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Abstract: Backtracking counterfactuals are problem cases for the standard, similarity based,
theories of counterfactuals (e.g. Lewis, 1979). These theories usually need to employ extra-
assumptions to deal with those cases (e.g. “the standard resolution of vagueness” in Lewis, 1979).
Hiddleston (2005) proposes a causal theory of counterfactuals that, supposedly, deals well with
backtracking. The main advantage of the causal theory is that it provides a unified account for
backtracking and non-backtracking counterfactuals (no extra-assumption is needed). In this paper,
I present a backtracking counterfactual that is a problem case for Hiddleston’s account. Then I
propose an informational theory of counterfactuals, which deals well with this problem case while
mantaining the main advantage of Hiddleston’s account (the unified account for backtracking and
non-backtracking counterfactuals). In addition, the informational theory offers a general theory of
backtracking that provides clues for the semantics and epistemology of counterfactuals. I propose
that backtracking is reasonable when the (possibly non-actual) state of affairs expressed in the an-
tecedent of a counterfactual transmits less information about an event in the past than the actual
state of affairs. Keywords: Backtracking counterfactuals; Causal models; Information theory;
Epistemology of modality.

Introduction

Backtracking counterfactuals admit counterfactual reasoning that claims that if things had been
different at some time t1, they would also have been different at some earlier time t0 (‘backtrack-
ing’). Consider the following situation, described by Jackson (1977): you see your friend Smith
on the ledge of a twenty story building. You are afraid that he is going to jump, but (thankfully)
Smith steps down and exits the building safely. You note that there was nothing underneath him
besides the solid concrete of the sidewalk and conclude: “if Smith had jumped, he would have
died”. This is a non-backtracking counterfactual. Your friend Beth saw everything and disagrees
with you. She argues that Smith is “a very rational person” and, had he jumped, there would
have been a net underneath him to catch him safely. She concludes: “if Smith had jumped, he
would have lived”. This is a backtracking counterfactual. When it is reasonable to backtrack from
a counterfactual is an issue for both the semantics and epistemology of counterfactuals.

Hiddleston (2005) proposes a causal theory of counterfactuals that, suposedly, deals well with
backtracking. The main advantage of the causal theory is that it provides a unified account
for backtracking and non-backtracking counterfactuals. In this paper, I present a backtracking
counterfactual (case 3 in sec. 1) that is a problem case for Hiddleston’s account (section 1). Then
I propose an informational theory of counterfactuals, which deals well with this problem case while
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mantaining the main advantage of Hiddleston’s account (the unified account for backtracking
and non-backtracking counterfactuals, section 2)1. In section 3, I propose a general theory of
backtracking that provides clues for the semantics and epistemology of counterfactuals. I propose
that backtracking is reasonable when the (possibly non-actual) state of affairs expressed in the
antecedent of a counterfactual transmits less information about an event in the past than the
actual state of affairs.

1 The causal theory of counterfactuals

Hiddleston (2005) develops a theory of counterfactuals using causal models of roughly the same
sort as those used in Pearl (1988), Spirtes et al. (2000), and Glymour (1987). In evaluating a
counterfactual of the type ‘if φ had been, then ψ would have been’ (φ �→ ψ), Hiddleston starts
building a causal model of the actual situation (‘actual model’). Then he introduces minimally
altered models where φ is true (‘counterfactual models’). The counterfactual models are built by
introducing minimal causal breaks in the actual model and following the causal consequences of
the breaks. If ψ is true in all counterfactual models, then the counterfactual φ �→ ψ is true in
the actual model.

A causal model M is a triple 〈G,E,A〉. The first element of a model, G, is a direct acyclic
graph composed of nodes representing variables for events and edges representing causal relations2.
Let the parents of a node X in M (paM(X)) be the set of nodes with edges into X. The second
element of a model, E, is a set of equations of the form (Y1 = y1 ∧ ...∧ Yn = yn)⇒ p(X = x) = z,
where the Yi are all the members of paM(X), the yi are their respective values in the model (see
A), z is the objective probability of X having the value x, and⇒ is a strict conditional. The set E
must contain equations relating all possible values of all variables in G to all possible combinations
of values for all of their parents. The third element of a model, A, is an assignment of values for
all variables in G. The assignment A must be possible given the equations in E3.

Hiddleston offers a notion of direct positive influence that is used to characterize the notions
of a causal break and of a minimally altered model. Let M be an actual model with A containing
actual values for all variables in G. Let M ′,M ′′, ... be counterfactual models that differ from M
only in having A′, A′′, etc with non-actual values for some variables in G′ = G,G′′ = G, etc (also,
E ′ = E,E ′′ = E, etc). The notion of direct positive influence would therefore be:

Definition 1. Direct positive influence: Let M be a model in which X = x is a parent of
Y = y and the other parents of Y = y are in ~Z = ~z. Let M ′ be identical to M except that
X = x′ in M ′. Then X = x has direct positive influence on Y = y in M relative to M ′ iff
p(Y = y|X = x, ~Z = ~z) > p(Y = y|X = x′, ~Z = ~z).

Let the positive parents of Y = y in M be the set ppaM(Y ) = {X : X = x has direct positive
influence on Y = y in M}. Then the notion of a causal break is the following:

Definition 2. Causal break: A causal break in M ′ relative to M is a variable Y such that
A′(Y ) 6= A(Y ) and, for every X ∈ ppaM(Y ), A′(X) = A(X).

1In the following, ‘the causal theory’ denotes Hiddleston’s causal theory of counterfactuals and ‘the informational
theory’ denotes the informational theory of counterfactuals proposed here. The theory in Shannon (1948) is referred
as ‘information theory’.

2A directed acyclic graph is a collection of nodes and directed edges in which the edges connect nodes such that
it is impossible to start at a node n and follow a sequence of edges that loops back to n.

3In other words, A cannot assign a value A(X) to a variable X ∈ G if, according to E, p(A(X)|A(pa(X))) = 0.
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In other words, a causal break occurs in a counterfactual model M ′ relative to an actual model
M when a variable Y has a non-actual value in M ′ whereas all of its positive parents maintain
their actual value in M ′4. In this context, Hiddleston defines two sets:

Break(M ′,M) = {Y : Y is a causal break in M ′ relative to M}.
Intact(M ′,M) = {Y : A′(Y ) = A(Y ) and for all X ∈ ppaM(Y ), A′(X) = A(X)}.

The next step is the characterization of the notion of a minimally altered model. Let a φ-
model be a model in which φ is true, where φ is either atomic (X = x) or a complex (negation,
conjunction, etc). Break(M ′,M) is minimal among φ-models iff there is no φ-model M ′′ such
that Break(M ′′,M) ⊂ Break(M ′,M). Intact(M ′,M) is maximal among φ-models iff there is no
φ-model M ′′ such that Intact(M ′,M) ⊂ Intact(M ′′,M)5. Then the notion of a φ-minimal model
is the following:

Definition 3. φ-Minimal model: M ′ is φ-minimal relative to M iff

(a) M ′ is a φ-model;

(b) for Z, the set of variables that are not descendants of φ, Intact(M ′,M) ∩ Z is maximal
among φ-models6; and

(c) Break(M ′,M) is minimal among φ-models.

If φ is true in M , then M is the φ-minimal model relative to M and {} is the minimal Break.
Finally, this is Hiddleston’s causal theory:

Definition 4. Causal theory of counterfactuals: A counterfactual φ �→ ψ is true in a model
M iff ψ is true in all φ-minimal models M ′.

A counterfactual φ �→ ψ is true of a case C iff φ �→ ψ is true in M and M is an adequate
model of C. M is an adequate model of C when (i) the properties represented in M are instantiated
by the objects in C, (ii) the causal laws used in M are accurate (enough) for C, and (iii) M is
complete enough to accurately represent the causal relations between the events of C that appear
in M (Hiddleston, 2005, p. 648). In the following, I will not discuss the adequacy of models to
cases, but only Hiddleston’s theory for when a counterfactual is true in a model.

Case 1

Suppose that the boss will randomly draw the name of an employee a, b, c, or d from
a jar and write that name in a memo for a promotion. Suppose that a will randomly
bet that the name of a specific colleague will appear in the memo. Suppose that c was
drawn from the jar, c is written in the memo, a bet on d and a lost the bet.

The question is: ‘if d were in the memo, then a would win the bet?’ (Memo = d �→ Win = 1?).
Hiddleston’s answer is ‘yes’ and I think that this answer is correct. This answer is depicted in

4It follows that if Y has no parents, then any change in Y is a causal break.
5‘Minimal’ and ‘maximal’ are measured using set-inclusion rather than the number of breaks/intacts. In this

context, two different Break/Intact(M ′,M) and Break/Intact(M ′′,M) may be both minimal/maximal.
6A child is a descendant; a child of a descendant is a descendant.
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Jar = c

Memo = c Bet = d

Win = 0
(M1)

Jar = d

Memo = d Bet = d

Win = 1
(M1′) Equations

p(Jar = x) = .25
p(Bet = x) = .25
Jar = x⇒Memo = x
Memo = Bet⇒ Win = 1
Memo 6= Bet⇒ Win = 0

Figure 1: M1 is an actual model of case 1 and M1′ is the only (Memo = d)-minimal model
allowed, where x ∈ {a, b, c, d}. Break(M1′,M1) = {Jar} and Intact(M1′,M1) ∩ Z = {Bet}.

figure 1. M1 is an actual model of case 1 and M1′ is the only (Memo = d)-minimal model allowed.
Break(M1′,M1) = {Jar} is the only minimal Break possible because Jar needs to be in Break,
otherwise Memo = d would be impossible. Intact(M1′,M1) ∩ Z = {Bet} is the only maximal
Intact possible because Bet and Jar are the only members of Z and Jar must be in Break. As a
consequence, M1′ is the only (Memo = d)-minimal model allowed. Win = 1 is true in M1′. Then
Memo = d �→ Win = 1 is true in M1. This answer involves backtracking from Memo = d to
Jar = d (in M1′).

I think that this answer is correct for two reasons. The first reason, I think, is that the answer
seems to be correct: since Win = 1 iff Bet = Memo, it seems to be true that if Memo had the
same value that Bet actually has, then Win would be 1 (Memo = d �→ Win = 1). The second
reason is that there is a symmetry between Memo = d �→ Win = 1 and Bet = c �→ Win = 1:
since Win = 1 iff Bet = Memo, asking whether Win would be 1 if Memo had the same value
that Bet actually has (Memo = d �→ Win = 1) and asking whether Win would be 1 if Bet had
the same value that Memo actually has (Bet = c �→ Win = 1) seems to be two different ways of
asking the same question. Both Memo = d �→ Win = 1 and Bet = c �→ Win = 1 are true in
Hiddleston’s account and this is a good result.

Case 2

Suppose that the boss will randomly draw the name of an employee a, b, c, or d from
a jar and intends to write that name in a memo for a promotion. But the boss has
dyslexia. If c is drawn, she will write c with probability .01 or d with probability .99.
If d is drawn, she will write d with probability .01 and c with probability .99. Suppose
that a will randomly bet that the name of a specific colleague will appear in the memo.
Suppose that d was drawn from the jar, c is written in the memo, a bet on d and a
lost the bet.

The question is: ‘if d were in the memo, then a would win the bet?’ (Memo = d �→
Win = 1?). Hiddleston’s answer is ‘yes’ and I think that this answer is correct. This answer
is depicted in figure 2. M2 is an actual model of case 2 and M2′ is the only (Memo = d)-
minimal model allowed. Break(M2′,M2) = {Memo} is minimal because either Memo or Jar
need to be in Break, otherwise M2′ would not be a (Memo = d)-model. Intact(M2′,M2) ∩ Z =
{Bet, Jar} is the only maximal Intact possible because Bet and Jar are the only members of Z
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Jar = d

Memo = c Bet = d

Win = 0
(M2)

Jar = d

Memo = d Bet = d

Win = 1
(M2′)

Equations
p(Jar = x) = .25
p(Bet = x) = .25
Jar = y ⇒Memo = y
Jar = c⇒ p(Memo = c) = .01
Jar = c⇒ p(Memo = d) = .99
Jar = d⇒ p(Memo = d) = .01
Jar = d⇒ p(Memo = c) = .99
Memo = Bet⇒ Win = 1
Memo 6= Bet⇒ Win = 0

Figure 2: M2 is an actual model of case 2 and M2′ is the only (Memo = d)-minimal model allowed,
where x ∈ {a, b, c, d} and y ∈ {a, b}. Break(M2′,M2) = {Memo} and Intact(M2′,M2) ∩ Z =
{Bet, Jar}.

and both are in Intact(M2′,M2) ∩ Z. If Jar were in a Break(M2′′,M2), then Jar would not be
in Intact(M2′′,M2)∩Z and Intact(M2′′,M2)∩Z would not be maximal. As a consequence, M2′

is the only (Memo = d)-minimal model allowed. Win = 1 is true in M2′. Then Memo = d �→
Win = 1 is true in M2. This answer does not involve backtracking.

I think that this answer is correct for two reasons. The first reason, I think, is that the answer
seems to be correct: since Win = 1 iff Bet = Memo, it seems to be true that if Memo had the
same value that Bet actually has, then Win would be 1 (Memo = d �→ Win = 1). The second
reason is that there is a symmetry between Memo = d �→ Win = 1 and Bet = c �→ Win = 1:
since Win = 1 iff Bet = Memo, asking whether Win would be 1 if Memo had the same value
that Bet actually has (Memo = d �→ Win = 1) and asking whether Win would be 1 if Bet had
the same value that Memo actually has (Bet = c �→ Win = 1) seems to be two different ways of
asking the same question. Both Memo = d �→ Win = 1 and Bet = c �→ Win = 1 are true in
Hiddleston’s account and this is a good result.

Case 3

Suppose that the boss will randomly draw the name of an employee a, b, c, or d from
a jar and intends to write that name in a memo for a promotion. But the boss has
dyslexia. If c is drawn, she will write c with probability .01 or d with probability .99.
If d is drawn, she will write d with probability .01 or c with probability .99. Suppose
that a has an infallible method to know which name was drawn from the jar. She will
bet that this name is in the memo. Suppose that d was drawn from the jar, c is written
in the memo, a bet on d and a lost the bet.

The question is: ‘if d were in the memo, then a would win the bet?’ (Memo = d �→
Win = 1?). Hiddleston’s answer is ‘yes’ and I think that this answer is incorrect. This answer
is depicted in figure 3. M3 is an actual model of case 3 and M3′ is the only (Memo = d)-
minimal model allowed. Break(M3′,M3) = {Memo} is minimal because either Memo or Jar
need to be in Break, otherwise M3′ would not be a (Memo = d)-model. Intact(M3′,M3) ∩ Z =
{Bet, Jar} is the only maximal Intact possible because Bet and Jar are the only members of Z
and both are in Intact(M3′,M3) ∩ Z. If Jar were in a Break(M3′′,M3), then Jar would not be
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Jar = d

Memo = c Bet = d

Win = 0
(M3)

Jar = d

Memo = d Bet = d

Win = 1
(M3′)

Equations
p(Jar = x) = .25
Jar = x⇒ Bet = x
Jar = y ⇒Memo = y
Jar = c⇒ p(Memo = c) = .01
Jar = c⇒ p(Memo = d) = .99
Jar = d⇒ p(Memo = d) = .01
Jar = d⇒ p(Memo = c) = .99
Memo = Bet⇒ Win = 1
Memo 6= Bet⇒ Win = 0

Figure 3: M3 is an actual model of case 3 and M3′ is the only (Memo = d)-minimal model allowed,
where x ∈ {a, b, c, d} and y ∈ {a, b}. Break(M3′,M3) = {Memo} and Intact(M3′,M3) ∩ Z =
{Bet, Jar}.

in Intact(M3′′,M3)∩Z and Intact(M3′′,M3)∩Z would not be maximal. As a consequence, M3′

is the only (Memo = d)-minimal model allowed. Win = 1 is true in M3′. Then Memo = d �→
Win = 1 is true in M3. This answer does not involve backtracking.

I think that this answer is incorrect for two reasons. The first reason, I think, is that this
counterfactual seems to admit backtracking: if Memo = d, then, most probably, Jar = c, which
entails that Bet = c and Win = 0. I think that this is good reasoning because Memo = d is a good
reason (as good as any non-conclusive reason) for Jar 6= d and for Jar = c (p(Jar = d|Memo =
d) = .01 < p(Jar 6= d|Memo = d) = p(Jar = c|Memo = d) = .99). Hiddleston defends a similar
line of reasoning in discussing his example #4:

Example #4: Alice offers Ben a bet on a coin toss, but this time Alice can influence
its outcome. Ben bets tails. Hoping to win, Alice flips the coin so that it has a higher
chance (.8, say) of landing heads. It does land heads. She says to Ben, ‘If you had bet
heads, then you would have won’. That seems false.

The second reason has to do with the symmetry between Memo = d �→ Win = 1 and
Bet = c �→ Win = 1. In Hiddleston’s account, Memo = d �→ Win = 1 is true, but Bet =
c �→ Win = 1 is false7. However, since Win = 1 iff Bet = Memo, asking whether Win would be 1
if Memo had the same value that Bet actually has (Memo = d �→ Win = 1) and asking whether
Win would be 1 if Bet had the same value that Memo actually has (Bet = c �→ Win = 1) seems
to be two different ways of asking the same question. This is a bad result.

2 The informational theory of counterfactuals

The causal theory fails in case 3 because, in this case, there is a relevant positive influence between
Memo and Bet that is different from Hiddleston’s direct positive influence. However, while Memo
and Bet are not positive parents of each other, they are dependent nevertheless. Two variables X
and Y are independent (X ⊥ Y ) iff their joint probability equals the product of their probabilities

7If Bet = c, then Jar must be c. Then there are two (Bet = c)-minimal models: one in which Memo = c and
another in which Memo = d (Break and Intact are equal in both models because the value of Jar has changed).
The value of Win is 1 in the first model, but 0 in the second. Then Bet = c �→Win = 1 is false in M3.
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(i.e. X ⊥ Y iff p(X = x, Y = y) = p(X = x)p(Y = y)). In case 3, p(Memo = c, Bet =
d) = .247 6= p(Memo = c)p(Bet = d) = .062. Then Memo 6⊥ Bet. This is what generates the
problem for Hiddleston’s account. In order to evaluate case 3 correctly, a theory needs to take into
account all relations of dependence. In this section, I propose a theory of counterfactuals based
on information theory which takes into account the dependence relation.

Information theory (Shannon, 1948) provides a measure of how much information is associated
with a given state of affairs. The amount of information associated with a proposition X = x
(i(X = x)) is calculated as follows8:

i(X = x) = −log2(p(X = x)).

Pointwise mutual information (PMI) is a measure of the mutual information between two
propositions, which accounts for dependence. The PMI between two propositions X = x and
Y = y (pmi(X = x;Y = y)) is calculated as follows:

pmi(X = x;Y = y) = i(X = x) + i(Y = y)− i(X = x, Y = y)

= −log2(p(X = x))− log2(p(Y = y)) + log2(p(X = x, Y = y)).

The PMI between X = x and Y = y is such that −∞ ≤ pmi(X = x;Y = y) ≤ min(i(X =
x), i(Y = y)). If pmi(X = x;Y = y) < 0, then X = x and Y = y are negatively correlated. If
pmi(X = x;Y = y) = 0, then X = x and Y = y are independent. If pmi(X = x;Y = y) > 0, then
X = x and Y = y are positively correlated. The PMI between two propositions X = x and Y = y
conditional to some propositions ~Z = ~z (pmi(X = x;Y = y|~Z = ~z)) is calculated as follows:

pmi(X = x;Y = y|~Z = ~z) =− log2(p(X = x|~Z = ~z))− log2(p(Y = y|~Z = ~z))

+ log2(p(X = x, Y = y|~Z = ~z)).

In this context, the informational theory is as follows:

Definition 5. Informational theory of counterfactuals: Let M be an actual model with the
actual values X = x and Y = y. Consider a counterfactual X = x′ �→ Y = y′. The evaluation of
a counterfactual is as follows:

1. Check whether the antecedent X = x′ is true in M (whether x′ = x);

(a) If yes, check whether Y = y′ is also true in M (whether y′ = y). If yes, return ‘true’;
otherwise, return ‘false’.

(b) If not, do the following:

i. For every Z = z in M (Z 6= X), check whether pmi(X = x′;Z = z| ~W = ~w) ≥
pmi(X = x;Z = z| ~W = ~w), where ~W = ~w are the parents of Z = z that are in
Holdfix. If yes, add Z to the set Holdfix. If not, do nothing.

ii. Build all (X = x′)-models that are consistent with the equations in M and in which
all variables in Holdfix maintain their actual values.

iii. If Y = y′ is true in all of these models, return ‘true’; return ‘false’ otherwise.
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Jar = d

Memo = c Bet = d

Win = 0
(M3)

Jar = c

Memo = d Bet = c

Win = 0
(M3′′)

Equations
p(Jar = x) = .25
Jar = x⇒ Bet = x
Jar = y ⇒Memo = y
Jar = c⇒ p(Memo = c) = .01
Jar = c⇒ p(Memo = d) = .99
Jar = d⇒ p(Memo = d) = .01
Jar = d⇒ p(Memo = c) = .99
Memo = Bet⇒ Win = 1
Memo 6= Bet⇒ Win = 0

Figure 4: M3 is an actual model of case 3. M3′′ is the only (Memo = d)-counterfactual model
allowed according to the informational theory (Holdfix = {Win}).

Case 3 again

The question was: ‘if d were in the memo, then a would win the bet?’ (Memo = d �→
Win = 1?). The answer from the informational theory is ‘no’ and I think that this answer is
correct. This answer is depicted in figure 4. M3 is an actual model of case 3 and M3′′ is the
only (Memo = d)-counterfactual model allowed. Jar is not in Holdfix because pmi(Memo =
d; Jar = d) = −4.634 < pmi(Memo = c; Jar = d) = 1.985. Bet is not in Holdfix because
pmi(Memo = d;Bet = d) = −4.634 < pmi(Memo = c;Bet = d) = 1.985. Win is in Holdfix be-
cause pmi(Memo = d;Win = 0) = pmi(Memo = c;Win = 0) = .971. Then Holdfix = {Win}.
M3′′ is the only (Memo = d)-counterfactual model compatible with the equations in M3 and
in which all variables in Holdfix maintain their actual values. Win = 1 is false in M3′′. Then
Memo = d �→ Win = 1 is false in M3. This answer involves backtracking from Memo = d to
Jar = c.

I think that this answer is correct for two reasons. The first reason, I think, is that this
counterfactual seems to admit backtracking: if Memo = d, then, most probably, Jar = c, which
entails that Bet = c and Win = 0. I think that this is good reasoning because Memo = d is
a good reason (as good as any non-conclusive reason) for Jar 6= d and for Jar = c (p(Jar =
d|Memo = d) = .01 < p(Jar 6= d|Memo = d) = p(Jar = c|Memo = d) = .99). This backtracking
reasoning is represented in model M3′′. The second reason is that there is a symmetry between
Memo = d �→ Win = 1 and Bet = c �→ Win = 1: since Win = 1 iff Bet = Memo, asking
whether Win would be 1 if Memo had the same value that Bet actually has (Memo = d �→
Win = 1) and asking whether Win would be 1 if Bet had the same value that Memo actually
has (Bet = c �→ Win = 1) seems to be two different ways of asking the same question. From the
perspective of informational theory, Memo = d �→ Win = 1 and Bet = c �→ Win = 1 are both
false9. This is a good result.

8All the definitions in this section may be easily adapted to complex propositions (negations, conjunctions, etc).
9Jar is not in Holdfix because pmi(Bet = c; Jar = d) ≈ −∞ < pmi(Bet = d; Jar = d) = 2. Memo is not

in Holdfix because pmi(Bet = c;Memo = c) = −4.634 < pmi(Bet = d;Memo = c) = 1.985. Win is in Holdfix
because pmi(Bet = c;Win = 0) = pmi(Bet = d;Win = 0) = .971. Then M3′′ is the only (Memo = d)-model
compatible with the equations of M3 and with actual values for all variables in Holdfix. Win = 1 is false in M3′′.
Therefore Bet = c �→Win = 1 is false in M3.
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The other cases

The causal and the informational theories evaluate a counterfactual φ �→ ψ following roughly
the same steps: first, check whether there is a change in the actual value of φ; if yes, execute a
procedure to check whether the uncertainty regarding that value propagates to other variables;
finally, build all allowed φ-models given the equations in the actual model. The counterfactual
φ �→ ψ is true iff ψ is true in all such models. Propagation may be forward (from ancestor
to descendant) or backward (from descendant to ancestor) and may occur via deterministic or
nondeterministic relations10.

Almost all propagation in the causal theory is forward. The reason is that the only causal
influence considered in Hiddleston’s account is positive parenthood, which is forward. The cases
of forward propagation in the causal theory are exactly the cases of forward propagation in the
informational theory. The cases of forward propagation in the causal theory are cases in which
X = x is a positive parent of Y = y. If X = x is a positive parent of Y = y, then p(Y = y|X =

x, ~Z = ~z) > p(Y = y|X = x′, ~Z = ~z) (def. 1). The following equivalences hold:

p(Y = y|X = x, ~Z = ~z) >p(Y = y|X = x′, ~Z = ~z)⇔
>p(Y = y,X = x′, ~Z = ~z)/p(X = x′, ~Z = ~z)⇔
>[p(Y = y,X = x′|~Z = ~z)p(~Z = ~z)]/[p(X = x′|~Z = ~z)p(~Z = ~z)]⇔
>− log2(p(X = x′|~Z = ~z)) + log2(p(X = x′, Y = y|~Z = ~z))⇔
>− log2(p(X = x′|~Z = ~z))− log2(p(Y = y|~Z = ~z))

+ log2(p(X = x′, Y = y|~Z = ~z))⇔
pmi(X = x;Y = y|~Z = ~z) >pmi(X = x′;Y = y|~Z = ~z)⇔

¬(pmi(X = x′;Y = y|~Z = ~z) ≥pmi(X = x;Y = y|~Z = ~z)).

Then p(Y = y|X = x, ~Z = ~z) > p(Y = y|X = x′, ~Z = ~z) iff ¬(pmi(X = x′;Y = y|~Z =

~z) ≥ pmi(X = x;Y = y|~Z = ~z). In the informational theory, Y is not in Holdfix iff ¬(pmi(X =

x′;Y = y|~Z = ~z) ≥ pmi(X = x;Y = y|~Z = ~z)). These are the cases of forward propagation in the
informational theory (def. 5). As a consequence, the cases of forward propagation in the causal
theory are exactly the cases of forward propagation in the informational theory.

There is some backward propagation in the causal theory. This backward propagation, however,
only occurs through deterministic relations. The reason is that, in Hiddleston’s account, backward
propagation does not happen directly because of any causal influence considered in the theory (e.g.
positive parenthood), but rather because of the procedure for selecting the allowed counterfactual
models given the equations in the actual model11. Since this procedure is the same in both
the causal and informational theories , the cases of deterministic backward propagation in the
causal theory are exactly the cases of deterministic backward propagation in the informational
theory. Then the causal and the informational theories agree in all cases of forward propagation
on uncertainty and in all cases of deterministic backward propagation.

The two theories may disagree in cases of backward propagation through nondeterministic
relations. These cases occur in the informational theory, but do not occur in the causal theory.

10The ancestors of a node X are the nodes Y such that X is a descendant of Y .
11If the relation between parent and child is deterministic, a change in the child may force a change in the parent

because, otherwise, the resulting model may not be allowed given the equations in the actual model.
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For example, the informational (but not the causal) theory considers backward propagation from
Memo = d to Jar = c in case 2. The consequence of this disagreement is that the causal and
the informational theories may return different results about backtracking. For example, the
informational (but not the causal) theory advises backtracking from Memo = d to Jar = c in case
2. The divergence regarding backward propagation, however, does not necessarily generate different
results. For example, in case 2, the theories agree that the counterfactual Memo = d �→ Win = 1
is true.

The theories return different results for two groups of cases. The first group is composed of
counterfactuals that are manifestly backtracking (the antecedent of the counterfactual is a de-
scendant of the consequent, e.g. Memo = d �→ Jar = d in case 2.), but it seems reasonable
to backtrack when evaluating a manifestly backtracking counterfactual. Since the theories may
disagree in cases of nondeterministic backward propagation, they may also disagree in cases of
forward-backward and backward-forward propagation when the backward propagation is nonde-
terministic12. These cases may occur in situations of nondeterministic siblings (this is the second
group of cases)13. In these cases, the theories may return different results even for non-manifestly
backtracking counterfactuals. These are the least consensual cases. At least in some of these cases,
I think that the informational theory is correct. For example, I think that the informational theory
is correct in case 3, which is a case of backward-forward propagation where Memo and Bet are
nondeterministic siblings.

It is difficult to assess the general situation of these two theories regarding cases involving
nondeterministic siblings because these cases are not common in the literature. For example,
there is not a single case of nondeterministic siblings among the examples discussed in Hiddleston
(2005). Examples 1−7 do not present siblings. In examples 4 and 7, Coin/Dice and Win share a
common ancestor Bet, but they are not siblings because Coin/Dice is a parent of Win (figure 5).
There is a case that Hiddleston discusses outside the main examples that presents siblings (figure
5). In this case, Flash and Bang are siblings, but the relations between Explosion and Flash
and between Explosion and Bang are deterministic. This feature alone makes the causal theory
deal correctly with this case, but this would not happen if some relations were not deterministic
(as in case 3).

Bet = t/null

Coin/Dice = h/11

Win = 0 FuseLit = 1 Explosion = 1

Flash = 1

Bang = 1

Figure 5: Left, examples 4 and 7 (Hiddleston, 2005). Right, a case discussed in Hiddleston (2005).

12Backward-forward propagation is propagation from a node to an ancestor and then to another descendant of the
ancestor. Forward-backward propagation is propagation from a node to a descendant and then to another ancestor
of the descendant.

13A common ancestor of X and Y is an ancestor of both X and Y . X and Y are siblings iff they share a common
ancestor, but are not ancestors of each other.
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3 General theory of backtracking

Backtracking counterfactuals admit counterfactual reasoning that claims that if things had been
different at some time t1, they would also have been different at some earlier time t0. When it
is reasonable to backtrack is an issue for both the semantics and epistemology of counterfactuals.
My initial idea is that backtracking is reasonable when the (possibly non-actual) state of affairs
expressed in the antecedent of a counterfactual transmits less information about an event in the past
than the actual state of affairs. The informational theory states that, in evaluating a counterfactual
X = x′ �→ Y = y, we should consider a change in the value of some variable Z when the (possibly
non-actual) value X = x′ transmits less information about the actual value of Z than the actual

value X = x (possibly, x = x′) − given the actual values for ~W , which are the parents of Z that
are not subject to change (def. 5). From that definition, it follows that:

Definition 6. General theory of backtracking: A counterfactual X = x′ �→ Y = y admits
backtracking when the (possibly) non-actual value X = x′ transmits less information about the
actual value of Z (an ancestor X) than the actual value X = x (possibly x = x′) − given the

actual values of ~W , which are the parents of Z that are not subject to change, in other words,
when it is the case that pmi(X = x′;Z = z| ~W = ~w) < pmi(X = x;Z = z| ~W = ~w).

The first thing to note is that the general theory of backtracking may express my initial idea
because the relation of parenthood represents the causal relation and, consequently, if Z is an
ancestor of X, then Z is prior to X in time14.

In the following, I will defend that the informational theory and the general theory of back-
tracking are reasonable. An intuitive reading of pmi(X = x;Y = y) is ‘the amount of information
that X = x transmits about Y = y’. This interpretation is used in Dretske (1981, p. 15-16, my
emphasis):

We are now asking about the informational value of situation r, but we are not asking
about I(r). We are asking how much of I(r) is information received from or about
s. I shall use the symbol Is(r) to designate this new quantity. The r in parentheses
indicates that we are asking about the amount of information associated with r, but
the subscript s is meant to signify that we are asking about that portion of I(r) that
is information received from s. ...Is(r) is a measure of the information in situation r
about situation s.

Then the general theory of backtracking and the informational theory state that we should
consider a change in the value of a variable in a counterfactual situation when the state of affairs
expressed in the antecedent of the counterfactual transmits less information about the actual value
of the variable than the corresponding actual state of affairs.

In some situations, almost all information about a variable is shared with another variable.
For example, in case 3, the variable Memo transmits almost all existing information about Jar.
The amount of information associated with Memo or Jar is 2 bits (i(Memo) = 2, i(Jar) = 2)15.
The amount of information shared between Memo and Jar is 1.96 bits (i(Memo; Jar) = 1.96)16.

14Supposing that a cause is prior to its effect.
15The amount of information in a variable X (i(X)) is the expected value of the amount of information in each

value X = x: i(X) =
∑

x i(X = x)p(X = x).
16The mutual information between two variables X and Y (mi(X;Y )) is the expected value of the pointwise

mutual information between each pair of value X = x and Y = y: mi(X;Y ) =
∑

x,y pmi(X = x;Y = y)p(X =
x, Y = y).
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Then Memo transmits almost all existing information about Jar. Therefore, it is reasonable to
form beliefs about Jar from the observation of Memo. In a counterfactual situation in which
a non-actual antecedent X = x′ is true, the only source of information about the value of some
other variable Z is the value of X itself (and the causal structure of the model). Then loosing
information about the value of Z from X is, in fact, loosing information about which value Z
holds. Loosing information about which value Z holds is loosing information about whether Z
maintains its actual value. Loosing information about whether Z maintains its actual value is
loosing justification for the belief that Z maintains its actual value. In this situation, it seems to
be reasonable to consider a change in the value of Z. Given this, I think that the informational
theory and the general theory of backtracking are reasonable.

The main advantage of the causal theory is to provide a unified account for both backtracking
and non-backtracking counterfactuals. The fact that the general theory of backtracking follows as
a special case of the informational theory shows that this theory also provides a unified account for
both non-backtracking and backtracking counterfactuals. When we should backtrack is a special
case of when we should consider changing the value of a variable in general.

4 Conclusions

In this paper, I have presented a backtracking counterfactual that is a problem case for Hid-
dleston’s theory and proposed an informational theory that deals with this problem case while
maintaining Hiddleston’s correct results for the other problem cases. The main advantage of
Hiddleston’s theory was the elimination of the asymetry between the treatment of backtracking
and non-backtracking counterfactuals. The informational theory maintains this advantage and
eliminates the last asymmetry of Hiddleston’s theory: the qualitatively different treatment for
deterministic and indeterministic relations.

There are counterfactual theories of causality (Lewis, 1973) and causal theories of counterfac-
tuals (Hiddleston, 2005). There are counterfactual theories of information (Cohen and Meskin,
2006) and informational theories of counterfactuals. These three notions seem to be related. In
my opinion, information is the primitive notion from which causality and counterfactuality are
derivable. However, this is an issue for further research.
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