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Abstract

We defend a noetic account of intramathematical explanation. On this view, a piece of mathematics
is explanatory just in case it produces understanding of an appropriate type. We motivate the
view by presenting some appealing features of noeticism. We then discuss and criticize the most
prominent extant version of noeticism, due to Inglis and Mejía Ramos, which identifies explanatory
understanding with the possession of well-organized cognitive schemas. Finally, we present a novel
noetic account. On our view, explanatory understanding arises from meeting specific explanatory
objectives. We defend a cluster-concept account of explanatory objectives and identify four important
subfamilies within the relevant network of resemblance relations. The resulting view is objectivist (in
the sense that it takes explanatory success to be a matter of observer-independent fact), broader in
scope than why-question-based accounts, compatible with empirical findings on experts’ explanatory
judgments, and capable of generalizing (with appropriate provisos) to scientific explanation as a
whole. It thus fulfills Friedman’s half-century-old demand for a general and objectivist theory which
accounts for the link between explanation and understanding.
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proof

1 Introduction

It’s become increasingly clear in recent years that the search for explanations is a important component of

mathematical practice.1 This realization has given rise to a puzzle: What could mathematical explanation

possibly be?

The non-causal nature of such explanations immediately rules out many popular views, including the

manipulationist and mechanist frameworks ascendant in much contemporary philosophy of science. Of

the remaining accounts defended in the literature, most are either plagued by serious problems or limited

to describing a special subclass of all mathematical explanations (or both).2 This is an unsatisfying state

of affairs. Is it possible to do better?

We think so. In this paper, we defend a noeticist account of mathematical explanation. Our view is a

general theory that avoids problems with existing accounts, is independently plausible, and has many

appealing features.

We begin in this section with motivation for noeticism. In §2, we discuss and criticize

[Inglis & Mejía Ramos 2021], the most prominent noeticist theory currently on the market. We present

our own account in §3. Unlike Inglis and Mejía Ramos, we deny that amassing or deploying a great

deal of objectual understanding is sufficient for possessing explanatory understanding. We hold instead
1Recent overviews on explanation in mathematics include [Mancosu 2008], [D’Alessandro 2019] and [Pincock 2023]. The

most important book-length discussion is [Lange 2016].
2See [D’Alessandro 2019] for an overview of the then-leading candidates. More recently, a counterfactual approach has

been explored ([Baron et al. 2020]); see [Kasirzadeh 2021] and [Lange 2022] for what we take to be deep problems with
such views.
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that explanatory understanding is gained by meeting epistemic goals of certain types, which we call

“explanatory objectives”.

§3 lays out various aspects of this theory. Notably, we propose a cluster-concept account of explanatory

objectives. On this view, explanation-directedness is a matter of standing in a network of family

resemblance relations rather than satisfying a single set of necessary and sufficient conditions. We identify

four subfamilies within the network in question, characterized by relatively strong internal affinities:

these are Seeing the Big Picture (aimed at linking subject matters and achieving unification),

Getting a Handle (aimed at delivering intuition, insight and cognitive fluency), Putting Things

in Order (aimed at identifying dependence relations), and Accounting for Surprises (aimed at

rationalizing striking or unexpected facts). §3 also addresses questions about objectivity, why-questions,

empirical findings on mathematicians’ explanatory judgments, and the unity of scientific and mathematical

explanation. We conclude in §4.

1.1 A noeticist primer

According to the noetic theory of explanation, to possess an explanation of some fact is to be in an

appropriate state of understanding with respect to that fact.3 Call this state explanatory understanding.

(The noeticist’s biggest job is to say what this state is; §3 below presents our view.4) We think noeticism

about mathematical explanation has many initially attractive features. Since the view is less often

discussed and less well understood than many of its rivals, it’s worth mentioning a few of these at the

outset.

Our first point is a simple one. Virtually everyone agrees that explanation and understanding are

closely related, and it’s widely recognized that a theory of explanation should be able to account for this

link. These claims have been doctrine in good standing for at least some fifty years, since Friedman asked

“that a theory of scientific explanation tell us what it is about the explanation relation that produces

understanding” ([Friedman 1974], 6). Noeticism does so in the most direct possible way. By contrast,

other views often have a hard time showing how explanations in their sense are supposed to play the

roles they do in our cognitive and epistemic lives.5

Second, noeticism can explain its rivals’ successes. Alternative theories of explanation work as well as

they do because they’ve correctly identified various possible sources of explanatory understanding. So
3We follow, e.g., [Dellsén 2021] in using ‘noetic’ to describe an understanding-based theory.
4Noeticists can identify an explanation itself with a body of information that could, typically would, or actually does

produce explanatory understanding.
5As [Friedman 1974] argues, focusing on Hempel’s D-N account, Bridgman’s reduction-of-unfamiliarity account and

Toulmin’s historicist approach. More recently, opponents of the “ontic conception of explanation” championed by Salmon
and his followers have questioned how explanations in the ontic sense (conceived of as mind-independent parts of the
external world) could be thought to promote understanding and other epistemic goods ([Wright 2015], [Sheredos 2016],
[Bokulich 2018]).
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it’s no surprise that these theories often make true predictions. While non-noeticist views go wrong in

mistaking a common route to explanation for a necessary and sufficient condition, they contain genuine

insights which the noeticist can embrace with open arms. Rival theories of explanation have more

trouble here—it’s not obvious what a counterfactual theorist should say, for example, about the appeal of

unificationism. No doubt some story can be told, but it’s likely to be relatively complex, and in the end

the proponent of one theory may have to dismiss much of her opponents’ views as confusion or error.

Third, noeticism has no trouble handling different types of explanantia. It gives a unified account

of theorems, proofs, diagrams and other mathematicalia: any type of information that confers the

appropriate sort of understanding is fit to serve as an explanation, and all count as explanatory for the

same reason.

Alternative theories often struggle on this front. Some, for instance, focus exclusively on explanatory

proof, and what they say about proofs is hard to generalize to other cases. (The views of [Steiner 1978]

and [Lange 2014] are in this boat.) Meanwhile, the counterfactual approach to mathematical explanation

([Baron et al. 2020]) only applies straightforwardly to theorems explained by other theorems. This is a

bad sign for these views. As [D’Alessandro 2017] argues, mathematical practice recognizes several types

of object and content as potentially explanatory. It’s implausible that each of these types corresponds to

a fundamentally different kind of explanation, following its own sui generis rules. A theory that suggests

such a disunified picture—or worse, one that has to deny the existence of explanations embraced by

working mathematics—is a theory deserving of skepticism.

So noeticism has some appealing features. But appealing features can be outweighed by damning

flaws. Fortunately, noeticism is short on the latter. Indeed, some of the most common objections can be

easily seen to fail when the view is understood properly.

For instance, some have complained that our “sense of understanding” is nothing more than an

unreliable subjective feeling ([Trout 2002]). This is irrelevant even if true. The noeticist isn’t primarily

concerned with the sense of understanding, but rather with understanding itself—a substantive cognitive

state that manifests in observable traits and abilities.

Relatedly, it’s sometimes thought that if noeticism were true, we’d be unable to say anything

interestingly general about what sorts of things are explanatory and why (because different people will

respond differently to the same information, and some might gain understanding where others wouldn’t).

But this worry is overstated. The cognitive similarities between people are much more extensive than the

differences. In spite of individual variations in memory, processing power, reasoning style and so on, most

of us are built on the same cognitive template, and so most of us will tend to gain understanding from

the same sources and for the same reasons. Philosophers and psychologists will have plenty of interesting

work to do in characterizing these patterns.

Finally, it’s sometimes insinuated that “psychologistic” answers to philosophical questions are somehow
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inherently bad. (“It is as though to classify a theory as psychologistic is enough automatically to disprove

it, as though everyone already understands and agrees that psychologism is a defect or mistake, and

that we should all be grateful for its having been thoroughly exploded in a heroic past age of philosophy”

([Jacquette 2003], 4).) This ideology seems to be inspired in part by the power of Frege’s arguments

against psychologism in logic and mathematics. However compelling those particular arguments might

be, though, there’s nothing intrinsically unacceptable about psychologistic theories in general.

Consider the case of Hume. Past authors had assumed that the problem of causation was that of

elucidating the special worldly connection between cause and effect. Hume proposes, instead, that “a

cause is an object precedent and contiguous to another, and so united with it, that the idea of the one

determines the mind to form the idea of the other, and the impression of the one to form a more lively

idea of the other” (Treatise 1.3.14.31).6 Causation, in other words, isn’t just an objective relation between

things in the world, but also involves the tendency of those things to produce certain mental states in us.

Whatever one thinks of Hume’s psychologistic account, it’s at least a serious and intelligible theory that

might have been true rather than a simplistic conceptual error.

On the whole, then, noeticism about explanation has a lot going for it. A view with so many virtues

and few obvious vices deserves a careful look.

2 Inglis and Mejía Ramos’s account

We aren’t the first to advocate an understanding-based view of explanation in mathematics. Adopting the

terminology of [Wilkenfeld 2014], Matthew Inglis and Juan Pablo Mejía Ramos—hereafter IMR—defend

what they call a functional theory of explanation ([Inglis & Mejía Ramos 2021]). On this view, what

makes something an explanation is that it functions as a source of understanding. IMR’s account is

therefore a version of noeticism. (We prefer ‘noeticism’ over ‘functionalism’ because the latter gives no

hint about the nature of the relevant function.) In this section, we discuss IMR’s theory and explain

where we think it goes wrong. §3.2.7 below comments on [Frans & Van Kerkhove 2023]’s alternative

version of noeticism.

A basic component of IMR’s account is the concept of a schema, introduced by Piaget and still

widely used in cognitive and educational psychology. A schema is, roughly speaking, a structured mental

representation of a subject matter S that facilitates remembering, recognizing, predicting and reasoning

about information related to S.

Schemas are thought to play a role in many cognitive tasks. For instance, you have a house schema,
6Whether or not Hume really endorsed this psychologistic view, and how it relates to his first, seemingly non-psychologistic

definition of causation, is a topic of much debate. It’s enough for our purposes that many Hume scholars accept the
psychologistic reading.
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which encapsulates your understanding of the important general attributes of houses (e.g. that they

have parts, are made of materials, and have functions) as well as some default specific values for those

attributes (e.g. that the parts of a house are rooms, that the materials are wood or brick, and that the

function is human habitation). Accessing this schema can provide various benefits. Since its components

are strongly cognitively interlinked, the schema allows you to quickly classify something as a house on the

basis of a few key characteristics. And once classified, the schema helps you recognize other expected

house-features, make inferences about features you didn’t directly perceive, and remember what you saw

later.

We also have schemas for more abstract subjects, like chess games and mathematical problems, which

play cognitive roles similar to schemas for everyday objects. A skilled chess player may have a detailed

Sicilian Defense schema, for instance, encoding the situations in which this opening is likely to be played,

its most important variations and the counterplays for each, typical middle-game positions to which the

Sicilian tends to lead, and so on. A player with many such schemas at her disposal will be able to choose

moves quickly and accurately. A player with none will have to painstakingly note the positions of each

piece on the board, call to mind their possible moves and calculate the consequences of each, leading to

slower and more error-prone performance.

On IMR’s view, the creation and consolidation of schemas is constitutive of mathematical understanding.

As they write, “one can be said to have understood something when a sufficiently well-organised schema...

has been encoded into long-term memory” (S6381). For noeticists like IMR, the task of a theory of

explanatory proof is therefore to say what kinds of proofs allow us to generate and store high-quality

mathematical schemas.

We claim on the contrary that possessing well-organized schemas is neither necessary or sufficient for

explanatory understanding. IMR’s proposal is therefore a step in the wrong direction.

Consider the necessity claim first. Suppose that T is a theorem belonging to subject S. Suppose also

that we want to understand why T is true, and hence to explain T ’s truth. We claim that one can often

do this without having an extensive, detailed or well-structured S-schema.

Example: Consider Lange’s well-known “calculator number” case. A calculator number is a six-digit

number of the form abccba, where the digits abc are the numbers forming some row, column or main

diagonal of a square 1-9 calculator keyboard. There are sixteen calculator numbers in total, and it

turns out that each one is divisible by 37. Why does this curious fact hold? Lange offers the following

explanatory proof ([Lange 2014], 488; originally from [Nummela 1987]):

The three digits from which a calculator number is formed are three integers a, a + d, a + 2d in

arithmetic progression. Take any number formed from three such integers in the manner of a calculator

number—that is, any number of the form 105a+104 (a+ d) + 103 (a+ 2d) + 102 (a+ 2d) + 10 (a+ d) + a.
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Regrouping, we find this equal to

a
(
105 + 104 + 103 + 102 + 10 + 1

)
+ d

(
104 + 2 · 103 + 2 · 102 + 10

)
= 1221 (91a+ 10d)

= (3 · 11 · 37) (91a+ 10d) .

We agree that this proof explains why calculator numbers are divisible by 37. But it’s not clear that

the proof either provides or exploits any suitable well-organized schema. The list of concepts, facts and

techniques in play is quite small—the notion of an arithmetic progression, multiplication and addition,

factoring, and so on. And the argument does nothing very profound or ingenious with these tools. So the

average reader is unlikely to upgrade her basic arithmetical and algebraic schemas as a result of working

through the proof.

One could try to claim that the proof confers understanding by contributing to a more specialized

schema, say calculator number. But there’s a risk of ad hocness here. Given any proof whatsoever, one

can typically concoct some highly problem-specific schema to which the proof can be said to contribute.

We need a stronger condition to distinguish explanatory proofs from the rest.

Even setting aside this worry, it’s doubtful that the above strategy could work. Does Lange’s proof

really leave us with a well-organized calculator number schema? Surely not. The only interesting fact

about calculator numbers appearing in the proof is that the digits abc must be in arithmetic progression.

Perhaps it’s hard to say in general what counts as a well-organized schema, but this isn’t a borderline

case. Someone who knows basic definitions and the facts used in the proof may still be almost completely

clueless about calculator numbers. Such a person will have only the most threadbare schemas. And yet

the proof is explanatory (for them).

Could an appeal to degrees of explanatoriness help IMR here?7 The idea would be that Lange’s proof,

while not highly explanatory in absolute terms, is at least somewhat explanatory, and in particular is

more explanatory than salient alternatives (such as the brute-force proof which merely enumerates the

sixteen calculator numbers and checks that 37 divides each one). Perhaps these comparative facts are

enough to make sense of our judgment that Lange’s proof explains the result.

We acknowledge that IMR’s account has the resources to distinguish more and less explanatory proofs

in this way. And we’re willing to grant that Lange’s proof does somewhat better by IMR’s criteria than

the brute-force proof. Still, we don’t think these concessions are enough to vindicate IMR, at least on

what we take to be the most natural interpretation of their view.

Presumably IMR want to say that the explanatoriness of a proof is proportional to its schema-

enhancing power: a highly explanatory proof will enrich our schemas extensively, while a proof that offers
7We thank an anonymous referee for raising this issue.
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minor additions or upgrades will count as only marginally explanatory at best. Indeed, on their view, if a

proof “did develop a reader’s objectual understanding, but only by some trivial amount, then it is unlikely

that it would exceed the increased-understanding threshold for explanatoriness. In such a scenario, we

could coherently describe the proof as being non-explanatory” (S6386).

It’s clear, we think, that Lange’s calculator-number proof doesn’t profoundly add to anyone’s objectual

understanding. Rather, it contributes just a few basic facts and ideas. Considered on its own, then, it

should either count as unexplanatory (if it fails to clear the relevant contextual threshold) or at most only

weakly explanatory for IMR. But neither of these verdicts seem right. The proof, we take it, is perfectly

successful as an explanation, and not just a little better than a very poor alternative.8 So the appeal to

degrees of explanatoriness doesn’t obviously go in IMR’s favor here.

We conclude that it’s possible to possess understanding and grasp an explanation without having

anything resembling a high-quality schema. Our next task is to show that the reverse implication fails

too.

Our basic objection is that we often know quite a lot about a subject or problem without grasping why

some of the associated facts are true. In such cases, it seems we have a well-organized schema without

possessing explanatory understanding.

To take a well-known example, consider the four color theorem. Planar graphs and graph colorings

have been major areas of study for well over a century, and graph theorists have amassed a great deal of

detailed, sophisticated and intricately structured knowledge about these subjects. Appel and Haken’s

computer-assisted 1976 proof of the four-color theorem makes masterful use of the techniques developed

to date. (As they themselves note: “Over the past 100 years, a number of authors including A. B.

Kempe, G. D. Birkhoff, and H. Heesch have developed a theory of reducibility to attack the problem.

Simultaneously, a theory of unavoidable sets has been developed and the fusion of these has led to the

proof” ([Appel & Haken 1976], 711). The body of knowledge embedded in Appel and Haken’s work surely

amounts to a well-organized schema if anything does.

But the proof of the four color theorem is also paradigmatically unexplanatory. As the graph theorist

Paul Seymour writes, “We would very much like to know the ‘real’ reason the [four color theorem] is

true; what exactly is it about planarity that implies that four colours suffice? Its statement is so simple

and appealing that the massive case analysis of the computer proof surely cannot be the book proof”

([Seymour 2016], 417).9 Similarly, according to Cristopher Moore and Stephan Mertens, the Appel-Haken

proof leaves us with “an unsatisfying state of affairs. The best proofs do not simply certify that something

is true—they illuminate it, and explain why it must be true. While the Four Color theorem may be
8To be sure, the explanatory inquiry involved in the calculator number case is thoroughly shallow, trifling and a

mathematical dead end; this is a quintessential piece of idle recreational math and doesn’t pretend to be anything else. But
it’s important to distinguish a good explanation of a trivial fact from a bad explanation. We discuss issues of explanatory
value further in §3.2.3.

9“The book” is God’s book, which contains the best possible proof of every theorem. (The idea is Paul Erdős’s.)
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proved, it is not well understood” ([Moore & Mertens 2011], 125; emphasis in original).

So we seem to have a proof that turns on various well-organized schema, and which synthesizes those

schemas to impressive effect, but which nevertheless fails to explain or produce understanding.

In response to this sort of case, IMR might want to say that, although the Appel-Haken proof draws

upon high-quality schemas, it doesn’t substantially add to or improve those schemas. Indeed, IMR

sometimes seem to claim that a proof never counts as explanatory unless it contributes something new to

the reader’s cognitive resources. For instance, they criticize a certain digit-counting proof in the following

way:

Can we account for why [the proof] is seen as non-explanatory...? The answer... seems clear.

[The proof] is a simple counting argument. For the vast majority of readers it will activate

only existing schemas that are exceptionally well understood (those concerned with natural

numbers represented in base 10). Since most readers who encounter this proof will already

have extremely well-developed schemas concerning these matters, there is little room for

the proof to develop new understanding. Instead it is a simple matter of applying existing

understanding to a particular context. (S6385)

But this suggestion is hard to swallow. IMR are saying that a proof can only be explanatory for a

given person if it generates understanding which that person previously lacked. This seems to entail,

counterintuitively, that proofs lose their explanatory value after they’re grasped for the first time. It also

entails that someone with maximal understanding of a subject couldn’t possibly find any proofs on that

subject explanatory. Our experiences contradict the first of these implications and cast serious doubt on

the second: it seems clear that a proof whose ins and outs I’ve thoroughly mastered can nevertheless

continue to be explanatory for me, in virtue of my appreciation of its present personal cognitive value.10

IMR would do better, then, to count a proof as explanatory if it makes appropriate use of one’s

existing schemas, even if it doesn’t add to or improve them. Doing so would make their view more

plausible in general. But it also prevents them from dismissing the Appel-Haken proof as unexplanatory

simply because it fails to enhance the typical reader’s schemas. (We set aside the factual question of

whether the proof actually does fail in this way, which seems far from straightforward.)

To summarize, the moral of this example is that proofs can make essential use of well-organized schemas

without explaining their results or conferring understanding. Although IMR suggest that explanatory

proofs must always add to one’s schemas—a potential defense against our counterexample—this view is

implausible. We conclude that possessing or using high-quality schemas isn’t sufficient for understanding.
10For our own treatment of this issue, see §3.2.4, especially footnote 14 and the surrounding discussion.
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This discussion has been somewhat involved, so we’d like to end with a broad-brush account of

our perspective. IMR claim, to a first approximation, that understanding or explaining why P is

nothing more than having a body of well-structured knowledge relevant to P from which P can be

inferred. In other words, IMR believe that “the distinction between... objectual understanding and

understanding-why/explanatory understanding... is a matter of degree rather than of kind” (S6377).

We disagree. Explanatory understanding isn’t merely a threshold on the continuum of objectual

understanding. As the above examples show, one can have good explanatory understanding while

possessing virtually no objectual understanding (as in the calculator number case). Conversely, one can

have abundant objectual understanding while totally lacking explanatory understanding (as in the four

color theorem case).

Experience has shown that these claims are liable to misinterpretation, so let us try to make our

position clear. We don’t deny that explanatory understanding normally tends to increase along with

objectual understanding. In general, the better one’s S-schemas, the more relevant information one

has, and so the more S-related explanations one may be in a position to grasp. We also agree, of

course, that someone with zero objectual understanding (i.e., no relevant information at all) necessarily

has zero explanatory understanding. And perhaps someone with “maximal objectual understanding”

would necessarily also have maximal explanatory understanding. Our claim is just that explanatory and

objectual understanding are different in kind, and possessing a great deal of the latter is neither necessary

nor sufficient for possessing the former.

An analogy: according to the wealth theory of automobile ownership, being sufficiently rich is just

what it is to own a car. The wealth theory is obviously false. But one can reject it while acknowledging

that wealth and car ownership are correlated, that one needs at least a little money to obtain a car, that

extremely wealthy people almost always have some cars, and so on. The point is that modest (or even

fairly strong) correlation isn’t sufficient for dependence, identity or other metaphysically heavyweight

relations.

We conclude that focusing exclusively on objectual understanding—that is, on the quality of an

inquirer’s schemas—is a false start for a noeticist theory of explanation.

3 A different style of noeticism

As noeticists, we agree with IMR and others that a mathematical explanation is nothing but a piece

of mathematics that provides an appropriate type of understanding. We think existing accounts haven’t

yet succeeded at identifying this type of understanding. We try to do so below.
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3.1 Motivating the view

As our discussion of IMR has shown, possessing information relevant to P—even abundant, well-

structured and cognitively tractable information—is in general neither necessary nor sufficient for

explaining P . So the first task for an adequate noeticist theory is to avoid equating explanatory

understanding with a mere accumulation of knowledge.

The key insight needed to solve this problem, we take it, is as follows. As seekers of explanatory

understanding, we typically aim to resolve specific confusions, clear up specific mysteries, uncover specific

sorts of reasons-why, comprehend things from specific viewpoints. In a word, we aim to meet some

explanatory objective or other. A proof is therefore explanatory when, and only when, it’s capable of

meeting a relevant objective. Conferring or drawing upon a vast store of knowledge is no use if the

knowledge in question doesn’t help achieve our explanatory goals.

This picture makes sense of the cases discussed above. Consider the calculator number phenomenon.

We were initially puzzled by the fact that all calculator numbers are divisible by 37; our objective was to

understand why this occurs. A proof would count as explanatory relative to our objective just in case it

intelligibly presents a reason that accounts for the divisibility fact. The proof in question did so by observing

that calculator numbers have the form 105a+ 104 (a+ d) + 103 (a+ 2d) + 102 (a+ 2d) + 10 (a+ d) + a,

which simplifies to (3 · 11 · 37) (91a+ 10d). Meeting our explanatory objective in this case didn’t require

deep or extensive knowledge about calculator numbers, but just a couple of elementary facts of the right

kind.

In other situations, however, our objectives may be quite different, and a suitable explanation will

have to meet a distinct set of needs. For instance, many areas of contemporary mathematics aim to

transfer problem-solving resources between domains, or to unify seemingly disparate problems within

a common abstract framework. A number theorist might seek a specifically geometric understanding

of why the Riemann hypothesis is true. Or it might occur to a category theorist to wonder whether

dissimilar-looking results in linear algebra, set theory and group theory have a common explanation in

terms of adjoints and limits. In cases like these, developing rich and extensive schemas will be crucial to

obtaining explanatory understanding. But again, however, not just any problem-relevant knowledge will

do. All the analytic number theory in the world won’t help the number theorist achieve her goal, even if

it leads to a perfectly good proof of the Riemann hypothesis. And mastering linear algebra, set theory

and group theory individually won’t deliver the category theorist’s unifying perspective. Whether or not

a given piece of mathematics counts as explanatory, then, depends sensitively on the type of explanation

one is after.

This conception of explanation has some affinities with erotetic accounts like Lange’s, which identify

mathematical explanations with answers to antecedently specified why-questions. We find Lange’s work
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insightful, but our view departs from his in important ways, as we’ll discuss below.

3.2 Explanatory objectives

3.2.1 Preliminaries

We’ve suggested that a piece of mathematics confers explanatory understanding when it meets an

appropriate explanatory objective. An explanatory objective, in turn, is a demand for insight of a certain

sort—insight into why a theorem is true, what a phenomenon means, how a result should be interpreted,

or how one piece of mathematics relates to others, for instance.

The literature on mathematical explanation is replete with general theories as well as accounts of

specific types of explanation. As we’ve suggested, the noeticist can accommodate these views by treating

them as descriptions of possible sources of understanding—that is, as possible explanatory objectives.

We adopt this viewpoint here. Hewing closely to notions previously discussed in the literature, then, here

we give a partial list of explanatory objectives:

• Identifying a difference-making feature without which a result wouldn’t hold (i.e., mechanistic

explanation in the sense of [Frans & Weber 2014], or counterfactual-based explanation in the sense

of [Baron et al. 2020])

• Identifying an object or structure upon which a mathematical phenomenon metaphysically depends

(i.e., abstract explanation, in the sense of [Pincock 2015])

• Deriving a result using tools from another part of mathematics, thereby revealing shared structure

or intertheoretic connections (i.e., impure explanation, in the sense of [Ryan 2023])

• Deriving a striking feature of a theorem from a feature of the same type in the problem setup (i.e.,

salience-based explanation, in the sense of [Lange 2014])

• Finding a proof that clearly presents a compelling reason for a theorem’s truth (i.e., transparent

explanation, in the sense of [D’Alessandro 2021])

• Finding a proof that “shows what a theorem means” by linking it with other results in a broader

theoretical context (i.e., deep explanation, in the sense of [D’Alessandro 2021])

• Subsuming a diverse collection of facts under a single general framework (i.e., unifying explanation,

in the sense of [Kitcher 1989] or [Lehet 2021a])

• Showing how to obtain a family of proofs of related theorems by varying a characteristic property

of a relevant object (i.e., deformability-based explanation, in the sense of [Steiner 1978])
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We think this list captures some especially noteworthy types of explanatory objectives, although we don’t

presume it to be exhaustive. One could debate the distinctness, independence, or relative importance of

the items on the list, or even whether all of them ought to count as genuine routes to explanation. These

are legitimate questions, but for simplicity we take the list at face value here.

The remaining subsections below will lay out several aspects of the theory of explanatory objectives

in more detail. For now we’ll address a few general preliminaries.

First, on our view, it’s a matter of determinate fact whether or not a purported explanation meets

a given explanatory objective. So it’s possible for inquirers to mistakenly fail to recognize correct

explanations, or to mistakenly accept incorrect ones. Understanding is only gained when one grasps a

correct explanation that actually meets one’s objectives. (What’s more, one has to recognize that the

explanation is correct and that it meets the relevant objectives. If I seek a unifying explanatory proof of

theorem T , and in fact I know such a proof but somehow fail to notice its unifying character, I haven’t

yet properly fulfilled my objective or fully grasped T ’s explanation.)

Second, explanatory objectives may be more or less specific. One could, for instance, be seeking just

any impure explanation of a given fact, or one might demand a topological explanation in particular. (The

first objective would be appropriate for an inquirer wishing to understand a result from an illuminating

alternative viewpoint, without knowing which viewpoint this might turn out to be.) Complex objectives

are also fair game: one might want a unifying explanation that’s also highly transparent, say. Of course,

the more requirements one imposes, the harder it will be to find a suitable explanation, and the greater

the chance that no such explanation exists (more on this in §3.2.3 below).

Third, we need to account for the fact that we commonly seek, evaluate and accept explanations

without specifying any explanatory objective. This might be taken to suggest that there exist explanations

simpliciter which answer to no objective in particular. Our diagnosis is different. Just as one can have a

complex conjunctive objective, disjunctive objectives are possible, and the limiting case is the maximally

disjunctive objective which simply seeks understanding of some form or other. We suggest that this is

our default objective much of the time. Unless we have specific reasons to favor a narrower goal—because

we’re novices struggling for intuitive clarity, or experienced researchers in search of a specific explanatory

vantage point—we’re often happy to take any kind of insight we can get. In this standard situation, it’s

harmless to think and talk about explanation in an unqualified way.11

On the other hand, it’s worth noting that mathematicians often do specify particular explanatory

objectives. They might state a preference for a deep proof of a particular theorem over an elementary

transparent proof, for instance ([D’Alessandro 2021]). Or they might repudiate impure proofs as epistem-

ically unsatisfying, as Aristotle, Bolzano, Frege and others did ([Detlefsen & Arana 2011]). So our notion

of explanatory objectives isn’t a foreign imposition on mathematical practice. On the contrary, we need
11We hypothesize that inquirers in this open-minded state are often especially attuned to easily recognizable, general-

purpose kinds of explanatory virtues, such as transparency. See §3.2.6 for further discussion.
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some such notion to make sense of the specificity and diversity of mathematicians’ stated explanatory

aims.

Fourth, our account can accommodate intermediate degrees of explanation. Degree structures can

manifest in various ways, depending on the kinds of objectives at issue. For instance, some objectives come

with built-in degree metrics of an obvious sort—a proof can be highly transparent or only moderately

so, and the more transparent, the more explanatory (relative to that objective). Alternatively, degrees

can measure the extent to which an explanation succeeds at meeting multiple objectives concurrently.

A proof that’s impure, abstract, deep and unifying all at once will have greater explanatory value (for

someone concerned with those objectives) than a proof that’s merely impure.

Finally, Inglis and Mejía Ramos—our noeticist foils—give a detailed account of the psychological

phenomena which they take to be involved in understanding. Can we do the same? As appealing as we

find this goal, it’s unlikely, given our view, that there’s any single characterization of the relevant mental

processes. Our version of noeticism countenances a variety of explanatory objectives, each of which calls

for its own type of information with its own epistemic and cognitive roles to play. We can’t point to a

simple psychological equation (like “better understanding = better schemas”) that fully captures this

diversity.

3.2.2 What makes an objective explanatory?

Mathematicians have many epistemic aims. They seek to gain knowledge, to make fruitful conjectures,

to gather evidence, to develop reliable heuristics, and so on. Many of these desiderata don’t involve

explanatory understanding. What, then, distinguishes explanatory objectives from epistemic interests of

other kinds?

On our view, explanatory objective is a cluster concept. Thus one can’t point to a single property that

all explanatory objectives have in common. Instead, there’s a set of features which such objectives tend

to share; all explanatory objectives will possess at least a few features from the list, with varying degrees

of overlap between one objective and another.

This picture is similar to Collin Rice and Yasha Rohwer’s cluster-concept account of scientific

explanation ([Rice & Rohwer 2021]). Rice and Rohwer are motivated by two observations. First, there

seems to be no single theory that fully captures the diversity of types of explanation while avoiding

counterexamples. Second, the pluralist’s response to this situation is unsatisfying: if we merely say that

there exist many types of explanation E1, E2, . . . , En sharing nothing interesting in common, we’re at a

loss to explain why the same label applies to all the Ei. A cluster-concept theory can accommodate both

insights.

We depart slightly from Rice and Rohwer, in that we defend monism about mathematical explanation
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but propose a cluster theory of explanatory objectives. That is, we think all explanations work in

essentially the same way—by providing explanatory understanding, and hence by meeting explanatory

objectives—but we hold that the variety of explanatory objectives are related to one another only by

family resemblance. (Still, it’s harmless enough to regard our view as a cluster-concept account of

mathematical explanation, as long as one keeps in mind that the relevant cluster is located a couple of

analytical steps away.)

The following table, inspired by Rice and Rohwer’s similar chart (1037), displays some of the features

shared by various explanatory objectives:
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Rationalizes striking feature of a theorem � �

Cognitively compelling and tractable � �

Links diverse subject areas � �

Identifies dependence relations � � � �

Introduces higher level of abstraction � � �

Aims at broad context and generalizability � � � �

Seeks a proof with specific formal features � � �

Seeks a proof with specific contentual features � � �

Table 1: Some types of explanatory objectives and their characteristic features.

As the table suggests, there’s significant overlap between the features possessed by different objectives,

but no single feature common to all of them. We can also discern several families of objectives sharing

broadly similar explanatory goals. �

Impure, deep and unifying explanations are similar, for instance, in seeking links between theories and

a bird’s-eye perspective. We might call this family of objectives Seeing the Big Picture. (Steinerian

explanation belongs here too, to a lesser degree, as it also requires a limited kind of generalizability at the

level of proof.) Transparent and mechanistic explanations look for vivid, compelling reasons presented in

a cognitively accessible way. Call this family Getting a Handle. Abstract, counterfactual, mechanistic

and Steinerian explanations are all interested in dependence relations of various kinds, and thus aim to

identify grounds or difference-making features. This family might be called Putting Things in Order.

Finally, both Steiner’s and Lange’s styles of explanation focus on rationalizing striking properties of a

theorem with the help of an appropriately matched proof. Call this family Accounting for Surprises.

(Incidentally, this taxonomy helps explain why Steiner’s theory has provoked both widespread interest

and widespread criticism—the view is a peculiar multi-family hybrid incorporating objectives of several

kinds.)

Each of these families represents what’s plausibly a natural and important sort of explanatory
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understanding. Seeing the Big Picture reflects our interest in comprehending patterns and placing

facts in context. Getting a Handle captures the drive to grasp phenomena with intuitive clarity. We

understand what determines what by Putting Things in Order. And Accounting for Surprises

eliminates the appearance of coincidence by showing that the observed facts were to be expected. As our

view predicts, then, we gain explanatory understanding by meeting explanatory objectives.

This account also sheds light on why many proofs (and other pieces of mathematics) fail to explain.

Supposing that the above taxonomy is reasonably complete, if a proof meets nothing like any of the above

objectives and produces none of the associated forms of explanatory understanding, it’s likely that the

proof won’t succeed as an explanation.

Consider again the Appel-Haken proof of the four color theorem, for instance. The proof uses only

tools internal to graph theory and offers no broad or unifying perspective, so it doesn’t help with Seeing

the Big Picture. Being a massive brute-force case analysis, it’s far from the clarity and simplicity

associated with Getting a Handle. The proof offers no positive ground, reason or source for the

truth of the theorem, but only shows that various potential counterexamples don’t occur. So it brings

us no closer to Putting Things in Order. Finally, there’s no salient feature of the theorem whose

Surprisingness the proof Accounts for—as evidenced by mathematicians’ claims that the sufficiency

of four colors remains mysterious.

No matter what one’s particular explanatory aims might be, then, the Appel-Haken proof is likely to

disappoint. This fact also accounts for mathematicians’ tendency to judge the proof unexplanatory without

reference to any specific objective. As we predicted above, unqualified judgments about (un)explanatoriness

typically signal the (non)existence of at least one objective which the prospective explanans successfully

meets. Incidentally, since many proofs by exhaustion share the relevant features of the Appel-Haken proof,

this analysis also shows why such proofs are typically unexplanatory (cf. [Baker 2009], [Colyvan 2012]).

3.2.3 Objective value and the value of objectives

On our view, mathematical explanations are pieces of mathematics that meet explanatory objectives.

There will, of course, typically be many possible objectives associated with a given explanandum, and

we’re free to choose which of these to adopt according to our knowledge, goals and interests.

Given this picture, it’s tempting to infer that all objectives are created equal. But we don’t subscribe

to this brand of egalitarianism. On the contrary, there are many dimensions of value along which one

explanatory objective can be better or worse than another.

For instance, some objectives are simply unsatisfiable in some contexts, in the sense that there is

no explanation answering to the relevant demands. An objective that asks for an explanation of a false

proposition falls into this category. So does an objective that requests a nonexistent type of explanation
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for a true proposition (say, a purely algebraic proof of the fundamental theorem of algebra), or any

explanation at all for an unexplainable truth (say, the fact that 3 + 5 = 8).

Among objectives that can actually be fulfilled, some are more natural, fruitful, or consequential than

others. A successful geometric explanation of the Riemann hypothesis would throw open the floodgates

of mathematical knowledge, leading to profound and far-ranging insights about the relationship between

number theory and geometry. Explaining why calculator numbers are divisible by 37 is entertaining but

comparatively pointless. Both objectives are legitimate, but their epistemic demands and benefits are

completely unalike.

The virtues associated with different types of objective may trade off against one another. For instance,

transparent explanations are clear, vivid, and cognitively tractable, but often “shallow”, in that they use

elementary methods which don’t generalize easily. On the other hand, deep explanations are intellectually

rich but often “opaque”, in that they require complex and unintuitive theoretical machinery. So the

goodness of an objective isn’t a simple linear matter. An explanatory objective (or successful explanation)

that’s outstanding in one respect may be subpar in others.

Still, it may make sense to ask whether an objective A is more worthwhile than another objective B, all

things considered—that is, whether A’s package of merits and demerits is superior to B’s, with the elements

of each package appropriately weighted by importance. Mathematicians often make such judgments

about overall pursuitworthiness, and reasonably so. It’s also conceivable that some types of explanatory

objective are more valuable than others in general. For instance, [Lehet 2021a] and [Ryan 2023] argue

that contemporary mathematics has more use for methodologically impure explanations than for pure

ones.

The fact that one can choose which objectives to pursue, then, doesn’t mean that all objectives

are on equal footing. Mathematical progress depends crucially on asking the right questions: simply

accumulating answers isn’t enough. The evaluation and careful selection of objectives is therefore an

important part of explanatory practice.

3.2.4 Explanatory objectives and why-questions

Many explanatory objectives can be expressed as why-questions: “Why is every planar map four-

colorable?” “Why is every calculator number divisible by 37?” Often enough, we’re in a position to

formulate these questions in advance of inquiry, and we know what kind of information would count as a

satisfying answer. So it’s no surprise that why-question theories like Lange’s seem quite appealing.

Recall that, on Lange’s view, a proof is explanatory when it “exploits a certain kind of feature in the

problem: the same kind of feature that is outstanding in the result being explained” ([Lange 2014], 489).

For instance, explaining a theorem which exhibits a striking symmetry calls for a proof that makes use of

a corresponding symmetry in the problem setup. Thus it only makes sense to talk about explanatory
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proof when a why-question has been prompted by some specific noteworthy quality of a theorem. As

Lange says, his account “predicts that if [a] result exhibits no noteworthy feature, then to demand an

explanation of why it holds, not merely a proof that it holds, makes no sense. There is nothing that its

explanation over and above its proof would amount to until some feature of the result becomes salient”

([Lange 2014], 507).

We think Lange has identified a common and important type of explanatory objective: to answer

questions of the form “Why does theorem T exhibit surprising feature F?” But this account isn’t the

whole story about mathematical explanation, or even about explanatory proof. We discuss several ways

in which explanatory objectives can diverge from Lange’s picture.

First, not all successful explanations start with a sharply posed question about a specific feature

of a result or phenomenon. In some cases, our initial explanatory objective is relatively vague: we’ve

discerned something mysterious, obscure, or suggestive about the observed facts, and we seek better

understanding without knowing quite what form it will take. In other situations, an objective is revealed

only during or after inquiry, as for example when a proof reveals an illuminating but unanticipated aspect

of a phenomenon.

Both types of case are common. Gauss’s quadratic reciprocity theorem is an example of the first

(cf. [D’Alessandro 2021]). In the early days of the theorem’s conjecture and proof, mathematicians

recognized it as a striking statement that hinted at a mysterious relationship between pairs of prime

numbers. Explaining the theorem was a primary goal of Gauss and his successors: Gauss called it his

“golden theorem” and returned to it repeatedly, producing eight different proofs during his lifetime. But

these early explorers could hardly have known just what they were looking for. Number theory was

still in its infancy, and mathematicians lacked both the basic facts surrounding reciprocity and the tools

needed to conceptualize and investigate them. Truly enlightening proofs would come only after more

of this machinery had been developed. Yet Gauss was capable of pursuing an explanatory proof even

without a precise idea of what such an explanation would amount to.12 He recognized the theorem as

profound, intuition-defying, and indicative of major gaps in understanding, and this was enough to arm

him with an actionable explanatory objective.13

For an example of the second type, consider the unexpected change in perspective brought about

by abstract algebra with respect to familiar number systems. Pre-modern mathematicians had never

thought to ask, for instance, why Euclid’s lemma is true—that is, why prime numbers p have the property

that p divides a product ab only if p divides at least one of a or b alone. This seems at first glance like a

basic property of the primes that requires no explanation. But the modern turn in algebra led to a new

understanding of primality. According to the revised picture, it’s in fact Euclid’s lemma that captures
12It’s also clear that, contra Lange, the reciprocity theorem exhibited no particular formal feature (such as symmetry or

simplicity) that an explanatory proof was expected to reduplicate ([D’Alessandro 2021], 8659).
13See [Sandborg 1998] for a similar criticism of van Fraassen’s why-question theory ([van Fraassen 1980]).
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the correct general definition (p | ab =⇒ p | a or p | b), while the familiar condition (n | p =⇒ n = 1 or

n = p) represents an accidental feature called irreducibility that prime elements possess in some rings but

not others. From this perspective, Euclid’s lemma is a non-obvious fact which we might well hope to

explain: Why do primality and irreducibility in N happen to coincide, when they come apart elsewhere?

The answer is that the integers are a unique factorization domain, and Euclid’s lemma holds in all such

rings. And this is a perfectly good explanation, even if nobody thought to pose the why-question until

after the answer was available.

Lange’s account seems to rule out the possibility of both types of case, since it claims that one can

only seek or give an explanatory proof after one has formulated a why-question about some particular

salient feature of the theorem to be explained. This prediction is incorrect. By contrast, our account

allows for such cases. Some explanatory objectives are broad and open-ended. And we sometimes add a

given objective to our list only after seeing the associated explanation.

This last point deserves further comment. Although the term ‘objective’ may suggest a goal to be

set aside once achieved, this isn’t our usage here. Rather, an explanatory objective may (and typically

does) remain in force even after we’ve found what we sought, in the sense that the question and its

answer continue to interest us. Of course, our objectives do sometimes change, if we decide that some are

misconceived, unfulfillable or no longer relevant. But the mere fact of finding a satisfying explanation

doesn’t force us to abandon the associated objective.14

For the same reason, it’s perfectly possible to take up an objective only after discovering an explanation

whose existence we didn’t suspect. Doing so just means endorsing the explanatory question as worthwhile.

There’s a final respect in which we depart from views like Lange’s. Some explanatory objectives,

it seems, don’t take the form of why-questions at all. Rather, they’re more naturally understood

as “what’s-going-on-here” questions, whose goal is to gain clarity about or familiarity with a set of

phenomena. [Lehet 2021b] gives several examples. Consider, for instance, mathematicians’ puzzlement

about Weierstrass’s discovery of continuous but nowhere differentiable functions. The surprising existence

of such functions showed that analysts understood the foundations of their subject less clearly than they’d

realized, and their desire to get to the bottom of things was in part an explanatory objective. But, as

Lehet argues, “there does not seem to be a corresponding why-question [in this case]. Perhaps we could

ask ‘why are there examples of continuous nowhere differentiable functions?’, but this doesn’t seem to be

what we are really interested in. We are interested in getting a clearer picture of the real numbers, one

that highlights which properties give rise to such examples” (559).

Let us offer another example. During the development of his famous conjecture, Poincaré confronted

and eventually answered a significant what’s-going-on-here-question. The formulation of the Poincaré
14One reason for keeping an objective active after having met it is that, a priori, it might be possible to meet the objective

again in a different or better way. You might have wanted, and found, a unifying explanation of theorem T , for instance.
Even so, it may be wise to keep an eye out for a stronger and further-reaching unification, or one that subsumes T under
combinatorial principles rather than algebraic ones (or whatever).
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conjecture as we now know it began with Poincaré’s 1895 publication of “Analysis Situs”, the founding

work of algebraic topology which introduced the concepts of homotopy and homology. “Analysis Situs”

was a work in progress periodically supplemented by Poincaré over the next decade. It culminated in the

fifth supplement, which presents the Poincaré conjecture about the topological characterization of the

3-sphere.

This project included several revisions to the notion of homology and resulted in multiple drafts of

the conjecture. Throughout this work, it’s clear that Poincaré is working toward a more adequate grasp

of homology, homotopy and the relationship between the two. This process was in part a search for

explanatory understanding: Poincaré wasn’t merely trying to accumulate facts, but to clarify a set of

profound and puzzling phenomena at the heart of algebraic topology.

Poincaré worked toward this objective throughout the process of writing “Analysis Situs” and its

supplements, and we can see evidence of him progressing towards his aim. The first piece of evidence

appears in the second supplement, where Poincaré is motivated by criticisms of his original publication to

revise his notion of homology. In particular, objections raised by Poul Heegaard led him to incorporate a

torsion coefficient into his conception of homology. This consideration was Poincaré’s first step toward

refining the distinction between homology and homotopy.

A second piece of evidence comes from the fifth supplement. Here Poincaré constructs a space, the

Poincaré homology sphere, which serves as a counterexample to an early draft of the Poincaré conjecture

proposed in the second supplement. This early version of the conjecture speculated that any homologically

simple space would also be homotopically simple. The Poincaré homology sphere is an example of a space

that meets the first condition but not the second.15 Poincaré’s discovery of this counterexample—which

incorporated his new notion of a space’s fundamental group, now recognized as a key invariant in algebraic

topology—illustrates the progress he’d made toward conceptual clarity. And indeed, it’s immediately

after presenting this counterexample that Poincaré proposes the canonical version of his conjecture.

It seems undeniable that explanation was among Poincaré’s epistemic goals. But the sort of explanatory

understanding he sought is hard to capture in the form of a why-question: we can’t point to any single

fact, or any single outstanding feature of a fact, whose truth Poincaré was bent on accounting for. A

what’s-going-on-here formulation better captures Poincaré’s objective: “What’s going on in the foundations

of topology such that homology and homotopy are closely related yet apparently somehow different, and

both important for characterizing the 3-sphere?”

3.2.5 Mathematical and scientific explanation

A fourth important question about our account: To what extent does this picture generalize to

scientific explanation more broadly? Is our brand of noeticism viable outside pure mathematics?
15Note that the converse claim is true: every homotopically simple space is indeed homologically simple. So this early

conjecture proposed (incorrectly) that the two properties are equivalent.
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Broadly speaking, we think the answer is yes, although the two domains differ in some interesting

ways. As indicated above, we’re sympathetic to [Rice & Rohwer 2021]’s cluster-concept view of scientific

explanation, although we prefer to maintain monism about explanation itself and instead embrace

a cluster view at the level of explanatory objectives. Our core noeticist proposal generalizes quite

straightforwardly in this sense. Indeed, many of the same kinds of objectives figure prominently in

scientific and mathematical practice alike—inquirers in both realms are broadly interested in Seeing the

Big Picture, Getting a Handle, Putting Things in Order and Accounting for Surprises.

That said, the precise objectives in play and their relative importance differ substantially between the

two domains. Most obviously, causal explanation is widespread in natural science but seemingly absent in

mathematics. And while many scientific explanations are noncausal ([Reutlinger & Saatsi 2018]), a large

share of these appear to involve ontic relations of dependence or determination which at least formally

resemble causation. Explanations which identify dependence relations also occur in pure mathematics,

but we take them to be relatively rare and peripheral there. Counterfactual information seems to exhibit

the same asymmetry: a common explanatory target in natural science but a minor one in mathematics.16

There’s a good epistemic reason for this divergence in objectives. Empirical scientists justifiably care

more about control, manipulation, mechanisms and difference-makers than mathematicians because only

the former are in a position to perform interventions and observe the results. Mathematicians enjoy no

such interactive relationship with their objects of study. And mathematics, in any case, lacks much of the

temporal, causal and metaphysical dependence structure of the natural world.

So it’s no surprise that mathematicians’ explanatory goals tend to prioritize other kinds of insight.

While unifying explanations are important in both domains, abstraction, generalization and intertheoretic

connections are more prominent epistemic goals in mathematics. A more unique feature is the special role

of proof in mathematical practice. The ability of an argument to display reasons clearly and efficaciously

is thus a distinctively mathematical concern.

Much more could be said about the relationship between scientific and mathematical explanation.

Although we can’t do the task full justice here, we believe a uniform noeticist account along the lines

we’ve sketched has the resources to make sense of both the similarities and differences between the two

domains.

3.2.6 Empirical work on mathematicians’ judgments

Let us finally connect our proposal to some relevant empirical work.17 The best study to date of

mathematicians’ judgments about explanation is [Mejía Ramos et al. 2021]. Using a pairwise-comparison

setup, Mejía Ramos and colleagues obtained 760 judgments from 38 mathematicians on the relative

explanatory values of nine proofs (of a simple statement about the roots of a cubic polynomial). Their
16For compelling criticism of monist counterfactual theories of mathematical explanation, see [Kasirzadeh 2021] and

[Lange 2022].
17Thanks to an anonymous referee for prompting the discussion in this section.
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analysis turned up several noteworthy results. Attempting to account for these phenomena provides a

nice test for us (and, of course, for competing theories).

The mathematicians studied strongly agreed on average about which proofs were more and less

explanatory, their ratings exhibiting a split-half inter-rater reliability coefficient of .947 (with 1 indicating

perfect correlation) (587). This is good news for views which expect experts’ judgments to track objective

explanatory success, and bad for those which cast explanatory preferences as arbitrary, unstable or

context-bound in ways that make such agreement unlikely. We regard ourselves as belonging to the

former camp. Still, one might think the existence of such a strong consensus is somewhat mysterious on

our view. Why, after all, wouldn’t a large sample of mathematicians exhibit considerable diversity in

explanatory objectives, and hence substantial disagreement about which proofs best explain?

We hypothesize that most reasoners, when instructed to evaluate explanations for an arbitrary fact

regarding which they have no special prior context or personal motivation, tend to default to a general-

purpose explanation-seeking mode especially attuned to readily identifiable and non-domain-specific types

of explanatory reasoning (e.g., to transparent proofs). This hypothesis predicts the observed agreement,

since the highest-rated proofs were simple and direct, while the least preferred proofs were idiosyncratic,

cumbersome and fussy (e.g. an approximation argument including a large data table from a computer

algebra system, or a laborious cube-slicing proof consisting of 15 annotated images).

Our hypothesis also predicts a second striking finding. Among the nine proofs shown to participants,

two presented essentially the same reasoning in different textual forms: the “Elementary” proof gave a

short algebraic argument in a standard prose style, while the “Two-column” proof displayed each step of

this argument in an unwieldy list. In spite of their logical similarity, the Elementary proof was the most

preferred overall in the study, while the Two-column proof was judged much less explanatory. This result

further confirms our suggestion. We’d expect readers in this contrived setting to be particularly attuned

to general-purpose explanatory virtues like transparency, and the Elementary proof rates much more

highly on this score. We see no compensating virtue in the Two-column proof.

By contrast, ontic and counterfactual accounts of explanation can’t easily account for these data. As

Mejía Ramos and colleagues point out, such accounts seem to imply that the Elementary and Two-column

proofs should stand or fall together. It’s also unclear why, for instance, the cube-slicing Visual proof

would be judged unexplanatory on these accounts, since it’s plausible that the geometric interpretation of

polynomial expressions involves an appropriate kind of intertheoretic dependence relation.18

We hope to see further high-quality empirical work in this vein. It would be useful, for instance, to

probe the reasons why mathematicians exhibit this particular pattern of explanatory preferences; data of

this sort could help test hypotheses like the one we’ve offered here, and more generally help adjudicate

the case between noeticism and its rivals.
18See [D’Alessandro 2020] for further discussion of ontic accounts of mathematical explanation.
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3.2.7 Summary

Let us summarize the theory of mathematical explanation we’ve begun to develop here. (Incidentally,

if our view needs a name to distinguish it from other noeticist accounts, “telic noeticism” might do.)

The view is that we possess explanatory understanding when we’ve successfully met an explanatory

objective (and correctly recognized that we’ve done so). Explanatory objective is a cluster concept:

such objectives fall into a few broad and overlapping categories without sharing any essential feature in

common. Objectives sometimes take the form of specific, explicit why-questions formulated in advance

of inquiry, but what’s-going-on-here questions and other sorts of objectives also play important roles in

mathematical practice. The value of an explanatory objective is multifaceted, but mostly independent of

particular agents’ beliefs and preferences. Finally, we endorse a noeticist theory of scientific explanation

that largely overlaps with our mathematical account, though the landscape of objectives differs somewhat

in composition and emphasis between the two domains.

In his groundbreaking [Friedman 1974], Michael Friedman proposed three conditions on an adequate

theory of explanation. First, such a theory should be sufficiently general, in the sense that it applies to

and makes sense of the diversity of explanations throughout the sciences. Second, it should be objective,

in the sense that it doesn’t deem facts about explanatoriness to hold in virtue of arbitrary non-rational

predilections. Third, it should explicitly connect explanation and understanding, in the sense that it tells

us “what kind of understanding scientific explanations provide and how they provide it” (14). Friedman’s

constraints have, we think, aged well, though few accounts of explanation satisfy them even today. We

note that ours does so.

So far as we know, the view nearest our own in the literature is that of [Frans & Van Kerkhove 2023].

Frans and Van Kerkhove’s account reflects a noeticist orientation toward explanation19, and it highlights

the link between achieving understanding and satisfying specific “epistemic aims”. Though our projects

are in alignment in these respects, we differ on other important points.

For one, Frans and Van Kerkhove accept an ability account of understanding. We don’t share this

assumption. Also, like IMR, Frans and Van Kerkhove appear sympathetic to the idea that explanatory

understanding reduces to objectual understanding (30). We’ve argued against this notion at length above.

Finally, Frans and Van Kerkhove seem to be primarily concerned with explanations which are regarded

as good by a given individual or group, while our account focuses on objective explanatory success. As

a result, they make much of acceptance conditions (such as an inquirer’s background knowledge and

historical context) which we largely gloss over. On the other hand, they have little to say about what

makes some epistemic aims distinctively explanatory, which we take to be the central task of a noeticist

account. In spite of sharing certain motivating commitments, then, we view the details of our projects as
19Frans and Van Kerkhove speak of “epistemic approaches to explanation” where we use the language of noeticism.
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largely either orthogonal or at odds for reasons previously canvassed.

4 Conclusion

The view we’ve defended, “telic noeticism”, has many appealing features. Like all versions of noeticism,

it possesses the virtues described in §1—it accounts straightforwardly for the link between explanation

and understanding, it makes sense of and can incorporate the successes of non-noetic theories, and it

can handle diverse types of mathematical explanantia. By observing the important distinction between

objectual and explanatory understanding, our view also avoids the problems faced by Inglis and Mejía

Ramos’s noeticist account. Last but not least, the details of our view answer a number of questions faced

by noeticists and non-noeticists alike: about the relationship between explanations and why-questions,

the proper response to the apparent monism-pluralism dilemma, how to reconcile the agent-based aspects

of explanation with an objective conception of explanatory value, what to say about the unity of scientific

and mathematical explanation, and how to square theory with empirical data on experts’ explanatory

judgments. In doing so, the view answers Friedman’s half-century-old demand for a general and objective

theory which sheds light on the link between explanation and understanding. These virtues should help

establish noeticism as a serious option for those fascinated and vexed (as we’ve long been) by explanation

in mathematics.20

William D’Alessandro, William & Mary, USA

Ellen Lehet, independent, USA21
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