
Microbial Biotechnology. 2024;17:e70014.	﻿	     |  1 of 23
https://doi.org/10.1111/1751-7915.70014

wileyonlinelibrary.com/journal/mbt2

INTRODUCTION

As the Danish aphorism goes, it is awkward to proph-
esy, especially about the future (Hill,  1956). Yet, pre-
dicting epidemics to trigger an appropriate response is 
the dearest wish of public health institutions. A Google 
search revealed 50 million pages on the subject of ‘pre-
dicting the emergence and evolution of pathogens’, half 
of which were created or updated in 2023. With ‘scien-
tific article’ added to the query, the collection shrinks 
drastically, but there are still 10,000 pages left. Does 
this situation justify yet another article? Unlike other 
physical phenomena, natural selection has ensured 
that those associated with life produce unexpected 
behaviour. This is the very condition for the success-
ful survival of a progeny in an unreliable world. It may 
therefore seem paradoxical to try and predict the emer-
gence of new infectious diseases, especially in a world 
where scientific advance results in the emergence of 

new microbes. However, by making the best use of sci-
entific knowledge, we can develop ways to circumvent 
the presence of life's innovations – including those that 
we are creating – and mitigate the consequences of 
this inevitable obstacle.

Science is meant to work out how reality has be-
haved, is behaving today and will behave in the future. 
Whilst it is impossible to predict an expected scenario 
for each individual disease, this may no longer be the 
case if we set out to use new scientific developments to 
understand how families of pathogenic organisms and 
diseases emerge. Here, based on what we know from 
the past, coupled with our ever-advancing understand-
ing of pathogens, we examine the benefits and risks 
associated with the new avatar of computer technol-
ogy long known as artificial intelligence (AI). In partic-
ular, because AI is based on previously accumulated 
knowledge, we consider the role of accidents, which 
have been largely overlooked as a critical factor in the 
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emergence of epidemics. Beyond our current empha-
sis on quantitative biology, which is generally based on 
a mechanistic – hence predictable – view of biological 
processes, this extension implies the identification of 
features of laboratory experiments or public behaviour 
that can lead to the emergence of infectious diseases. 
This question is particularly timely given the advent of 
synthetic biology, which allows us to reconstruct or even 
design the genome of pathogens. Finally, we highlight 
hitherto unexplored features of pathogen contamina-
tion as unexpected causes of emergent or re-emergent 
disease, and how AI could assist us in identifying these 
circumstances.

BEWARE OF ACCIDENTS

Here, we restricted our focus to animal infectious dis-
eases. Although there may be common tropes for all 
types of infection, plants and animals have a differ-
ent way of responding to pathogens, with an immune 
adaptive system specific to the latter. Human beings, 
as warm-blooded vertebrates, are very different from 
plants, and the pathogens that infect them are far more 
likely to come from families related to mammals or birds 
than to food plants or even distant vertebrates such 
as snakes. This reminder forms the basis of the One 
Health programme, which proposes the systematic 
monitoring of animal diseases, especially those affect-
ing livestock and pets, but also those with which we 
come into contact when travelling or invading pristine 
environments, as a possible, if not likely, source of new 
human diseases (Pitt & Gunn, 2024).

It is not difficult to imagine that, whilst the process 
of infection combines the characteristics of a host 
and those of an infectious agent, there may be other, 
less plausible or even random causes of epidemics. 
Predictions are based on models that assume that re-
ality is sufficiently regular. However, accidents are the 
norm, not the exception, and accidents, by definition, 
cannot be predicted. Some predictive power remains 
possible if we retain only the generality of accidents, 
not a particular case. In this sense, one can speak 
of ‘normal’ accidents (Perrow,  1999). For example, 
without recourse to AI, human experts know that epi-
demics and even pandemics are likely to occur in the 
near future, but they can only make educated guesses 
about what their aetiological agents will be, the exact 
circumstances or the origin of their emergence. The 
most worrying predicaments are Nassim Taleb's ‘black 
swans’, that is, unpredicted high-impact events that, 
in retrospect, should have been understood as inevi-
table (Taleb & Taleb, 2016). In this context, AI, based 
on the exploitation of massive datasets (big data), has 
the potential to identify patterns that have so far es-
caped human attention. However, data lacks intrinsic 
meaning unless contextualized and classified (Danchin 

et al., 2018; Nguyen, 2024). A key feature of anticipating 
future events whilst taking into account the plausibility 
of accidents is the inclusion in the analyses of a rich 
set of metadata (Musen et al., 2022), that is, contextual 
information about the data, that organizes the knowl-
edge of features pertaining to the disease or epidemic 
of interest (Schriml et al., 2020). As an illustration, it is 
imperative to incorporate human social behaviour into 
the metadata to understand the process of contagion: 
more often than not, we are the main cause of our dis-
eases (Chaber, 2018; Danchin, 2003). Finally, as em-
phasized by Charles Perrow again, the highly intricate 
structure of our political organizations makes them a 
likely, yet unacknowledged, source of major accidents 
involving high-impact technologies (Perrow, 2011).

ARTIFICIAL INTELLIGENCE TO THE 
RESCUE?

After decades of relative obscurity, AI is back in the 
spotlight. Broadly speaking, this technology aims to 
emulate what we perceive as human intelligence, ena-
bling computers to perform a range of operations just 
like human beings. By mimicking human cognitive abili-
ties AI could even replace the human actor in future de-
velopments of scientific research (Xu et al., 2021). Also, 
‘AI’ is a collective term that encompasses a wide range 
of technologies, rather than referring to a single one. 
This is reflected in the vague popular understanding of 
what constitutes AI, whereas selecting the appropriate 
type of AI is likely to have significant implications for its 
ability to predict epidemics.

Various flavours of artificial intelligence

AI is supposed to do better than most available au-
tomata and match the performance of the human brain. 
Notwithstanding the meaning of the concept of intel-
ligence, a widely used discriminating criterium between 
human and artificial intelligence has been proposed by 
Alan Turing (Turing test) to determine whether a ma-
chine could be said to be intelligent (Rapaport, 2006). 
If, after a machine has engaged in a dialogue with a 
person, it cannot be recognized that it is not a human 
being, then the machine is deemed displaying an intel-
ligence similar to that of a person. Several AI automata 
have recently passed the test. However, they failed to 
solve a variety of logic puzzles that seemed straight-
forward. This observation must be remembered when 
interpreting the outcome of AI usage (Biever,  2023). 
Indeed, should engaging in a dialogue displaying the 
common features of human language exchanges be 
considered intelligent? To be blunt: can we accept that 
the majority of human exchanges that we see spanning 
social media display marks of intelligence?
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Possibly beginning with automata mimicking peo-
ple, AI has a long history (McCorduck,  2019). The 
various AI technologies popular today are based on a 
variety of implementations of machine learning (ML), 
aiming at the extraction of stable correlations present 
in very large datasets, usually letting computers orga-
nize them as consistent patterns interpreted as rules 
subsequently used to generate a variety of perfor-
mances. ‘Discriminative AI’ bases its prediction on sta-
tistical analyses of the data and it is therefore heavily 
dependent on the statistical models used, and, above 
all, on the quality of the data and metadata (Danchin 
et al., 2018; Wilkinson et al., 2016). In the form of ‘gen-
erative AI’ (Sætra, 2023), ML-based AI is very success-
ful at solving the Turing test, whilst it sometimes fails to 
make trustworthy predictions, as an example will show 
later. It is not the same thing, indeed, to generate a re-
sponse that has the same feeling as that which would 
be uttered by a person, and to generate an informed 
response. Nothing is more similar to truth than a lie and 
vice versa (Vellani et al., 2023) and we must have this 
in mind when predicting future epidemics.

At the time of AI's emergence, today's success of 
generative AI looked to be far away in the future (https://​
www-​formal.​stanf​ord.​edu/​jmc/​histo​ry/​dartm​outh/​dartm​
outh.​html). Back then, intelligence was tied to the way 
we understood human aptitude for language. Language, 
considered a unique and specific human competence 
based on grammar organizing syntactic rules [for the 
history of the concept see Chomsky, 2015, 2017], was 
the benchmark for intelligent behaviour (Dick,  2019). 
AI was hypothesis-driven with inferences based on 
causality, rather than reduced to probabilistic mod-
els generating texts (i.e., sequences of symbols) from 
data. It required a computer scientist to code accepted 
rules forming grammars that would mimic the way 
we understood people interact by writing or speaking 
(Hofstadter,  1979). Extending the concept, grammars 
proved very useful in describing biological phenom-
ena, including, after the widespread use of DNA se-
quencing, the functional annotation of genes (Cakmak 
& Ozsoyoglu, 2007; Henaut & Danchin, 1996; Médigue 
et al., 2019).

The effectiveness of grammar design depends on the 
biological expertise of its creators, which can lead to an 
innovative approach to integrating biology into explica-
ble automated processes. However, it is not the role of 
AI to replace human expertise; rather, it should be used 
as a complement to it. This was explicit in its early days, 
when AI explored the development of expert systems 
(Hayes-Roth et al., 1983), based on the construction of 
so-called knowledge bases (Duda & Shortliffe,  1983; 
Haiech & Sallantin, 1985; Quinqueton, 1985), combin-
ing algorithmic deduction with an inductive approach. 
A further ingredient, abduction (a particular way to im-
plement trial and error developments in algorithms), 
was subsequently included in the implementation of AI 

(Seel, 2012). These approaches, which are all poised 
to propose logical or causal reasoning, have become 
less fashionable but it is advantageous to revisit them, 
in particular when we look for unexpected events, the 
involvement of abduction (Douven, 2022). Many other 
AI technologies were progressively used to explore 
data and, on a case-by-case basis, they often per-
formed better than contemporary learning-based AI 
techniques (Emmert-Streib et al., 2020).

After several decades of research, AI gradu-
ally moved from human language-based algorithms 
(Dresher & Kaye,  1990) to the ubiquitous application 
of a subset of probabilistic learning algorithms, named 
large language models [LLMs, see Omar et al., 2024 for 
a recent compilation of uses in the prediction of infec-
tious diseases], based on the activity of so-called neu-
ral networks (Gurney,  2018). Generative AI automata 
produce smooth cut-and-paste entities that look famil-
iar. This results from a probabilistic computer-intensive 
way of automating text generation based on a vast set 
of data. The corresponding approaches use proba-
bilities, not grammar rules, as the basis of the results 
they generate. They do not seek causality. Although 
they can reveal hidden correlations, they differ from 
the way human language is able to bring out genuine 
novelty. They can nevertheless help in the generation 
of an unlimited number of entities that display features 
requested by the users. However, one of the key fea-
tures of the early AI approaches was that it was pos-
sible to understand how they had obtained their result. 
Although ML is good at uncovering hidden correlations, 
when it has the aim of predicting epidemics learning 
should not only be meant to train automata on previ-
ous knowledge and probabilities but also to propose an 
educated view of the structure of data and integrate it 
into models meant to automate tasks or to propose im-
plementation of specific actions. This modus operandi 
is sometimes used as a way to pre-organize training, 
such as in ‘causal’ ML (Feuerriegel et  al.,  2024). We 
argue that, if we are to use AI to predict emerging dis-
eases, we should stick to this – intelligent – approach, 
recognizing that generative AI can help organize the 
data. In contrast, generative AI could have a negative 
contribution as it could be used to design dangerous 
pathogens.

Simpson's paradox and learning from data

With the generation and computerized management of 
huge datasets (big data) in all areas of human activity, 
a general belief emerged assuming that the knowledge 
to answer almost any question would lie somewhere 
in the data (Ekambaram et al., 2018). Whenever it was 
possible to identify a relevant subset thought to answer 
a question of interest at least partially, the easy way 
to explore the whole dataset was to train an algorithm 
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on the subset, and then use the result of the training 
process to extract other knowledge generated in the 
past, but hidden in the set. Creative learning requires 
data to be organized, to have a structure, so that it can 
be properly used by the algorithm (Srihith et al., 2023). 
The consequence is that, depending on how the data 
are put together, the AI generates different outcomes. 
A common way of organizing data is to generate ‘con-
tingency tables’, which are then subjected to statistical 
analysis. It has long been known that the conclusion 
drawn from data exploration depends heavily on how 
the data are grouped into classes, sometimes lead-
ing to opposite conclusions from the very same data 
(Simpson, 1951). The underlying reason for this incon-
sistency can be understood by observing that estab-
lishing classes introduces hidden mutual information, 
whilst many keep thinking that data “speak” and if cor-
rectly used speak the truth [see references about the 
role of mutual information in statistics (Danchin, 1996)]. 
Furthermore, even if a truth is present in the data, it is 
drowned in an ocean of irrelevant or confounding de-
tails so that it is unlikely to come out during the training 
process.

Neural networks: Generative AI 
mimics the way the brain learns

In the current ML approaches, the training process is 
derived from algorithms based on a highly simplified 
model of neurons (McCulloch & Pitts, 1943), forming a 
network made of at least two layers (Hopfield, 1982), 
highly interconnected in a way assumed to be some-
what similar to the organization of the animal brain 
(Changeux et  al.,  1973; Hawkins & Blakeslee,  2005). 
An early model, the Perceptron (Rosenblatt, 1958), met 
with limited success because, at the time, computation 
on big data was slow and precluded the use of large 
formal neural networks. With the vertiginous advances 
in computer speed and memory, in today's ‘deep learn-
ing’ version of AI, multiple layers of neurons are inter-
connected between two interface layers, an input layer 
and an output layer, with data often used without pre-
processing (LeCun et al., 2015). Many different neural 
network structures can be implemented, depending on 
the goal of the learning process [e.g., see references in 
Li, Liu, et al., 2022]. In addition, several neuron-based 
training modes are proposed, involving different roles 
and weights for the network nodes (the metaphorical 
‘synapses’).

In this context, non-associative learning, the most 
primitive mode of learning, forms the basis of ‘unsu-
pervised’ learning. It is driven by a relatively permanent 
change in the strength(quality) of synapses – weaker in 
habituation and stronger in sensitization – linked to an 
event and brought about by repeated exposure to that 
event [see Shi et al., 2022 for a recent development of 

this learning technique, used in a complex task, auto-
matic automobile driving]. In contrast, in ‘supervised’ 
learning – such as that used in causal ML, for example 
– prior knowledge of the structure of the training data is 
essential to guide the outcome of the exploration of the 
unknown data of interest. Learning here is assumed to 
extract a significant pattern as a matrix of probabilities 
reflecting the frequency of a given event at a given loca-
tion. This is reminiscent of pattern recognition problems 
used in models of vision. It is not surprising therefore 
that methods involving neural networks, or the forerun-
ner of this new field of computer science in which the 
input level was compared to a retina, the Perceptron, 
have been used to generate recognition patterns. 
Associative learning develops cognitive functions that 
are more evolved: it is based on the consequences of 
the existence of relationships between separate stim-
uli resulting in a particular behaviour. The stimuli may 
range from concrete objects and events to abstract 
concepts, such as time, location, context or even cat-
egories [see references in a thorough analysis of cat-
egory learning in pigeons, with the comparison with a 
variety of AI approaches (Wasserman et  al.,  2023)]. 
All these techniques are obviously promising for the 
prediction of epidemics as they are able to associate 
a non-limited variety of datasets, including knowledge 
of the pathogen and of the human population structure 
and behaviour.

LLMs are used in automata designed for generative 
AI. Each instance is the result of initial training on a 
very large dataset (input in the form of text, even if it 
is an image), which is used to generate a plausible re-
sult (in the form of text). This training results, for each 
given network (i.e., with an explicit structure, including 
its nodes – synapses), in that, after the long and costly 
training period, the ‘quality(efficiency)’ of each synapse 
has a specific quantitative value brought about by the 
training. The way to create an LLM associated with a 
specific domain of knowledge (hence the use of the 
word ‘language’, as there are many human languages) 
is to identify and memorize the specific network and 
the whole set of its synapse qualities. Subsequently, 
the network with its synapses/qualities can be used 
without training (or with minimal training for fine tuning) 
for any question asked that is relevant to that particular 
language. This is obviously time and energy saving but 
susceptible to a variety of biases. Generative AI uses 
a special implementation of LLMs that processes data 
in a sequential way and reinjects the previous output at 
specific places in the network, generating a final output 
when conditions preset by the user have been achieved 
(Yu et al., 2024). This implies that the outcome of the 
process varies depending on these conditions, often 
ignored by the user [some of the vast literature in the 
domain can be found in Choudhary et al., 2022].

The most familiar generative AI task developed today 
is text generation, or tasks that could be assimilated 
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to text generation, such as the construction of a sig-
nificant output that can use text-like representations 
as code [see Bowman,  2023 for a description of the 
process and its consequences]. As a case in point, 
assembling properly bits and pieces of known shapes 
– they can be represented by texts – allows the user to 
build up plausible architectures, for example, as novel 
proteins (Kortemme,  2024), or new drugs (Cerchia & 
Lavecchia, 2023). The latter case is easy to understand 
when considering that chemical formulas may be writ-
ten as texts using the simplified molecular-input line-
entry system [SMILES] (Kong et al., 2022). This domain 
of AI is still a domain of research when investigators 
attempt to represent extremely diverse molecules 
(Yoshikai et al., 2024) (Figure 1).

In synthetic biology, it is also easy to see how this 
family of AI techniques could be used to improve met-
abolic engineering (Jang et al., 2022). The design of 
synthetic chromosomes is also within the reach of 
ML (Zheng et al., 2023). When considering possible 
sources of future epidemics it may be useful to re-
member that, whilst generative AI is used to generate 
applications that are beneficial, the same approach 
can be used with malevolent intentions (Urbina 
et al., 2022).

Limitations of generative artificial 
intelligence

All recent developments in AI are based on the con-
tinuous improvement of computing power. This devel-
opment is accompanied by a considerable increase in 
the energy consumption required both for computing 
and for storing and accessing large amounts of data 
(Guan,  2024), a limitation that must be considered 
when looking for preferred means to study questions of 
general interest such as epidemic forecasting. Indeed, 
an important feature of neural network approaches is 
that there is often no explicit limit – other than cost – 
on the training requirements, whilst the outcome of the 

learning process may be unstable depending on the 
training set and, perhaps more surprisingly, of the train-
ing time. The early Perceptron, for example, used for-
mal synapses whose strength evolved quantitatively as 
a function of their actual use. This meant that, except in 
the cases where there is obvious and strong similarity 
between objects in the training set, the strength of the 
synapses fluctuated, going up and down. As the size 
of the training set increased, the strength of each syn-
apse tended to reach an optimal value and then slowly 
return to a more or less average value as more excep-
tions entered the training set, thus losing its discrimi-
native power. A correction of this drawback is in-built 
in the human brain. It involves the irreversibility pro-
posed to be the landmark of animal learning (Changeux 
et  al.,  1973). This feature was implemented in neural 
networks in early applications of learning techniques 
(Horton & Kanehisa, 1992).

In deep learning, another concern related to train-
ing originates is the emergence of overfitting, that is, 
an excellent result with the training set that cannot be 
propagated to new data. Managing the time allocated 
to the training period is a way to address this difficulty, 
but it requires user intervention. Typically, shortening 
the training period time allows the user to thwart this 
drawback (Rice et al., 2020). However, this and other 
similar generally inconspicuous shortcomings, are a 
significant limitation that affects the majority of AI ap-
proaches based on deep learning. For applications with 
socio-political consequences, such as epidemic pre-
diction, it would be essential to explore neural networks 
that have explicit stability of their learning capacity as a 
function of the training sets (Berger, 2007).

In addition to these technical hurdles (Choudhary 
et al., 2022) the biggest problem facing learning-based 
AI is often the poor quality of the input data. As the 
saying goes: ‘garbage in, garbage out’. This has sig-
nificant negative consequences as even the best ap-
proaches obviously cannot improve data quality. A 
common way out is to train AI automata on data from 
different sources, thereby averaging the burden of poor 
data quality. However, this raises another difficulty, es-
pecially for generative AI, as training requires large, 
and diverse datasets, whilst access to good quality 
data is limited for a variety of reasons, in particular, 
related to the private ownership of data or data delib-
erately altered by malicious sources. It must also be 
remembered that data includes the noise generated 
by universal access to the Internet where good quality 
data is drowned into an ever-increasing sea of bad or 
irrelevant data. Not only is false information spreading 
rapidly, but easy access to generative AI is creating yet 
another source of false data or misinformation. In the 
field of epidemics, fake news with invented propagation 
schemes (Li, Ma, et al., 2022) as well as fake treatments 
based on flawed scientific evidence (Frank et al., 2023) 
are the rule. Finally, the very fact that the output of AI 

F I G U R E  1   A SMILES representation of two stereoisomers of 
the amino acid serine. The standard SMILES format encodes as a 
line of text both the connection table and the stereochemistry of a 
molecule. With the SMILES formula it is possible, using a relevant 
algorithm, to generate the 3D shape of the molecules. This can be 
done for the simplest formulas using standard scripts, but also, in 
more complex situations, ML approaches (Liu et al., 2022).
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automata is constantly increasing the amount of data 
will have the unwanted consequence that, as in the 
early Perceptron, the general output will become in-
creasingly averaged out and then progress towards 
universal noise. This makes expert pre-analysis of the 
data, often manual, critical for any worthwhile develop-
ment of AI technology.

To remedy this situation, which would mislead epi-
demic prediction, efforts have endeavoured to collect 
and manage data of good quality. For epidemiological 
studies, the Observational Health Data Sciences and 
Informatics (OHDSI, https://​ohdsi.​org/​) collaboration, 
with a coordinating centre at Columbia University asso-
ciates 3000 researchers from 80 countries and tracks 
health records on more than 900 million patients, col-
lects health-related observations and generates struc-
tured data and innovative methods of exploration. 
Besides the World Health Organization (WHO), a va-
riety of government-linked centres for disease control 
perform the same function. Because of the involve-
ment of politics, this is not without treacherous biases, 
unfortunately (Brown,  2022). Even for genome data, 
that are expected to be deposited at the International 
Nucleotide Sequence Database Collaboration where 
they display an open data structure, much data are 
missing (Amann et al., 2019; Timme et al., 2023). This 
obstacle is of particular concern for two diseases that 
have been at the origin of pandemics, influenza and 
COVID-19 (Lenharo, 2023).

Credibility of generative AI

Concrete instances of lack of truthfulness can be un-
covered using human intelligence, for example by ask-
ing questions with answers that would require further 
exploration of data sources to be validated. After re-
ceiving an answer, it is imperative to follow up by re-
quiring the AI to provide some proper validation of its 
output. For example, in a dialogue with a generative AI, 
it seemed natural to ask for references after requesting 
information to support a study that seemed promising. 
In most cases, the AI did indeed generate a list of refer-
ences as requested. However, instead of stopping the 
query at this seemingly satisfactory result, whilst as-
suming that the references provided proved the point 
being investigated, it remains essential for the user to 
check that they are valid, even if they have been gener-
ated as plausible references (i.e., with relevant author 
names, a plausible title and even a doi and PubMed 
access identifier). This is illustrated here. After noticing 
that the cited paper did not exist or did not support the 
answer to the question of interest, the user pointed this 
out to the AI:

Many of the references you provided do not 
exist, why did you invent them?

and the AI provided this remarkably candid answer:

I apologize for inventing the references I 
provided. I am still under development and 
learning to perform many kinds of tasks, 
including generating different creative text 
formats of text content, like poems, code, 
scripts, musical pieces, email, letters, etc. 
I am trying my best to fulfil all your require-
ments, but I am not yet perfect.

I am currently not able to generate refer-
ences for scientific papers, as this requires 
a deep understanding of the scientific liter-
ature and the ability to identify relevant pa-
pers. I am working on improving my ability 
to generate references, and I hope to be 
able to do so in the future.

Thank you for your feedback. It helps me to 
learn and improve.

Of course, this is a one-time experiment because 
this answer now belongs to the input data used by the 
AI automaton: once this dialogue has been established, 
further exploration of the same domain by the same au-
tomaton will lead to quite different answers, and in par-
ticular an incentive to look for supporting references! 
This makes it important to understand better how the 
‘innards’ of automata based on learning approaches 
generate their output. It is therefore all the more im-
portant, as time passes, to perform relevant intelligent 
due diligence after any generative AI output, especially 
as apparent plausibility will keep increasing. Again, the 
main danger associated with generative AI is that its 
output, if properly executed, will seem plausible, re-
gardless of the truth associated with it. This applies not 
only to exchanges prompted by text questions but also 
to images or films. Because it does not display warning 
signals, plausibility is a dangerous feature when AI out-
put is used to make decisions, such as those made by 
health authorities before an epidemic breaks out, for ex-
ample. This hurdle becomes even more dangerous as 
generative AI feeds itself with its own generated data, 
leading to sheer nonsense (Shumailov et al., 2024).

EXPLAINABLE AI FOR 
FORECASTING EPIDEMICS: 
UNDERSTANDING HOW ITS OUTPUT 
HAS BEEN GENERATED

The goal of science is to make reality understandable 
and therefore as simple as possible, a point that is 
often forgotten. Using AI to improve scientific knowl-
edge should mean that the output is explainable, that 
is, we can follow the logical or causal chain that led to 
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that particular output. Epidemic forecasting, where AI 
approaches are used to identify early warning signs, 
find pathogens that could be candidates for a future 
epidemic and make informed decisions must be inter-
pretable, with at least two desirable properties: con-
ciseness and clarity for non-experts. However, when AI 
algorithms are based on the activity of neural networks 
and LLMs, where it is not easy to follow the activity of 
individual pathways in the network, the generation of 
output is impossible to understand in a straightforward 
or concise manner.

In the case of epidemics, the data comprises pop-
ulation data – often subject to a variety of mishandling 
and biases – and data on the pathogens, in particular 
genome-related data, where errors in gene annotation 
keep percolating (Gilks et al., 2002; Kress et al., 2023). 
The consequence is that an algorithm that looks highly 
accurate in a model study may fail to perform well when 
using genetic data with wrong annotations. In super-
vised learning involving genome data, taking these 
obstacles into account when using deep learning ap-
proaches will require manual labelling of a subset of 
the data to support the quality of individual gene an-
notations. Yet, at present, an extremely limited num-
ber of genome annotations follow this time-consuming 
approach and carry over percolating annotation errors. 
This will inevitably bias attempts to predict the origin 
and course of epidemics. In the context of this essay, 
the propagation of errors and inaccuracies in genomic 
datasets is a well-known issue that affects negatively 
the outcome of the automated methods used for gene 
functional annotation (Danchin et  al.,  2018; Poptsova 
& Gogarten, 2010). Furthermore, our knowledge of bi-
ological functions is still limited, especially for patho-
gens, where the number of ‘orphan’ genes is noticeably 
high. Orphan functions – that is, functions that cannot 
be readily linked to previous knowledge – make the 
majority of the unknown genomic islands in pathogens 
and their number keeps increasing, making error per-
colation a widespread feature that impacts the under-
standing of metabolism (Hanson et al., 2009). Yet, even 
missing metabolic functions can enhance pathogenic-
ity [see for example the role of the deletion of the gene 
coding for cadaverine synthesis in the pathogenicity of 
Shigella sp. (Leuzzi et al., 2015)].

A key ability of neural networks is that they can be 
trained for excellent recognition performance. This 
success is evaluated after the fact, and, in general, 
does not need understanding, except when biases are 
present in the output. For example for face recognition, 
there may be large differences in the way white or black 
faces are recognized (Birhane, 2022). In this case, the 
features that allow recognition must be explained as a 
specific mix of individual traits that, combined together, 
allow the user to unambiguously identify a particular 
entity (Alivernini et  al.,  2024). The more complex a 
model is, the more difficult it is to understand what is 

important to the model and why it behaves the way it 
does. We should be able to answer questions such as: 
Which details allowed an AI to reach its specific pre-
dictions? What if this feature had a different value? An 
authentic intelligent AI, as would be human intelligence, 
should be able to provide a rationale explaining why it 
proposed its particular interpretation of big data [see 
Alivernini et al., 2024 for an example in the prediction of 
the course of a family of diseases].

If a computer identifies a pathogen as a likely cause 
of a future epidemic, it should be able to highlight which 
aspects of the pathogen, including the context of its 
multiplication and propagation, and detail which fea-
tures of the data have been taken into account leading 
to that conclusion. Requiring the input of an expert, can 
be measured by exploring the output using samples of 
the data and looking at effect sizes (Berger, 2007), or 
by determining which features had the greatest impact. 
The output could then guide public health policy. This 
is crucial in the case of epidemics, where the chain of 
events leading to the initial outbreak and subsequent 
uncontrolled spread involves a variety of causal chains, 
whilst being sensitive to a large number of biases. To 
overcome similar obstacles, a variety of techniques are 
often used in image processing, where image filtering, 
image segmentation, feature extraction and rule-based 
classification are critical to validate detection (Oliveira 
et al., 2024). Other models, such as those inspired by 
ecosystem relationships and sparse microbial signa-
tures, more in line with what we expect for epidemics, 
provided a framework for understanding the role of mi-
crobiomes in health and diseases (Prifti et al., 2020), 
distinguishing between the key questions: What? How? 
and finally the most elusive: Why? (Allen, 2024; Sahoh 
& Choksuriwong, 2023).

EPIDEMICS: STANDARD 
APPROACHES

In summary, if we want to use AI to predict epidem-
ics, in contrast with the historic success of language 
translation automata, we should not use its ‘generative’ 
form but prefer methods based on rules and syntactic 
structures (grammars) to combine them together, pos-
sibly associated with some generative AI complement. 
An optimist view of the use of AI for epidemic prediction 
would state: Artificial Intelligence (AI) combined with 
genomics, amongst its many capabilities, can predict 
the evolution of pathogens, the spread of diseases, and 
the rise of antimicrobial resistance. In an ideal world 
with equitable access to healthcare, predicting and pre-
venting the next pandemic would be as easy as a nose 
swab predicting Covid-19 (slightly unpleasant but pos-
sible nevertheless; https://​aifor​good.​itu.​int/​event/​​can-​
artif​icial​-​intel​ligen​ce-​predi​ct-​the-​next-​pande​mic/​). We 
are still a long way from this hopeful situation, if only 
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because of the ubiquity of ‘normal’ accidents. This is 
particularly worrying at a time when synthetic biology 
makes it possible to construct pathogens, especially 
with the help of AI (Undheim,  2024). To mitigate the 
consequences of this statement, we need to better un-
derstand the course of epidemics and remember that 
human behaviour is often an unrecognized cause of 
our diseases (Danchin, 2003; Sun, Yuan, et al., 2023).

Expert, rather than AI-based, analyses of past 
epidemics have been proposed to identify critical 
features, in particular based on metagenome data, 
that need to be considered as markers of epidemics 
(Brüssow, 2024a) and ways to mitigate their spread be-
fore pharmaceutical interventions can be implemented 
(Brüssow,  2024b). A study conducted by the pan-
European VACCELERATE platform for the design and 
conduct of clinical trials considered the influenza virus 
as the pathogen with the highest pandemic risk [57% 
in first place and 17% in second place (Salmanton-
García et al., 2024)]. Interestingly, this ranking reflects 
the ‘intelligence of the crowd’, a popular but often 
quite mistaken cognitive trait that is assumed to reflect 
human intelligence (Prelec et al., 2017), and not so dif-
ferent from generative AI in the way it has generated 
its knowledge. It should be emphasized that this list of 
likely pandemic agents included only viruses, except 
that an unknown infectious agent (not necessarily but 
probably a virus) causing ‘Disease X’ was ranked first 
by 21% of the participants (14% second). Also, SARS-
CoV-2 remained in the list (number one for 8%, number 
two for 16%) as number 3, with SARS number 4. Ebola 
virus ranked fifth, followed by Crimean-Congo haem-
orrhagic fever virus, whilst the Nipah virus, henipavirus 
and Rift Valley fever virus were amongst the lowest-
ranked pathogens in terms of their perceived pandemic 
potential. No suggestions were made about the place 
of origin of these hypothetical emerging epidemics or 
the characteristics of their spread.

Onset and development of epidemics

Models of epidemics rest on hypotheses about the na-
ture of the pathogen, the structure of the affected pop-
ulation and how the pathogen will spread. The WHO, 
which monitors disease outbreaks worldwide, has es-
tablished guidelines for declaring an epidemic, which 
are largely based on previous knowledge. A key obser-
vation that defines an epidemic with the potential to be-
come a pandemic is the presence of person-to-person 
(P2P) contamination with an infectious agent. This al-
lows public health authorities to distinguish epidemics 
from vector-borne endemic diseases or diseases that 
are essentially transmitted from an animal to a person 
without further P2P contamination. This characteristic 
is not sufficient to allow one to predict the source of an 
epidemic. The P2P requirement allows the modelling of 

ongoing epidemics, based on the assumption of popula-
tion compartments. The omnipresent SIR (Susceptible, 
Infectious, or Recovered) model describes the transi-
tion between three compartments. It is the reference 
since the early decades of the 20th century (Kermack & 
McKendrick, 1927). Many models are derived from the 
original (Grassly & Fraser, 2008), which remains in use 
basing health policies on the reproductive rate, denoted 
R0 that measures in a naïve population (i.e., suscepti-
ble to infection) the number of cases generated by one 
infected person.

This model will likely remain the reference for AI 
predictions involving P2P contamination as a key el-
ement in epidemics. However, it is highly schematic, if 
only because of the difference in the social structure 
of human populations (contacts in an urban environ-
ment are different from those in the countryside, they 
are sensitive to age distribution as well as, for example, 
the very high level of human genetic polymorphism). 
Furthermore, this anthropocentric view does not focus 
on the pathogen, its origin or its evolution, which is 
centred on its ability to produce offspring in the long 
term, a characteristic that has nothing to do with human 
goals. Pathogens evolve as they multiply in their host, 
so that over time their propensity to reproduce and 
contaminate new hosts is constantly changing. When 
treatments or vaccination are proposed, natural se-
lection favours resistant strains or strains that evade 
the host's immune system. Interestingly, evolution to-
wards attenuated forms would efficiently complement a 
vaccination programme (Armengaud et al., 2020). Big 
data-centric AI tries to address the bias inherent in this 
situation by conducting research at scale, automating 
analysis and managing confounding factors. It explores 
early warning signs and pathogen characteristics that 
tend to cause P2P contamination. As a result, it can 
be expected that due to the highly complex behaviour 
of epidemics, exploration using AI approaches would 
be of considerable value, provided there is no critical 
omission of an important feature or, even worse, rele-
vant data. In particular, as we document later, the role 
of accidents related to genetic engineering and syn-
thetic biology is likely to be crucial.

Guide for identification of infectious 
agents of concern illustrated with 
respiratory viruses

The WHO and the Centres for Disease Control and 
Prevention (CDCs) present in many countries main-
tain and monitor a public list of dangerous infectious 
agents. Unfortunately, there is a large discrepancy be-
tween countries that have an efficient health system 
in place and those that do not. Unexpected epidem-
ics often appear in the latter. The most active surveil-
lance is developed by military institutions. It is aimed at 
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monitoring research on a limited catalogue of patho-
genic microbes and toxins known as ‘highly pathogenic 
micro-organisms and toxins’ (‘select agents and tox-
ins’). However, this list is primarily intended to prevent 
terrorists or war-prone countries from gaining access 
to potential bioweapons. It is not intended to identify 
all agents that could cause epidemics and it comprises 
classified, hence not public, data. This has important 
implications: unlike an epidemic, which by definition 
affects the whole population, a weapon is usually in-
tended to impact a specific but limited segment of the 
population (namely military personnel). This is illus-
trated by organisms such as the anthrax agent Bacillus 
anthracis, which does not spread easily from person to 
person. In contrast, the agent likely to become one of 
the most dangerous sources of a future pandemic may 
be an influenza virus, with only some of its subtypes 
falling into the category of select agents. Similar views 
could be extended to other pathogens, such as viruses 
of the Nipah/Hendra families (Hegde et  al.,  2024). 
Despite this limitation, agents that do not belong to the 
‘select agent’ category may still be used by malicious 
actors, so it remains important to monitor outbreaks in 
which they would be involved.

In the current quest to make the most of AI-supervised 
learning, we can propose generic pointers associated 
with pathogens that could become sources of epidem-
ics. Here we use mainly the case of influenza viruses 
to illustrate how some AI-friendly pointers would help 
to implement predictive behaviour. The influenza virus 
strains of most concern are identified by their haemag-
glutinin (H) and neuraminidase (N) subtypes, which are 
critical for targeting hosts and tissue/cell types. Some 
combinations are already closely monitored because of 
past outbreaks or characteristics that suggest poten-
tial human adaptation. By focusing on influenza A virus 
strains with a history of human disease, zoonotic po-
tential and antigenic drift, we can prioritize which H/N 
combinations to monitor.

Pointer 1: Person-to-person contamination

Contagion is the key feature that identifies an epidemic. 
It can be direct, indirect (i.e., through contact with con-
taminated environments) or mediated by vectors. The 
latter is discussed at the end of this essay. At the 
WHO, the Global Influenza Surveillance and Response 
System (GISRS) tracks circulating influenza viruses 
and identifies potential threats, with a focus on P2P 
transmission (https://​www.​who.​int/​teams/​​globa​l-​influ​
enza-​progr​amme/​surve​illan​ce-​and-​monit​oring/​​influ​
enza-​surve​illan​ce-​outputs). Together with GISRS, the 
Pandemic Influenza Preparedness Framework (PIP, 
https://​www.​who.​int/​initi​atives/​pande​mic-​influ​enza-​
prepa​redne​ss-​frame​work) is involved in identifying and 
producing vaccines in advance of outbreaks that signal 

the possibility of a pandemic. In countries such as the 
United States, the CDC's Influenza Division provides 
information on influenza viruses and their surveillance 
(https://​www.​cdc.​gov/​ncird/​​flu.​html). In Europe, a par-
allel effort is being developed by the European CDC 
(https://​www.​ecdc.​europa.​eu/​) through the European 
Influenza Surveillance Network (EISN). There are 
also many non-governmental WWW-friendly reposito-
ries that monitor ongoing outbreaks. Sentinel partners 
watch respiratory symptoms, based on a network of 
sentinel doctors and laboratories. Although improving 
over time as a whole, these networks remain quite het-
erogeneous (Kalimeri et al., 2019).

Obviously, if a person is in contact with an environ-
ment heavily loaded with a contaminating pathogen, 
the likelihood of infection is high. However, the risk of 
contamination varies greatly depending on the body 
tropism of the pathogen (Leung,  2021). Whilst P2P 
contamination is essential for the development of an 
epidemic, if the infection requires physical contact, it 
can be easily contained by various forms of distanc-
ing unless uncontrolled human behaviour interferes. 
Sexually transmitted diseases are often endemic 
(i.e., present in a population but not spreading out of 
control). Fortunately, they rarely become epidemics. 
Except in highly unstable socio-political situations, it is 
indeed relatively easy to break the corresponding chain 
of transmission. Similarly, the transmission of haemor-
rhagic fevers such as Ebola or the recently identified 
P2P form of Crimean-Congo disease requires direct 
P2P contact or contact with recently handled contam-
inated objects, making a major epidemic unlikely, ex-
cept in regions where physical contact with sick or dead 
people is traditional.

Contamination by the oral or aerosol route is partic-
ularly difficult to control, especially if the pathogen re-
mains active on different surfaces (Hung et al., 2018), 
explaining why influenza is generally perceived as the 
primary risk for a future pandemic (Boulos et al., 2023). 
In this context, controversies about the modes of trans-
mission have negative consequences when using 
AI approaches because the way they are interpreted 
tends to lead to wrong predictions and then wrong de-
cisions. Despite the importance of the topic, we lack 
comprehensive analyses of the role of face masks, as 
well as social distancing in general (Ahmed et al., 2024; 
Jefferson et al., 2023; Tang et al., 2024). For example, 
the route of transmission of SARS-CoV-2 was debated, 
involving either direct contact and fomites (hence the 
importance of hand washing, limiting social contacts) 
or by aerosols or, of course, both (Boulos et al., 2023). 
After the peak of the pandemic a clearcut observation 
remains that supports the importance of social distanc-
ing, and wearing masks included: many respiratory 
diseases, usually plaguing urban populations during 
winter time, all but disappeared during the COVID 
major episode (Groves et al., 2021). The main danger 
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when there is P2P contamination appears when con-
taminated individuals remain asymptomatic whilst still 
in contact with others. This made all the difference be-
tween the SARS episode in 2003–2004 and COVID-19. 
In the former case, the epidemic was rapidly contained 
because it was possible to implement restrictive con-
tainment measures based on the identification of symp-
tomatic patients. This was not possible with COVID-19 
because many infected people are asymptomatic.

Finally, one specific route of P2P infection, sexual 
contamination, should be highlighted again as it is 
deeply rooted in human behaviour. Sexually transmit-
ted diseases have been around for centuries, generally 
remaining endemic. The case of AIDS is an important 
example of an epidemic that spread rapidly because 
its pathogen was previously unknown. It remains diffi-
cult to contain in regions with poor health infrastructure. 
More recently, mpox reached epidemic proportions and 
was contained relatively quickly, but it appears to be 
re-emerging (McQuiston et al., 2024). Furthermore, a 
lineage of the virus appears to have improved its abil-
ity to spread through sexual contact. Whilst this kind 
of knowledge is available, it needs to be fed into AI 
automata that are used to predict a possible epidemic 
(Tan et al., 2024), and the socio-political biases of AI 
should be carefully identified and taken into account 
(Peters, 2022).

Pointer 2: Zoonotic potential

A key observation at the origin of the One Health con-
cept is that there is no strong barrier between man 
and other vertebrates in terms of infectious diseases 
(Pepin et al., 2024). Influenza is a case in point, as can 
be read in the Chinese character, jia, family, 家, which 
represents a pig under a roof. The influenza virus is a 
natural, often quite harmless, host of migratory birds, 
especially Anatidae (ducks and geese), and the ideal of 
the Chinese rural family is a farm with a pond housing 
ducks and a pig. This makes it the perfect intermediary 
for virus transmission: from migratory birds to ducks, 
from ducks to pigs and then to the human host, which 
explains the Asian origin of several influenza epidem-
ics. Swine influenza is indeed caused by type A influ-
enza viruses, principally subtypes H1N1, H1N2, H2N1, 
H3N1 and H3N2 (Rewar et al., 2015). To predict future 
epidemics affecting Homo sapiens, we must be aware 
of the variety of animal reservoirs. We should extend 
our monitoring beyond traditional surveillance targets 
such as birds and pigs and investigate influenza strains 
in less studied animal reservoirs such as bats [this is 
the case for recently discovered novel subtypes (Yang 
et  al.,  2021)], rodents or marine mammals [subtype 
H3N8, that is endemic in dogs and horses has caused 
severe outbreaks in seals (Anthony et  al.,  2012) and 
it caused recently at least one human death (Sun, Li, 

et  al.,  2023)]. These species could harbour unknown 
influenza subtypes with the potential to jump to the 
human population.

Besides common flu, several subtypes have long 
been a matter of concern. Subtype H5N1, widely 
spread in birds and the origin of devastating epidemics 
in poultry, infected a child, and then several persons 
in 1997 (Centers for Disease Control and Prevention 
(CDC),  1997). This ‘avian flu’ caused much concern 
at the time, but fortunately P2P contamination was 
not observed. Interest in this subtype peaked in 2005 
and then waned for reasons not related to the dis-
ease itself but, because information is contagious, 
to the way fear develops as a contagious disease 
(Bentley & Ormerod, 2009). Quite recently new H5N1 
variants have begun to infect a variety of mammals 
(Plaza et al., 2024) and have even spread to cattle in 
the United States, sometimes leading to human in-
fection (Abbasi, 2024). Other subtypes such as H7N7 
and H9N2 have repeatedly infected poultry, particu-
larly in Asia, with fowl-to-man contamination (Barman 
et  al.,  2023; Takashita et  al.,  2022). These subtypes 
should remain a priority for surveillance, as they have 
contaminated people (Lou et al., 2024). New antigenic 
combinations, as well as novel combinations with sim-
ilarities to previous pandemic viruses, warrant contin-
ued close monitoring.

Pointer 3: Genetics and evolution

Viruses are pure genetic parasites. They contain a 
single-stranded, double-stranded or, rarely, partially 
double-stranded, DNA or RNA genome, which con-
sists of one or more parts and is usually protected by 
a protein or glycoprotein capsid and sometimes a lipid-
containing envelope. If the RNA genome can direct the 
translation of viral proteins, it is a positive RNA virus. If 
the complementary RNA sequence encodes the viral 
proteins, it is a negative RNA virus, which requires ac-
cess to replication machinery after infection to produce 
translatable RNA. Although, for the human mind, this 
latter organization appears to require an unexpectedly 
expensive assembly process, it is a common situation, 
as shown by the influenza virus, a segmented negative 
RNA virus, and there is no indication that this is unfa-
vourable for the virus in terms of causing epidemics.

In viruses, as in living cells, there is a trade-off in the 
generation of offspring between accurate replication 
and innovation through mutation. In general, viruses, 
especially RNA viruses, have a relatively high mutation 
rate. Since this would affect genomes as a function of 
their length, most RNA viruses have a short genome 
because their replicase lacks strict precision and, in 
most cases, proofreading subunits or domains. In ad-
dition to a generally high mutation rate, which is partic-
ularly important when viruses have a high replication 
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multiplicity, viruses manage genomic changes by re-
combination and, in the case of segmented viruses, 
reassortment. The consequence of these processes, 
which are particularly important when a host is co-
infected with several types of virus, is visible in the 
sequence of existing viruses, which are patchworks 
of genomes from different origins (Wells et al.,  2023; 
Zhang et al., 2005). This situation is favourable for the 
development of synthetic biology constructs, for exam-
ple, with vaccination as their aim (Nunes et al., 2014).

Influenza viruses have a great potential to cause pan-
demics due to their ability to allow the reassortment of 
their genes with the large number of influenza subtypes 
of animal origin. Eighteen H antigens and 11 N antigens 
have been identified, allowing the formation of 198 sub-
types, many of which have indeed been observed in 
a variety of environments. Most are hosts of birds but 
some (with H17 and H18 haemagglutinins) are specific 
to bats (Yang et al., 2021). Mutations in the H and N 
proteins can lead to significant changes in the virus' 
surface, allowing it to evade existing immunity and also 
to modify their port of entry when infecting their hosts. 
Subtypes that show rapid antigenic drift are concerning. 
However, at least for now, only some of them seem to 
be likely to spread to man in a world where a significant 
proportion of the population is vaccinated against the 
more common subtypes. Whilst the likelihood of any 
specific combination emerging is unknown, exploring 
the potential characteristics and pathways that led to 
such variants may provide valuable insights that should 
be considered in the selection of structured data for AI 
development (Meijers et al., 2023).

Pointer 4: Consequences of past human 
outbreaks

Three subtypes of the influenza A virus, H1N1, H2N2 
and H3N2 dominate the current human influenza land-
scape. They are all highly contagious, mainly via fo-
mites and aerosols. The H1N1 and H3N2 subtypes 
have caused significant human disease over decades 
and they are still endemic (Lou et al., 2024). These an-
tigenic combinations, as well as novel combinations 
that share similarities with past pandemic viruses are 
closely monitored and adapted vaccines are proposed 
on a yearly basis. Three influenza pandemics plagued 
the 20th century, in 1918, 1957 and 1968. Large epi-
demics, notably in 1947 and 1977, should be added to 
this list (Kilbourne, 2006). Finally, an outbreak caused 
by a subtype H1N1 virus triggered a WHO pandemic 
alert in 2009. However, the epidemic was milder than 
predicted, setting a dangerous precedent because 
the general public perceived warnings as ‘crying wolf’ 
(Taylor et al., 2012). To be sure, previous pandemics re-
sulted in a significant proportion of the population being 
protected against the most severe forms of infection, 

especially of the omnipresent subtypes. Over time, 
however, this protection is eroding. As a result, sub-
types such as H2N2, which caused pandemics a long 
time ago (in this case, 1958) but then disappeared, can 
re-emerge with serious consequences for the younger 
part of the population.

Likewise, and in contrast to the COVID-19 pandemic, 
future coronavirus epidemics will occur in a population 
with widespread pre-existing SARS-CoV-2 immunity 
acquired through infection or vaccination. This criti-
cal new variable should therefore be incorporated into 
pandemic preparedness strategies. However, focusing 
solely on past trends and known threats cannot be suffi-
cient to fully prepare for the unexpected. One confound-
ing factor that should be considered is cross-protection 
from other infections caused by the same virus family 
but possibly also by unknown agents, as suggested 
during the first SARS episode (Ng et al., 2003). A further 
complication for monitoring causes of re-emergence of 
an epidemic comes from reverse zoonotic transmission 
(Kibenge, 2023). The fact that the human-adapted virus 
infects animals will considerably change its evolution-
ary landscape with unknown consequences for future 
outbreaks. Here are some additional tracks to explore, 
delving into the realm of the less predictable.

Pointer 5: Selection pressure by 
environmental factors

The popular perception of the One Health vision is that 
contact with wildlife in previously pristine environments 
opens up a Pandora's box of unknown diseases be-
cause human populations have remained distant from 
these environments for centuries. This could include 
factors such as climate change, deforestation and 
changes in agricultural practices, all of which could 
influence the interaction between man and animal in-
fluenza reservoirs. However, farms are much more 
likely to be a priority place to look. Farms are areas of 
close contact between rural and urban environments, 
and therefore potential sources of interspecies trans-
mission, where viruses circulate and evolve, making 
the emergence of variants highly likely and risky given 
the virus titres produced in high-density farm environ-
ments. As with human vaccination, the role of vacci-
nating animals, particularly poultry, against the H5N1 
subtype rather than culling large numbers of animals 
has long been debated (Islam et al., 2023). Vaccination 
has two undesirable consequences for animal epi-
demic control: the practical impossibility of knowing 
through antigenic testing whether a farm has been con-
taminated, and forced antigenic drift due to the immune 
response of the animals. This observation also applies 
to the human population, and new variants of a virus 
are indeed the result of vaccination-induced natural se-
lection (Meijers et al., 2023).
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In addition to the role of the general environment, 
the human body is not a homogeneous environment. 
The host itself is a niche for the pathogen. This is 
established for microbiomes, where different micro-
biota occupy different host tissues. When consid-
ering pathogens, two major niches, the gut and the 
respiratory tract, are in contact with more microbes 
than other sites in the body. Furthermore, they are 
not isolated from each other and it is not uncommon 
for a given pathogen to affect both or to change its 
tropism as it evolves. This has been demonstrated 
in pigs infected with coronaviruses. In 1984–1985, a 
benign porcine respiratory coronavirus changed its 
tropism from the respiratory tract to the gut, where 
it then caused severe disease (Laude et  al.,  1993). 
Gut tropism of coronaviruses causing dangerous 
infections has been again quite recently identified 
in pigs (the virus is likely of bat origin) in the Swine 
Acute Diarrhoea Syndrome (SADS) and the virus has 
been shown to be able to infect human cells (Wang 
et al., 2024).

Screening of more than 250,000 datasets deposited 
in the Sequence Read Archives revealed that there 
are many more viruses in the environment than we 
think, considerably increasing the pool of pathogens 
that could be at the origin of a new epidemic (Lauber 
et al., 2024). This study also showed that many of the 
newly identified viruses emerged after events involv-
ing recombination and reassortment. This implies that 
hosts are often co-infected by multiple viruses. One 
implication of this observation is that we should con-
sider in priority the role of population density and mon-
itor intensively managed farms and regions where the 
human population is particularly dense. We should also 
consider the role of weather: extreme weather condi-
tions tend to force people into confined environments. 
Other human behaviours, such as events that lead to 
overcrowding, should be a signal of danger, so fore-
casting should be linked to the analysis of population 
structure in both farms and human dwellings (Charlier 
et al., 2022; Guo et al., 2024; Liu et al., 2024; Oakley 
et al., 2024). Finally, travel played a fundamental role 
at the onset of the SARS outbreak in 2003 (Wilder-
Smith,  2006), and the role of travel in the spread of 
epidemics is well established (Li et  al.,  2023; Wardle 
et  al.,  2023). In contrast, the decisive contribution of 
human behaviour – including the still explosive popula-
tion growth – likely to be the main cause of epidemics, 
is generally overlooked, as humanity focuses on symp-
toms, not causes (Merz et al., 2023).

Monitoring epidemics

Whilst many common pathogens are likely to initiate 
future epidemics, they are by no means the only ones 
that should be considered. Past experience shows that 

the worst epidemics have been caused by unexpected 
organisms, so it is important to detect signs of infec-
tion at a very early stage, especially where they would 
not be expected. For a long time, disease surveillance 
relied on the multiplication of health monitoring sta-
tions around the world, but with the development of the 
Internet and the World Wide Web, it has become pos-
sible to detect unusual events in real time. At the time of 
the first SARS epidemic, we could see health authority 
staff stationed in front of a bank of computer screens 
with browsers open, using health-related keywords to 
explore the world's global situation. This has gradually 
been replaced by automated algorithms that routinely 
scan the web. Various digital disease syndrome sur-
veillance automata, some of which are based on deep 
learning (Yang et al., 2023), have been created over the 
years to monitor the emergence of epidemics (Seo & 
Shin, 2017). In recent years, for example, large compa-
nies such as Google have developed a series of autom-
ata that explore the variation of topics of interest on the 
worldwide web. Google Trends™ identifies and analy-
ses social trends (Olson et al., 2013), and a web-based 
tool for real-time monitoring of disease outbreaks has 
been proposed for more than a decade for the very 
purpose of this essay (Carneiro & Mylonakis,  2009). 
Whilst this type of automaton is widely used (Shih 
et al., 2024), it is not yet well validated as it can pro-
duce mixed results, as seen with COVID-19 in India 
(Satpathy et al., 2021). Similar surveillance can be used 
in China with queries using Baidu with similar question-
able outcomes (Su et al., 2024). Obviously, these tools 
are limited by the socio-economic biases that shape 
their business model and this has no reason to be 
adapted to predicting epidemics.

In any event, the use of these automata does not ex-
empt us from understanding the meaning and causes 
of the WWW trends. As discussed above, this is yet an-
other reason to require that AI approaches be explain-
able. Certainly, there was an explosion of posts about 
influenza epidemics focusing on ‘bird flu’ in 2005 and 
‘swine flu’ in 2009 (Bentley & Ormerod, 2009), but the 
underlying reasons for the surge were probably differ-
ent. Indeed, the 2005 scare was not followed by an ep-
idemic outbreak. With the current re-emergence of the 
H5N1 influenza in cattle, it is likely that there will be a 
resurgence of fear, this time possibly with good reason 
(Sah et al., 2024). Another feature that affects the data 
collection on which AI approaches are based is the 
local socio-political situation of the countries where the 
epidemic is beginning and where it is spreading. This is 
particularly difficult but essential to take into account.

Some of the pointers highlighted above, such as the 
role of the environment (climate change), have already 
been chosen as essential parameters of the deep 
learning approaches (Haque et  al.,  2024). Another 
environment-focused pointer, the body-specific niche, 
is used to keep track of diseases that have some degree 
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of gut tropism. Monitoring is carried out by means of 
nucleic acid identification in wastewater, which intro-
duces a socio-economic dimension to the analysis, a 
factor that must be understood as it will easily fool gen-
erative AI automata. In fact, the technology is widely 
used and often favoured by public health authorities, 
but not always, as was the case in France in 2022 for 
SARS-CoV-2 when the authorities significantly de-
layed support for research monitoring programmes in 
this area (Académie Nationale de Médecine,  2022). 
However, the approach is quite effective, as demon-
strated in the United States with the recent identifica-
tion of the spread of the SARS-CoV-2 FLiRT variants 
KP.2 and KP.1.1, offshoots of variant JN.1.11.1, a direct 
descendant of variant JN.1, which was first detected in 
wastewater samples from across the country (Lehto 
et al., 2024).

This type of readily available knowledge can easily 
be fed into structured data used by AI automata [see 
for example the proposed use of AI to answer ques-
tions (Larrouquere et al., 2020)]. However, it is purely 
descriptive, tends to reflect the inept ‘intelligence of 
the crowd’ on the existing situation and misses both 
the societal and the biological knowledge that should 
be systematically entered into approaches that aim 
to be predictive. As discussed above, data are often 
structured before it is entered into big data collections. 
A common way of structuring the data is to take into 
account the way scientists group articles into ‘spe-
cial issues’ of scientific journals, on the generally true 
assumption that this reflects important knowledge. 
However, scientists are no different from ordinary peo-
ple and the information they emphasize can be dis-
torted by unacknowledged conflicts of various kinds, 
often deeply rooted in politics. This was evident at the 
start of the COVID-19 pandemic. The management of 
the epidemic was heavily influenced by socio-political 
factors (Berlivet & Löwy, 2020), probably with consid-
erable negative consequences on the general public 
(Muraille et al., 2022; Silva, 2024). Various biases could 
also be seen in the display and use of scientific knowl-
edge. For example, whilst an article from the French 
Academy of Sciences on SARS-CoV-2 highlighted the 
main evolutionary pathways that the virus evolution 
could follow (Cluzel et al., 2020), it was not included in 
the special issue of this institution reporting standard 
mainstream research on the epidemic. It is likely that a 
similar situation accounts for the misreading of the sig-
nificance of the 2009 H1N1 epidemic, which was less 
severe than expected (Monto et al., 2011). It is crucial 
that AI approaches give sufficient weight to the socie-
tal background as it must have a dramatic impact on 
the prediction of epidemics with very negative conse-
quences for the well-being of the world's population, 
if not used properly. This is very difficult to implement 
properly as generative AI, for example, has serious 
socio-political biases (Peters, 2022).

EPIDEMICS: ACCIDENTS

The importance of taking human behaviour as a pri-
ority goes beyond these general considerations. The 
manipulation of microbes and especially of their ge-
nomes can lead to the creation of dangerous infectious 
agents because laboratory practice is prone to lead to 
accidents. This has happened in the past, which is why 
health authorities in many countries have established 
strict biosafety guidelines. Although progress has been 
made over the years in preventing and mitigating acci-
dents, the situation is still far from perfect (Millett, 2023, 
2024). Because AI approaches rely on large datasets, 
in particular those available on the WWW, they can help 
identify hazardous situations that are otherwise difficult 
to detect. For example, uncovering unofficial labora-
tories working with dangerous biological samples can 
help find unexpected sources of accidents that would 
lead to epidemics (MacIntyre, 2023). Looking back at 
some of the laboratory accidents that have led to epi-
demics, it is necessary, when considering predictions, 
to examine how experiments designed to justify hope-
ful predictions from the laboratory have fared in the 
past. In virology, for example, contamination is the rule 
rather than the exception. A critical issue, however, is 
the availability of data on accidents. Political authorities 
generally tend to hide accidents or are reluctant to en-
gage in studies that might reveal situations that would 
require them to make difficult decisions. For example, 
it is only recently that diseases associated specifically 
with the meat industry have been the subject of epide-
miological studies (Tumelty et al., 2023).

Laboratory accidents have caused 
epidemics

Studies have reviewed biological laboratory acci-
dents that could have caused epidemics (Manheim 
& Lewis,  2021). These have involved bacteria, fungi 
and viruses, as well as non-conventional agents 
such as prions. For example, one study reported 309 
laboratory-acquired infections and 16 pathogen labo-
ratory escapes between 2000 and 2021 (Blacksell 
et al., 2023). Another study reviewed past accidents and 
examined their consequences (Ross & Harper, 2023). 
The way in which laboratory accidents are monitored 
and reported varies widely from country to country. 
Awareness of the severity of the problem is only re-
cent (Danchin,  2002). A noteworthy example of what 
can be done is found in Belgium, where the Belgian 
Biosafety Server (https://​www.​biosa​fety.​be/​conte​nt/​
biose​curity) is concerned with the prevention of misuse 
through loss, theft, diversion or deliberate release of 
pathogens, toxins and other biological materials. This 
is a commendable approach to accidents, and this 
knowledge should be prioritized in AI approaches to 
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epidemic surveillance. In France, by contrast, account-
ing for laboratory accidents is still in its infancy. In the 
United States, after years of deliberation by an expert 
panel and triggering negative reactions from some 
stakeholders with conflicts of interest, health authori-
ties have recently unveiled stricter rules for research on 
potentially dangerous microbes and toxins in an effort 
to prevent laboratory accidents that could trigger a pan-
demic (Ebright et al., 2024). Fortunately, the vast major-
ity of accidents did not have serious consequences, but 
important debates have been sparked by the recogni-
tion that some recent epidemics were possibly, or likely 
the result of laboratory accidents.

The 1977 influenza pandemic

The infamous H1N1 influenza virus subtype that caused 
the 1918–1919 pandemic re-emerged in the Far East 
between 1947 and 1957. H1N1 influenza viruses were 
isolated as several outbreaks were reported in the 
USSR and in China with unusual evolutionary patterns 
resulting in the low efficacy of the previous vaccines 
(Nelson et al.,  2008). Two decades later, in 1977, the 
H1N1 virus reappeared in the USSR and triggered an-
other epidemic. Surprisingly, the virus was very similar 
to the one that had circulated between 1947 and 1957 
(Nakajima et al., 1978). In addition, the epidemic spread 
rapidly, mainly affecting people under the age of 20, 
consistent with the idea that it was none other than the 
1947/1957 virus, possibly having escaped from a labora-
tory conducting vaccination experiments. Although the 
WHO confirmed that the epidemic was of natural origin 
(Kung et al., 1978), it was suggested that the virus was 
a laboratory-cultured virus (Kendal et al., 1978). Indeed, 
the H and N antigens of the virus, as well as its behav-
iour towards non-specific inhibitors, were very similar 
to those of the old H1N1 virus. Because the inference 
that it was an accident was based on circumstantial evi-
dence, in a context where local and national authorities 
would not acknowledge the fact, we do not know with 
certainty the accidental nature of the epidemic. This 
kind of fuzzy but critical information must somehow be 
included in any approach meant to predict epidemics, 
especially when using AI automata, where data quality 
is critical to generating a trustworthy result.

SARS 2003–2004

SARS emerged in Guangdong in 2002 and Hong Kong 
in 2003 following human contamination by a civet cat 
infected with a bat coronavirus. A key observation of 
the animal origin of the virus came from the widespread 
presence of the virus in animals sold at markets and the 
independent origin of several human outbreaks in south-
ern China (Cheng et  al.,  2007). Subsequently, there 

were several accidents in which laboratory staff work-
ing on coronaviruses became infected with the organ-
isms they were studying. In fact, when SARS emerged 
in 2003, it was cultured as soon as it was identified, and 
because the virus was not previously known, the way it 
was handled did not immediately require a sufficiently 
high level of containment. However, high-level safety 
measures were soon implemented, but this did not 
prevent accidents (Lim et al., 2004). Several separate 
outbreaks occurred in virology laboratories working on 
the virus: one each in Singapore and Taiwan, and four 
separate incidents at the Chinese National Institute 
of Virology in Beijing (Heymann et al., 2004). Despite 
these unacceptable accidents, the epidemic was con-
tained, largely because patients infected with SARS-
CoV-1 systematically became symptomatic with high 
fever very soon after contamination, allowing appro-
priate social distancing measures to be implemented. 
This issue of the possible laboratory origin of a pan-
demic was revisited, as we shall see, when the origin of 
COVID-19 was questioned, with the same reluctance 
to accept that it could have escaped from a laboratory.

Foot-and-mouth disease 2007

As part of the One Health vision we must monitor animal 
epidemics, especially those affecting domestic animals 
as they might spread to man. The widespread foot-and-
mouth disease (FMD) is a case in point. Epidemics of 
the disease already have a large negative economic 
impact despite its inability to affect humans. In 2007, 
Great Britain witnessed a severe outbreak of the dis-
ease, and on that occasion, the UK government recog-
nized that the epidemic, which was contained relatively 
quickly despite the contagious nature of the virus, was 
the result of a laboratory accident. Once it was ac-
cepted that it was an accident caused by the release 
of effluent from a laboratory working on a strain that 
had caused an epidemic in 1967, the movement of the 
FMD virus from farm to farm was tracked by compar-
ing full genome sequences obtained during the course 
of the epidemic. These analyses helped identification 
of the source of the outbreak, supported ongoing epi-
demiological analyses and predicted the existence of 
undetected intermediate infected premises that were 
subsequently identified (Cottam et al., 2008). A key fea-
ture for monitoring potential emerging human epidem-
ics would be to investigate diseases in butchers and 
slaughterhouse workers and feed this monitoring into 
AI-driven surveillance.

COVID-19

As with SARS in Guangdong in late 2002, it was a ru-
mour describing the spread of respiratory infections 
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that sparked the general interest in health conditions 
that developed in Wuhan in late 2019. A heated public 
debate about whether COVID-19 came from an animal 
market or a laboratory in China followed immediately. 
However, because the WWW is now plagued by an im-
mense load of fake news (Taylor, 2024), and because 
another animal coronavirus has been shown to cause a 
severe disease, MERS, the universal answer, in keep-
ing with the demands of governments everywhere, was 
that the virus must be traced to an animal origin, as had 
been demonstrated with SARS (Wu, 2023). Yet, a num-
ber of features of the SARS-CoV-2 virus and, unlike the 
situation with SARS-CoV-1 the absence of an obvious 
candidate for animal-to-human transmission, left the 
question open. It is indeed remarkable that, contrary 
to SARS which had emerged several times following 
animal-to-man contamination, SARS-CoV-2 appeared 
to have a single origin.

In addition, not only the presence of a critical site 
sensitive to furin protease in the spike protein but also 
the fact that the coding region of this site contained two 
consecutive CGG arginine codons, otherwise particu-
larly rare in this viral RNA but convenient for genome 
manipulation, supported the idea that a laboratory ac-
cident might have been at the origin of the epidemic. 
This view will remain controversial because it will be 
impossible to validate any information on the origin of 
the virus from an institute protected by the confiden-
tiality rules of ‘classified information’ of the countries 
that, at some point, participated in its construction and 
management. However, the idea of a laboratory acci-
dent has recently been revived [Chen et al., 2024 and 
see https://​www.​white​house.​gov/​ostp/​news-​updat​es/​
2024/​05/​06/​unite​d-​state​s-​gover​nment​-​polic​y-​for-​overs​
ight-​of-​dual-​use-​resea​rch-​of-​conce​rn-​and-​patho​gens-​
with-​enhan​ced-​pande​mic-​poten​tial/​]. If this pandemic 
has indeed been triggered by a laboratory accident, 
this information would be essential to inform AI ma-
chines designed to predict epidemics. The very fact 
that the information cannot be validated highlights the 
difficulty in using data-driven approaches to predict 
epidemics: data can be filtered and manipulated by all 
kinds of practices, and it can even be purely and simply 
invented.

It is not possible to predict accidents, but we have 
the means to lower their likelihood and also their im-
pact. As a result, AI automata that are supposed to help 
us predict epidemics must include in their privileged 
data collections knowledge of the efforts that attempt to 
improve the situation, for example by providing guide-
lines for the construction, management and monitoring 
of laboratories doing research with microbes. They also 
need to follow closely the development of microbial bio-
technology approaches, particularly those involving 
synthetic biology. For example, the Pathogens Project, 
launched in September 2022 during the COVID-19 
pandemic by the Bulletin of Atomic Scientists – a 

journal where James Danielli described in 1972 how 
the emergence of what we now name synthetic biol-
ogy was long overdue (Danielli, 1972) – is considering 
how to conduct responsible research with high-risk mi-
crobes (Kaiser,  2024). When looking for unexpected 
causes of pathogen outbreaks, it is even essential to 
consider agents that have been eradicated (but may be 
resurrected by synthetic biology techniques), such as 
the smallpox virus, or are on the verge of being eradi-
cated, such as the poliovirus. Indeed, the isolation of a 
virulent form of the virus from the sewage system of a 
laboratory working on the virus identified a fully vacci-
nated employee as the cause of an unknown breach of 
containment. As stated in the conclusion of the work: 
This event shows that incidents that lead to a breach 
of containment and even an infection can remain un-
noticed and not reported if routine monitoring is not 
in place. This case clearly shows that environmental 
surveillance is an essential tool to detect unnoticed 
breaches of containment and personnel infection at po-
liovirus essential facilities (Duizer et al., 2023).

Valuable but unexpected outcome of 
engineering developments

A hidden cause of accidents is that the use of microbes, 
including pathogens, in laboratory experiments offers 
significant benefits in terms of advancing knowledge 
and developing useful applications. A common appli-
cation of synthetic biology is metabolic engineering, 
which aims to increase the activity of interest of an en-
zyme, a biosynthetic pathway or a cell type of interest. 
The technologies involved are now widely used in in-
dustrial experimentation. The highest levels of produc-
tion of compounds of industrial interest, when based on 
microbes, are best achieved using organisms gener-
ated by the latest genetic engineering techniques using 
organisms of interest, without in-depth investigation of 
their pathogenicity. The final modified organisms are so 
profoundly altered that they can only survive in a pro-
tected environment so that the negative consequences 
of engineering in terms of environmental contamination 
are negligible. They are simply a continuation of the 
human activity that has developed the domestication of 
living organisms over thousands of years and domestic 
organisms are extremely rarely invasive.

Similarly, in another field, which by its very nature 
must involve pathogens, various experimental ap-
proaches have been developed to prevent infection. 
For example, the technique of vaccination has been 
continuously improved, by developing variants of the 
approach used to produce the first vaccines at the 
end of the 19th century, namely the serial propagation 
(‘passaging’) of pathogens under well-defined labora-
tory conditions. This method was successfully devel-
oped by Pasteur to produce a vaccine against rabies 
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at a time when the rabies virus had not yet been dis-
covered. This involved growing the unknown pathogen 
on cells, organs and animals (Minor, 2015). In terms of 
end product, perhaps the best example of success was 
the creation of a live virus vaccine against deadly yel-
low fever. Whilst in the early experiments the protective 
effect of a lab-generated virus retained a dangerous 
neurotropism and the process was almost abandoned, 
a mutant virus without side effects was serendipitously 
discovered in 1937. Animal experiments showed that 
the attenuated mutant was safe and immunizing. This 
breakthrough, the result of a random mutation, led to a 
strain that is still used today (Frierson, 2010). Despite 
the risk of accidents, these successes justify the use 
of pathogens developed in well-controlled laboratories. 
In many cases, however, the rationale for developing 
experiments with naturally or engineered pathogens is 
far from being validated.

Hazardous experiments: Using reverse 
genetics, gain of function and synthetic 
biology

Using advances in nucleic acid manipulation rather 
than random mutations led to the idea of designing 
new ways to attenuate pathogens for making vaccines. 
Unfortunately, the extension of these techniques to ex-
periments based on fuzzy rationales has repeatedly 
led to experiments with dangerous consequences. 
This is particularly worrying as the advent of synthetic 
biology makes it easier and easier to construct or re-
construct the genome of pathogens (Bisht et al., 2024; 
Danchin, 2002; Esvelt, 2018; Mitka, 2005). A first natu-
ral idea is to gain easy access to pathogens that are dif-
ficult to cultivate so that they can be propagated in the 
laboratory to perform experiments on their pathogenic-
ity. For example, the hepatitis C virus was long diffi-
cult to grow until a synthetic genome construct made 
it easy (Heller et  al.,  2005). Variations on this theme 
are now widely used to improve the yield of viruses in 
laboratories.

Similarly, the recent discovery of bat influenza vi-
ruses did not lend itself to straightforward experiments 
because we lacked an infectious isolate to identify their 
mode of cell entry. This was overcome by reverse ge-
netic approaches that led to the generation of an in-
fectious virus in vitro, allowing the identification of its 
unconventional cell entry port via major histocompat-
ibility complex II (MHC-II) molecules. These recon-
structed viruses were able to replicate in mice, ferrets 
and bats. Fortunately, recognizing that they could be-
come dangerous pathogens, the authors of the experi-
ment designed these synthetic recombinant bat viruses 
so that they could not reassort with conventional in-
fluenza viruses, thus preventing the acquisition of 
enhanced transmission properties in non-bat species 

(Kessler et  al.,  2024). This precaution contrasts with 
experiments developed earlier, where the very use of 
reassortment was developed in the synthetic construc-
tion of animal pathogens (Nunes et al., 2014). Reverse 
genetics of RNA viruses is today common practice and 
this multiplies the number of locations where accidents 
will eventually occur. It is therefore of the utmost im-
portance that the experiments asking for the develop-
ment of these techniques are rationally valid. Perhaps 
unsurprisingly, naive, dangerous views are captured by 
AI and occasionally disseminated, leading to misper-
ceptions of danger. Worse, ML is being used to gener-
ate efficient synthetic constructs without much caveats 
(Vindman et al., 2024).

A particularly dangerous type of experiment involves 
a so-called ‘gain of function’ (GoF) where the organism 
of interest has changed its metabolic activity, host, tro-
pism or virulence after natural or artificial evolution in the 
laboratory (Rodan et al., 2018; Rozo & Gronvall, 2015; 
Schuerger et al., 2023). Because it is easy to grow the 
organisms of interest on human cells, where they prop-
agate poorly at first, and then retain their progeny as 
they become more infectious, the naive view is that 
characterizing them will enable researchers to gener-
ate appropriate defences [see the view proposed by 
the American Society of Microbiology: https://​asm.​org/​
Repor​ts/​Impac​t-​Asses​sment​-​of-​Resea​rch-​on-​Infec​
tious​-​Agents, possibly derived from the success of the 
way in which a current practice, vaccination, has devel-
oped]. This uncritical view overlooks the inevitability of 
laboratory accidents and the plausible dual use of this 
research. It is not possible to prepare for the next pan-
demic by building pathogenic viruses. The hypothesis 
of the expected benefits of GoF is based on a belief that 
will be particularly difficult for AI automata to evaluate.

Indeed, without stating this explicitly, the optimistic 
view assumes that the way life behaves is similar to 
mechanics, where what is determined is predictable. 
However, by construction, life and its consequences 
have evolved in such a way as to cope with the unfore-
seen by producing the unpredictable. The idea that we 
should be able to design experiments that would allow 
us to predict the future of a pathogen is based on a mis-
understanding of what life is, compounded by the usual 
human hubris that seems to affect the scientific com-
munity. How did this opinion come about? Attenuation, 
the loss of pathogenicity of a virus, shows that devel-
oping cultures under different conditions in the labo-
ratory can have some predictive power. However, as 
observed with the yellow fever vaccine, the most inter-
esting result was not expected. In fact, despite the mul-
tiplication of experiments of the same type with other 
infectious agents, success was quite rare. Moreover, 
some experiments designed to understand the atten-
uation of a pathogen found the opposite, an increase 
in virulence (Jaeger et  al.,  2023; Yang et  al.,  2022). 
Worse, a common goal of GoF experiments is to direct 
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mutations in pathogens towards forms that are even 
more pathogenic. It is also possible to synthesize de 
novo infectious agents that do not exist in nature, ex-
pecting that man-made viruses placed in a natural envi-
ronment will be highly virulent. The claimed aim of this 
type of work is to study this new virulence to propose 
countermeasures. In summary, GoF research has seri-
ous consequences: it is making the world a more dan-
gerous place by introducing an organism designed to 
be dangerous.

Indeed, there is absolutely no guarantee that the 
next pandemic virus will follow any of the paths mapped 
out by this type of research. The world did not antic-
ipate either the COVID-19 pandemic, SARS in 2003, 
or MERS, with its dromedary host, in 2012. The 2003 
SARS episode did not become a pandemic for one 
simple reason: infected people became symptomatic 
almost immediately. A simple change in this situation – 
as we saw with COVID-19 – would dramatically change 
the prediction. The GoF experiments on coronaviruses 
did nothing to combat the COVID-19 pandemic. Instead 
of developing highly dangerous experiments, it is time 
for virologists to stop reading coffee grounds and get 
down to understanding viruses to fight them. They have 
already achieved remarkable success with SARS-
CoV-2 in terms of rapid diagnostics and, in particular 
using synthetic biology, vaccines and limited success 
with antiviral drugs. A long-known virus, the Zika virus, 
crossed the Pacific to Brazil and then the Caribbean. 
That it could reach the southeastern United States 
was frightening. This did not happen, and the virus is 
rarely mentioned today. Until the next time. Similarly, 
flu experts did not predict where the 2009 flu pandemic 
would originate. As every year, it was expected to origi-
nate from an avian virus from South-East Asia. It turned 
out in pigs in northwest Mexico. Ebola had only been 
seen in Central Africa, and no one predicted the Ebola 
epidemic in West Africa in 2013–2016. Yet this is the 
largest Ebola epidemic ever recorded. Finally, mpox 
suddenly spread in 2022, although the virus had been 
endemic for a very long time. By 2023, it had virtually 
returned to its previous state, although the cause of its 
disappearance is unclear and there are signs that it 
may spread again.

PROSPECTIVE: WHAT IF?

Whilst the COVID-19 pandemic came as a surprise 
to many, the idea that a SARS-related disease would 
cause a severe outbreak was not a complete surprise 
(Turinici & Danchin, 2007). However, its origin is still un-
clear and will remain so for a long time. Essentially what 
we have explored here is the idea that the next pan-
demic is likely to involve a virus, and we have proposed 
a series of prompts that could be used to help predict 
future epidemics using AI automata. This approach, 

based on explainable AI, is based on the idea that prior 
knowledge, embedded in the vast amount of data that 
is continuously produced, is sufficient to achieve the 
desired goal. It follows the traditional combination of 
hypothesis-driven deduction with fact-driven induc-
tion. But what if the new epidemic involves an unknown 
combination of pathogens and extraordinary circum-
stances? Here we have an original way to harness for 
the good the power of the generative AI about which we 
have warned. Indeed, when we lack direction, it is use-
ful to turn to an abductive approach, and generative AI 
displays just the skill that will help us generate plausible 
but surprising scenarios of what might happen.

Of course, many other types of pathogens that 
cause ‘disease X’ could also lead to large emergent 
outbreaks. These include not only viruses that spread 
through P2P, but also vector-borne viruses, bacteria 
(which could also be vector-borne), fungi, parasites and 
even unconventional agents such as prions. Bacteria 
and parasites have caused major epidemics, including 
pandemics, in the past. The word ‘plague’, used to de-
scribe any epidemic, testifies to this worrying situation. 
Today, their distribution is limited to certain regions 
of the world, particularly low-income countries, along 
with specific venues such as hospitals, where severe 
fungal infections also occur. The reason why they are 
less of a concern than viruses is that, in the case of 
bacteria, antibiotics have been effective for decades. 
The situation may be changing as pathogenic bacte-
ria have evolved a large panel of antibiotic resistance, 
culminating in some organisms that are resistant to 
all known antibiotics. This situation, which is a mat-
ter of great concern (Baral & Mozafari, 2020; Gray & 
Wenzel, 2020; Pu et al., 2023), has triggered a number 
of studies (Chen et al., 2023), some of which involving 
AI (Awan et al., 2024; Coxe & Azad, 2023). The future 
role of pathogenic fungi is more difficult to assess and 
epidemics are more limited, particularly in immunocom-
promised individuals (Kobayashi, 1996). However, it is 
important to note that a pathogenic fungus rarely ob-
served until recently, Candida auris, is possibly spread-
ing out of control (Osaigbovo et al., 2024).

Many disease epidemics are closely linked to the 
presence of specific insect vectors, against which a va-
riety of effective insecticides have been used. Global 
change is expanding the distribution of insect vectors 
across the planet, creating another potential source 
of epidemics. Over time, insects become resistant to 
a wide range of insecticides, many of which are toxic 
to humans. Typhus or plague remained localized dis-
eases with the use of DDT against lice and fleas. DDT 
is now banned, but a number of new compounds have 
been developed with considerable success. Ticks can 
also be controlled locally, but there is an ongoing se-
lection pressure that alters their microbiota and affects 
their host choice (Sun et  al.,  2024). Whilst this could 
hopefully be harnessed to control ticks, it is also a 
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driver of pathogenic innovation. Viruses co-evolve with 
their insect hosts, and it is not unlikely that new viral 
behaviours will emerge as the host changes its bio-
tope and prey. Flying insects, especially mosquitoes, 
are greatly expanding their range. There appear to be 
cases where direct vertebrate-to-human infection re-
places infection of a human host by an insect vector 
(Li et al., 2024). This rare situation is of the type that 
can generate new epidemics in completely unexpected 
ways. Finally, we should even imagine entirely new 
scenarios. What if prion diseases were transmitted by 
unconventional vectors such as parasites with brain 
tropism? Whilst this hypothesis has not been seriously 
investigated – which means that AI machines would 
probably have missed it too – the presence of small 
outbreaks of prion disease in wildlife remains unex-
plained (Gallardo & Delgado, 2021). Furthermore, the 
very different patterns of prion infection in cows in geo-
graphically neighbouring countries (United Kingdom 
and continental Europe) calls for a deep understanding 
of the infection pattern (Ng et al., 2007). Consideration 
of this strange scenario seems imperative, as a serious 
new epidemic will push the limits of our current conven-
tional understanding.
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