of 322,560 regular affine
transformations of the ordered Li=tuples over GF(2).
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5. H. Cullinane
Group topologles. Problems, March 31, 1986.

If a group G acta on a set X, there 1a a natural closure operaticn
on subsets of Xt define topological oclosure a8 closure under
G-actions. Then the elosed sota (in both senszes) are the empty set,
the G-orbits, and arbitrary unions of G-orbits. (AcSX 1s open irr
A 18 closed.) The result iz a group topology T(G,X).

Unfortunately, T{G,X) is trivial 1f the group mction 1s transitive.
But G scts on the power set P(X) as well as on X, and we have
X is nonempty > T(G,P(X)} 18 not trivial, and
the G-amction is nontriviel => T(G,P(X}) is not discrete and not T
{t.s., not all singletons are closed).
(That a topology is not Ty is unfortunate if the underlying set 1=
infinite, but very fortunate if the undsrlying set is finite.)

Let Pg= X, Py= P(P,_31X)), and let T, = T(G,P,(X)).

Problems:

(1)} Is thers & puraly set-theoretie characterization of the finite T,
(1.6., among ell other topologlea on P, based cn partitions that
refins the cardinality partition)?

(2) Consider the topologies T, for a faithful asction F of & on X.

(a) Is P mlways determined by Tg, Ty, «ssy T, for asome n=n(F)?

(b) If H4G, how are the T, for H related to the Ty for G?

{e) If X 1s countably infinite, can we regard the minimal olosed seta
of T; as "natural® G-orbits on some continuum?
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§. H. Cullinane

Ploturing the smalles

t projective 3-sapoce.

EHDLE
= ol B
= B R
= O [ [

The 15 hyperplansa

|5
£ o

April 26, 1986,

The 2 figurea at laft
how a ag

(=]

liea in its correspond-

ing hype rplann. The 15
lines fixed ander & are
shown in fig. A below.

L

g e ®

(11T
=110
1 ]

Tha 35 lines

LR
= el it
= e ]
s o R R

Sums of the li-subaeta
of A pletured in A

@O0
Blslal
DAL
AN

oorr ndena
subs 1: 1' E-an

a b twe n thea
Thi underlies ng.

T B
iH L

Su.ma of the li-subasets
A pictured in B o

oo
(15
OREH
DEEE

35 l1ines and the

or C
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5. H. Cullinane ;
The Z2-subsets of a 6-smet are the points of a PG(3,2). May 26, 1985,

This note was suggested by
(1) A, Beutelspacher's model [1] of the 15 polnta of PG(3,2) as the
15 partitions of & G-set into three Z-sots, and by
{2) R, T« Curtis's model [3] of the Conwell sorrespondsnce [2] betwsan
m G lines of PG{3,2) and the 35 partitioms eof an B-set into
|=a8ta,

If X 18 a finite set, we may regard the power zet F(X) as an
elemantary abellian 2-group in which addition 1g the asst-thmoretiec
symuatrio-differences operatlion. Let K(X) bs the subgroup
of F(X) consisting of & and X, and let Q(X)= PEI}J’K%;]

When X is & b-set, the Z-subsets form & subgroup A of Q(X) whosa
nenzero olementa we may take as the polnts of a FG(3,2), with

Hie 7 IEI]
LAl AE=1F 0 ]

A mbgroup of Q(X} 11lustrating Subaste of A 1lluatrating
(1) the 15 2-subasts of a LHeget (1) the Curtis ecrrespondencs hetwesn
(2) the 15 points of PG(3,2) A-icjand the 1% partitions of a

b-get into three Z=sata
(2) & linear complex in PG(3,2)

REFERENCES

1. Beutelspacher, A., 21 - 5=15: A connection botween two
dlatingulshed geemebrles, Amer. Neth. Monthly 93 (1986) =29-i1.

2, Conwell, . M., The 3-space PG(3,2) and its gr g
&nn. of Math., 11 (1920} 6O-T6 (gsp. 7. T2)a o

3s Curtls, R. T.. & new combinatorlal sppromeh to H-:—‘JI-‘
Math. Froec, Camb. Phil, Soc. 79 (1976) 25-L2.
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3. H:a Culllnans
21 projective partitions. Reszearch note. Juns 5, 1986.

Shown below are the 2A-polnt projesctive plans PE{2,0L)
and its dual. The pointe (or lines) ere the 21 partitions
of a 6=set inbo dlsjoint sets 4, B, where |Al= Z or 1.

Linaa (or polnts):

FEEIERL NIGEEFH HHEREE OB

HEEILEEE EOOER HEEHGE BEE
Folnta on the above lines (or lines on the above polnts):

HMaldRld BIECEEN RIEOGEEH ERE
EIEANEE RIEAEERH [HE[ERIEIE BE
HEREER BEEBRL BHEERE BEHE
HRBENSE EEBHEE BHEHEDYE BOE
BEEELE SO0BEGH HEEREME [alH

The 6=set permmtation interchanging points end lines is from
the Miracle Octad Generator of R, T. Curtis (L e 287 4

EEFERENCE
1. Gurtis, R. T., A new ocombinetorial epproach to Méu,
Math. Pro¢. Camb. Phil. See. 79 (1576), 25-li=2,
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S. He Cullinanse )
An outer sutomorphism of 3¢ related to Wzy. June 11, 1984,

Flgure A below shows the 2-subseta of a b-set 5; figure B
showa thes locetions in A of the triples of Z-subseta that

[ (1 [
a4l

S
LA =

Together, A snd B specify & correspondence C between the 15

partition S.

subsets and the 15 partitfona, This correspondence leads In
& natural wny to
(1) o model of tlhe projective plane PG(2,l§) in whish the 21
points {and also the 21 lines) are the 21 partitlons of S
into subsets X, X, where 1Xi= 2 or 1;
{2} the Conwell mapping of the 35 (L +l)-partitions of an
f-sst onto the 35 lines of PG(3,2), which preserves certaln
Intersection properties;
{3) the R. T. Curtis "HOG" model of the Steiner aystem 3(5,8,2)) and

af "‘Eh a8 the model's automorphism group.

Lat f:a+8' axchange rowsa 2 and 3 in each 3x2 pleture 3 in A,
end let Cf map a 2-subset s to C(s'). If we regard tha Z-sata
ond partitiona aa transposltlions and preducts of transpositions, O
induces en outer automorphism p of 5.. (In tho mbove PG(2,4),

Sg and p{SEI act in concert as p group of collineations.)
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Ploturing outer sutomorphisms of Sg. Expositery mote. July 3, 1986.
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Shown above are two ways to plcture soms outer pubomorphisme of Sg
that have been discussed in the literature (8 in (1), # in (2)).
In the tep row, figure X shows the 15 Z2-meta in a 6-set S, and & ,¢
show tha loecations In X of triples of 2-pets that partition 3.
The second row ghows the corresponding permitations.
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Each row's 8, ¢ contain & specilal S-subaeta:

[fhifis f'wy-— ). D

In the top row these S-subsets are spreads of lines in a Pa(3,2);

in the second row they are perallelisms of 5. Such S-subseta (each of
which can be selected in & ways, then arranged in 51 ways) determine
tha 6] outer automorphlama of Sg.
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Inspapea IV: Inner and outer group actions. July 11, 1986,

Thias note was sugeested by J. H. Conway's construetion (1) of

an order-2 onter smutomorphism of 8¢

(R

11 X)C}i{.?-:i: ﬁ :;& EEEE
X2 (RN Ee]LAR Y
BRI SRR

el | =l

Figures A snd B sbove each show 16 permutetlions of e lb-get

A B

that generate groups G(A) and G(B), respectively. Figure X shows
16 subsets of e lEé-set. The groups G(&) and G(E) can act on
figure X in two weys: by an inner actlion on each of the 16 lxl
parte individnelly, or by an outer action permmting the 16 parts.

Theoram: Let & dencote any permmtetion In A, end let b denote the
permutation in the ecorpespending location in B, Then the irmer
(outer) eetion of & on X induces (ie induced by) the cuter (imnsr)
action of b on X. The group G(A), and hence G(B), is isomorphic
to 56’ and thea map telking esch a to its corresponding b extends to

an involutive ouier auntomorphi=sm of Sge

HEFERENCE
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