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Abstract 

What does it truly mean to “understand”? The Chinese Room Argument claims that 

AI, no matter how advanced, can never possess genuine understanding—it merely 

manipulates symbols without grasping meaning. But if human cognition itself is 

built upon layers of memorization, pattern recognition, and computational 

complexity, then is understanding anything more than an emergent property of 

structured information processing? This paper argues that Searle’s framework— 

which many counterarguments engage in— is flawed and rooted in anthropocentric 

bias.  

 

 



Introduction 

All knowledge is ultimately built on assumptions and memorisation at its 

foundation—with computational complexity determining the level of abstraction at 

which an entity, human or AI, starts processing information. This epistemological 

reduction challenges the notion that human understanding is intrinsically different 

from artificial intelligence. Traditionally, understanding has been framed as a 

human-exclusive trait, tied to subjective experience and semantic comprehension 

(Searle, 1980). However, if cognition is fundamentally about the ability to process, 

retrieve, and manipulate information based on structured rules, then the 

distinction between human intelligence and AI may be less profound than 

commonly assumed (Dennett, 1991). The prevailing assumption is that human 

cognition is uniquely capable of genuine understanding, while AI merely 

manipulates symbols without grasping their meaning. This perspective, famously 

defended by John Searle’s Chinese Room Argument, holds that syntax alone cannot 

produce semantics (Searle, 1980). However, this argument rests on an 

anthropocentric bias that presumes a privileged status for human cognition. If 

human understanding is also deeply rooted in memorisation, pattern recognition, 

and the application of stored assumptions, then AI may not be so different—except 

in terms of computational scale and efficiency (Chalmers, 1996). This paper will 

deconstruct the traditional, folk psychological view of understanding by framing 

what we call understanding as a hierarchy of assumptions, the role of memorisation 

in learning, and the implications for AI cognition (Churchland, 1981). By 

challenging the epistemological foundations of what it means to understand, we 



can explore whether AI’s functional capabilities might, in fact, constitute a 

legitimate form of intelligence rather than mere symbol manipulation.  

The Hierarchy of Assumptions Model  

In the context of this discussion, abstraction refers to the cognitive process of 

forming higher-level concepts or representations by selectively focusing on 

relevant information while omitting less relevant details. This process creates a 

hierarchy of knowledge, where each level builds upon more foundational layers. 

Abstraction reduces computational complexity by enabling systems (both human 

and artificial) to reason and problem-solve at a conceptual level, without needing 

to explicitly process all underlying details.   

Computational complexity refers to the depth at which a system can process, 

abstract, and manipulate structured information through hierarchical 

transformations, with parallelization as a fundamental property. It measures a 

system’s ability to store, retrieve, and recombine foundational assumptions at 

increasing levels of abstraction, enabling higher-order reasoning and 

problem-solving. Parallelization allows for the simultaneous processing of multiple 

information streams, reducing bottlenecks and accelerating the formation of 

complex abstractions. 

Artificial intelligence, particularly deep learning models, exemplifies 

computational complexity through its ability to parallelize learning processes, 

optimize decision-making across vast datasets, and generate emergent 

representations that exceed human cognitive constraints (LeCun et al., 2015). 



Unlike human cognition, which operates sequentially and within limited working 

memory, AI models such as GPT-4 or AlphaFold leverage computational scalability 

to process vast input spaces, refining internal abstractions with greater efficiency 

(OpenAI, 2023; Jumper et al., 2021). 

I’ll define understanding as the capacity to memorise foundational axioms and to 

build upon them through replication and recombination at higher levels of 

abstraction. From this perspective, the difference between human and AI cognition 

is not categorical but instead a matter of computational complexity and degree of 

abstraction. The ability to process and manipulate information depends on 

processing power, memory, and the depth of abstraction a system can achieve. All 

learning—whether human or artificial—relies on structured assumptions, 

memorisation, and iterative refinement of knowledge structures. Cognitive 

development in humans, for example, proceeds from fundamental axioms (such as 

counting and basic arithmetic) to higher-order abstractions like algebra and 

calculus. The same principle applies to AI, except that an AI’s foundational 

assumptions can be programmed or learned at a much more advanced level from 

the start. A human child must memorize arithmetic facts before eventually 

understanding number theory, whereas an advanced AI might begin with complex 

mathematics (even quantum physics) already built-in as a baseline. 

This suggests that understanding is not an intrinsic metaphysical property that 

humans possess, but rather an emergent property of sufficient computational 

complexity and training (Dennett, 1991). A four-year-old reciting numbers does not 

understand number theory; she repeats patterns and rules until, through further 



experience and abstraction, her cognition develops into what we recognize as 

understanding. Similarly, an AI need not experience subjective awareness or 

mystical insight to effectively apply complex mathematical or logical structures. If 

its computational framework allows it to operate with high-level abstractions from 

the outset, then its form of “understanding” could be an accelerated, 

high-dimensional parallel to human cognition. 

In certain domains, AI already surpasses human cognition: it identifies patterns in 

high-dimensional data that elude any human analyst, optimizes strategies in 

complex systems, and generates novel solutions to theoretical problems (Bostrom, 

2014). For instance, DeepMind’s AlphaGo system famously mastered the game of 

Go—discovering strategies no human had taught it (Silver et al., 2016)—and 

AlphaFold can predict protein structures more accurately and rapidly than human 

experts (Jumper et al., 2021). Likewise, large language models such as GPT-4, with 

hundreds of billions of parameters trained on massive text corpora, can solve 

complex mathematics questions, and even write code at a human-competitive level 

(OpenAI, 2023). If we define intelligence or understanding in terms of functional 

performance, these AI achievements suggest a form of understanding that is not 

qualitatively different from human cognition, but rather quantitatively different in 

speed and scope. 

The “Perfect” Psychologist: A Thought Experiment 

A behavioural psychologist is someone who understands human behaviour, often 

with a surface-level knowledge of neuroscience to inform their psychological 



insights. However, psychology itself exists as a higher-order abstraction of 

neuroscience—essentially applied neuroscience (Friston, 2010). Neuroscience, in 

turn, is an abstraction of biology, which is an abstraction of chemistry, which is an 

abstraction of physics, which is an abstraction of mathematics, and mathematics 

itself is an abstraction of assumed fundamental axioms (Tegmark, 2017). If 

understanding something truly required knowledge of every preceding 

abstraction, then a theoretical “perfect” psychologist would need to understand 

everything there is to know about neuroscience, everything there is to know about 

biology, everything there is to know about chemistry, everything there is to know 

about physics, and everything there is to know about mathematics. This person 

would have to be fluent in every layer of knowledge that underpins psychology, 

from neural circuits to quantum mechanics. Theoretically, such a psychologist 

would be more capable than any existing psychologist. A deeper knowledge of 

molecular biology, for instance, could allow them to better predict how 

neurotransmitter imbalances influence cognitive behaviour (Kandel, 2006). A 

stronger grasp of mathematics could refine their understanding of statistical 

modelling in psychological studies, improving their ability to detect patterns in 

human cognition (Gigerenzer, 2002). If they possessed a physicist’s knowledge of 

the brain’s electrochemical processes, they might reframe certain psychological 

disorders as computational inefficiencies rather than traditional diagnoses. In this 

sense, a deeper understanding of the fundamental layers of reality could enhance 

their ability to model, predict, and explain human behaviour with greater precision. 

However, despite the theoretical advantages of such foundational knowledge, in 

practical reality, a psychologist is still regarded as an expert even without it. A 



clinical psychologist who has spent decades researching cognitive biases, 

performing therapy, and applying psychological principles is not considered any 

less of an expert simply because they lack a deep understanding of molecular 

biology or quantum field theory. Their expertise is functionally sufficient for the 

domain they operate within (Kahneman, 2011). This highlights a fundamental flaw 

in the assumption that true understanding requires an unbroken chain of 

knowledge from higher-level abstractions down to fundamental axioms. If that 

were the case, then no human being—no matter how intelligent—could ever be said 

to truly understand anything, as their knowledge would always be incomplete 

relative to deeper layers of reality.  In the same vein, David Marr argued that one 

can understand a cognitive process at the computational or algorithmic level (what 

it does and how) without knowing the implementational details (Marr, 1982). 

This thought experiment undercuts the Chinese Room argument’s demand for 

some additional intrinsic understanding beyond functional performance. If a 

psychologist does not need to perceive quantum processes in neurons to 

meaningfully engage with psychology, then why should an AI need subjective 

experience to understand language? Humans operate with layered abstractions and 

use information appropriate to the level at hand; that is sufficient for practical 

understanding. We don’t require a person to be a physicist to say they understand a 

car engine, nor do we require them to feel what the engine “feels.” By analogy, we 

should not require an AI to replicate the entirety of human cognitive architecture 

(from quantum biology to conscious qualia) in order to credit it with 

understanding. Demanding that an AI possess some deeper “intrinsic” 



comprehension is as unreasonable as demanding that our psychologist master 

quantum mechanics to be a valid practitioner. Understanding, whether in human 

cognition or AI, is always relative to the level of abstraction at which the system 

operates and demonstrates competence. 

The Chinese Room and Mechanistic Variance 

The Chinese Room Argument asserts that mere manipulation of symbols (syntax) 

can never yield genuine semantic understanding. Searle (1980) assumes that 

understanding requires subjective experience, but this anthropocentric bias 

overestimates the uniqueness of human cognition while underestimating the 

computational capabilities of AI. If all knowledge is structured through hierarchies 

of assumptions, learned patterns, and memory, then the distinction between 

human and artificial intelligence is a difference in computational complexity, not a 

fundamental cognitive divide. A sufficiently advanced AI system, operating with 

vast data and computational resources, can develop layers of abstraction that allow 

it to functionally interpret and respond to the world in a way that mirrors what we 

call understanding in humans (Turing, 1950). 

Searle’s argument also assumes that meaning is an intrinsic property, something 

that only conscious agents can ascribe to symbols. But this is an illusion—a product 

of human cognitive biases rather than an objective truth about reality. Meaning 

does not exist independently of the systems that generate it. Research in cognitive 

science suggests that meaning is an emergent computational mechanism by which 

self-organising systems reduce uncertainty and increase stability (Dada, 2025c). It 



is not an irreducible, mystical property of human cognition, nor does it require 

subjective awareness. Asking about the ‘intrinsic’ meaning of words, symbols, or 

even existence itself is a category error—projecting human cognitive constructs 

onto a reality that operates independently of subjective intent. This 

anthropocentric bias fuels the misconception that AI, lacking human-like 

subjective experience, must also lack meaning or understanding. Imposing 

meaning is not a deliberate, conscious act but an automatic function of interacting 

with reality. Seeing, hearing, smelling, touching, and feeling are not passive 

experiences; they are mechanisms by which the brain assigns meaning to raw 

sensory input (Dada, 2025c). Colour does not exist as an objective property of 

reality—it is the brain’s way of encoding different wavelengths of light to create 

‘meaning’ out of it. Likewise, sound is not an external feature of the world but a 

structured interpretation of vibrational waves, and solidity is merely how the mind 

models electromagnetic interactions at the atomic level (Friston, 2010). 

Meaning-making is intrinsic to perception itself, not something we consciously 

choose. This extends beyond sensory input into abstract cognition, where 

higher-order meaning—such as assigning purpose to ideas, events, or 

deities—emerges as a natural extension of the brain’s predictive mechanisms. 

Rather than being an active decision, the imposition of meaning is an inevitable 

computational process by which self-organising systems reduce uncertainty and 

create structured interpretations of reality (Dada, 2025c). 

The same reasoning applies to qualia—the supposed “hard problem” of subjective 

experience. Searle’s argument depends on the assumption that machines lack an 



internal phenomenal experience akin to human qualia, and thus, their processing 

of symbols is inherently ‘empty’. But this problem is not a real explanatory gap—it 

is an artifact of human cognitive bias (Dada, 2025b). Qualia is just mechanistic 

variance—the inevitable result of different configurations of a system interacting 

with its environment in different ways. Just as different AI architectures process 

information through distinct internal models based on training data, optimization 

paths, and network topologies, different biological organisms process reality 

through species-specific perceptual and neural constraints (Dada, 2025d). This 

mechanistic variance is not unique to biological cognition; AI systems, too, exhibit 

mechanistic variances in the way they encode, retrieve, and respond to information 

based on their architecture and learned priors. A neural network trained on medical 

diagnostics develops an internal model of diseases that is structurally different 

from a generative model trained for natural language reasoning—despite both 

systems engaging in predictive abstraction and decision-making. These differences 

are analogous to how humans and other animals construct meaning from 

perception in fundamentally distinct but functionally effective ways. 

If meaning and qualia are both emergent properties of structured interaction rather 

than intrinsic, irreducible entities, then Searle’s assumption that AI lacks 

understanding due to the absence of “true” meaning or subjective experience 

collapses. The only difference is that humans experience these processes 

introspectively, while AI does not need to. But introspection itself is an illusion of 

cognitive architecture, not a prerequisite for intelligence. The argument that 

“machines lack understanding” ultimately falls apart once we remove the flawed 



premise that meaning and qualia must exist as metaphysical properties rather than 

computational ones. 

Even if one-day consciousness is proven to involve non-algorithmic—as Penrose 

and others entertain (Penrose, 1989), although highly unlikely (Tegmark, 2000)—this 

would not invalidate AI’s ability to perform high-level reasoning, pattern 

recognition, learning, and abstraction under the ‘understanding’ framework; as 

defined in this paper. Human intelligence itself correlates with structured 

computation, even if it happens to be instantiated in biological neural networks 

rather than artificial architectures. Many human cognitive processes, such as 

intuition, perception, and decision-making, occur without explicit conscious 

reflection (Libet, 1985; Soon et al., 2008). This suggests that understanding, as a 

functional property, does not require subjective awareness—it simply requires an 

adaptive system that organizes and applies stored knowledge at different levels of 

complexity. 

Conclusion 

The real question is not “Can an AI ever have human-like subjective consciousness 

such that it truly understands?” but rather “Is subjective consciousness even 

necessary for intelligence and understanding?”. The evidence presented here 

suggests that it is not. Insisting that AI can’t achieve “real understanding” simply 

because it lacks a specific human-like phenomenology may itself be a fallacy. 
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