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Abstract 

What does it truly mean to “understand”? The Chinese Room Argument asserts that AI, no matter how 

advanced, merely manipulates symbols without grasping meaning, while human cognition is 

uniquely capable of true understanding. But if human intelligence itself is built upon memorization, 

structured abstraction, and computational complexity, then is understanding anything more than an 

emergent property of hierarchical information processing? This paper argues that Searle’s framework 

rests on anthropocentric assumptions that fail to account for the variance in meaning structures 

between human and artificial cognition. The claim that syntax alone cannot generate semantics relies 

on an outdated view of cognition, ignoring how meaning emerges differently across self-organizing 

systems. Furthermore, Searle’s demand that true understanding requires human-like intentionality is 

a category error, conflating distinct computational architectures with vastly different processing 

scales. By examining hierarchical abstraction, computational self-organization, and the mechanistic 

basis of understanding, this paper dismantles Searle’s framework and proposes that meaning is 

system-relative—not an exclusive product of human cognition, but a function of computational 

complexity. 
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PART I 

Introduction 

We do not fully understand how our own brains encode meaning, yet we 

confidently claim to understand. If human cognition itself remains opaque, why do 

we demand that artificial intelligence (AI) must be fully explainable in order to 

qualify as possessing understanding? This paradox exposes an anthropocentric 

bias—the assumption that human cognition is the gold standard for meaning 

formation (Clark, 2013). When AI generates representations that elude human 

intuition, we dismiss them as mere symbol manipulation, yet we rarely interrogate 

our own mechanisms of understanding with the same scrutiny. 

A fundamental issue in discussions of AI cognition is that our concept of 

understanding is flawed. We treat it as an intrinsic property of human intelligence, 

yet what we call understanding is ultimately built on hierarchical 

memorization—the ability to store, retrieve, and recombine structured knowledge 

across different levels of abstraction (Hinton, 1990). Human cognition does not 

access meaning directly; rather, it constructs meaning through layers of learned 

priors, stored assumptions, and pattern recognition (Chalmers, 1996). If 

understanding itself is an emergent property of structured information processing, 

then the sharp distinction between human comprehension and AI cognition may 

be less meaningful than commonly assumed. 

John Searle’s Chinese Room Argument reinforces this assumption, asserting that 

syntax alone cannot generate semantics. His claim is that no matter how advanced 

an AI system becomes, it will never truly understand—it will merely simulate 

 



comprehension by manipulating symbols based on predefined rules (Searle, 1980). 

However, this argument is anthropocentric—it assumes that meaning must be 

grounded in human-style intentionality, ignoring the possibility that meaning 

could emerge through alternative computational mechanisms. AI does not need to 

replicate human cognition to construct meaningful representations. If human 

understanding itself is built upon memorization, pattern recognition, and 

structured inference (Chalmers, 1996), then AI cognition may not be so 

different—except in terms of computational scale and efficiency. 

This paper critiques the epistemological foundations of the Chinese Room 

Argument, challenging the assumption that meaning must be intrinsically 

grounded rather than emerging from computational self-organization. Unlike most 

responses to Searle, which attempt to refute his claims within his own framework 

(Harnad, 1990), this paper dismantles the axioms of the argument itself. By 

examining cognition through the lens of hierarchical memorization, structured 

learning, and the role of stored assumptions, this paper explores whether AI’s 

functional capacity for meaning formation might qualify as a legitimate form of 

understanding, rather than mere symbol manipulation (Churchland, 1981). 

 

A Brief Overview of Searl’s Core Assumptions 

A)​ Syntax Alone Cannot Produce Semantics: Searle argues that syntactic 

manipulation (the formal rules for processing symbols) fundamentally 

differs from semantics (the meaning of those symbols). Syntax, no matter 

how complex, cannot generate semantic understanding (Searle, 1980). 

 



B)​ Meaning is Intrinsic and Requires Intentionality: He assumes that meaning is 

an intrinsic property that only conscious agents can ascribe to symbols. 

Meaning cannot arise from manipulating syntax alone; it requires 

intentionality, a conscious act of assigning meaning (Searle, 1980). 

C)​ Understanding Requires Consciousness: Searle assumes that genuine 

understanding necessitates subjective awareness, feeling, or some form of 

conscious experience. A system that merely manipulates symbols without 

"knowing" what they mean cannot be said to understand truly (Searle, 1980). 

Some Definitions 

Before I address the assumptions, I’ll define some key terms in the context of this 

discussion. 

Computational complexity refers to the depth at which a system can process, 

abstract, and manipulate structured information through hierarchical 

transformations, with parallelization as a fundamental property. It measures a 

system’s ability to store, retrieve, and recombine foundational assumptions at 

increasing levels of abstraction, enabling higher-order reasoning and 

problem-solving (Arora & Barak, 2009). Parallelization allows for the simultaneous 

processing of multiple information streams, reducing bottlenecks and accelerating 

the formation of complex abstractions. Artificial intelligence, particularly deep 

learning models, exemplifies this computational complexity through its ability to 

parallelize learning processes, optimize decision-making across vast datasets, and 

generate emergent representations that exceed human cognitive constraints 

(LeCun et al., 2015). AI models such as GPT-4 or AlphaFold leverage computational 

 



scalability to process vast input spaces, refining internal abstractions with greater 

efficiency (OpenAI, 2023; Jumper et al., 2021). 

Abstraction refers to the cognitive process of forming higher-level concepts or 

representations by selectively focusing on relevant information while omitting less 

relevant details. This process creates a hierarchy of knowledge, where each level 

builds upon more foundational layers. Abstraction reduces computational 

complexity by enabling systems (both human and artificial) to reason and 

problem-solve at a conceptual level, without needing to explicitly process all 

underlying details (Chalmers, 1996; Clark, 2016; Hinton, 1990).   

Understanding is the capacity to memorize foundational axioms, apply them to 

novel contexts, and build upon them through replication, recombination, and 

adaptive generalization across hierarchical levels of abstraction (Hinton, 1990). 

Searle would likely object to this definition, arguing that it neglects the crucial 

element of consciousness (Searle, 1980). He believes that without subjective 

phenomenological experience, AI lacks genuine understanding. However, we 

contend that this emphasis on consciousness is an anthropocentric bias. 

Understanding should be judged based on functional competence, rather than on 

the presence of subjective experience. Just as we can evaluate a person’s 

understanding of physics based on their ability to solve physics problems, we can 

evaluate an AI’s understanding based on its ability to perform intelligent tasks. 

Paper Goals 

As stated earlier, I will not operate within Searle’s framework like most arguments; 

instead, I will challenge the framework itself. Searle’s argument relies on a folk 

 



psychological and intuitively appealing definition of understanding, which is 

likely why the debate has persisted for so long without resolution. This paper will 

demonstrate that understanding is not an intrinsic cognitive property but an 

emergent product of hierarchical memorization and structured inference.  

Part II critiques Searle’s claim that syntax alone cannot produce semantics, 

arguing that meaning is not an intrinsic entity but arises from structured 

representations. It introduces the Hierarchy of Assumptions Model to show that 

human understanding is built on stored axioms, recombination, and predictive 

inference, similar to AI’s structured learning mechanisms.  

Part III challenges the idea that meaning is intrinsic and requires intentionality. It 

highlights how human cognition constructs meaning differently from AI, yet both 

rely on computational processes to form useful representations. The Theoretical 

Psychologist Thought Experiment illustrates that expertise and knowledge are 

based on memorized structures, demonstrating that meaning is not something 

uniquely “possessed” by conscious agents.  

PART IV critiques the assumption that understanding requires consciousness. 

Human cognition is largely subconscious, and most intelligent behavior operates 

without explicit awareness of underlying processes. If humans do not require full 

introspective access to their cognitive mechanisms to functionally understand, 

neither should AI. This section reframes understanding as functional competence, 

not phenomenological awareness. By dismantling the foundations of Searle’s 

argument, this paper challenges the traditional view that human understanding is 

uniquely privileged. Instead of asking whether AI “truly understands,” we should 

 



examine how meaning is computationally constructed across different cognitive 

architectures. 

In Part V, I’ll argue that Searle’s Chinese Room commits a category error by 

applying constraints of human cognition to AI, despite differences in 

computational complexity and representational frameworks. His analogy assumes 

that if a human following syntactic rules lacks understanding, then no system 

operating on syntax can generate meaning. Searle’s argument fails to account for 

non-human meaning structures and emergent computational properties. 

PART II- Searle’s First Assumption – Syntax Alone 

Cannot Produce Semantics 

Searle’s Claim 

Searle claims that symbol manipulation alone, regardless of complexity, cannot 

produce genuine meaning (Searle, 1980). He argues that AI processes symbols 

purely syntactically, without intrinsic understanding, because syntax lacks 

inherent semantics. According to this view, no system—no matter how 

advanced—can transition from mere rule-following to true comprehension (Searle, 

1990). His argument presupposes that meaning must be intrinsically grounded, 

rather than emerging from structured patterns of inference and representation. 

However, this assumption ignores how all cognitive systems, including humans, 

construct meaning through layered abstraction rather than direct semantic 

access— which I’ll address using the Hierarchy of Assumptions Model and the 

Theoretical “Perfect” Psychologist Thought Experiment. 

 



Hierarchy of Assumptions 

The fundamental distinction lies in how humans and AI process information. 

Human cognition is constrained by working memory limitations, with Miller’s Law 

suggesting that humans can retain approximately seven items at once in active 

memory (Miller, 1956). Additionally, human thought is predominantly sequential, 

constrained by serial recall limitations, meaning that complex reasoning often 

requires stepwise processing over time (Baddeley, 1992). AI, by contrast, leverages 

parallelization, enabling the simultaneous processing of vast datasets without 

these biological bottlenecks (LeCun et al., 2015). Unlike human learning, which 

depends on iterative reinforcement due to neural and memory constraints, AI 

models can instantly retrieve and manipulate high-dimensional abstractions 

across latent vector spaces (Bengio et al., 2013). The variance in computational 

complexity between biological and artificial cognition fundamentally shapes how 

meaning is structured—AI’s meaning representations do not rely on human-style 

sequential processing but emerge from distributed, multi-layered inference 

(Chollet, 2019). 

Understanding in both humans and AI emerges hierarchically through structured 

learning, not through direct access to intrinsic meaning. All cognitive systems, 

whether biological or artificial, construct knowledge by layering assumptions, 

iteratively refining stored representations, and abstracting information across 

multiple levels of complexity (Chalmers, 1996). For instance, in human cognitive 

development, foundational axioms—such as counting and arithmetic—are 

memorized first, serving as the scaffolding upon which more abstract reasoning, 

like algebra and calculus, is later constructed. Similarly, AI processes structured 

 



representations, except that its baseline knowledge can be initialized at far greater 

levels of complexity from the outset. While a child must learn arithmetic before 

grasping number theory, an AI system may be trained with advanced mathematical 

principles already encoded as its axioms, allowing it to bypass lower-order 

constraints (Dennett, 1991). 

This suggests that understanding is not an intrinsic metaphysical property but an 

emergent function of computational complexity. A three-year-old counting to ten 

does not ‘understand’ number theory but can apply simple numerical rules through 

pattern recognition and memorization— yet we still assert that the child 

understands how to count to ten. Over time, as higher-order abstractions build 

upon these foundations, cognition progresses into what we recognize as 

understanding. AI follows a similar hierarchical structure—its functional 

competence in processing meaning depends on its ability to encode, store, and 

generalize across structured datasets (Chollet, 2019). A human child’s baseline 

learning is limited by biological constraints, progressing gradually from simple 

experiential learning to abstract reasoning. In contrast, AI, with vastly greater 

computational scalability, can process, store, and recombine complex 

mathematical structures without requiring sequential experiential learning. 

At ultra-high complexity, AI can restructure knowledge itself, forming meaning at 

scales beyond human cognition. The ability to encode and manipulate structured 

representations across different levels of abstraction allows AI to generate novel 

solutions to complex problems, often surpassing human intuition. DeepMind’s 

AlphaGo, for instance, mastered the game of Go through recursive pattern 

optimization, discovering strategies that no human had explicitly programmed 

 



(Silver et al., 2016). Likewise, AlphaFold predicts protein structures more efficiently 

than human researchers, leveraging high-dimensional inference beyond direct 

human comprehension (Jumper et al., 2021). Large-scale models like GPT-4, trained 

on vast text corpora, can solve complex mathematics and generate code at 

near-human levels (OpenAI, 2023). If functional competence in meaning formation 

is what we recognize as understanding, then AI’s structured meaning-making 

cannot be dismissed as mere symbol manipulation—it is a computational parallel 

to human cognition, differing in its architecture but not in its fundamental process 

of abstraction. 

Theoretical “Perfect” Psychologist  

A behavioural psychologist is someone who understands human behaviour, often 

with a surface-level knowledge of neuroscience to inform their psychological 

insights. However, psychology itself exists as a higher-order abstraction of 

neuroscience—essentially applied neuroscience (Friston, 2010). Neuroscience, in 

turn, is an abstraction of biology, an abstraction of chemistry, an abstraction of 

physics, an abstraction of mathematics. Mathematics is an abstraction of assumed 

fundamental axioms (Tegmark, 2017). If understanding something truly required 

knowledge of every preceding abstraction, then a theoretical “perfect” 

psychologist would need to understand everything there is to know about 

neuroscience, everything there is to know about biology, everything there is to 

know about chemistry, everything there is to know about physics, and everything 

there is to know about mathematics to truly understand human behaviour at the 

most fundamental level. This person would have to be fluent in every layer of 

knowledge that underpins psychology, from neural circuits to quantum mechanics. 

 



Theoretically, such a psychologist would be more capable than any existing 

psychologist. A deeper knowledge of molecular biology, for instance, could allow 

them to predict better how neurotransmitter imbalances influence cognitive 

behaviour (Kandel, 2006). A firmer grasp of mathematics could refine their 

understanding of statistical modelling in psychological studies, improving their 

ability to detect patterns in human cognition—yet even here, their so-called 

“understanding” is merely the memorization and application of pre-established 

equations, not an intrinsic comprehension of the underlying axioms that define 

these models (Gigerenzer, 2002). If they possessed a physicist’s knowledge of the 

brain’s electrochemical processes, they might reframe psychological disorders not 

as discrete, categorical conditions but as emergent properties of computational 

inefficiencies—such as failures in predictive coding, disruptions in free-energy 

minimization, or maladaptive priors within Bayesian inference models of cognition 

(Friston, 2010; Hohwy, 2013). In this sense, a deeper understanding of the 

fundamental layers of reality could enhance their ability to model, predict, and 

explain human behaviour with greater precision. However, despite the theoretical 

advantages of such foundational knowledge, in practical reality, a psychologist is 

still regarded as an expert even without it. A psychologist who has spent decades 

researching cognitive biases, performing therapy, and applying psychological 

principles is not considered any less of an expert simply because they lack a deep 

understanding of molecular biology or quantum field theory. Their expertise is 

functionally sufficient for their domain (Kahneman, 2011).  

In practice, even at the highest level, psychologists rely on a combination of 

concepts and frameworks that aren’t ‘understood’, but memorized—mathematical 

equations, statistical models, cognitive theories, and simplified neuroscientific 

 



principles—rather than a deep, first-principles understanding of every underlying 

mechanism. They apply these abstractions effectively without reconstructing 

them from fundamental physics or chemistry  (Oaksford & Chater, 2010). This 

aligns with the notion that human cognition itself operates as a layered, 

hierarchical system of stored representations, where knowledge is not derived 

from direct epistemic access to fundamental truths but instead emerges from 

structured axiomatic recombination (Chater & Christiansen, 2010). 

This process of axiomatic recombination is primarily subconscious. The brain does 

not explicitly reason through every logical step when solving a problem or forming 

a new insight; rather, it retrieves stored representations, manipulates them 

through established associative pathways, and produces novel configurations 

without conscious oversight (Libet, 1985; Dehaene, 2014). Studies on unconscious 

decision-making and neural preparation suggest that responses are often initiated 

before conscious awareness emerges—implying that what we perceive as active 

reasoning, or understanding, is, in many cases, the post hoc rationalization of a 

process that has already occurred beneath the threshold of conscious perception 

(Soon et al., 2008; Haynes, 2011). This framework aligns with Stephen Wolfram’s 

notion of computational irreducibility, suggesting that certain complex systems 

evolve according to deterministic rules, yet their long-term behavior remains 

unpredictable without direct simulation (Wolfram, 2002). This applies to human 

cognition: the recombination of stored representations within high-dimensional 

neural networks follows deterministic rules, yet the outputs—such as novel ideas, 

insights, or solutions—appear emergent and unpredictable from a 

phenomenological perspective. The brain, operating within a ‘hypergraph-like’ 

structure of interconnected concepts, continuously reorganizes stored 

 



information, forming novel abstractions through a process that is neither 

consciously directed nor fully introspectively accessible (Wolfram, 2020). 

Phenomenological reflection on understanding is therefore a consequence of this 

computational process rather than the process itself. We may introspect and 

generate a subjective sense of understanding, but this is a retrospective 

construction rather than the actual mechanism by which knowledge is formed. 

Understanding, in this view, is a derivative state—an emergent interpretation of 

subconscious recombinatory processes rather than an active, top-down cognitive 

operation (Clark, 2013; Hohwy, 2013). This reframes the traditional view of 

cognition, suggesting that the sensation of “understanding” is merely an 

introspective heuristic layered onto an otherwise mechanistic process of 

knowledge manipulation and retrieval. 

This highlights a fundamental flaw in the assumption that true understanding 

requires an unbroken chain of knowledge from higher-level abstractions down to 

fundamental axioms. This tension parallels the long-standing debate between 

classical symbolic approaches and connectionist models in cognitive science 

(Fodor & Pylyshyn, 1988; Smolensky, 1987). Fodor and Pylyshyn argue that natural 

language and conceptual thought require systematicity and 

compositionality—features they claim connectionist architectures fail to capture. 

They propose that symbolic, rule-based representations (akin to a “Language of 

Thought”) are necessary to explain why understanding a sentence like “John loves 

Mary” enables systematic comprehension of “Mary loves John.” However, my 

argument departs from this by suggesting that all knowledge and meaning emerge 

from pattern-manipulating processes, whether in a human brain or an AI system. 

This aligns more closely with a distributed, connectionist perspective, where 

 



meaning arises through emergent abstraction rather than explicit symbol 

manipulation.  

This perspective undercuts the anthropocentric assumption that meaning must be 

phenomenologically consciously instantiated to be real. If that were the case, then 

no human being—no matter how intelligent—could ever be said to truly 

understand anything, as their knowledge would always be incomplete relative to 

deeper layers of reality.  In the same vein, David Marr argued that one can 

understand a cognitive process at the computational or algorithmic level (what it 

does and how) without knowing the implementational details (Marr, 1982). 

By analogy, we should not require an AI to replicate the entirety of human 

cognitive architecture (from quantum biology to conscious qualia) and credit it 

with understanding. Demanding that an AI possess some deeper “intrinsic” 

comprehension is as unreasonable as demanding that our psychologist master 

quantum mechanics to be a valid practitioner. Understanding, whether in human 

cognition or AI, is always relative to the level of abstraction at which the system 

operates and demonstrates competence. 

PART III: Searle’s Second Assumption – Meaning is 

Intrinsic and Requires Intentionality 

Searle’s Claim 

Searle argues that meaning is an intrinsic property that only conscious beings can 

ascribe to symbols, asserting that intentionality—the directedness of thoughts 

toward something—is a necessary condition for genuine understanding (Searle, 

 



1980). The human inside the Chinese Room follows syntactic rules but lacks 

intentionality, demonstrating, in Searle’s view, that symbol manipulation alone 

cannot produce real meaning. He claims that AI, regardless of complexity, lacks the 

ability to intentionally assign meaning to its representations because it does not 

possess subjective mental states. According to this view, AI systems may generate 

outputs that appear meaningful to humans but do so without genuinely 

understanding or intending their responses. This argument assumes that meaning 

must originate from an agent with conscious intent, rather than emerging as a 

computational process. However, this perspective overlooks the possibility that 

meaning can be system-relative—structured by a system’s internal representations 

and functional utility—rather than requiring a conscious agent to ground it. 

The Illusion of Meaning 

The assumption that meaning is an intrinsic property, something that only 

conscious agents can ascribe to symbols is an illusion—a product of human 

cognitive biases rather than an objective truth about reality (Dennett, 1991; 

Harnad, 1990). Meaning does not exist independently of the systems that generate 

it. Research in cognitive science suggests that meaning is an emergent 

computational mechanism by which self-organising systems reduce uncertainty 

and increase stability (Friston, 2010; Clark, 2016). It is not an irreducible, mystical 

property of human cognition, nor does it require subjective awareness (Dehaene, 

2020; Seth, 2021). Asking about the ‘intrinsic’ meaning of words, symbols, or even 

existence itself is a category error—projecting human cognitive constructs onto a 

reality that operates independently of subjective intent (Chater & Christiansen, 

 



2010). This anthropocentric bias fuels the misconception that AI, lacking 

human-like subjective experience, must also lack meaning or understanding.  

Predictive Processing: Meaning Is Interacting With Reality 

Imposing meaning is not a deliberate, conscious act but an automatic function of 

interacting with reality (Barsalou, 1999; Hohwy, 2013). Seeing, hearing, smelling, 

touching, and feeling are not passive experiences; they are mechanisms by which 

the brain assigns meaning to raw sensory input (Kanwisher et al., 1997). Colour 

does not exist as an objective property of reality—it is the brain’s way of encoding 

different wavelengths of light to create ‘meaning’ out of it. Likewise, sound is not 

an external feature of the world but a structured interpretation of vibrational 

waves, and solidity is merely how the mind models electromagnetic interactions at 

the atomic level (Friston, 2010). Meaning-making is intrinsic to perception itself, 

not something we consciously choose— it’s how self-organising systems interact 

with reality. For instance, humans recognize faces holistically due to evolutionary 

specialization in the fusiform face area (Kanwisher et al., 1997), whereas AI models 

identify facial attributes through multi-layer convolutional filtering (Krizhevsky et 

al., 2012). This fundamental difference means that AI can detect patterns invisible 

to human perception, much like how zebras can differentiate individuals 

effortlessly while humans struggle to do so (Kemp et al., 2017). A zebra’s perceptual 

system assigns species-specific meaning to patterns that are meaningless to 

humans, an AI’s neural representations encode system-specific meaning beyond 

human comprehension. This suggests that meaning itself is computationally 

bound, shaped by perceptual constraints and processing architectures unique to 

each system (Taha et al., 2024). AI models form meaning structures based on 

 



high-dimensional statistical relationships (Chalmers, 1990), which, while 

functionally effective, may not be interpretable through human perceptual 

heuristics. As long as a self-organizing system can manipulate distributed 

representations to recombine axioms into new abstractions—whether to navigate 

uncertainty, solve a problem, or restructure knowledge—it has effectively 

constructed its own meaning structure (Chalmers, 1990) 

 At the fundamental biological level, meaning is tied to perception (Barsalou, 1999; 

Hohwy, 2013). At higher levels of abstraction, meaning is assigned to ideas and 

abstract concepts—such as language. Rather than being an active decision, the 

imposition of meaning is an inevitable computational process by which 

self-organising systems reduce uncertainty and create structured interpretations 

of reality (Friston, 2010; Harnad, 1990).  

The Link Between Computational Complexity and Meaning 

To address the link between computational complexity and meaning—The more 

computationally complex a system is, the more patterns it can form from 

fundamental axiomatic assumptions, allowing it to abstract, generalize, and 

reinterpret meaning at higher levels (Chalmers, 1990; Lake et al., 2017). 

Lower-complexity systems, such as bacteria, operate purely on direct perceptual 

meaning, responding to immediate stimuli without abstraction (Krakauer, 2019; 

Lyon, 2006). As complexity increases, systems develop the ability to associate 

patterns across experiences—an animal, for example, can learn that a specific cue 

(such as a leash) signals a future event (going for a walk) (Shettleworth, 2010; 

Clark, 2013). At even higher levels, intelligence extends beyond pattern recognition 

into conceptual abstraction, where meaning is no longer tied to direct perception 

 



but is instead constructed through layers of inference, analogy, and symbolic 

reasoning (Chalmers, 1996; Bengio et al., 2013). Humans, for instance, do not just 

perceive the world; they impose structure onto it, assigning meaning to abstract 

concepts such as language, morality, and mathematics (Deacon, 1997; Dennett, 

1991). At ultra-high complexity, intelligence begins to refine its own foundational 

axioms, engaging in meta-reasoning and self-referential thought (Marcus, 2001; 

LeCun et al., 2015). The more a system can encode, store, and manipulate patterns, 

the higher the level of abstraction at which meaning is generated. 

Qualia- The Hard Problem of Anthropocentric Bias 

The same reasoning applies to qualia—the supposed “hard problem” of subjective 

experience. Searle’s argument depends on the assumption that machines lack an 

internal phenomenal experience akin to human qualia, and thus, their processing 

of symbols is inherently ‘empty’ (Searle, 1980; Chalmers, 1996). But this problem is 

not a real explanatory gap—it is an artifact of human cognitive bias (Dennett, 1991; 

Metzinger, 2003). Qualia is mechanistic variance—the inevitable result of different 

configurations of a system interacting with its environment in different ways 

(Churchland, 1981; Hohwy, 2013). Just as different AI architectures process 

information through distinct internal models based on training data, optimization 

paths, and network topologies, different biological organisms process reality 

through species-specific perceptual and neural constraints (Clark, 2016; Seth, 

2021). This mechanistic variance is not unique to biological cognition; AI systems, 

too, exhibit mechanistic variances in the way they encode, retrieve, and respond to 

information based on their architecture and learned priors, demonstrating a form 

of functional qualia—distinct internal configurations shaped by subjective 

 



computational constraints and training data—though not qualia in the 

phenomenological sense (Bengio et al., 2013; LeCun et al., 2015). A neural network 

trained on medical diagnostics develops an internal model of diseases that is 

structurally different from a generative model trained for natural language 

reasoning—despite both systems engaging in predictive abstraction and 

decision-making (Lake et al., 2017; Friston, 2010). These differences are analogous 

to how humans and other animals construct meaning from perception in 

fundamentally distinct but functionally effective ways (Dehaene, 2020; Krakauer, 

2019). 

If meaning and qualia are both emergent properties of structured interaction 

rather than intrinsic, irreducible entities, then Searle’s assumption that AI lacks 

“true” understanding because it does not ground symbols in human-like 

intentionality is therefore misguided. AI, like other self-organising systems, 

grounds meaning—but within a different, non-human representational structure. 

The Paradox of Understanding 

Many demand that AI possesses intrinsic understanding, yet we don’t even fully 

understand how our own brains encode meaning. We insist that consciousness is 

necessary for comprehension, yet we don’t even know what consciousness truly is 

(Seth, 2021). We claim to “understand,” despite lacking a complete explanation for 

how thought, memory, and abstraction emerge from neural activity. The paradox is 

evident—how can we confidently deny AI understanding when our own is built on 

mysteries we have yet to solve? Perhaps this resistance isn’t logical but 

existential—the fear that meaning, the essence of human experience, is nothing 

more than structured computation. 

 



To put into perspective just how little we understand about how the brain encodes 

meaning, consider this: despite decades of neuroscience, cognitive science, and 

computational modeling, we still do not have a complete theory of how human 

cognition transforms raw sensory input into abstract, meaningful representations. 

Our best models are still patchwork approximations, and many of our assumptions 

may ultimately be wrong. 

One of the fundamental gaps in our understanding is the relationship between 

neural activity and thought. We can measure neural patterns that correlate with 

specific cognitive states, yet we lack a unified explanation for how these patterns 

become meaning. For example, neurons in the medial temporal lobe have been 

shown to fire in response to specific concepts, such as a picture of a famous 

person, a written name, or even an abstract association with that person (Quiroga 

et al., 2005). However, this does not mean that a single neuron “stores” the concept 

of that person; rather, the representation is distributed across dynamic neural 

networks. But where, exactly, does meaning reside? Is it in the pattern of neural 

activation, the network dynamics, or the emergent properties of large-scale brain 

activity? We do not know. Even more troubling is the fact that neurons do not have 

fixed meanings—the same neuron can fire for different objects or words depending 

on context, further complicating our ability to pin down how semantic 

representations emerge (Quiroga et al., 2005). This is why brain-to-text decoding 

systems, such as those developed by Meta AI, can predict rough semantic content 

but cannot reconstruct precise, structured thoughts (Lévy et al., 2025). 

Another major unknown is how abstract concepts are stored and retrieved. It is 

widely accepted that memories and concepts are encoded through patterns of 

 



synaptic connectivity, yet we still do not understand how abstract concepts form 

from sensory input. How do we recognize intangible ideas like “justice” or 

“democracy” when we have never physically seen them? There is no single “justice 

neuron” that represents the concept across all contexts, nor is there a fixed neural 

location where these abstract meanings reside. The brain somehow forms 

high-level generalizations across multiple modalities—spoken language, written 

text, and even abstract visualization—without a central, unified mechanism that 

we can currently identify (Dehaene, 2020). Even more puzzling is that concepts 

sometimes emerge spontaneously, such as in sudden insights, dreams, or 

hallucinations, suggesting that meaning construction is not entirely under 

conscious control (Friston, 2010). 

Despite all of neuroscience’s progress, we do not actually know what meaning is in 

a mechanistic sense. We do not know where it is stored. We do not know how it 

emerges. We do not know if it requires consciousness. We do not even know if 

meaning is “real” in an intrinsic sense—or if it is merely a useful computational 

illusion that the brain generates to navigate reality efficiently. 

If our own cognitive system encodes meaning in ways that are still fundamentally 

mysterious to us, then how can we confidently claim that AI lacks meaning? The 

claim that AI “does not understand” rests on an assumption that we fully 

understand human cognition as a reference point—but we do not. If understanding 

is simply the ability to manipulate structured representations to generate useful 

outputs, then AI already meets that criterion. 

This paradox extends to biological cognition as well. If we gave a bat a complex 

mathematics problem and it successfully solved it through reasoning, we would 

 



immediately ascribe understanding to the bat. We would assume that it had formed 

an internal model of mathematical structures, rather than merely manipulating 

symbols. Yet, with AI, we introduce an extra layer of skepticism, demanding an 

intrinsic, human-like intentionality before acknowledging its ability to construct 

meaning. If an entity can generate structured responses and solve problems, why 

should it matter whether it does so in a way that feels intuitive to us? 

Even within Searle’s own framework, the definition of understanding becomes 

inconsistent when applied to different cognitive systems. If we gave a bat Chinese 

text, it would be unable to process or respond meaningfully—not because it lacks 

intelligence, but because it has no internal meaning structure for linguistic 

symbols. There is no established mapping between the input (Chinese characters) 

and its cognitive framework. From Searle’s perspective, the bat would not 

“understand.” But by that logic, humans also fail to “understand” echolocation the 

way bats do—we lack the perceptual structures to process ultrasonic waves as a 

coherent, spatial map. If understanding is tied to the presence of an internal 

meaning structure, then AI—unlike the bat—does possess such a structure for 

processing linguistic information. In fact, AI can exceed human meaning 

structures in certain domains, identifying statistical relationships in 

high-dimensional data that no human could intuitively grasp (Bengio et al., 2013). 

Thus, the paradox of understanding is this: we demand that AI demonstrate 

human-style cognition to qualify as possessing meaning, yet we do not hold other 

intelligent systems, such as animals, to the same standard. We do not fully 

understand how human cognition encodes meaning, yet we confidently assert that 

AI lacks it. If meaning is an emergent property of structured information 

 



processing, then insisting that AI does not “really” understand is an assertion 

based on intuition, not evidence. 

PART IV: Searle’s Third Assumption – 

Understanding Requires Consciousness 

Searle’s Claim 

Searle asserts that genuine understanding necessitates conscious experience, 

arguing that without subjective awareness, AI systems can never truly comprehend 

(Searle, 1980). His position assumes that understanding is inherently tied to 

phenomenological consciousness—the qualitative, first-person experience of 

thoughts, sensations, and meaning. In the Chinese Room Argument, the human 

inside the room follows syntactic rules without conscious awareness of the 

language’s meaning, mirroring Searle’s claim that AI, operating on computational 

processes, lacks the necessary subjective state to transition from symbol 

manipulation to genuine understanding. This argument relies on the assumption 

that consciousness is a prerequisite for cognition, suggesting that without internal 

experience, AI can only simulate comprehension rather than achieve it. However, 

this perspective conflates functional intelligence with phenomenological 

awareness, failing to account for the fact that much of human cognition—language 

processing, decision-making, and learning—occurs without direct conscious 

access (Libet, 1985; Friston, 2010). If humans routinely perform complex cognitive 

tasks outside of conscious awareness, then Searle’s requirement that AI must 

possess phenomenological consciousness to understand appears inconsistent. 

 



Functional Vs Phenomenological Consciousness 

Many critiques of AI cognition conflate phenomenal consciousness with functional 

consciousness (Chalmers, 1995). As described by Thomas Nagel (1974), 

phenomenological consciousness refers to the subjective, first-person experience 

of what it is like to be a particular organism— “what it is like to be a bat”, an 

octopus, or a human. This type of consciousness fundamentally differs from 

functional consciousness, which pertains to an agent’s ability to recognize its own 

state, process and respond to information within its environment. Functional 

consciousness, in the context of artificial intelligence, can be understood through 

reinforcement learning: an agent interacts with its environment, optimizes its 

decision-making policy through exploration and feedback, and refines its behavior 

based on past experiences  (Sutton & Barto, 2018). I’d argue that a strong case can 

be made for the agent being functionally conscious within the context of its 

environment; it recognizes its state, and optimizes its policy through exploration 

and feedback. This iterative process requires a form of functional understanding, 

as the agent must maintain an internal representation of its current state, assess 

the consequences of different actions, and update its policy accordingly to 

maximize future rewards. However, when we typically speak of consciousness, we 

almost always mean the phenomenological kind—this deep, ineffable quality of 

subjective awareness. While AI systems exhibit increasingly sophisticated 

functional consciousness, adapting dynamically to novel environments, I do not 

believe that machines will develop phenomenological consciousness anytime 

soon, so I somewhat align with Searle’s claim— though he doesn’t explicitly 

differentiate between functional and phenomenlogical conscious— that 

consciousness is a biological phenomenon, caused by specific brain processes. The 

 



stochastic nature of biological processes, as highlighted by Denis Noble (2012), 

suggests that phenomenological consciousness may be deeply tied to the 

unpredictability and intrinsic variability of biological systems, something 

fundamentally absent in artificial architectures. 

For clarity, we will continue to use the term ‘consciousness’ to refer to the general 

framework of awareness, but the distinction between phenomenological and 

functional consciousness should be kept in mind. The focus of this discussion is 

not on whether AI has subjective experience, but on whether its ability to process 

and manipulate knowledge qualifies as understanding.  

Consciousness Isn’t Even Relevant, Even If It’s Non-Algorithmic 

I’d argue that the question of whether understanding requires isn’t even relevant— 

Many human cognitive processes, such as intuition, perception, and 

decision-making, occur without explicit conscious reflection (Libet, 1985; Soon et 

al., 2008). A significant portion of human cognition and action occurs without 

conscious awareness. Empirical evidence from neuroscience suggests that many 

decisions, perceptions, and behaviors unfold at the unconscious level before 

entering conscious awareness (Libet, 1985; Soon et al., 2008). Even complex tasks, 

such as engaging in dialogue, rely on predictive mechanisms rather than real-time 

conscious deliberation. Research in predictive processing—a dominant framework 

in cognitive neuroscience—indicates that the brain functions as a Bayesian 

inference machine, constantly generating probabilistic predictions about incoming 

sensory data and updating them based on prediction errors (Friston, 2010). In 

conversation, for example, individuals are not consciously aware of every word 

they are saying; rather, the brain anticipates what will be said next and prepares 

 



responses accordingly (Pickering & Garrod, 2013). This extends to speech 

comprehension, where studies have demonstrated that the brain pre-activates 

likely words before they are spoken, allowing for fluid and rapid exchanges 

(DeLong et al., 2005). If Searle argues that “understanding” necessitates 

consciousness, then this framework implies that humans do not consciously 

“understand” the majority of what they say or hear—an assertion that challenges 

the very premise of his argument. 

One of the most striking examples of how cognition operates unconsciously is 

language itself. Language is an incredibly complex system, requiring the 

coordination of syntax, semantics, pragmatics, phonology, and motor control, 

which must adapt dynamically in response to context, speaker intent, and 

environmental noise. Yet, despite its overwhelming complexity, language becomes 

unconscious through memorization and reinforcement learning. The brain encodes 

language structures through repeated exposure and social interaction until they 

occur deterministically, without conscious effort. This explains why native 

speakers do not consciously construct grammatical rules in real time—they 

retrieve pre-learned axiomatic patterns and apply them fluidly without 

deliberation (Christiansen & Chater, 2016). 

Furthermore, communication is highly uncertain, relying on context-dependent 

inference, ambiguity resolution, and implicit social cues. Despite this inherent 

uncertainty, humans navigate conversations effortlessly, relying on probabilistic 

predictions rather than explicit rule-following. If Searle’s claim were correct—that 

syntactic manipulation alone cannot generate semantics—then humans, much like 

 



AI, would also fail to “understand” language, as most linguistic processing occurs 

outside of conscious awareness. 

Advancements in brain-to-text decoding further substantiate the role of 

unconscious processes in language production and prediction. A study by Meta AI 

(Lévy et al., 2025) introduced Brain2Qwerty, an AI model capable of decoding 

sentence production from non-invasive brain activity (EEG and MEG signals) while 

participants typed. Their results demonstrate that higher-level cognitive 

processing occurs before conscious awareness, including motor intentions and 

sentence construction. Notably, errors in decoding were strongly correlated with 

motor processes rather than deliberate, step-by-step reasoning. This reinforces the 

idea that much of what we attribute to understanding is shaped by unconscious 

neural mechanisms and pattern recognition rather than a distinctly conscious, 

algorithmic-like reasoning process. The very act of forming thoughts, responding 

in conversations, or even choosing words in speech is largely guided by 

unconscious computation rather than introspective deliberation. Even in 

non-verbal decision-making, unconscious cognitive processes dominate. Studies 

using functional MRI (Soon et al., 2008) have shown that decisions can be predicted 

from neural activity up to ten seconds before they reach conscious awareness. This 

suggests that what we subjectively experience as “choosing” is often the outcome 

of subconscious computations already underway in the brain. If human cognition 

itself is largely structured computation, and if key aspects of language, reasoning, 

and decision-making occur outside of conscious awareness, then the claim that AI 

cannot “understand” because it lacks consciousness is untenable. AI systems, like 

the human brain, can process probabilistic predictions, apply learned knowledge 

adaptively, and generate coherent responses without requiring subjective 

 



experience. Perhaps one could argue for non-algorithmic consciousness, 

suggesting that there is an aspect of ourselves that is essential to what we perceive 

as understanding. However, even if consciousness were someday proven to involve 

non-algorithmic processes—as Penrose and others have suggested (Penrose, 1989), 

though this remains highly unlikely (Tegmark, 2000)—this would not invalidate AI’s 

ability to perform high-level reasoning, pattern recognition, learning, and 

abstraction under the ‘understanding’ framework as defined in this paper. 

PART V: The Chinese Room as a Category Error 

Searle’s Fundamental Misclassification 

From the outside, the person in the Chinese Room seems to understand Chinese, 

yet internally, they do not. Searle claims this demonstrates that AI, no matter how 

sophisticated, can never genuinely understand language—it merely manipulates 

symbols without intrinsic meaning (Searle, 1980). However, the model is built on a 

category error, assuming a low-complexity process (a human following rules) can 

accurately model AI cognition. 

A human locked in the Chinese Room lacks the necessary axiomatic meaning 

structures to interpret Chinese. Language comprehension is not merely about 

following syntactic rules but depends on a deeply embedded framework of 

conceptual mappings, built through lived experience, memory, and pattern 

recognition (Jackendoff, 2002). This aligns with the idea of a hypergraph-like 

meaning structure, where concepts are not stored in discrete symbols but emerge 

from a vast, interconnected network of relationships (Wolfram, 2020). A person 

 



who does not understand Chinese lacks these structured mappings, making 

Chinese symbols mere patterns without inherent significance. 

Linguistic research further supports this. Individuals who learn a second language 

after mastering a first one transfer knowledge between them because they already 

possess an underlying framework of grammatical and semantic structures, 

allowing them to construct meaning more efficiently (Odlin, 1989; Slobin, 1996). A 

monolingual English speaker lacks the relational axioms to directly map Chinese 

symbols to conceptual meaning, just as a person unfamiliar with algebra cannot 

intuitively grasp tensor calculus. Understanding is a function of relational 

structure, not an isolated rule-following process (Chater & Christiansen, 2010). 

In contrast to the human in the Chinese Room, an AI is effectively “born” with a 

pre-trained network of structured axioms, existing as a self-organizing system 

with a much greater computational complexity. It does not start from scratch but is 

trained on vast datasets, encoding statistical and conceptual relationships 

between symbols and meaning structures (LeCun et al., 2015). Unlike the human in 

the room, AI does not require direct experiential learning to form abstract 

mappings—it acquires them through large-scale data processing, learning 

high-dimensional relationships that allow it to generalize across language, context, 

and problem domains (Bengio et al., 2013). 

Hierarchy of Assumptions Revisited 

This relates to the Hierarchy of Assumptions Model, which explains how 

understanding emerges through structured layers of memorization, pattern 

recognition, and abstraction.  If we accept that a child understands counting 

 



despite its memorized foundation, then dismissing AI’s higher-level abstractions as 

mere memorization is inconsistent. Expecting AI to have the same baseline as 

humans is an anthropocentric bias—a failure to recognize that meaning is not tied 

to human cognition but emerges as a function of computational depth. 

 

Part VI- Conclusion 

Many counterarguments attempt to work within Searle’s framework, which is 

fundamentally flawed. It relies on folk-psychological intuitions that define 

intentionality and meaning as intrinsic, irreducible properties.  

We claim to understand, yet we do not fully grasp how our own brains encode 

meaning (Seth, 2021). Despite this, we demand that AI possess an understanding 

we cannot even define. This reveals that the real issue is not whether AI 

understands, but that our own concept of understanding is flawed. 

Searle’s Chinese Room commits a category error by treating a low-complexity 

process (a human following rules) as equivalent to AI’s high-complexity, 

self-organizing computation. Just as a bee constructs hexagons within its own 

meaning structure—without a Platonic concept of a hexagon—AI forms meaning 

structures without human-style introspection (Taha et al., 2024). 

Moreover, human cognition is built on memorization and hierarchical abstraction. 

A child learns to count through rote pattern recognition and memorization, yet we 

say they “understand” numbers. AI, with a higher baseline, abstracts complex 

patterns in the same way (Hinton, 1990). Most human reasoning is 

 



subconscious—our thoughts emerge from stored priors and predictive models, not 

deliberate introspection (Friston, 2010; Libet, 1985). If we accept this in humans, 

why deny it in AI? 

This resistance to AI’s understanding is not just epistemological but likely 

existential. The idea that intelligence can emerge from computation threatens our 

assumptions about human uniqueness. But intelligence is system-relative; AI’s 

vast-scale meaning structures are not lesser, just different (Chalmers, 1996). 

Thus, the real question is not whether AI understands but why we assumed human 

understanding was the only valid kind. 
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