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Abstract. From the comparison of time in inertial frames, possible types
of transformations between inertial frames are deduced. This elementary de-
duction directly relates the properties of time with the type of transforma-
tions. When all inertial frames measure the same time (time is absolute),
the transformations are Galilean. When each inertial frame has its own time,
di�erent from the times of other inertial frames (time is not invariant) the
transformations are Lorentz-like with the same positive parameter k. The
parameter k is the supremum of possible velocities in an inertial frame, the
same for all inertial frames. Einstein's postulate about the invariance of the
speed of light says more: there is a uniform motion with the supremum k,
which is exactly the motion of light. At the end of the article, attempts
to reduce the special theory of relativity to the principle of relativity are
criticized.
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1 Introduction

Since its very birth [Einstein(1905)], the special theory of relativity (STR)
has captured attention and imagination with its unusual predictions that
contradict our experiential and educationally learned understanding of real-
ity. This primarily refers to the concepts of space and time. STR is based
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on three physical phenomena: the movement of free particles, the passage
of time, and light. Einstein based STR on two postulates, the principle of
relativity (the laws of physics are the same in all inertial frames) and the
invariance of the speed of light (light has the same uniform speed c in all
inertial frames). Since the postulates refer to inertial frames, in the logi-
cal deduction of the theory, assumptions about inertial frames must also be
present. The standard assumptions are as follows. In each inertial frame
(IF below), clocks can be synchronized, thus determining the time of the IF,
while the space of the IF is Euclidean space. In each IF, free particles move
uniformly in a straight line. In each IF, the laws of physics are invariant to
time translation (time homogeneity), spatial translation (spatial homogene-
ity) and spatial rotation and re�ection (spatial isotropy). In [�ulina(2022)],
an argument for these assumptions is given. It is insu�ciently known that the
principle of relativity can be derived from these space and time invariances of
the laws of physics [Rindler(2006), p. 40]. In what follows, we will also need
the invariance of the direction of time: the di�erence in the time coordinates
of two events that are connected by the motion of a particle has the same sign
in all IFs. Below we will distinguish between inertial frame and coordinate
system. Inertial frame is a frame that allows us to identify events spatially
and temporally. The same inertial frame can provide multiple coordinate
systems for this identi�cation.

In [Einstein(1905)], Einstein deduced from his two postulates that trans-
formations between IFs are Lorentz transformations. Later it was shown,
starting from Ignatowski [Ignatowski(1910)], that from the principle of rela-
tivity it can be deduced that the transformations between IFs are Galilean
transformations or Lorentz-like transformations with some positive constant
k instead of the speed of light c. There is a lasting series of articles dealing
with the question of what can be deduced from the principle of relativity
alone. One list of such articles can be found in [Gao(2017), p. 1] or in
the bibliography of [Mathews(2020)]. For example in [Mathews(2020)] seven
such deductions are given. Also, many elementary deductions are given that
are available to students who only know elementary algebra (for example, in
[Lévy-Leblond(1976), Mermin(1984), Sen(1994), Pelissetto and Testa(2015)]).
However, the authors mainly use these deductions as a basis for reducing or
even eliminating Einstein's postulate on the invariance of the speed of light
and giving priority to the principle of relativity. Such an approach is re�ected
in the deductions themselves. This article advocates a di�erent approach in
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which the invariance of the speed of light and the STR concept of time are
central to the study and teaching of STR. In Section I, we will deduce pos-
sible types of transformations between IFs by comparing times in IFs. Thus
the deduction directly relates the properties of time with the type of trans-
formations. The deduction is elementary, accessible to students who have
mastered elementary algebra. Because it is based on the concept of time,
the key characteristic of STR, and because of the aforementioned elementary
nature, the deduction also has a pedagogical value. Searching the literature,
I did not �nd a similar deduction. I assume that this is due to the fact that
this topic is dominated by a di�erent approach to STR, which gives priority
to the principle of relativity. In Section II, a critique of the attempts to
reduce the theory of relativity to the principle of relativity is given.

2 The deduction of possible types of

transformations based on time comparison

We will deduce possible types of transformations between IFs by comparing
times in IFs. In the deduction, we will use the above-mentioned assumptions
about IF, the principle of relativity and the invariance of the direction of
time. From the deduction follows the well-known result: the concept of
time in STR � there is no absolute time, but each IF has its own time �
separates Galilean transformations (absolute time of IFs) and Lorentz-like
transformations (non-invariant time of each IF). We can express the non-
invariance of time more precisely in several ways. Here we will express it as
the statement that the time shown by a clock at rest in one IF is not equal
to the time registered by (synchronized) clocks in another IF.

Due to the homogeneity of time, homogeneity and isotropy of space of
each IF, without loss of generality we can choose coordinate systems for each
IF so that they are simply placed with each other, and consider only the
transformations between them. We will choose the Cartesian coordinate sys-
tems S in one IF and S ′ in the other IF in which the time measurement is
chosen such that at the common zero moment their origins a well as coordi-
nate axes coincide (Fig. 1).

The system S ′ moves with respect to S in the positive direction of the x-axis
at the speed v. For a given event, we are interested in how its coordinates
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Figure 1:

(t′,x′, y′, z′) in the system S ′ and (t,x, y, z) in the system S are related.

From the coincidence of the coordinate axes at the common zero mo-
ment, space and time symmetries, and the principle of relativity, it can be
obtained that y = y′ and z = z′ and that these coordinates do not a�ect
the relationship between the remaining coordinates (t′,x′) and (t,x) (see e.g.
[Resnick(1968), p. 58]). The relationship between (t′,x′) and (t,x) will be
deduced below.

Considering that the free particle in each IF moves uniformly in a straight
line (or is at rest), its equations of motion are linear equations in each IF.
Since coordinate transformations map linear equations into linear equations,
they themselves must be given by linear equations:

x = Ax′ +Bt′ + E,

t = Cx′ +Dt′ + F .
(1)

Given that the systems S ′ and S are set so that their origins x′ = 0 and
x = 0 coincide at the moment t′ = t = 0, by putting these values in the
equations, we get E = F = 0. Thus, the equations have the form

x = Ax′ +Bt′,

t = Cx′ +Dt′.
(2)
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Let's observe the motion of the origin O′ of the system S'. For its spatial
coordinates, x′ = 0 in the system S ′ and x = vt in the system S. Putting
these expressions into Eq. (2) we will get

vt = Bt′,

t = Dt′.
(3)

Let γ be the ratio of the time t of the duration of the motion of the origin
O′ measured in the system S and the elapsed time t′ measured in the system
S ′ by the clock at the origin O′:

t = γt′ (4)

It follows from the assumption of the direction of time invariance that γ > 0.
Putting the expression (4) in (3) we get

vγt′ = Bt′,

γt′ = Dt′.
(5)

By dividing the equations by t′ (which is not equal to zero except at the
initial moment), we get two coe�cients:

B = γv,

D = γ.
(6)

So now the equations of the coordinate transformations are of the form

x = Ax′ + γvt′,

t = Cx′ + γt′.
(7)

The remaining coe�cients A and B will be obtained in a similar way
by observing the motion of the origin O of the system S. According to the
principle of relativity and isotropy of space, the system S moves in relation
to the system S ′ at the same speed v with which the system S ′ moves in
relation to the system S (Fig. 2).
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Figure 2:

For the spatial coordinates of the origin O, x = 0 in the system S and
x′ = −vt′ in the system S ′. Putting these expressions into the equations of
the coordinate transformations (7) we get

0 = −Avt′ + γvt′,

t = −Cvt′ + γt′.
(8)

According to the principle of relativity and isotropy of space, the ratio
of the time t′ of the duration of the motion of the origin O measured in the
system S ′ and the elapsed time t measured in the system S by the clock at
the origin O is equal to the ratio γ of time t of the duration of the motion of
the origin O′ measured in the system S and the elapsed time t′ measured in
the system S ′ by the clock in the origin O′:

t′ = γt. (9)

Putting this expression in (8) we get

0 = −Avγt+ γ2vt,

t = −Cvγt+ γ2t.
(10)

By dividing the equations by t (which is not equal to zero except at the
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initial moment), we get, after simplifying the equations, the remaining two
coe�cients:

A = γ,

C =
γ2 − 1

γv.

(11)

Thus, we obtained the equations of the coordinate transformations in which
only the mutual speed of motion v of the systems S and S ′ and the time
ratio γ are present:

x = γ(x′ + vt′),

t =
γ2 − 1

γv
x′ + γt′.

(12)

If we look at any clock in the system S ′ at a place x′ and two moments t′1
and t′2 are read on it, in the system S these readings happened in moments

t1 =
γ2 − 1

γv
x′ + γt′1,

t2 =
γ2 − 1

γv
x′ + γt′2.

(13)

By subtracting these equations we get

t2 − t1 = γ(t′2 − t′1). (14)

Thus, we see that γ is the factor by which we must multiply the elapsed
time measured at any clock in one IF in order to obtain the elapsed time
measured in the other IF. Due to the homogeneity of space and time of IFs,
γ is a constant for two IFs.

If γ = 1 (all IFs show the same absolute time) then (12) are classical
Galilean transformations:

x = x′ + vt′,

t = t′.
(15)
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Thus, in the following, we will deal with another possibility: γ ̸= 1 (each
IF has its own time that di�ers from the time of other IFs).

Let's look at the uniform motion of a particle with speed u′ in the system
S ′ so that at the moment t′ = 0 it was at the origin and moves in the positive
direction of the x′ axis. After the elapsed time t′ the particle is at the location
x′ = u′t′. According to (12), the elapsed time t measured in system S is

t =
γ2 − 1

γv
u′t′ + γt′ = (

γ2 − 1

γv
u′ + γ)t′. (16)

From the assumption that in every inertial system the change of time during
particle motion has the same sign (invariance of the direction of time) it
follows that t > 0. So,

γ2 − 1

γv
u′ + γ > 0. (17)

If we repeat this consideration for a particle that moves uniformly with ve-
locity u′ in the system S ′ so that at the moment t′ = 0 it was at the origin
and moves in the negative direction of the x′ axis (x′ = −u′t′), we will get

−γ2 − 1

γv
u′ + γ > 0, (18)

that is,

γ2 − 1

γv
u′ − γ < 0. (19)

Multiplying this inequality with the inequality (17) we get

(γ2 − 1)2

γ2v2
u′2 − γ2 < 0, (20)

that is,

u′2 <
γ4v2

(γ2 − 1)2
. (21)
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This inequality shows that all velocities of uniform motions in the system
S ′ are bounded from above. Then there is a supremum k of the set of all
velocities of uniform motions in the system S ′. According to the principle
of relativity, this number must be the same for all IFs. According to the
de�nition of instantaneous speed of motion, it is also the supremum of all
instantaneous speeds of motion. Let's call it the limit speed of motion. Based
on the above considerations, we cannot claim that there is a uniform motion
at that speed, but we have shown that there is no motion with a speed higher
than the limit speed.

From the equations of coordinate transformations (12), we can easily
obtain an expression for the transformation of the speed of a movement u′

in the system S ′ into its speed u in the system S:

u =
γ(u′ + v)

γ2 − 1

γv
u′ + γ

=
γ2v(u′ + v)

(γ2 − 1)u′ + γ2v
. (22)

By calculating the derivative with respect to u′ of the right-hand side, we can
easily see that this derivative is always positive, that is, that the right-hand
side is an increasing function with respect to u′. This means that we will
get the supremum of the right-hand side by putting the limit speed k in the
right-hand side instead of u′. But k is also the supremum of the left side of
the equation. Thus, applying the supremum for all speeds to the equation
(22), we get

k =
γ2v(k + v)

(γ2 − 1)k + γ2v
. (23)

Solving this equation for γ we get that the solution exists only for γ > 1:

γ =
1√

1− v2

k2

. (24)

We see that the factor γ between the two IFs depends only on their relative
velocities.
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Now we can simplify transformations between coordinates because the
above expression for γ gives us that

γ2 − 1

γv
= γ

v

k2
. (25)

Thus we have a �nal expression for the coordinate transformations � we have
obtained Lorentz-like transformations:

x = γ(x′ + vt′),

t = γ(
v

k2
x′ + t′).

(26)

The conclusion of the above deduction is that from the above-mentioned
assumptions about IF, the principle of relativity and the invariance of the
direction of time, it follows that the transformations between IF are Galilean
or Lorentz-like transformations with the same positive parameter k. Trans-
formations are Galilean precisely when all IFs measure the same time (time is
absolute), and Lorentz-like precisely when each IF has its own time, di�erent
from the time of other IFs (the non-invariance of time).

The deduction also gives us that the constant positive parameter k in
Lorentz-like transformations is the supremum of possible velocities in any
IF. Thus, motions with a speed greater than k are not possible, and it is
possible that there is a motion with a speed of k. Einstein's postulate on the
invariance of the speed of light says that there is a motion with a speed of k:
it is precisely the motion of light (k is equal to the speed of light).

The above deduction shows that, with the mentioned background as-
sumptions, the statement about the non-invariance of time is equivalent to
the statement that the transformations between IF are Lorentz-like transfor-
mations with some positive parameter k. This means that every choice of
positive parameter k gives a mathematical model in which the background
assumptions are ful�lled and in which time is not IF-invariant. Einstein's
postulate on the invariance of the speed of light determines only one of these
models. We know from logic that this means that, with the background as-
sumptions, Einstein's postulate on the invariance of the speed of light does
not follow from the assumption of the non-invariance of time, while the non-
invariance of time follows from Einstein's postulate on the invariance of the
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speed of light. Simply put, with the background assumptions, Einstein's pos-
tulate on the invariance of the speed of light is a stronger condition than the
non-invariance of time.

3 A critique of attempts to reduce special

theory of relativity to the principle of

relativity

As already mentioned in the introductory section, starting with the article by
Ignatowski [Ignatowski(1910)] there is a lasting series of articles dealing with
the question of what can be derived from the principle of relativity alone. In
these articles, the logical connections of various statements are more or less
correctly established. However, the authors mainly use such an approach as
a basis for reducing or even eliminating Einstein's postulate on the invariance
of the speed of light. The following quote [Lévy-Leblond(1976)] is illustrative
of such an approach:

[...] I intend to criticise the overemphasized role of the speed of light
in the foundations of special relativity, and to propose an approach to
these foundations that dispenses with the hypothesis of the invariance
of c. By establishing special relativity on a property of the speed of
light, one seems to link this theory to a restricted class of natural
phenomena, namely, electromagnetic radiations. However, the lesson
to be drawn from more than half a century is that special relativity
up to now seems to rule all classes of natural phenomena,[...]

[...]

We believe that special relativity at the present time stands as a uni-
versal theory describing the structure of a common space-time arena
in which all fundamental processes take place. All the laws of physics
are constrained by special relativity acting as a sort of �super law�,
and electromagnetic interactions here have no privilege other than a
historical and anthropocentric one. Relativity theory, in fact, is but
the statement that all laws od physics are invariant under the Poincaré
group (inhomogeneous Lorentz group).
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The following comment by Pauli [Pauli(1958), p. 11] illustrates a di�erent
view:

Nothing can naturally be said about the sign, magnitude and physical

meaning of α [α = 0 for Galilean transformations and α =
1

k2
for

Lorentz-like transformations in the notation of this article]. From the
group-theoretical assumption, it is only possible to derive the general
form of the transformation formulae, but not their physical content.

Giving priority importance to the principle of relativity is also re�ected
in the approach to teaching STR. In [Mermin(1984), p. 119], Mermin writes:
�There are pedagogical as well as conceptual advantages to eliminating light
through its central role in relativity theory�. Sen [Sen(1994), p. 157] states
that the postulate about the invariance of the speed of light �appears to
be counter-intuitive, almost magical, to most beginning students�, and that
approaches via the principle of relativity are �philosophically more satisfying�.
Of course, giving conceptual and philosophical priority to the principle of
relativity in teaching STR is a consequence of the position of these authors
that the principle of relativity is far more important than the invariance of
the speed of light. Pedagogical reasons are more understandable and may
be a reaction to the excessive emphasis on the revolutionary nature of STR,
which Bondi [Bondi(1966), p. 225] has already warned against:

At �rst, relativity was considered shocking, anti-establishment and
highly mysterious, and all presentations intended for the population
at large were meant to emphasize these shocking and mysterious as-
pects, which is hardly conducive to easy teaching and good under-
standing. They tended to emphasize the revolutionary aspects of the
theory whereas, surely, it would be good teaching to emphasize the
continuity with earlier thought.

As for the deduction of Lorentz transformations, it should be noted that
both the principle of relativity and electromagnetism are used to a very lim-
ited extent. The principle of relativity was applied only to uniform motions
and to the behavior of clocks, while all we need from electromagnetism is the
phenomenon of light. However, the principle of relativity itself tells us that
the transformations between IFs are Galilean transformations or Lorentz-like
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transformations, but it cannot give us an answer to the key question: which
of these transformations is the transformation between IFs? In [Drory(2015)]
it is argued that the choice between these two possibilities is �on the level of
a postulate and that until we assume one or the other, we have an incom-
plete structure that leaves many fundamental questions undecided, including
basic prerequisites of experimentation.�. It follows from the above deduc-
tion that the choice of Lorentz-like transformations is precisely the choice of
non-invariance of time, the characteristic law of STR.

I believe that the insistence on the principle of relativity stems from the
fact that the principle of relativity and the invariance of the speed of light
together with the non-invariance of time are epistemologically fundamentally
di�erent. The principle of relativity is a universal principle that places limits
on the laws of physics, while the invariance of the speed of light and the
non-invariance of time are substantive laws of physics. This epistemological
di�erence can be given an even more drastic formulation. The principle of
relativity is our almost a priori tool by which we successfully understand na-
ture, while the invariance of the speed of light and the non-invariance of time
are a posteriori truths of nature. In defense of this understanding of the prin-
ciple of relativity, I will refer to the authority of Herman Weyl [Weyl(1952),
p. 126]: �As far as I see, all a priori statements in physics have their origin in
symmetry.�. In [�ulina(2022)], an analysis of the concept of inertial frame is
given, which, based on the assumption of the existence of free particles, shows
that inertial frames are our idealized constructions in which it is possible and
desirable to set the conditions of space-time symmetries and the principle of
relativity to the laws of physics. This almost a priori nature of the principle
of relativity explains why the principle of relativity is understandable and
acceptable to us. Attempts to base STR on the principle of relativity are
thus attempts to base it on something comprehensible. That is why the path
to STR through the principle of relativity is also pedagogically acceptable.
Given that it also applies to classical Newtonian physics, it enables an easier
transition in the learning of STR. However, precisely because of this univer-
sality, this principle is not characteristic of STR. It only gets a new form
in STR, as a requirement of invariance to Lorentzian and not to Galilean
transformations. What is characteristic of STR are the substantive physical
laws of the invariance of the speed of light and the non-invariance of time.
They express deep and still incomprehensible properties of nature. The main
challenge of STR is to try to understand these properties. Transferring to
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students the thrill of the incomprehensibility of these properties of nature
is, in my opinion, just as important and perhaps even more important than
transferring the comprehensibility of the principle of relativity.

References

[Bondi(1966)] H. Bondi. The teaching of special relativity. Physics Educa-

tion, 1:223�227, 1966.

[�ulina(2022)] B. �ulina. An analysis of the concept of inertial frame in
classical physics and special theory of relativity. Science and Philosophy,
10(2):41�66, 2022. doi: 10.23756/sp.v10i2.827. https://philpapers.

org/archive/CULAAO-5.pdf.

[Drory(2015)] A. Drory. The necessity of the second postulate in special
relativity. Studies in History and Philosophy of Science Part B: Studies

in History and Philosophy of Modern Physics, 51:57�67, 2015. ISSN
1355-2198. doi: https://doi.org/10.1016/j.shpsb.2014.08.015.

[Einstein(1905)] A. Einstein. Zur Elektrodynamik bewegter Körper. Annalen
der Physik, 322(10):891�921, 1905.

[Gao(2017)] S. Gao. Relativity without light: A further suggestion. https:
//philsci-archive.pitt.edu/13220/1/rwl%202017.pdf, 2017.

[Ignatowski(1910)] W. V. Ignatowski. Einige allgemeine Bemerkungen zum
Relativitätsprinzip. Phys. Zeits., 21:891�921, 1910.

[Lévy-Leblond(1976)] J. M. Lévy-Leblond. One more derivation of the
Lorentz transformation. Am. J. Phys., 21:271�277, 1976.

[Mathews(2020)] J. Mathews, W. N. Seven formulations of the kinematics
of special relativity. American Journal of Physics, 88(4):269�278, 04
2020. doi: 10.1119/10.0000851. URL https://doi.org/10.1119/10.

0000851.

[Mermin(1984)] N. D. Mermin. Relativity without light. Am. J. Phys., 52:
119�124, 1984.

14



[Pauli(1958)] W. Pauli. Theory of Relativity. Pergamon, 1958.

[Pelissetto and Testa(2015)] A. Pelissetto and M. Testa. Getting the Lorentz
transformations without requiring an invariant speed. American Jour-

nal of Physics, 83(4):338�340, 04 2015. doi: 10.1119/1.4901453. URL
https://doi.org/10.1119/1.4901453.

[Resnick(1968)] R. Resnick. Introduction to Special Relativity. Wiley, 1968.

[Rindler(2006)] W. Rindler. Relativity: Special, General, and Cosmological.
OUP Oxford, third edition, 2006.

[Sen(1994)] A. Sen. How Galileo could have derived the special theory of
relativity. Am. J. Phys., 62:157�162, 1994.

[Weyl(1952)] H. Weyl. Symmetry. Princeton University Press, 1952.

15


