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ABSTRACT		

In order to support health interventions, biomedical and population health researchers need to 
collect solid evidence. This article asks what type of evidence this should be and expands on 
previous work that focused on etiological explanations, or causal-mechanical explanations of why 
and how illness occurs. The article proposes adding predictive evidence to the explanatory 
evidence, in order to form a joint evidence set, or JES = [A,B,C,D], which consists of four 
different types of evidence: association [A], biology [B], confirmation [C], and difference-making 
[D]. The article discusses explanatory coherence as a backbone for this proposal, suggests criteria 
for each type of evidence, and offers a rubric for multi-evidence mapping.  

  



Health interventions need to be well justified. Arguably, helpfulness is a good justifier. In turn, 
good justifications need to be supported by solid evidence. While some of the process of 
generating such evidence is formalized in individual branches of the health sciences, an 
overarching framework for the integration of multiple different types of evidence is lacking. In 
this essay, I propose a semi-formal methodological framework, multilevel evidence mapping, that 
helps organize and interpret the available evidence in support of health interventions. In brief, I 
will argue that the collection of evidence from multiple sources in support of health interventions 
is a two-step process (Table 1).  

Table	1	Fourfold	table	of	explanatory	(top)	and	predictive	(bottom)	evidence,	provided	by	
observational	(	left)	and	interventional	(right)	research		

 

The first step is to gather explanatory evidence from epidemiological observations and 
interventional laboratory experiments. The second step involves making predictions based on 
these explanations and gathering predictive evidence by checking whether these predictions are 
accurate. My main argument is that it is not necessarily the randomized intervention trial, but the 
explanatory-predictive coherence of the above evidence that justifies health interventions, even in 
the absence of randomized trials. This argument dovetails with, for example, Paneth and Joyner’s 
(2021) discussion of evidence supporting the use of convalescent serum in COVID-19 patients, 
which includes the warning that “we should not be paralyzed into inaction when [randomized 
controlled trials] are not available.”  

The argument builds on the viewpoints offered by Sir Austin Bradford Hill (1965) in support of 
causal inference based on observational epidemiological data, and on my previous interpretation 
of Hill’s viewpoints as an explanatory coherentist framework (Dammann 2018b). In brief, Hill 
proposed nine viewpoints to be considered before attaching causal meaning to an association 
identified in observational epidemiological studies: strength of the association, consistency and 
specificity of findings, cause before effect (temporality), biological gradient (dose-response), 
plausibility, coherence, experiment (intervention success), and analogy (preexist- ing knowledge 
about similar associations). Some, but not all, of these viewpoints are captured in one way or 
another by the framework I propose in this paper.  



Here is a brief roadmap of the sections to follow. I begin by outlining how clinical and 
epidemiological observations provide evidence that a certain health phenomenon occurs and 
which risk factors, if any, are statistically associated with its occurrence [A]. Laboratory 
experiments are then designed to clarify the pathogenetic process that connects risk factors and 
their consequences mechanistically [B]. Together, [A] and [B] represent the first explanatory step, 
providing what I have called etiological explanations (EE) (Dammann 2020), a term I have 
borrowed from Salmon (1984), who borrowed it from Wright (1976). Etiological explanations 
are comprehensive descriptions of the causes of illness and the pathogenetic mechanisms that 
connect the two. One way to establish the “fit” of EE is explanatory coherence modeling.  

The second step consists of two kinds of predictions. The first are predictions of the phenomenon 
under study [C], as they are to be expected based on knowledge about the distribution of risk 
factors. The second includes predictions of intervention success in trial settings [D]. [C] and [D] 
stand in a confirmatory relationship to [A] and [B]. However, they also play an explanatory role 
together with A and B as members of the joint evidence set, JES = [A,B,C,D].  

I next argue that JES exhibits explanatory-predictive coherence if (1) members do not contradict 
each other (non-contradiction); (2) their joint explanatory force is stronger than that of individual 
members of JES or of combinations of its members (additive synergism); and (3) the evidence they 
provide turns out to be successful in research settings (efficacy). If interventions based on 
explanatory-predictive coherence also turn out to be helpful by successfully improving population 
health outside the research setting (effectiveness), we would consider this a final confirmation of 
the entire endeavor.  

Finally, I describe how one recently developed kind of research synthesis, evidence mapping, can 
help arrange the available evidence in the form of an explanatory-predictive coherence model. 
The goal is to have a structured rubric to document the availability or absence of different types of 
evidence, collected in order to justify interventions in medicine and public health. The 
concluding section of the article summarizes the previous sections.  

Etiological	Explanations		

Modern biomedicine is an orchestrated response to the challenge of illness. The main goal is the 
reduction of suffering by targeting the etiology of illness. The arguably most useful definition of 
the term etiology includes causes that occur before any bodily response and mechanisms that lead 
from the initial bodily response to the first manifestations of illness (MacMahon and Pugh 1970). 
In other words, this view conceptualizes illness development as a process with three main 
components: causal initiators set biological mechanisms in motion, which result in clinical illness.  

The cognitive entry point into the system is knowledge about the characteristics of diseases, 
disorders, or defects. While some kinds of illness have very general, nonspecific features, such as 
fever, others have specific (pathognomonic) characteristics, such as the strawberry tongue in 
Kawasaki disease. Whatever the constellation of symptoms, their initial occurrence in a person can 
be defined as the onset of clinical illness.  



Asking the etiological question of illness occurrence is asking for an explanation of why and how 
a person has become ill. In response, causal and mechanistic explanations are given, alone or 
together. A causal explanation is a response to the why question, and it is given by listing factors 
that are considered responsible for the illness to occur. For example, infection with a human 
immunodeficiency virus (HIV) is considered to be the cause of AIDS; needle sharing among drug 
users is considered to be one major cause of HIV infection; drug addiction is what leads to needle 
sharing; and so on. To give a mechanistic explanation is to explain how exposure to the cause 
culminates in the onset of illness. This mechanism is also known as the pathogenesis of the illness 
under consideration. It is the biological cascade of events that connects exposure to causes with 
illness, the outcome of the pathogenetic process.  

Taken together, causal and mechanistic explanations describe the story of ill- ness occurrence in 
the form of an EE. A good, comprehensive EE should be useful in at least two ways. First, it 
specifies the causes of illness in order to define targets for interventions that prevent illness 
occurrence. This is the task at hand for epidemiologists. The idea is that if we eliminate or at least 
reduce the occurrence of the cause (exposure), we might eliminate or reduce the disease (out- 
come). Making sure that fewer people are infected with HIV should lead to fewer cases of AIDS 
and reducing the number of drug addicts that share needles should lead to fewer cases of HIV 
infection. Thus, some AIDS prevention programs focus on reducing the need for needle sharing 
among drug users. Second, comprehensive EEs identify target points for medical interventions 
designed to interfere with the pathogenesis of illness. This pathogenetic research is performed 
mainly by laboratory scientists. Drugs have been identified that inhibit viral replication or viral 
spread. Thus, EEs are very helpful in the design of health interventions by virtue of explaining 
both causal and pathomechanistic factors.  

Providing useful EEs requires solid evidence that supports causal-mechanistic claims. Causal claims 
are supported by good evidence from modern epidemiological risk factor studies. A candidate risk 
factor is studied in relation to illness occurrence. If certain requirements are fulfilled, the 
association between risk fac- tor and illness is considered causal. The two classic techniques to 
arrive at a point where experts consider causation likely are the quantitative potential outcomes 
approach (POA) proposed by Rubin (1974) and the qualitative approach according to Hill (1965). 
The former involves judgement of the results of randomized or quasi-randomized epidemiologic 
studies, while the latter requires the consideration of qualitative viewpoints when making causal 
inferences based on observed associations (Glass et al. 2013).  

Pathogenetic mechanisms are studied in the laboratory by means of biomechanistic controlled 
experimentation. Clever experimental setup and intervention design ensures that the results can 
be considered causal. The rationale here is the same as in the POA for observational 
epidemiologic studies: comparing two randomly generated groups of otherwise identical groups of 
individuals (animals, cell cultures, or other comparatively simple systems) after only one of the 
groups has been exposed to a specific intervention will reveal differences between groups that can 
be considered to be caused by that intervention. In sum, EEs provide information about what 
causes a specific disease and how it does so. In its simplest form, an EE looks like this: “Cause C 
contributes to the occurrence of disease D by initiating mechanism M which contributes to the 
occurrence of disease D.” (For more detailed discussions of the concept, see Dammann 2017, 
2020.)  



Constructing etiological explanations is desirable even if causation cannot be proven. We all 
know the “association is not causation” paradigm. Although one may have simplistic situations of 
the sort that someone jumping off a cliff will al- ways land in the water, one can also always create 
more-or-less clever exceptions that have a boat located underneath or the jumper operating a 
hang-glider. Here, causation is inferred from what David Hume (1711–1776) called a “constant 
connexion.”  

But in the context of complex systems like those that dominate the health sciences today, causal 
inference is not this simple. Miguel Hernán (2004) states that in a perfectly designed and 
conducted randomized trial, association is causation. But even in a randomized trial, nothing more 
than association is observed. What makes this association causal is Hernán’s belief: his causal 
inference—not some extra ingredient in the data—renders the observed association different from 
an observation of a similar association in similar data from a prospective (nonrandomized) cohort 
study. Thus, I do not share the belief that perfect randomization guarantees causal associations. 
Indeed, despite heroic efforts, I do not believe perfect randomization achievable. There is always 
the possibility that results of randomized trials are affected by chance events or residual bias.  

Instead, I hold that etiological explanations can be based solely on observed associations, if we 
have a coherent set of error-independent pieces of evidence. It is the coherence among pieces of 
evidence that provides explanatory vigor. Think of such explanation as comparable to the 
coherence of evidence in a criminal lawsuit. It is not just the absence of an alibi that leads to the 
conviction of the gardener, but the additional evidence provided by an eyewitness, who saw the 
gardener close to his victim’s home at around the time the murder was committed, plus the 
presence of his DNA on the murder weapon.  

The second requirement, error independence, ensures that if individual pieces of evidence turn 
out to be erroneous, the remainder of the evidence remains unaffected and valid (Stegenga 2009). 
In other words, evidential error independence makes sure that invalidation of evidence of one 
type does not invalidate any evidence of the other types. All evidence I refer to comes from 
observations in epidemiology or from observations in lab experiments or clinical/population trials. 
No causal attribution is required. The causal notion is based entirely on the degree to which it is 
possible to integrate the available error-independent associative evidence in a coherent 
explanatory framework.  

In the next section I argue that in order to serve as a justification for health interventions, EEs 
should be coherent systems of multiple types of evidence that are strong individual predictors, 
mutually coherent in their predictions, and not jointly weaker in their predictive success than 
individual predictors are.  

Explanatory-Predictive	Coherence		

What kind of characteristic must scientific evidence have to get us from the belief that an 
intervention will be helpful to the knowledge that it is highly likely to be? I will not discuss in 
detail what constitutes knowledge. I simply suggest that an evidential system that integrates 
explanatory and predictive components is likely to become a belief-justifier, hence knowledge-
maker, if it is consistently coherent and jointly more successful than its components. In essence, I 



argue that an explanatory-predictive coherentist approach will render a justified intervention well 
justified.  

Explanatory coherentism claims that a well-justified belief requires multiple items of evidence that 
cohere with each other. When the items cohere, they can be offered together in support of 
hypotheses (Poston 2014). Unlike foundationalism, coherentism does not require a foundation 
upon which all parts of the system are built, but only mutual support by all parts of the 
explanatory system. I have recently argued that Hill’s qualitative approach to causal inference in 
epidemiology is an interesting example of an explanatory coherentist framework (Dammann 
2018b). In that paper, I suggest that explanatory coherence might be one potential way to 
integrate causal and mechanistic evidence into comprehensive EE. In this paper, I go one step 
further and argue that if all types of evidence considered in one such set are coherent, adding 
predictive evidence to the mix will yield sets of explanatory-predictive evidence that justify 
interventions de- signed to improve health.  

Coherence refers to situations in which pieces of information are viewed in light of each other 
and examined for mutual and reciprocal support. Information becomes evidence by comparison. 
If new information appears to be aligned with previously accepted information, and if the pieces 
of information reinforce each other, the transformation from information to evidence is supported 
(Dammann 2018a).  

I distinguish between explanatory evidence, such as data that help us explain cogently, and 
predictive evidence, such as facts about successful prediction. Explanatory evidence is a set of facts 
that we use to tell the story of why and how a phenomenon comes about, while predictive 
evidence is a set of facts that establish our ability to correctly forecast when, why, and how future 
instances of the phenomenon will occur. In medicine, explanatory evidence comes from causal 
and mechanistic research, which tell us, respectively, why and how illness occurs. Explanatory 
evidence may include epidemiological association measures (type A evidence) and laboratory data 
(type B), while predictive evidence may come from the accurate prediction of an association (type 
C) and of intervention success (type D). Depending on the situation, it may be the observed data 
that count as “evidence,” or it may be the accurate prediction.  

Some hold that explanation and prediction are logically identical, only that the thrust of 
explanations is rooted in the past while the power of predictions will be clear only in the future. 
However, Rescher (1958) has argued against this notion, using the concept of evidence to 
explicate the difference. He points out that the difference between evidence from the past and the 
potential presence of future evidence render explanation and prediction epistemologically 
asymmetrical. More recent work by Spirtes, Glymour, and Scheines (2000) has explored 
interesting relationships between causation and prediction, the discussion of which is beyond the 
scope of this paper.  

Multiple authors have analyzed what kinds of evidence it takes to support causal notions in the 
health sciences. Some have stressed the need for both probabilistic and mechanistic evidence 
(Russo and Williamson 2007), while others emphasize the added benefit of parallel (confirmatory) 
evidence (Howick, Glasziou, and Aronson 2009). Yet others appear to disagree whether 
interventional evidence is necessary to support causal claims in medicine (Campaner and Cerri 



2020; Gillies 2019). Moreover, Campaner and Cerri (2020) suggest distinguishing between 
interventional evidence (evidence obtained by intervention) and evidence for interventions 
(evidence that enables interventions). However, my analysis in this paper is not about causal 
inference, but about justification of intervention. An in-depth study of the relationships between 
these topics seems warranted but is not provided here.  

Now, let’s dissect JES in terms of the evidence needed to support its component relations, 
association [A], biology [B], confirmation [C], and difference [D] (see Table 2).  

[A] Association Beyond Chance  

The target health phenomenon is real, and we have an idea why it occurs by demonstrating a 
strong association between putative determinants and the phenomenon. We need to demonstrate 
that “there is something to intervene on.” A cause (c) is anything that contributes to the 
occurrence of disease (d) as an initiator of a mechanism (m) which in turn contributes to the 
occurrence of (d) as a pathomechanism. Thus, we need to demonstrate that  

c is associated with d; 
c is associated with m; and m is associated with d.  

These associations need to be statistical (and ideally statistically significant, free of bias, etc.), 
because we are interested in the co-occurrence of c and d, of c and m, and of m and d beyond 
what would be expected by chance.  

[B] Biology  

We further need to demonstrate that we have an idea of how the phenomenon occurs and what 
the underlying biology might be (“it might work like this”):  

c can biologically plausibly initiate m; and 
m can biologically plausibly be a pathomechanism for d.  

[C] Confirmation  

We also have to demonstrate that the phenomenon “occurs as expected” in real life, not just in 
the research lab, based on our knowledge from [A] and [B]. This is confirmatory evidence as well 
as evidence of successful prediction. We have to show that we can predict the presence of m 
based on knowledge about the presence of c. Moreover, we have to be able to predict the 
occurrence of d, given c and m. Thus, we need to demonstrate that knowledge about the 
presence of c or m enables the prediction of d. We need to demonstrate that  

m occurs more frequently in the presence of c than in the absence of c; 
d occurs more frequently in the presence of c than in the absence of c; and d occurs more 
frequently in the presence of m than in the absence of m.  

 



Table	2.	Criteria	for	proposed	explanatory-predictive	coherence	model		

 

Of note, I am not proposing that the other types of evidence in the JES would not benefit from 
confirmation as well. Experiments need confirmation by similar experiments in another 
laboratory, and clinical and community trials need confirmation by similar trials in different and 
larger populations. Even confirmatory type C evidence becomes stronger if confirmed 
independently. What is special about the confirmation of the initial type A evidence 



(epidemiological observations) by type C (predictive) evidence is that the mere existence of a 
potential association needs to be ascertained.  

[D] Difference  

The litmus test for establishing the c > m > d process is successful prediction of intervention 
success. We must demonstrate that by intervening in controlled human research environments, 
such as clinical or population trials (showing efficacy), we can make a difference. We need to 
demonstrate that eliminating or reducing the occurrence of c eliminates or reduces m, and 
thereby d. Of note, I do not think that randomization of an intervention trial is the main justifier 
of health interventions. Instead, this is provided by the explanatory-predictive coherence of the 
error-independent components of a JES.  

To establish type D evidence, we need to demonstrate that eliminating or reducing c is associated 
with elimination or reduced occurrence of m; and interfering with m is associated with 
elimination or reduced occurrence of d.  

Effective manipulation is part of components [B] and [D] in JES. Only if high-quality evidence of 
all four types is provided — in other words, if each one of the four types of evidence is plausibly 
supported by the other three, and none of the four contradicts any one of the other three — is 
the explanatory-predictive evidence coherent and the initiation of population health interventions 
fully justified. Of course, some interventions may be justified even if the JES is still incomplete, 
for example, if an intervention is desperately needed and preliminary evidence seems to suffice.  

Consider the following brief example. Showing that (1) coffee consumption in pregnancy (risk 
factor r1) is associated with low birthweight, and that (2) caffeine exposure in pregnant laboratory 
animals reduces the birthweight of mouse pups (by mechanism m1) is not yet sufficient to fully 
justify population campaigns to reduce coffee consumption during pregnancy. Why not? It could 
very well be that another risk factor (r2) for low birthweight, such as smoking, is strongly as- 
sociated with coffee consumption and has a much stronger effect on birthweight via another 
mechanism (m2) than does caffeine (via m1). For example, if pregnant women tend to hide 
smoking behavior during pregnancy from health researchers, but tell the truth about their coffee 
intake, it would seem as if m1 explains a stronger effect of r1 on birthweight than it really has, 
because the strength of the association is really determined by both m1 and m2. In such case, we 
would expect to be able to predict low birthweight based on knowledge about r1 and m1, 
without even knowing about r2 and m2, whose effect is screened off by (hidden behind) r1 and 
m1.  

However, any prediction based solely on such explanatory evidence of what would happen if we 
intervened on r1 would probably be exaggerated, because such intervention would affect only m1 
and not m2 (unless intervening on r1 somehow also modifies exposure to r2). We would 
probably be able to make a correct prediction about the occurrence of low birthweight based on 
[A] and [B], but we would likely be disappointed at step [D] because our intervention on (weak) 
r1 might reduce the risk for low birthweight only minimally, while an intervention on (strong) r2 
would be much more effective. In this scenario, predictions [C] and [D] would yield incoherent 



results. My argument is that only if they are coherent—in other words, only if [C] and [D] cohere 
with each other and with [A] and [B]—do the predictions fully justify intervention.  

It is important to keep in mind that explanatory and predictive evidence are not the same. 
Although both kinds of evidence are based on the same data (for example, observational data from 
epidemiological studies), the mere observation of an association in a population is explanatory 
and, once observed again in another population, is confirmatory, but still explanatory as well. 
What makes such (subsequent) observation predictive evidence is not the repetition of an 
observation in a separate study (in what Hill called consistency), but the success of a prediction: 
explanatory evidence is data such as risk ratios or odds ratios and their confidence intervals, while 
predictive evidence is a simple yes/no answer to the question “Is our prediction accurate?”  

Furthermore, the explanatory power—the oomph, thrust, vigor—of type A evidence lies in its 
capability to generate a causal hypothesis that explains the observed data. The explanatory power 
of type C evidence as standalone evidence would be the same as type A evidence, but given 
previous type A evidence, type C evidence also has additional confirmatory power that type A 
doesn’t have. This confirmatory power derives from both the repeated observation—what 
Howick and colleagues (2009) call “parallel evidence”—and the success of the prediction we 
made based on type A evidence. In this sense, type A and C evidence are very different in the 
way they can be interpreted: type A evidence is explained by a causal hypothesis, while type C 
evidence is explained by both a causal hypothesis and by a hypothesis of accurate prediction, 
which turns out to be true.  

While explanatory evidence may be pointing in the right direction and may, in some cases, even 
yield success once implemented, it is the added predictive evidence and the resulting coherence of 
items [C] and [D] that justifies health interventions. In other words, providing both explanatory 
and predictive evidence in support of a proposition to intervene offers better evidence than does a 
cogent explanation alone. But my argument goes one step further, proposing that successful 
prediction joins explanatory evidence in transforming merely cogent evidence into evidence that 
justifies interventions.  

This point may be a departure from previous approaches that tend to separate explanation from 
confirmation. By integrating the explanation and confirmation, the overall explanatory power of 
the joint explanatory system of evidence is strengthened. At the point where all members of JES 
cohere, the predictive power of [C, D] adds to the explanatory power of [A, B] to form JES, 
whose joint explanatory power is greater than that of [A,B].  

What makes me think that the joint explanatory power of JES goes beyond that of [A,B]? 
Consider, again, the notion of evidential error independence. As explained above, this notion 
holds that the joint evidential power of two pieces of evidence is greater if they are error 
independent than if they are not. Error independence means that if one of the two pieces of 
evidence turns out to be faulty, the other one does not automatically fail as well. For example, if 
one witness saw the gardener arrive at the house of the victim on the evening of the murder and 
also saw the gardener having a heated argument with the victim on the back porch of the victim’s 
house an hour later, the explanatory power of these two pieces of evidence can usually be 
considered jointly stronger than either one alone. However, they might not be error independent, 



since anything that limits the credibility of the witness (her having been inebriated that night as 
witnessed by a local bartender, or her being mentally ill and often confused if she forgets to take 
her medication, or her being the disgruntled ex-wife of the gardener) will limit the credibility of 
both pieces of evidence offered by her, not just one.  

The notion that [A], [B], [C], and [D] are defined by their explanatory versus predictive 
characteristics and by their being gathered by observation versus intervention (Table 1) makes 
them error-independent, at least along these two dimensions. Thus, error independence increases 
the evidential vigor of JES = [A,B,C,D] beyond that provided by just [A,B].  

In sum, in order to promote a successful health intervention, one needs (1) explanatory evidence 
[A,B], (2) strong individually successful predictors [C] and [D], which are (3) mutually coherent 
in their predictions and thus form a coherent jointly predictive set [C,D] that is (4) jointly better 
in its predictive success compared to individual predictions [C] and [D]. At this moment, the 
predictive evidential set [C,D] is deemed coherent with the explanatory evidential set [A,B], and 
the joint explanatory-predictive coherence of JES justifies the proposed intervention. The 
presence of incoherent evidence would suggest, first, that starting an intervention might not be a 
good idea and, second, that the validity of the available incoherent evidence should be 
scrutinized.  

Evidence	Mapping		

Available evidence supports mapping explanatory-predictive coherence claims. The result is an 
evidence map that systematically summarizes research data (Miake-Lye et al. 2016). Table 3 is a 
proposed rubric for evidence mapping to sup- port the claim that a health intervention is justified. 
Specific selection criteria and quality control methods, as well as effective ways to visually 
represent the evidence, are still to be developed. The following description of what kind of doc- 
umentation should be available in support of explanatory-predictive coherence claims may serve 
as a humble beginning, and I invite proposals how to improve the framework.  

Section A: Association  

The first prerequisite for an intervention is having an observable target problem. This is often the 
identification of a health condition we want to alter, prevent, treat, and so forth. In part A of the 
map, I suggest documenting observational evidence from human individuals and populations in 
support of the notion that the problem at hand is real (A.1, occurrence). Simple prevalence and 
incidence data provide such information. In the story of AIDS, it was the publication of a case 
series of homosexual men with Kaposi’s sarcoma and a rare form of pneumonia that helped 
identify AIDS as a population health problem (CDC 1982).  

If we don’t know what to change, it is very hard to come up with a good idea what to do to 
bring about change. In order to reduce the burden posed by the problem, we need something to 
intervene upon. Thus, we need to have some idea of what might be the causes of the condition of 
interest, or risk factors that we think of as initiators of the process that culminates in the 
condition. This is achieved by detailed epidemiological studies. In the history of AIDS research, 
scientists found not only a strong association between HIV infection and the subsequent 



development of AIDS but acquired data “from prospective epidemiological studies that document 
an absolute requirement for HIV infection for the development of AIDS” (Blattner, Gallo, and 
Temin 1988). Evidence that certain candidate causes have been identified is documented in part 
A.2 of Table 1, association.  

Section B: Biology  

The second section is to be populated by detailed information about the mechanics of the process 
that leads from cause to effect. For obvious reasons, pathomechanisms cannot be studied directly 
in humans. Thus, targeted laboratory experiments have to be designed and performed to provide 
type [B] evidence. By definition, such experiments come with two prominent drawbacks. First, 
the phenomena observed in such experiments are not occurring naturally, but only after some 
specific manipulation of the system parameters. Part of this caveat is that exactly what makes 
experiments credible as evidence for biological mechanisms (design, manipulation, controlled 
environment, randomization) makes them unnatural in the sense of not being a reflection of what 
happens to a person while she is getting sick. Second, the biological phenomena observed in the 
experimental setting are frequently from work done in vitro (“in glass,” test tube research) or in 
vivo (“in life,” animal research). Neither system is identical with the “human system.”  

The focus on animal models comes from the intent to render experimental models as relevant to 
the (human) target condition as possible but introduces new layers of ethical and comparability 
concerns. One striking example is the wide-ranging incongruence between human and murine 
inflammatory responses that might have important consequences for the use of experimental 
mouse data to support claims about human inflammatory disease (Seok et al. 2013). References 
that elucidate the mechanism that explains the association between the purported cause(s) and the 
illness under investigation are documented in section B of our evidence map: type B.1 being 
evidence from in vitro, and type B.2 from in vivo studies. Either type can come without or with 
evidence from blocking experiments, while such evidence always strengthens experimental 
evidence.  

Note that for the prevention of illness, knowledge of mechanisms (type [B] evidence) is 
sometimes not necessary. In the history of AIDS research, this concept was alluded to by Blattner, 
Gallo, and Temin in 1988, when they wrote that “Epidemiological data show that transmission of 
HIV results in AIDS and blocking HIV transmission prevents the occurrence of AIDS.” By 
“blocking HIV transmission,” the authors refer to public health interventions that interrupted 
HIV transmission via blood transfusion, which resulted in an reduction of the occurrence of AIDS 
among individuals who had received transfusions containing HIV (type [D] evidence).  

 

	 	



Table	3	Proposed multi-evidence map for documentation of evidence needed to form  

 



Table	3	(cont.)  

 

Section C: Confirmation  

Repeated observation of the occurrence of the phenomenon under investigation, both in terms of 
incidence and prevalence of the illness and in terms of observed recurrent association between 
purported causes and the illness, serve as confirmation that we have a potential target for 
intervention (documented in section C). The term confirmation here refers to the confirmation of 
the natural occurrence of the illness, not the confirmation of research studies or experiments as is 
standard operating procedure in science. The strength of the confirmatory evidence increases if 
we have such confirmation from multiple different populations and from multiple studies with 
different designs.  

Section D: Difference  

As discussed above, the scientific experiment is considered the litmus test for causal claims. What 
the lab experiment is for the explanatory axis, the intervention trial is for the predictive axis. By 



prediction I do not refer to the simple fore- casting of events, but the accurate prediction of 
intervention success. Results from a successful intervention would be entered in section D.1 of 
the evidence map, and results from a successful population trial in section D.2.  

As previously discussed, in order to justify interventions, at least three conditions should be 
fulfilled by the evidence collected in the evidence map: first, high-quality evidence of all four 
types should be provided; second, each one of the four types of evidence should be plausibly 
supported by the other three; and third, none of the four types of evidence should contradict any 
of the others.  

The first requirement asks for high-quality evidence in all four areas. Here, the current scientific 
standard should guide judgment. In sections A and C, sufficient study size as well as control for 
confounding and other biases will be important. In section B, experiments should be controlled 
and blinded, and statistical procedures should be appropriate. In section D, published guidelines to 
rate the quality of the available evidence should be used, for example those from the GRADE 
initiative (Balshem et al. 2011).  

The second condition is that the evidence from all four sections should be mutually supportive in 
logical and biological ways. For example, the initial observational evidence that HIV is associated 
with AIDS (Laurence et al. 1984) (section A) was supported by confirmation (section C) of an 
association between HIV and AIDS in multiple or even many different populations (Quinn, 
Zacarias, and St. John 1989), as well as by laboratory findings (section B) that a “virus-like 
infectious agent” transfected with DNA of an AIDS patient caused fatal wasting disease in 
monkeys, that zidovudine is an effective anti-HIV agent (Mitsuya et al. 1985), and by subsequent 
evidence that such intervention is effective in humans (section D) (Fischl et al. 1990).  

Finally, any contradiction between the four types of evidence would reduce the coherence of the 
system. Of course, noncontradiction in itself isn’t helpful, particular noncontradiction by the 
absence of evidence of a different type. For example, an observed association between a purported 
cause and some disease [A] would not be contradicted by the mere absence of supporting 
experimental evidence [B], but by the failure to cause the illness in the lab using the purported 

cause as the experimental intervention.  

Conclusion 	

In this paper, I have attempted to bring together the concepts of etiological ex- planation and 
explanatory-predictive coherence by offering a proposed outline for a multi-evidence map, in 
which evidence of association, biology, confirmation and difference making can be documented. 
Moreover, I have proposed that high-quality evidence that is mutually supportive and 
noncontradictory might be a good starting point for judging the degree of explanatory-predictive 
coherence. More work is needed to outline formal ways to extract evidence from the literature 
and organize it using evidence mapping to justify interventions in biomedicine and population 
health.  
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