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Abstract 
 

Agent-based models (ABMs) are one type of simulation model used in the context 
of the COVID-19 pandemic. In contrast to equation-based models, ABMs are al-
gorithms that use individual agents and attribute changing characteristics to each 
one, multiple times during multiple iterations over time. This paper focuses on 
three philosophical aspects of ABMs as models of causal mechanisms, as genera-
tors of emergent phenomena, and as providers of explanation. Based on my discus-
sion, I conclude that while ABMs cannot help much with causal inference, they 
can be viewed as etio-prognostic explanations of illness occurrence and outcome. 
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1. Introduction 

Computational modeling and simulation of real-life scenarios have become a 
mainstay in health research and the biosciences. My goal in this interdisciplinary 
paper, written from my personal perspective as physician, epidemiologist, and 
philosopher, is to provide an analysis of the explanatory scope of agent-based 
models (ABMs), one particular kind of modeling technique employed in the con-
text of the COVID-19 pandemic (Silva et al. 2020, Cuevas 2020, Truszkowska et 
al. 2021, Shamil et al. 2021, Hoertel et al. 2020, Staffini et al. 2021, Kerr et al. 
2021). It is not my intention to review these papers in detail; suffice it to say that 
they are all part of the general endeavor to tackle important population health 
problems posed by the COVID pandemic and have made considerable contribu-
tions to our understanding of epidemiological dynamics of this global health cri-
sis. Instead, my discussion will focus on three philosophical aspects of ABMs as 
models of causal mechanisms, generators of emergent phenomena, and providers 
of explanation.  

I will start by introducing ABMs and why they are generally considered help-
ful (§2). Part of their epistemological value is that they are thought to provide 
explanations of biological and social mechanisms (§3). One account of ABMs, fea-
tured prominently on the Columbia School of Public Health website, has ABMs as 
models of causal mechanisms of interactions of characteristics that may include 
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impossible or unethical connections (§4) and that generate emergent phenomena 
(§5). The paper ends with the proposal to consider ABMs as helpful in generating 
etio-prognostic explanations (§6). 

 
2. Agent-Based Models 

As any other computational model, an ABM is an algorithm with inputs, compu-
tations, and outputs. In public health, ABMs are generally conceptualized as “a 
computational approach in which agents with a specified set of characteristics 
interact with each other and with their environment according to predefined 
rules” (Tracy, Cerdá, and Keyes 2018: 77). What exactly does that mean and why 
should this be helpful? 
 

2.1 What Are ABMs? 

An ABM (sometimes also called individual-based model or IBM) is a computer 
program that simulates changes in populations over time based on the ‘behavior’ 
of ‘agents’ who have a set of characteristics and ‘interact’ in predefined and sto-
chastically modeled ways. This kind of simulation is often called microsimulation 
because phenomena are modeled at the micro-level (the individual agent) and re-
sults are observed at the macro-level, the level of the simulated population. Start-
ing values and conditions for transition of agents from one state to another (for 
example, from non-infected to infected or from alive to dead) are defined by the 
programmer. Running the program will result in iterations of changes in these 
conditions over time. Ending conditions at the macro-level are the outcome of the 
model. Since the attribution of particular values to individual agents is done by 
randomly allocating values selected from a probability distribution with set con-
straints, each run of the algorithm will result in a different outcome. Multiple, 
oftentimes many runs need to be performed to arrive at a range of outcomes that 
defines an outcome distribution. The results of ABMs are non-deterministic such 
as those of equation-based models (EBMs). For a comparison of ABMs and 
EBMs, see (Van Dyke Parunak, Savit, and Riolo 1998). 

Agent-based modeling is frequently used in theoretical infectious disease ep-
idemiology (Venkatramanan et al. 2018). As outlined by Hunter and colleagues, 
ABMs are considered superior to EBMs (such as those that generate the now very 
familiar COVID-19 incidence and mortality curves) because they allow for the 
modelling of the behavior of individuals based on social interaction rules and a 
probabilistic attribution of such behaviors to the agents in a model (Hunter, Mac 
Namee, and Kelleher 2017). Agent-based models have to consider four major re-
lated aspects: disease, society, movement, and environment. They have to model 
disease-specific conditions of occurrence and duration, characteristics of the soci-
ety (population) and how its members move through virtual space and interact 
with one another in the environment that population is situated in. The result is 
a highly complex representation of how population parameters change over time 
with regard to, e.g., disease incidence or mortality rates. Let me note right here 
that ABMs involve equations as well. However, the underlying equations let a set 
of variables undergo iterative changes over a pre-defined timeframe so that such 
changes over time in each agent contribute to an overall change at the population 
level.  
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Let us go through the published description of one ABM-based microsimu-
lation and parse out its individual observational and inferential components.  

 
2.2 Example: ABM of the COVID-19 Epidemic in France 

Hoertel and coworkers published  
 
a stochastic agent-based microsimulation model of the COVID-19 epidemic in 
France. [They] examined the potential impact of post-lockdown measures, includ-
ing physical distancing, mask-wearing and shielding individuals who are the most 
vulnerable to severe COVID-19 infection, on cumulative disease incidence and 
mortality, and on intensive care unit (ICU)-bed occupancy. While lockdown is 
effective in containing the viral spread, once lifted, regardless of duration, it would 
be unlikely to prevent a rebound. Both physical distancing and mask-wearing, alt-
hough effective in slowing the epidemic and in reducing mortality, would also be 
ineffective in ultimately preventing ICUs from becoming overwhelmed and a sub-
sequent second lockdown. However, these measures coupled with the shielding of 
vulnerable people would be associated with better outcomes, including lower mor-
tality and maintaining an adequate ICU capacity to prevent a second lockdown 
(Hoertel et al. 2020: 1417). 
  

The goal of the model was to simulate the effect of changing measures after the 
first lockdown in France such as social distancing, mask-wearing, and shielding 
the most vulnerable. Outcomes measures (variables) at the population level 
(macro-level) were a rebound, second lockdown, epidemic slow down, intensive 
care unit admission rates, mortality, as well as combinations of the above. In or-
der to arrive at their results, investigators needed to model events at the individual 
level (micro-level), including  

 
194 parameters related to French population characteristics (n = 140), social con-
tacts (n = 33) and SARS-CoV-2 characteristics (n = 21) […]. Parameter values on 
population characteristics were based on data from the French National Statistical 
Institute (INSEE) and Santé Publique France. Parameters related to social con-
tacts were based on prior studies (n = 11) or assumptions when no data were avail-
able (n = 22). Finally, parameters on disease characteristics were based on data 
from Institut Pasteur and London Imperial College, except for two unknown key 
parameters of the epidemic: contamination risk and proportion of undiagnosed 
COVID-19 cases, which were simultaneously estimated through model calibration 
(Hoertel et al. 2020) (quote from online material available at https://www.na-
ture.com/articles/s41591-020-1001-6#Sec2; accessed 06/13/2021).  
 

In essence, almost two hundred individual and population characteristics were 
modeled over time and the resulting changes at the population level were ob-
served. Circling back to my tripartite goal in this paper to explore ABMs as (a) 
models of mechanisms, (b) generators of emergent phenomena, and (c) providers 
of explanation, the (a) mechanisms would be the joint changes over time among 
the agents of the ABM that (b) lead to certain population-based emergent phe-
nomena, and (c) observing the model values change and results emerge would 
provide an explanation. The central question I ask in this paper is, an explanation 
of what exactly this might be. 
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2.3 Why Are ABMs Considered Helpful? 

Obviously, ABMs are created for a purpose. In the general context of our current 
discussion, any modeler of an epidemic (pandemics included) has at least three 
goals. First, they want to understand the dynamics of the epidemic in terms of back-
ground conditions of population and environment. Thus, the first goal is to find 
a causal-mechanical explanation of why and how the infection spreads in popula-
tions. Second, modelers want to create an algorithm that allows them to predict 
how the epidemic will evolve over time. Third, modelers want to explore changes 
in model outcomes in response to parameter changes. In an iterative fashion, the 
algorithm can be modified to get closer and closer to predictions that can be con-
firmed or rejected by real-life data as time goes by. 

I have mentioned above that one of the motivations to create ABMs is that 
they are considered superior to EBMs in terms of being more realistic (Hunter, 
Mac Namee, and Kelleher 2017). Equation-based models are simple, static, and 
deterministic, because they are built like a mathematical formula such as a regres-
sion equation that gives a result on a dependent variable based on the value of 
one or more independent variables. Once the regression equation is derived from 
an observational study in a certain population, any new observation can be 
plugged into the regression formula and a predicted value for the dependent var-
iable can be obtained. They are static in the sense of being non-dynamic. This 
means that once a regression equation is created, it doesn’t change. If one wants 
to look at other combinations of variables, different starting conditions, or 
changes over time, one needs to create new equations. And they are deterministic, 
because the value of the dependent variable is fixed once the values of the inde-
pendent variables are fixed. There is not much room for “natural variation” in 
equation-based modelling. 

Consider the following excerpt from an outline of ABMs on the website of 
one of the major schools of public health in the United States: 

 
Agent-based models are computer simulations used to study the interactions be-
tween people, things, places, and time. They are stochastic models built from the 
bottom up meaning individual agents (often people in epidemiology) are assigned 
certain attributes. The agents are programmed to behave and interact with other 
agents and the environment in certain ways. These interactions produce emergent 
effects that may differ from effects of individual agents. Agent-based modeling dif-
fers from traditional, regression-based methods in that, like systems dynamics 
modeling, it allows for the exploration of complex systems that display non-inde-
pendence of individuals and feedback loops in causal mechanisms. It is not limited 
to observed data and can be used to model the counterfactual or experiments that 
may be impossible or unethical to conduct in the real world (https://www.publi-
chealth.columbia.edu/research/population-health-methods/agent-based-model-
ing), accessed 06-04-2021). 
 

Let me henceforth refer to this blurb as the Columbia account of ABM and rephrase 
its elements as three epistemological statements we can use as a guideline for the 
next sections of this paper.  

Agent-based models are epistemologically helpful because they 

1. enable the exploration of complex systems characterized by (among other 
things) non-independence of individuals and feedback loops in causal mech-
anisms, i.e., the sequential processes of changes in agent “behavior” that 
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connect the initial states among agents and outcomes established at the 
population level;  

2. support the study of interactions at the levels of people, things, places, and 
time between programmed behaviors of and interactions between agents 
that produce emergent effects; 

3. can explore mechanisms in ways that are impossible in observational and 
experimental research. 

I will now turn to each one of these three epistemological benefits of ABMs in §3-
5, respectively.  

 
3. Mechanisms and Causes 

3.1 Biological Mechanisms 

In the basic biosciences, mechanistic views of biological processes appear to in-
clude the notions of action and behavior when it comes to the observation of 
changes among the mechanism’s components and also the changes that occur as 
part of the result of the process. For example, Olaf Wolkenhauer writes that sys-
tems biologists are interested in finding out “how biological function emerges 
from the interactions between the components of living systems and how these 
emergent properties enable and constrain the behavior of those components” 
(Wolkenhauer 2014). First, note that Wolkenhauer says that biological function 
“emerges” from the interactions of components. We will come back to emergence 
in the next section. Second, consider this account of systems biology in light of 
one of the more frequently cited definitions of a mechanism in philosophy of sci-
ence: “Mechanisms are entities and activities organized such that they are pro-
ductive of regular changes from start or set-up to finish or termination conditions” 
(Machamer, Darden, and Craver 2000). Taken together, the two accounts allow 
for the inference that at least some systems biologists see their work as identifying 
biological mechanisms.  

Wolkenhauer confirms this by saying that “[t]he iterative cycle of data-driven 
modeling and model-driven experimentation […] helps in identifying new mech-
anistic details of cell-biological processes and previously unidentified regulatory 
interactions in the system” (italics mine). Thus, another important similarity be-
tween Wolkenhauer’s account of computational systems biology and Machamer, 
Darden, and Craver’s account of mechanism is that both refer to some sort of 
action, as in “interactions” and “activities”, suggesting that at least some biosci-
entists think that biological mechanisms are characterized by interactions and ac-
tivities among the element of those mechanisms.  

Let us now move from biological to population mechanics. It seems that 
population health scientists have a similarly mechanistic view of population 
health as biologists view biological processes as mechanisms. Consider, for exam-
ple, this quote from the book “The Future of the Public’s Health in the 21st Cen-
tury” published by the Institute of Medicine (U.S.) Committee on Assuring the 
Health of the Public in the 21st Century (Medicine 2003): “(a)spects of discrimi-
nation might influence health through any number of mechanisms, including (so-
cio-economic status)” (61) and “[t]here are several plausible mechanisms by 
which social cohesion might influence health through contextual effects” (71). 
These quotes raise the question how social mechanisms are conceptualized.  
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3.2 Social Mechanisms 

Let us first consider who or what the elements of social mechanisms are. Stinch-
combe suggests that “[m]echanisms in a theory are defined here as bits of theory 
about entities at a different level (e.g., individuals) than the main entities being 
theorized about (e.g., groups), which serve to make the higher-level theory more 
supple, more accurate, or more general” (Stinchcombe 1991). For our present 
discussion of epidemic ABMs as models of social mechanisms, the agent would 
be a representation of an individual person and the entirety of agents would be a 
representation of a social group or population. From this perspective, individuals 
(represented by agents in ABMs) would be the actors. In what might be the most 
frequently cited text on social mechanisms as explanations, Hedström and Sved-
berg (1998) confirm this when they state that their concept of social mechanism 
is based on four core principles, i.e., action, precision, abstraction and reduction 
(Hedström and Swedberg 1998). They write that  

 
[t]he first of these principles—explanations based on actions—means, among 
other things, that it is actors and not variables who do the acting. A mechanism-
based explanation is not built upon mere associations between variables but al-
ways refers directly to causes and consequences of individual action oriented to 
the behavior of others (ibid.).  
 

Are ABMs, therefore, models of social mechanisms? The following quote seems 
to answer in the affirmative. Conte and Paolucci write that  

 
[a] generative explanation of an observed social phenomenon consists of describ-
ing it in terms of the external (environmental and social) and internal (behavioral) 
mechanisms that generate them, rather than by inferring causes from observed co-
variations. This is a vital property of explanation, which cannot easily be realized 
otherwise. When describing agent behavior by means of other formalisms (logic-
based or numeric), we describe behavior from the outside, as perceived by an ob-
server, but do not describe the way it is generated. ABM explains (sic) behavior 
from within, in terms of the mechanisms that are supposed to have generated it, 
that is, the mechanisms that operate in the agent when s/he behaves one way or 
another (Conte and Paolucci 2014). 
 

However, note that Conte and Paolucci carefully distinguish between mecha-
nisms as natural constituents of the real processes the ABM is supposed to be a 
model of, and the structural and functional blueprint for agents’ interactions coded 
into the model algorithm. They appear to see social phenomena as generated (pro-
duced) by mechanisms (external and internal) and the advantage of ABMs over 
other kinds of models as their capability to offer a mechanistic explanation of 
system behavior. Topping and colleagues make it eminently clear that the mech-
anisms are built into the model. They begin their article (about their ecological ABM 
model of the European brown hare) as follows:  

 
Agent-based models (ABMs) are gaining popularity in most scientific fields due to 
their ability to describe complex systems from first principles. Yet, they are also 
criticised for being ‘black boxes’ and impossible to fully understand. This is mainly 
due to the difficulty of testing, documenting and communicating the wealth of 
mechanisms built into such models (Topping, Høye, and Olesen 2010). 
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This view is confirmed by a group of researchers who designed an ABM on social 
distancing, testing, contact tracing, and quarantine on the occurrence of SARS-
CoV-19 infections. Referring to multiple scenarios they modeled they write that 
“[t]he above scenarios are mechanistically simulated on the multi-layer network […] 
by allowing different interactions (between effective contacts) according to the simu-
lated strategy” (Aleta et al. 2020). Clearly, this team stresses the point that the sim-
ulation is mechanistic. They do not say that they think that the real-life phenomena 
they model are mechanistic as well. However, what other reason could they have 
creating mechanistic models than being convinced that the modeled social and 
behavioral processes are mechanistic as well? Perhaps, we can paraphrase Nancy 
Cartwright’s “no causes in, no causes out” here as “no mechanisms in, no mech-
anisms out” (Cartwright 1989), meaning that only if we already have mechanistic 
background information can we see ABMs as mechanisms. If ABMs are consid-
ered mechanistic explanations of a certain phenomenon, they explain the occur-
rence of the phenomenon as resulting from a mechanism by demonstrating that 
the phenomenon does indeed occur because of the mechanism modeled by the 
ABM. However, this does not yet allow for the inference that the phenomenon 
must be due to this mechanism. To do that, other potential mechanisms and the 
possibility of chance need to be ruled out, and of course the existence of the mech-
anism needs to be demonstrated by real world data.  
 

3.3 Causal Mechanisms 

Until now, I have tried to avoid the topic of causality because I wanted my focus 
to be on the role of ABMs as explaining mechanisms without reference to causa-
tion. However, some modelers talk about causal mechanisms when they talk about 
the relation between how they see causality in the world and in their models. 
Consider the Columbia account of ABM above: “[…] exploration of complex 
systems that display non-independence of individuals and feedback loops in causal 
mechanisms” (italics mine). This notion resonates with Tracy and coworkers’ view 
that  

 
ABMs are well suited to the exploration of causal mechanisms given their ability 
to incorporate multiple interacting causes and to test competing theories about 
causation, thus further elucidating what we do and do not know about how a given 
outcome arises (Tracy, Cerdá, and Keyes 2018: 85). 
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It almost seems as if knowledge about mechanisms is considered crucial because 
it can provide knowledge about causation. As much as I agree that causes and 
mechanisms have a very close working relationship, they are two very different 
things. Indeed, Dammann has argued for a distinction between causes and mech-
anisms in the context of illness occurrence as separate, but closely related compo-

nents of the causation process that represents the initial phase of illness etiology 
(Figure 1) (Dammann 2017). According to this account, causes initiate mecha-
nisms that in turn culminate in clinical illness. Within this etiological scenario all 
mechanisms are causal because they link causes and their outcomes. However, 
this does not necessarily mean that all mechanisms must be causal. If non-causal 
mechanisms exist, and if ABMs can model any kind of mechanism, then not all 
mechanisms that can be represented in ABMs are causal. Therefore, any method 
that is supposed to extract information about causal mechanisms from ABMs 
would need to distinguish between causal and non-causal mechanisms in ABMs. 
On the other hand, it could be that all mechanisms are causal, simpliciter. We 
would not need to distinguish between causal and non-causal mechanisms be-
cause the latter do not exist. If all mechanisms are causal, and ABMs can model 
any mechanism, ABMs could be used in the exercise of generating causal-me-
chanical (etiological) explanations. If not, we would, again, need criteria for sep-
arating causal from non-causal mechanisms.  

What could non-causal mechanisms look like apart from, say, non-func-
tional mechanisms such as repetitive loops in which model parameters do not 
change? I am referring back to Machamer, Darden, and Craver’s definition of 
mechanism as “entities and activities organized such that they are productive of 
regular changes”. I take this to mean that mechanisms produce change. Mecha-
nisms are the way by which causes make a difference. From this perspective, it 
would seem that all mechanisms are causal. Therefore, if ABMs represent mech-
anisms, and if all mechanisms are causal, then ABMs are representations of 
causal mechanisms. Does this mean that ABMs can be used as tools in causal 
inference? 
 

Figure 1. The etiological 
stance conceptualizes disease 
occurrence as a process. The 
first phase (causation pro-
cess) includes causes and the 
subsequent pathogenetic 
mechanism they induce. The 
second phase (disease pro-
cess) includes the pathogene-
sis and clinical disease. 
Knowledge about both (etio-
logical process), combined 
with knowledge about the ac-
tion of other contributors to 
the etiological process at all 
of its levels, can provide use-
ful etiological explanations 
(reprinted with permission 
from Dammann 2017). 
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3.4 ABMs and Causal Inference in Epidemiology 

Let us assume that ABMs include causal interactions by definition. They are pro-
grammed to reflect a causal relationship between variables whenever one is coded 
to change in response to another. Indeed, this is a representation of a common 
causal intuition: X causes Y if Y changes whenever X changes. (I sometimes call 
this, somewhat informally, the light switch intuition.) It includes traditional phil-
osophical notions of causation as regularity, difference-making, dependence, and 
so forth. However, I see the argument that ABMs are helpful in causal inference 
as being based on circular reasoning: causality in, causality out (paraphrasing 
Cartwright, again). ABMs cannot help with causal inference because inference is 
the bottom-up support of a proposition by observed data. ABMs cannot provide 
such data because the data they provide are top-down, generated computationally 
by algorithms. Yes, the model of the algorithm itself, e.g., the assumptions and al-
most 200 parameters used by Hoertel et al in our COVID-19 epidemic example 
above, may be based on observed data (such as disease incidence, contact fre-
quency among agents, etc.), but the algorithm is designed to produce a result. 
Thus, the result is caused by the algorithm, and that causal fact does not support 
the notion that the underlying observed data are reflective of a causal scenario, 
but only the notion that the algorithm functions as a causal mechanism, and that 
an algorithmic causal mechanism can be interpreted as a depiction of an envi-
sioned causal mechanism in real-life, but not as evidence supporting the inference 
that the modeled real-life scenario is causal or the inference that a real-life causal 
even exists. An algorithmic causal mechanism only shows that such mechanism 
has the potential to yield the modeled phenomenon. The epistemic gain is demon-
strative in a theoretical way (in silico), but not in a practical way as in experimen-
tation with animal models (in vivo). Both in silico and in vivo demonstrations con-
firm the possibility of a role for the mechanism in the purported etiological pro-
cess, but they do not confirm that it does indeed play that role in real life scenar-
ios.  

Another caveat comes from the observation that those who argue for or 
against methods for causal inference via some method or another usually do so 
while depending on their own, implicit and often unstated intuitions about the 
nature of causality (Casini and Manzo 2016). What are epidemiologists’ defini-
tions of “causation”? Susser simply states that “a cause is what makes a differ-
ence” (Susser 1991). A classic paper on the counterfactual definition of causal effect 
in epidemiology includes my favorite statement “in ideal randomized experi-
ments, association is causation” (Hernán 2004). My problem with this paper is, 
however, that it contrasts the term causal effect with the term effect because the latter 
is, according to the author, commonly used to mean “simply statistical associa-
tion”. I think the term causal effect introduces confusion, because there is simply no 
such thing as a non-causal effect. All effects are results of causal mechanisms by 
definition, although the exact mechanism itself is not always known. The more 
important issue here is, however, that Hernán sees the (population) definition of 
causal effect simply as tied to a probability differential of developing an outcome 
under two different exposure conditions (yes or no):  

 
We define the probability Pr[Ya=1] as the proportion of subjects that would have 
developed the outcome Y had all subjects in the population of interest received 
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exposure value a. We also refer to Pr[Ya=1] as the risk of Ya. The exposure has a 
causal effect in the population if Pr[Ya=1=1] ≠ Pr[Ya=0=1] (Hernán 2004: 266). 
 

This definition strikes me as applicable to “statistical association”, but by no 
means would I subscribe to the view that it defines “causal effect” without further 
explication of what Hernán means by “causal effect”. Unless he intends to suggest 
that his definition defines causal effect. This would mean that causal effects are 
what epidemiologists tell us they are in a sort of metaphysically unsatisfying and 
somewhat patronizing way.  

Let me refer briefly to an exchange from the epidemiological literature about 
the capability of ABMs to contribute to causal inference. Marshall and Galea 
have argued that ABMs “represent a promising novel approach to identify and 
evaluate complex causal effects” (Marshall and Galea 2015). Although they refer 
to causal inference in this quote and in the title of their paper, the authors seem 
to avoid this notion in the body of the paper and refer instead to the exploration, 
elucidation, and interrogation of the causal relationships modeled in an ABM. 
Their argument rests on the capability of ABMs to represent multiple causal in-
terrelations (their view of a complex system): 

 
We argue that agent-based modeling offers an alternative and complementary ap-
proach to elucidate complex causal interdependencies that are of interest in epide-
miology. Specifically, the forms of the relationships among causes (which are 
broadly defined here and can include agent traits as well as environments) are op-
erationalized by the rules Z. The rule set consisting of functions f(), g(), and h() 
can include nonlinear components, including feedback loops, such that linear in-
dependence need not be assumed. By altering the rule set Z and running the sim-
ulation under different assumed causal relationships and processes, the effect(s) of 
interdependent (i.e., joint) exposures can be explored and interrogated (Marshall 
and Galea 2015: 96). 

 
Marshall and Galea call the causal interrelationships they are interested in com-
plex. I take it as implicit that by this they refer to complex systems, not just com-
plicated ones. They stress the possibility to model non-linear relationships—a 
characteristic of complex systems. Thus, their view seems to be in keeping with 
the notion discussed in §5 below that the sheer complexity of interactions of 
agents in ABMs may give rise to emergent phenomena. More importantly, it is 
the intervention by the modeler (altering the rule set under different causal as-
sumptions) that renders the ABM a helpful tool in causal exploration and inter-
rogation, to use Marshall and Galea’s terms. This view grants epistemological 
value to ABMs based on the possibility to manipulate them and explore the con-
sequences, which resonates with interventionist accounts of causation.  

One invited commentator, Ana Diez-Roux, disagrees with the notion that 
ABMs can help with causal inference in epidemiology (Diez Roux 2014). The 
following excerpt from her abstract puts her position, which I see as one point of 
departure for my proposal in §6 below, in a nutshell:  

 
As discussed by Marshall and Galea […], systems approaches are appealing be-
cause they allow explicit recognition of feedback, interference, adaptation over 
time, and nonlinearities. However, they differ fundamentally from the traditional 
approaches to causal inference used in epidemiology in that they involve creation 
of a virtual world. Systems modeling can help us understand the plausible 
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implications of the knowledge that we have and how pieces can act together in 
ways that we might not have predicted. […] However, the validity of any causal 
conclusions derived from systems models hinges on the extent to which the models 
represent the fundamental dynamics relevant to the process in the real world. For 
this reason, systems modeling will never replace causal inference based on empir-
ical observation. Causal inference based on empirical observation and simulation 
modeling serve interrelated but different purposes (Diez-Roux 2014: 100).  

 
Of note, Diez-Roux does not say that ABMs are incapable of helping with causal 
inference in principle. She only says that ABM-generated models are not like ep-
idemiological approaches to causal inference based on observed data. However, 
I agree with her notion that simulated data from ABMs are epistemologically in-
ferior to observational epidemiological data simply because the underlying data 
are not real-world data but data generated in silico. 
  

 4. Interaction and Emergence 

Let us now move on to the question whether the system behavior of ABMs can 
be reduced to the interactions among agents’ characteristics and behaviors or if it 
is an emergent phenomenon. The question I am interested in is about the relation-
ship between mechanistic explanation and emergence. In brief, if ABMs are a 
non-deterministic black-box and the system behavior they exhibit is truly emer-
gent, what remains of the notion that ABMs represent causal-mechanistic expla-
nations? What kind of causal mechanism would be explained by an ABMs whose 
inner workings remain in the dark and whose results are by definition unpredictable 
and surprising? (I see a similarity here to the current discussion about the trans-
parency, explainability, and interpretability of machine learning algorithms 
(Roscher et al. 2020), but an exhibit of this parallel will have to wait for another 
day.) On the other hand, if ABMs really provide causal-mechanistic explanations 
we should be able to predict the phenomena they generate, which would render 
them non-emergent. 
 

4.1 Emergence Defined 

The classic reference on emergence, published by Jeffrey Goldstein in the first 
issue of the journal of the same name, defines emergence as 

 
the arising of novel and coherent structures, patterns, and properties during the 
process of self-organization in complex systems. Emergent phenomena are con-
ceptualized as occurring on the macro level, in contrast to the micro-level compo-
nents and processes out of which they arise (Goldstein 1999: 49). 

 
Think of a complex system as having a micro level (components) and a macro 
level (surface). Goldstein defines emergent phenomena as (1) radically novel, (2) 
coherent, (3) macro-level, (4) dynamic, and (5) ostensive. Radical novelty refers to 
the fact that emergent phenomena appear at the macro level without having pre-
viously been present in the complex system under study and cannot be derived 
from or predicted based on knowledge about what is going on at the micro-level. 
Coherence means that emergent properties maintain “some sense of identity over 
time” (ibid.), macro-level means that emergence is observable at the surface level of 
the observed system, not the micro-level constituted by its components, dynamic 
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refers to emergent phenomena as not preformed but as developing over time, and 
ostensive as being recognized by “showing themselves”.  

Most important for our present discussion, however, is that Goldstein sees 
one of the main roles of emergence in science as explanatory: 

 
In respect to its use in scientific explanation, the construct of emergence is ap-
pealed to when the dynamics of a system seem better understood by focusing on 
across-system organization rather than on the parts or properties of parts alone 
(Goldstein 1999: 50). 
 

Thus, in keeping with Goldstein’s characterization of emergent phenomena, alt-
hough their occurrence on the macro-level is produced by what is going on at the 
micro-level, they come “out of the blue” because they do not depend on the be-
havior of individual micro-level variables (agents in ABMs) but on the overarch-
ing function of the whole system. Thus, if ABMs are truly complex (non-deter-
ministic, non-linear) systems, they would produce emergent effects at the output 
level that are not predicted, or even predictable, by means of applying knowledge 
about the agents and their interactions. In contrast, these results would be osten-
sive occurrences that rely on the function of all interacting parts. The point here 
is that ABMs yield models of mechanisms that do not necessarily represent any 
real-world mechanism, be it biological or social mechanisms. It represents only 
itself, based on input conditions and probabilistic rules for agent interactions and 
status changes. If an ABM yields an outcome, be it emergent or expected, the 
occurrence of that outcome can then be explained by analyzing the workings of 
the modeled mechanism in silico.  

What kind of mechanism consists of interactions between parts over time but 
is not “productive of regular changes” (per Machamer et al.’s definition) but in-
stead to radically novel, dynamic, and ostensive phenomena? Can ABMs explain 
mechanisms or emergence, or both? 
 

4.2 Weisberg: Mechanistic Explanations vs Emergence Explanations 

The question whether ABMs can explain emergent phenomena is what Weisberg 
considers “the most controversial claim about IBMs […] Not everyone is con-
vinced” (Weisberg 2014: 788). He quotes ecologist Joan Roughgarden as saying 
that she doesn’t “think it’s easy to discern the causation being revealed by an IBM 
simulation. And if we don’t learn something about causation we don’t learn any-
thing scientifically important” (personal communication quoted in Weisberg 
2014). (Of note, Weisberg and Roughgarden’s IBMs and our ABMs are the same 
thing; see above.) 

Weisberg suggests a distinction between explanations of emergent phenom-
ena (mechanistic explanations) and explanations of the emergence of phenomena 
(emergence explanations). On his view, mechanistic explanations provide a “gen-
eralized mechanistic understanding of the dependence of higher-level properties 
and patterns on lower-level mechanistic factors” (Weisberg 2014: 789). I take this 
to mean an explanation that is based on the description of the elements of a mech-
anism and their interactions as being what somehow leads to an emergent phenom-
enon. He shows how certain causal graphs (relational depictions of phenomena 
in boxes with causal arrows between them) can depict the relationships among 
micro-level factors that can help generate mechanistic explanations. Interestingly, 
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the kind of causal graph he chooses suggests that on his view ABMs can model 
biological mechanisms because the causal mechanism depicted in his example per-
mits feedback loops, an important characteristic of mechanisms in biological ex-
planations (Bechtel 2011). In contrast, the directed acyclic graphs (DAGs) that 
are frequently used in epidemiological causal reasoning do not allow feedback 
loops, a feature preferred in causal reasoning because the vertices can be ordered, 
simplifying causal argumentation immensely. No such topological order is possi-
ble in cyclic graphs (Dasgupta, Papadimitriou, and Vazirani 2008: 96). 

Emergence explanations, on the other hand, would require us to provide “re-
ductive explanations that show how emergent phenomena arise from lower-level 
interactions” (Weisberg 2014: 792). They would require us to clarify the somehow 
that generates an emergent phenomenon. But one main problem with both cyclic 
and acyclic graphs is that it is unclear what exactly the arrows represent. If it is true 
that causation is “one word, many things” and that “there are different kinds of 
causal relations imbedded in different kinds of systems” (Cartwright 2004: 805), 
the edges (arrows) between different vertices (characteristics of agents in ABMs) 
would potentially represent different sub-mechanisms. I read Weisberg as saying 
that we cannot use ABMs to provide emergence explanations unless we can spec-
ify exactly what is in each of these arrows, and I agree with him on that. On the 
other hand, he seems to say that ABMs can provide mechanistic explanations. 
Let me add that if all mechanisms are causal, I assume that Weisberg would con-
clude that ABMs can provide causal-mechanical explanations and I would agree 
with him on that as well.  

I also suggest that his usage of non-DAGs to depict what ABMs model not 
only fits biological but also social mechanisms. Note that the Columbia account 
of ABMs above explicitly mentions feedback loops. Indeed, some research on 
COVID-19 has revealed interesting feedback loops even across scales of represen-
tation (micro-level, macro-level). For example, one computational study suggests 
that macro-level dynamics such as social distancing can result in micro-level 
changes all the way down in the genetic makeup of SARS-CoV-2 (Barrett et al. 
2021). 

But perhaps, at least in the context of ABMs, we shouldn’t ask too much of 
the arrow semantics in causal graphs, for in ABMs the relationship between all 
agents and all their characteristics is simply a mathematical relationship, not a 
biological one. This brings us to the next notion reflected in the Columbia account 
of ABM, impossible interactions. 

 
5. Impossible Interactions  

A major motivation to use ABMs comes from their flexibility to be manipulated 
in ways no observational or interventional epidemiological study could be manip-
ulated. In essence, ABMs can be used to model the “impossible” because the 
characteristics of agents are variables created for the model and by the model. Fur-
thermore, there is only one kind of relationship between and among variables in 
ABMs, a mathematical relationship represented by stochastic functions. 

Based on the findings in the systems biology and population health/socio-
logical/ecological literature discussed in the previous sections we can postulate 
that ABMs are considered models of social mechanisms. Such mechanisms are 
modeled in ABMs by creating interactions between agent’s characteristics among 
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each other and between agents’ and their environment’s characteristics. How 
does this look like inside an ABM? 
 

5.1 Interactions 

The term interaction is most often used in ABMs to denote the narrowing of virtual 
physical space between two agents to a level at which a status change occurs in at 
least one of them (Winkelmann et al. 2021). Based on certain parameters, each 
individual agent will move through virtual space until a pre-programmed fit be-
tween a set of characteristics of two agents leads to contact and infection with a 
certain prespecified likelihood. At this point the status of the heretofore “unin-
fected” agent switches to “infected”. Because such status changes are dependent 
on certain constellations of variables at certain timepoints, and because these con-
stellations are derived from a whole set of characteristics assigned to agents in a 
stochastic fashion, these interactions and associated status changes are not pre-
determined. In this sense, ABMs are non-deterministic, and each run of the model 
will yield a slightly different end result. Many runs need to be performed to nar-
row down the probability distribution of results at the macro-level. At the popu-
lation level, population wide parameters such as “infection prevalence” change 
from starting conditions to a different value over the duration of model run time, 
depending on how many individuals will be newly infected (incidence) while the 
model is running. Such result is sometimes considered “emergent” since it is not 
fully determined by model parameters in an equation-like fashion.  

In the above scenario, the interaction is between two agents. Interactions can 
also occur between agents and the spatial environment. For example, certain ar-
eas in the virtual space can be designated as different in terms of social character-
istics (e.g., high crime, low crime, no crime regions) and the likelihood of a status 
change of an agent (e.g., becoming the victim in a street mugging) would be dif-
ferent in these different regions. Moreover, agent-agent interactions could be 
modeled as representing just such a mugging (or not) and differ by section of the 
virtual space. 

 
5.2 The Impossible 

These considerations highlight one of the oft-praised advantages of ABMs, the 
possibility to design interactions in any way the modeler desires, even impossible 
or unethical ones. In essence, the functions of ABMs are completely devoid of the 
need for plausibility and ethical considerations. Nothing prevents the design of an 
ABM of a randomized controlled trial of the effect of COVID-19 infection on 
survival. Obviously, although such trial would be possible in principle, it would 
(luckily) never be approved by an institutional review board.  

But aside from being a potential tool for modeling the unethical, another im-
portant possibility is to model mechanistic relationships across levels along the 
bio-psycho-social spectrum. Agent-based models can evaluate interactions among 
and between agents and their environments regardless of a known mechanism 
between, say, agents’ socioeconomic background, their immune status, and their 
risk of SARS-CoV-2 infection. The flip side of ABMs’ inability to provide Weis-
bergian emergence explanations is the benefit for the modeler to simply ignore 
the somehow expected from such explanations without sacrificing the capability of 
their model to provide causal-mechanical explanations.  
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5.3 ABMs as Multiscale Models 

In epidemiological research, multilevel modeling that integrates variables across 
the individual, household, and community level is a common approach. Such 
models are called multi-scale or nested models and have become common in infec-
tious disease modeling (Hart et al. 2020). Multiscale models have traditionally 
been based on integro-differential equations (IDEs), but the usage of ABMs has 
recently become more frequent. Such models can easily integrate the interaction 
between biological and behavioral processes at the level of the level of the indi-
vidual and social processes at the population level.  

At least some philosophers seem to feel comfortable with the idea of trans-
level interaction and state that “our health is not just a metabolic response to tox-
ins; it is about a complex social and biological interaction—a relational process 
or mechanism” (Parkkinen et al. 2018). Indeed, I suggest that agent-based mul-
tiscale models can provide the proposed integration of biological, behavioral, and 
social mechanism in a concept that Kelly, Kelly, and Russo have advocated for 
and called mixed mechanisms (Kelly, Kelly, and Russo 2014). However, I think 
that they can do even more: they can explore comprehensive etio-prognostic ex-
planations of illness occurrence, development, and prognosis. Indeed, ABMs can 
simulate not only the joint activities of determinants of illness occurrence (causes 
and mechanisms) in etiological explanations (Dammann 2020), but also the joint 
activities of the determinants of the clinical course (disease development) and its 
outcomes (cure, death, or anything in between). They can even include the po-
tential impact of etiological contributors such as conditions that are different from 
causes in non-trivial ways (Broadbent 2008) that I regret not being able to rehearse 
here in detail. In the next and final section, I propose that while ABMs’ role in 
causal inference might be limited, they can provide etio-prognostic explanations by 
integrating determinants of illness occurrence (etiology) as well as determinants 
of disease development and outcome (prognosis).  

 
6. ABMs as Etio-Prognostic Explanations 

Above, I have rejected the idea that ABMs can help with causal inference, but 
support the notion that ABMs can be helpful as explanations of causal-mechani-
cal (etiological) processes of illness occurrence. Moreover, I propose that they can 
help even further by simulating the trajectory of illness development and out-
come. Let me begin by outlining etiological explanations (Dammann 2017, 2020) 
and what I mean by etio-prognostic explanation.  
 

6.1 Etiological Explanations 

In epidemiology, an obsession with causal inference abounds. The main idea seems 
to be that epidemiological methods can provide an apparatus that allows for causal 
inference based on observational epidemiological data. The underlying assump-
tions appear to be that observed statistical associations are not to be considered re-
flective of a causal relationship unless they come from ideal randomized experi-
ments (Hernán 2004). A simple and straight forward rejection of this proposal 
would need to show that ideal randomized experiments do not exist. Indeed, some 
philosophers have offered this argument as well as other considerations that should 
reduce our confidence in causal inference from randomized clinical trials, the gold 
standard of the randomized experiment in clinical epidemiology (Worrall 2007, 
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Cartwright 2007, 2010, Deaton and Cartwright 2016). If these arguments, which I 
cannot fully discuss here for reasons of space, carry any weight, there may just not 
be any way to reliably infer causality from epidemiological data. Instead of making 
causal inference the holy grail of epidemiological research, a gentler, less exclusive 
perspective can be taken according to which epidemiology contributes to the gener-
ation of etiological explanations, which refer to purported causes of illness, the 
mechanisms they initiate, and the disease (illness) that occurs. This theoretical 
model of illness occurrence is a process model, with causation process and disease 
process overlapping and jointly representing the etiological process (Figure 1). 
Providing such etiological explanation means providing a coherent set of hypothe-
ses that support the observed data, explaining the occurrence of the disease and its 
clinical outcome (for a philosophical take on explanatory coherence in epidemiol-
ogy, see Dammann 2018).  

Comprehensive etiological explanations may include reference to initiators 
(causes), mediators, modifiers (both part of the pathogenetic mechanism), and 
facilitators. Causes (e.g., Sars-CoV-2 infection) are factors that initiate the medi-
ating pathomechanism (e.g., severe inflammation in the lung) which leads to pul-
monary disease, sometimes respiratory failure, and death (outcome). Modifiers 
in this explanation are factors that change the impact of causes and mechanisms 
(e.g., vaccination or social distancing), while facilitators are any biological, be-
havioral, or societal conditions that have an impact on the remainder of the etio-
logical process (such as age, race, access to healthcare, and so forth). Modeling 
such comprehensive etiological explanation is exactly what I see multi-scale 
ABMs as capable of doing. They can simulate what might happen in a population 
given a certain constellation of characteristics that describe the interactions be-
tween initiators/causes, mediators/mechanisms, modifiers of the causation pro-
cess, and facilitators/background conditions.  
 

6.2 Etio-Prognostic Explanations 

Etiological explanations are explanations that tell a cogent story of illness occur-
rence that is justified by reference to coherent causal and mechanistic evidence. 
Giving an etiological explanation means to provide a list of causes (even if the list 
has only one item) and mechanisms that, taken together, suffice to change the 
beliefs of the hitherto unconvinced about why and how the illness occurred. I 
think that this characterization of etiological explanations should work in both 
medical (single patient) settings as well as in epidemiological (population) con-
texts. Agent-based models that provide etiological explanations would be models 
of the entire etiological process from cause via mechanism to clinical disease as 
depicted in Figure 1. Any ABM that models COVID-19 infection incidence 
would provide an etiological explanation. 

However, many ABMs that have been developed to model population-wide 
aspects of the pandemic do more: they also include estimates of hospitalizations 
based on estimates of illness severity, admission to intensive care, and mortality, 
as in the example provided above. These kinds of ABM not just explain illness 
occurrence but also what happens afterwards, the prognosis of illness. Let me offer 
the following table to make some potentially helpful distinctions. 
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Explanation 
è 

Causal Mechanical Clinical Prognostic 

Explanans Causes (risk 
factors)  

Pathogenesis 
(biology) 

Clinical 
course (signs 
and symp-
toms)  

Outcome 
(cure, death, 
or anything in 
between) 

Explanandum Why (“roots”) How?  Clinical 
presentation 

Prognosis 

Source of evi-
dence 

Epidemiology Biosciences Clinical medi-
cine 

Follow up 
(medicine, 
epidemiol-
ogy) 

 Etiological Explanation  
   Prognostic Explanation 
 Etio-Prognostic Explanation 

 

 
 
Of note, the “intended explicandum [of scientific explanations] is, very roughly, 
explanations of why things happen, where the ‘things’ in question can be either 
particular events or something more general—e.g., regularities or repeatable pat-
terns in nature” (Woodward and Ross 2021). I am aware that explaining why 
something happens is a very different thing than explaining its consequences. In-
deed, such an explanation would probably not be considered scientific. However, 
a slight change of perspective might allow us to reintroduce science through the 
backdoor. We could say that what happens after the initial occurrence of illness 
is just the occurrence of aspects of disease development and outcome. Thus, the 
prognostic part of etio-prognostic explanations can be viewed as providing a plain 
old etiological explanation. This way, one could see prognostic explanations as 
scientific, i.e., by recognizing them as etiological explanations of a different target 
entity.  

However, I am interested in the mere practical usefulness of explanations of 
illness occurrence and outcome. I prefer looking at ABMs as providing a pragmatic 
kind of explanation, which is simply helpful by illuminating both the etiology and 
prognosis of illness. This is exactly what we expect from ABMs in the context of the 
COVID-pandemic: explanations why and how illness occurrence patterns arise at 
the population level, how they evolve, and what their consequences are.  

 
7. Conclusion 

In this paper, I have discussed the epistemological characteristics of ABMs, one 
type of simulation model used in the context of the COVID-19 pandemic. In con-
trast to equation-based models, ABMs are algorithms that use individual agents 
and attribute changing characteristics to each one, multiple times during multiple 
iterations over time. Based on my discussion, I conclude that ABMs can explain 
causal mechanisms but cannot provide emergence explanations, because they 
cannot provide information about exactly why low-level phenomena give rise to 
those emergent phenomena. This is also one reason why I believe that ABMs 
cannot help with causal inference. Another reason is that ABMs do not reflect 

Table 1. Characteristics of causal, mechanical, clinical, and prognostic explanations. 
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real-world processes but the causal-mechanical intuitions of the modeler. On the 
other hand, ABMs can integrate “impossible” multi-scale interactions between 
initiators, mediators, moderators, and conditions, and may be useful as compre-
hensive etio-prognostic explanations of illness occurrence and outcome. 
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