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The evolution of the understanding of the mass transport phenomena in solids
and liquids allows for the unification of phenomenological models. The central
Darken problem is considered from the choice of the coordinate axes for diffusion,
i.e. the definition of this mode of motion and the method of diffusion displacement
is defined and measured. Euler’s and Liouville theorems are used extensively in
the analysis. The formula is derived for volume density conservation, i.e. the
volume continuity equation. This fundamental formula defines the volume-fixed
frame of reference in the multicomponent solid, gas and liquid solutions. The
volume-fixed frame of reference is self-consistent with the foundations of linear
irreversible thermodynamics, except that is recognises the need to add volume
density to the usual list of extensive physical properties undergoing transport in
every continuum. Proposed modifications are self-consistent with the literature
dating back to Onsager, the experiments of Kirkendall, their interpretation by
Darken and recent generalized formulations. It will be shown that the method can
be used in mechano-chemistry and electro-mechano-chemistry.

Keywords: constitutive equations; deformation; diffusion; volume continuity equation;
volume density; interdiffusion

1. Introduction

Studies of diffusion in liquids and gases were at the centre of interest of scientists in the
second half of the nineteenth century. In the twentieth century, diffusion in solids was
a driving force for the chemistry of solids. The Kirkendall experiments and Darken
method resulted in different theoretical descriptions of the transport phenomena in solids.
Crystals have a greater number of control parameters when compared with liquids. These
are crystal structure, geometry of crystallites, grain boundaries, defects, strain and stress,
etc. So far, treatments that unify the methods used to describe diffusion in solids, liquids
and gases are scarce.

Recently, noting the conflicts between tracer– and mass–velocity experiments in fluids,
Brenner has suggested that the fluid’s volume velocity (i.e. the convection or drift velocity)
is the proper frame of reference for diffusion [1,2]. The experimental data on thermal
diffusion in binary liquid mixtures [3,4] support the applicability of the proposed revisions.
It was shown that non-equilibrium thermodynamics can be formulated without contra-
dictions with the Brenner proposal [5]. According to Öttinger [6]: ‘‘Something is missing’’
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in the commonly used transport equations of irreversible thermodynamics [7,8] and he
proposed incorporating fluctuations in generic theory [6]. Summing up the above
arguments, it is clear that in gases, fluids and solids in which diffusion occurs the
component’s velocity, �i, must be divided into two parts: (i) the unique diffusion velocity,
�di , that depends on the mechano-chemical potential gradient (in general on the electro-
mechano-chemical potential gradient) and is independent of the choice of the reference
frame and (ii) the drift velocity, �drift, that is common for all components and depends on
the choice of the external reference frame and mechanism of the process. When the stress
field is considered and the partial molar volumes of components differ, the quantitative
definition of the drift velocity (material velocity) is an unsolved problem [1,2].

All attempts to combine diffusion and stress are based on Euler’s view, which was
formulated �250 years ago [9], and the velocity of the local mass centre, �m, is generally
accepted as an internal frame of reference for the stress field [10–12]. Formulated by the
Euler expression, ��m in the momentum flux originates from the assumption that
Newton’s laws of motion for a solid body are also valid in a case of material domain of
known mass density � moving within a continuum. Euler was obviously unaware of the
diffusion and hidden constitutive assumption implicit in the relation ��m. Since then, this
relation has been questioned only in a very few circumstances [13,14]. On the other hand,
the majority of interdiffusion studies are based on the fundamental Darken concept of the
lattice-fixed coordinate axes for diffusion [15,16]. In 1948, Darken considered the stress-
free interdiffusion problem in a binary alloy. He postulated that the volume-fixed reference
frame defines the coordinate axes for diffusion and proposed formulae in the case when
the total molar concentration of the mixture is constant. Shimozaki and Onishi found the
relations between the diffusion fluxes defined in the volume and concentration-fixed
frames of reference [11,17]. Unfortunately, their relations are valid for binary alloys and
do not allow the consideration of the stress field.

In earlier papers concerned with the mathematical description of interdiffusion under
a stress field, we were not aware of the conflict between the volume and the centre of mass
reference frames. As a result, the introduction of the partial Cauchy stress tensor [18] was
unsuccessful in practical applications due to the unsolved conflict between different
coordinate axes for the diffusion and stress. Following Darken, Onishi, Brenner and
Öttinger’s concepts that the volume velocity defines the local material velocity at non-
equilibrium, we recently derived the volume continuity equation, i.e. the law of the volume
density conservation [19]. This formula allows fixing the unique frame of reference for all
diffusion fluxes.

The commonly used definitions of the local overall velocities ignore the convection
term due to diffusion and are defined using the component’s velocity, �i. Obviously �i
depends on the choice of reference frame [11]. The mass velocity (i.e. the local mass centre
velocity �m), the molar velocity �M, the volume velocity �V, and the solvent velocity
(i.e. the Hittorf reference frame [20], JHi ¼ ci�

H
i ¼ cið�i � �rÞÞ are defined by

�� m :¼
Xr
i¼1

�i�i and �m ¼
Xr
i¼1

Mi

M
Ni�i , where

Xr
i¼1

MiNi

M
¼ 1, ð1Þ

c�M :¼
Xr
i¼1

ci�i and �M ¼
Xr
i¼1

Ni�i , where
Xr
i¼1

Ni ¼ 1, ð2Þ
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c��V :¼
Xr
i¼1

�ici�i and �V ¼
Xr
i¼1

Ni
�i

�
�i, where

Xr
i¼1

�iNi

�
¼ 1, ð3Þ

c�H :¼
Xr
i¼1

ci �i � �rð Þ and �H ¼
Xr
i¼1

Ni�i � �r, where
Xr
i¼1

Ni ¼ 1, ð4Þ

where ci¼ ci(t, x), c ¼ cðt, xÞ ¼
Pr

i¼1 ci and Ni¼Ni(t, x)¼ ci/c denote the molar concentra-

tion of the components, the molar mixture concentration and the molar ratios in the

mixture, respectively. V¼V(t, x) is the mixture molar volume, Vc andVici denote the total

and partial volume densities.
An expansion of Equations (1)–(3) by postulating that convection in solids can be

generated by diffusion is the central conclusion that follows from both the Darken method

and the experimentally proved generation of non-uniform velocity field within the

diffusion zone [15,16]. The convection velocity was originally termed the drift velocity [15].

In order to avoid conflicts, it will be denoted here as the Darken velocity, �D. The Darken

method assumes (i) the constant and equal component partial molar volumes and (ii) the

negligible plastic and elastic deformations. Based on Kirkendall’s experimental findings

[21], Darken concluded that diffusional fluxes are not balanced locally [15]:Xr
i¼1

ci�
d
i 6¼ 0 and div

Xr
i¼1

ci�
d
i 6¼ 0, ð5Þ

where � d
i is the ‘unique’ ith component diffusion velocity (does not depend on the transport

model but requires the proper selection of the constitutive diffusion flux formula).
The Darken velocity, �D, in the simplest case of the purely diffusional transport mode

equals:

c�D :¼ �
Xr
i¼1

ci�
d
i and �D ¼ �

Xr
i¼1

Ni�
d
i where c ¼ const: ð6Þ

Upon taking into account Equation (6), the molar velocity �M, Equation (2), can be

written in the form of the preceding formulae, e.g. c�M :¼
Pr

i¼1 ci�i ¼Pr
i¼1 cið�

tr þ �D þ �di Þ, where �tr is the translation velocity in the observer reference

frame and may depend on time only. In other words, the Darken method is strictly limited

to the processes where �iðt, xÞ ¼ �
trðtÞ þ �Dðt, xÞ þ �di ðt, xÞ and when the total molar

concentration of the mixture is constant, c ¼ const. This method can be generalised to

avoid above limitations. We will consider the non-ideal, compressible solid solutions

(c 6¼ const.) and merge the following fundamental results:

(i) the concept of mobility, the uniqueness of the diffusion velocities and the Nernst–

Planck flux formula [22,23];
(ii) common occurrence of defects in solids (Frenkel and others, [24,25]);
(iii) non-stoichiometry as a principle, not an exception (Schottky and Wagner [26,27]);
(iv) the fact that lattice sites are not conserved in metals (Kirkendall and Darken

[15,21]) as well as in ionic compounds [28].

In this work, we advance the already presented pattern [19]. Special emphasis is given to

the rigorous derivation of the different expressions for the local overall diffusion velocities.
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In the following section, we present themethod of dividing the component’s velocity into the
unique diffusion velocity (which does not depend on the choice of the reference frame) and
a net drift velocity1 (which depends on the choice of the external reference frame and on the
mechanism of the process). The examination of the volume fixed axis for diffusion will show
that only the volume velocity, Equation (35), can serve as an internal reference frame for all
internal processes (themass diffusion processes, heat transport, deformation etc.) and that it
is an inertial frame of reference. Moreover, using the Euler and Lagrange theorems we
present: (i) the rigorous derivation of the volume continuity equation, (ii) the consistency of
the Newton laws with thermodynamics in the volume-fixed reference frame, (iii) the
equivalence of the presented and Darken’s methods when the Darken restriction are
introduced.

2. The volume continuity, conservation of mass, momentum and energy

In this section, we consider the first Darken problem of choice of the coordinate axes for
diffusion. If the motion of the element of multicomponent alloy is to be analysed, then the
first step is to define this motion, i.e. to select the method as to how this displacement is
defined and measured. We will consider a motion of a single phase r-component mixture,
i.e. alloy or solid solution. We define the velocity field of the ith component,
�i : ½0,1Þ �R3 �! R3, and its molar and mass densities, ci, �i : ½0,1Þ �R3 �! R. The
notation X �!Y means that the domain of a function is a subset (part) of X. The theory
must combine the following things:

(1) The local acceleration due to an external force field(s) depends on the mixture
inertial mass, not on the diffusion processes.

(2) The local centre of mass position cannot be affected by diffusion (mass diffusion,
heat transport, internal friction etc.).

(3) The volume velocity is an internal frame of reference for diffusion [15,16],
deformation, viscosity, heat transport, etc. [1]. The total, drift and diffusion
velocities of components are related by: �i :¼ � drift þ � d

i .
(4) The unbalanced diffusion fluxes affect the local material velocity [15,16].

The Liouville transport theorem is a key mathematical tool used in this work to obtain
the volume continuity equation and other conservation laws. It generalises the Gauss–
Ostrogradzki theorem and allows compressing of the mathematics. Let �(t) denote any
subregion of the mixture for any time t� 0.

Theorem: If �i : ½0,1Þ �R3 �! R3 and �i : ½0,1Þ �R3 �! R3 are a sufficiently smooth
functions defined on the domain of �i, then

d

dt

Z
� tð Þ

�i�i dx ¼

Z
� tð Þ

�i
@�i
@t
þ div �i�ið Þ

� �
þ �i

@�i
@t
þ �i � grad �i

� �� �
dx: ð7Þ

The proof of the above theorem can be found elsewhere [29].

2.1. Extensive and intensive variables

In what follows, we neglect the dimensions of the body and surface energy, e.g. interfaces,
grain boundaries, etc. We consider the mass density, �i¼ �i (t, x) of every mixture
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component. The mass density, �¼ � (t, x) and the molar mass, M¼M(t, x), of the mixture

are given by

� ¼
Xr
i¼1

�i, ð8Þ

c ¼
1

�
¼
Xr
i¼1

ci ¼
Xr
i¼1

�i
Mi
¼
�

M
, ð9Þ

where Mi denotes the constant molar mass of the ith component. By definition, Equation

(9), the mixture molar volume density equals one, Vc� 1.
The volume occupied by the mixture is an extensive variable and is not conserved [30].

If we write

� ¼ � N1, . . . ,Nr;T, pð Þ ð10Þ

as the equation of state of the system giving the molar volume in terms of independent

variables: N1, . . . ,Nr and T, p, we then have, for an arbitrary volume, �* and number of

moles n1, . . . , nr:

�	 kn1, . . . , knr;T, pð Þ ¼ k�	 n1, . . . , nr;T, pð Þ, ð11Þ

which express the fact that the system at a temperature T, pressure p, and containing

kn1, . . . , knr moles of components occupies a volume k�*. �* and � are homogeneous

functions of the first degree with respect to composition, and Euler’s theorem can be

applied. This theorem states that the function f(x1, . . . , xr, . . .) is called homogeneous of the

mth degree in the variables x1, . . . , xr if the identity: f(kx1, . . . , kxr; . . .)� kmf(x1, . . . ,xr; . . .)

holds [30]. If we differentiate this definition with respect to k the next identity follows:

Xr
i¼1

xi
@f kx1, . . . , kxr; . . .ð Þ

@kxi
� mkm�1f x1, . . . , xr; . . .ð Þ ð12Þ

Xr
i¼1

xi
@f x1, . . . , xr; . . .ð Þ

@xi
� mf x1, . . . , xr; . . .ð Þ when k ¼ 1: ð13Þ

Equation (13) is called Euler’s theorem. The theory of partial differential equations states

that, conversely, any function f(x1, . . . , xr; . . .) that satisfies Equation (13) is homogeneous

of the mth degree in x1, . . . , xr [31]. We are concerned with homogeneous functions of the

first degree, m¼ 1. In such a case:

f kx1, . . . , kxr; . . .ð Þ � kf x1, . . . , xr; . . .ð Þ, ð14Þ

and Equation (13) becomes

Xr
i¼1

xi
@f x1, . . . , xr; . . .ð Þ

@xi
� f x1, . . . ,xr; . . .ð Þ: ð15Þ
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Comparing Equations (10), (11) and (14) we see that � and �* are homogeneous functions

of the first degree in the independent variables N1, . . . ,Nr. Consequently from

Equation (15) the general relation between the molar volume of the mixture and partial

molar volumes follows:

Xr
i¼1

Ni
@� N1, . . . ,Nr;T, pð Þ

@Ni
¼
Xr
i¼1

�iNi � � N1, . . . ,Nr;T, pð Þ, ð16Þ

where �i is the partial molar volume.
From Equations (9) and (16) the following identities hold:

Xr
i¼1

�i

�
Ni �

Xr
i¼1

�ici
�c
�
Xr
i¼1

�ici � 1, ð17Þ

where �ici and �c denote the partial and total molar volume densities.
The relation above is valid for an arbitrary mixture and allows the conclusion that the

total volume density of the arbitrary mixture is conserved and equals unity2, Equation (17).

2.2. The fluxes and velocities

The fluxes and velocities of the mass, �m, molar, �M and volume [11], �V, can be defined by

the drift velocity and the unique diffusion velocity (may depend only on the choice of the

constitutive equations for diffusion):

��m ¼
Xr
i¼1

�i�
drift þ �i�

d
i

� �
and �m :¼ �drift þ

Xr
i¼1

Mi

M
Ni�

d
i , ð18Þ

c�M ¼
Xr
i¼1

ci�
drift þ ci�

d
i

� �
and �M :¼ �drift þ

Xr
i¼1

Ni�
d
i , ð19Þ

c��V ¼
Xr
i¼1

ci�i�
drift þ ci�i�

d
i

� �
and �V :¼ �drift þ

Xr
i¼1

�i

�
Ni�

d
i , ð20Þ

where Vc and Vici denote the total and partial volume densities.
The total diffusion velocities differ. This is apparent by writing Equations (18)–(20) in

the form

�m :¼ �drift þ � d
m where �dm :¼

Xr
i¼1

Mi

M
Ni�

d
i ¼

Xr
i¼1

Mi

M
�ci�

d
i , ð21Þ

�M :¼ �drift þ � d
M where �dM ¼

Xr
i¼1

Ni�
d
i ¼

Xr
i¼1

�ci�
d
i , ð22Þ

�V :¼ �drift þ � d
V where �dV ¼

Xr
i¼1

�i

�
Ni�

d
i ¼

Xr
i¼1

�ici�
d
i : ð23Þ
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2.3. Diffusion

The diffusion velocity, � d
i � Jdi =ci, of every component can be expressed by an appropriate

formula, e.g. by the Nernst–Planck equation [22,23], Fick’s first law [32], the Onsager flux

[33] or the electro-mechano-chemical flux:

�di ¼ �Bi grad �ch
i þ �

el
i

� �
where �el

i ¼ ziF’, ð24Þ

�di ¼ �Di grad ln ci, ð25Þ

�di ¼
Xk
j¼1

Lij

ci
Xj, ð26Þ

�di ¼ �Bi grad �ch
i þ�ipþ ziF’

� �
¼ �Bi grad �ch

i þ �
m
i þ �

el
i

� �
,

where
Xr
i¼1

ci�
m
i ¼ p,

ð27Þ

where Bi, Di, zi denote the mobility, diffusivity and valence of the ith component,

respectively. F and ’ are the Faraday constant and electric potential.
The above equations comply with the definition of diffusion as a process that depends

on the rate of energy dissipation. This definition centres on the basic difference between

Newton mechanics ðai ¼ _�i � FiÞ vs. diffusion ð�
d
i � FiÞ. In what follows, we consider the

mechano-chemical flux formula and the case when the drift velocity is a result of

deformation, ��, of the Darken drift, �D and translation, �tr, i.e. the diffusion flux in the

form � d
i ¼ �Bi grad ð�

ch
i þ�ipÞ ¼ �Bi grad ð�

ch
i þ �

m
i Þ.

�drift ¼ �� þ �D þ �tr, ð28Þ

where the Darken drift is the velocity generated by unbalanced diffusion fluxes [15,16].

2.4. Volume continuity equation and Darken drift

In irreversible thermodynamics the partial molar volumes are intensive parameters and are

not conserved. They are transported by the velocity field of every mixture component.

Contrary, the molar volume density of the mixture, c�, equals unity, Equation (9), and

is conserved during an arbitrary transport process in the continuum. From the Euler

identities, Equation (17), it follows that

d

dt

Z
� tð Þ

Xr
i¼1

ci�idx ¼
d

dt

Z
� tð Þ

c� dx ¼ 0: ð29Þ

Equation (29) states that the volume density of the mixture does not depend on time, i.e.

the total volume density is conserved3. It was used by Darken and Onishi but is inadequate

in our case. The time evolution of the volume velocity is necessary in order to separate the

internal processes from the momentum of the mixture itself and to define the internal
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reference frame [1]. From the Liouville transport theorem and the Euler identities,

Equations (7) and (17), it follows that

d

dt

Z
� tð Þ

Xr
i¼1

ci�idx ¼

Z
� tð Þ

@

@t

Xr
i¼1

ci�i þ div
Xr
i¼1

ci�i�i

 !
dx ¼ 0: ð30Þ

Combining Equations (29)–(30) and since the subregion �(t) was chosen arbitrarily, then

div
Xr
i¼1

ci�i�i

 !
¼ 0: ð31Þ

The above relation is the volume continuity equation. It permits the analysis of an

arbitrary transport process in the multicomponent mixture.
By adding the fluxes of the all mixture components4 and from relations (23) and (28)

one gets

�V ¼ c��V ¼
Xr
i¼1

ci�i �
D þ �� þ �tr þ �di

� �
¼ �D þ �� þ �tr þ

Xr
i¼1

ci�i�
d
i ¼ �

drift þ � d
V:

ð32Þ

The molar flux of the ith component equals

JMi ¼ ci�i ¼ ci�
D þ ci�

� þ ci�
tr þ ci�

d
i ¼ ci�

drift þ ci�
d
i ¼ ci�

drift þ J d
i , ð33Þ

where �drift¼�Dþ ��þ �tr and Jdi are the drift velocity and the diffusion flux of the ith

component. Multiplying Equation (33) by the ith component molar mass or partial molar

volume one gets the mass or volume flux of the ith component. The drift (e.g. the Darken

velocity) is a variable that can be calculated from Equations (31) and (32).

2.4.1. Example

In the case of an ideal solid solution (c¼ const.), Kirkendall experimentally [21], Darken

theoretically [15], and one of the authors in multicomponent solid mixtures [16] have

shown that the local sum of diffusion fluxes has to be not zero as well as

div
�Pr

i¼1 ci�
d
i

�
6¼ 0, i.e. the law of conservation of lattice sites does not exist [19]. Thus,

in the more general case when c 6¼ const. (�i 6¼�), the volume continuity implies that the

Darken velocity, �D, has to be generated during the diffusion process. Let us consider the

pure diffusion process in an incompressible multicomponent mixture: Jdi ¼ ci�
d
i , for

i¼ 1, 2, . . . , r and �drift¼ �D. Thus, from Equations (28) and (31) it follows that

div
Xr
i¼1

ci�i�
D þ

Xr
i¼1

ci�i�
d
i

 !
¼ div �D þ

Xr
i¼1

ci�i�
d
i

 !
¼ 0, ð34Þ

i.e. the Darken drift velocity is generated by diffusion. In Section 3, we show that

when Darken simplified conditions are valid Equation (34) results in the Darken

expression.
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2.5. Conservation of mass

The molar mass of the mixture component, mi(t), contained in �(t) at the moment t is

mi ðtÞ ¼

Z
� tð Þ

ci dx: ð35Þ

The principle of conservation of mass states that the mass in �(t) is conserved5. Thus,

d

dt

Z
� tð Þ

ci dx ¼ 0: ð36Þ

By the Liouville theorem (�i� 1) from Equations (7) and (36) we get

d

dt

Z
� tð Þ

ci dx ¼

Z
� tð Þ

@ci
@t
þ div ci�ið Þ

� �
dx ¼ 0: ð37Þ

Since the subregion �(t) was chosen arbitrarily, then

@ci
@t
þ div ci�ið Þ ¼ 0: ð38Þ

Upon summing up, for all components, the partial continuity equations, Equations (38),

and introducing the definition (33) one can get the global conservation law:

@c

@t
þ div c�M

� �
¼ 0: ð39Þ

Equations (38) and (39) are known as the partial and global continuity equations.

2.6. Balance of momentum

The momentum of a multicomponent mixture in an evolving subregion �(t) is

momentum in � tð Þ½ 
 ¼

Z
� tð Þ

��mdx: ð40Þ

By Newton’s law, the rate of momentum change equals the total force acting on the mass

in �(t):

Ftotal ¼
d

dt

Z
� tð Þ

��m dx: ð41Þ

We assume that the following forces act on the mass in �(t)6:

(1) The force of elastic stress, F�, acting on the surface @�(t)

F� ¼

Z
@� tð Þ

�e dx ¼

Z
� tð Þ

Div �e dx, ð42Þ

where �e : ½0,1Þ�j3 �!L(j3, j3) is the stress tensor and L(j3, j3) is the space of linear

mappings from j3 to j3 [13]. In Equation (42) we postulate that the mechanical properties of

the mixture, the temperature and its entropy, are represented by average values.
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(2) The viscosity force acting on the mass in �(t), is a result of the non-uniform

volume velocity field. The area was extensively studied and a vast number of

constitutive equations is known [13]. Here it is sufficient to use the basic

expression,

F� ¼

Z
� tð Þ

Div �pdx: ð43Þ

(3) The net chemical force acting on the mass in �(t). This part of the stress tensor is

called the stress-free deformation tensor7 [10]. In non-ideal systems the net

chemical force equals

Fchem ¼ �
Xr
i¼1

Z
� tð Þ

ci grad �
ch
i dx: ð44Þ

(4) The external force, Fext, acting on the mass in the volume �(t) is given by

Fext ¼

Z
� tð Þ

�f ext dx ¼ �

Z
� tð Þ

� grad V ext dx: ð45Þ

An external force can be, for example, the gradient of a gravitational potential,

f ext¼�gradVext. The total force acting on the mass in �(t) is the sum of all forces listed

above. Consequently,

Ftotal ¼ F� þ F� þ Fchem þ Fext: ð46Þ

Applying formulae (40) and Equations (42)–(46) results in

d

dt

Z
� tð Þ

��m dx ¼

Z
� tð Þ

Div �e dxþ

Z
� tð Þ

Div �p dx�
Xr
i¼1

Z
� tð Þ

ci grad �
ch
i dx

�

Z
� tð Þ

� grad V ext dx:

ð47Þ

Using the Liouville theorem and the mass continuity equation the left hand side of

Equation (47) becomes

d

dt

Z
� tð Þ

�� m dx ¼

Z
� tð Þ

� m @�

@t
þ div ��mð Þ

� �
þ �

@� m

@t
þ � m �Grad� m

� �� �
dx

¼

Z
� tð Þ

�
D� m

Dt

����
�m

dx, ð48Þ

where
Dh

Dt
j� ¼

@h

@t
þ � � gradh and œ is any sufficiently smooth function.

Substituting Equation (48) into Equation (47) one obtainsZ
�ðtÞ

�
D� m

Dt

����
� m

dx ¼

Z
�ðtÞ

Div �edxþ

Z
�ðtÞ

Div �pdx �
Xr

i¼1

Z
�ðtÞ

ci grad �
ch
i dx

�

Z
�ðtÞ

�grad V extdx:

ð49Þ
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Since the subregion �(t) was chosen arbitrarily, one can omit integrals and Equation (49)

becomes

�
D�m

Dt

����
�m
¼ Div �e þ �pð Þ �

Xr
i¼1

ci grad �
ch
i � � gradVext: ð50Þ

We shall call Equation (50) the equation of motion.

2.7. Balance of energy

We begin with the derivation of the convenient form of the density of the internal energy

formulae. To compute the internal energy we shall use the fundamental canonical equation

of thermodynamics:

U ¼ U S,�	,m1,m2, . . . ,mrð Þ:

It is convenient to analyse transport in the unit volume, V*, moreover, the volume is

considered as an inner reference frame. Thus,

"
v
¼ "

v
s
v
, �1, �2, . . . , �r

	 

,

where "
v
and s

v
denote the internal energy and the entropy that are expressed per

unit volume. Consequently, the fundamental canonical equation of thermodynamics

becomes

"
v
¼ �" ¼ "

v
ð�1, �2, . . . �rÞ, ð51Þ

where " and s are an internal energy and entropy per mass unit. The transition from the

fundamental canonical form to Equation (51) implies introduction of the mechanical

potential. In such a case, the Gibbs equation becomes

d �"ð Þ ¼ Td �sð Þ þ
Xr
i¼1

�	
i
M�1i d�i ¼ Td �sð Þ þ

Xr
i¼1

�ch
i þ �

m
i

� �
dci, ð52Þ

where �ch
i , �

m
i and �	i are the chemical, mechanical and mechano-chemical potentials of

components. The mechanical potential due to the deformation can be given by any proper

formula, e.g. by Equation (27). The integral form of the Gibbs equation follows from

Equation (52):

�" ¼ Ts�þ
Xr
i¼1

�	
i
ci ¼ Ts�þ

Xr
i¼1

�ch
i ci þ

Xr
i¼1

�m
i ci: ð53Þ

The total energy of the mixture in �(t) can be written as

e tð Þ ¼ ek tð Þ þ eI tð Þ þ eP tð Þ

total energy of

mass in � tð Þ

� �
¼

kinetic

energy

� �
þ

internal

energy

� �
þ

potential

energy

� �
:
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The kinetic energy contained in the moving subregion �(t) with a mass velocity �m is

ek tð Þ ¼

Z
� tð Þ

1

2
� � mð Þ

2dx: ð54Þ

The potential energy of mass in �(t) is represented by its potential per the mass unit:

eP ¼

Z
� tð Þ

�V ext dx: ð55Þ

The internal energy of mass contained by �(t) from Equation (53) is given by

eI ¼

Z
� tð Þ

�"dx ¼

Z
� tð Þ

Ts�þ
Xr
i¼1

�	
i
ci

 !
dx ¼

Z
� tð Þ

Ts�þ
Xr
i¼1

�ch
i ci þ

Xr
i¼1

�m
i ci

 !
dx: ð56Þ

By the first law of thermodynamics, the total energy of mass contained by �(t) can be

affected by the heat flow and the work done on it. Thus, from Equations (54)–(56),

d

dt

Z
� tð Þ

1

2
� �mð Þ2þTs�þ

Xr
i¼1

�	i ci þ V ext�

 !
dx

¼

Z
@� tð Þ

�e � �mdaþ

Z
@� tð Þ

�p � �mda�

Z
� tð Þ

div Jqdx

¼

Z
� tð Þ

div �e � �m þ �p � �m � Jq
� �

dx, ð57Þ

where Jq denotes the heat flux, which is given by the proper constitutive formula.
Applying the Liouville theorem, Equation (57) becomesZ

�ðtÞ

�
@

@t

�
1

2
�ð�mÞ2 þ T�sþ

Xr
i¼1

ci�
	
i þ �V

ext

�

þdiv

�
1

2
�ð�mÞ2�m þ Ts��m þ

Xr
i¼1

ci�
	
i �

m þ �Vext�m
��

dx

¼

Z
�ðtÞ

divð�e � �mÞdxþ

Z
�ðtÞ

div ð�p � �mÞdx�

Z
�ðtÞ

div Jqdx: ð58Þ

Since the subregion �(t) was chosen arbitrarily, the integral in Equation (58) can be omitted

and using the mass continuity equation, it can be written in the condensed form as

Xr
i¼1

�i
D

Dt

1

2
�mð Þ2þTsþ �	i M

�1
i þ V ext

� �����
�m
¼ div �e � �mð Þ þ div �p � �mð Þ � divJq: ð59Þ

The left hand side of the Equation (59) can be rearranged to

��m
D�m

Dt

����
�m
þ
Xr
i¼1

�i
D

Dt
Tsþ �	i M

�1
i þ V ext

� �����
�m
¼ div �e � �mð Þ þ div �p � �mð Þ � divJq:

ð60Þ
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Upon multiplying the momentum conservation equation, Equation (50), by the mass

velocity �m we have

��m
D�m

Dt

����
�m
¼ �mDiv �e þ �pð Þ � �m

Xr
i¼1

ci grad �
ch
i � ��

m gradV ext: ð61Þ

Consequently, upon combining Equations (55), (60) and (61), the equation of the internal

energy conservation becomes

Xr
i¼1

�i
D

Dt
Tsþ �	i M

�1
i þ V ext

� �����
�m
¼ �e :Grad �m þ �p : Grad �m þ �m

Xr
i¼1

ci grad �
ch
i

þ ��m grad Vext � div Jq: ð62Þ

When an external force field does not depend on time, (Vext
¼Vext(x)), it further

reduces to

�
D"

Dt

����
�m
¼ �

DTs

Dt

����
�m
þ
Xr
i¼1

ci
D�	i
Dt

����
�m
¼ �e :Grad �m þ �p :Grad �m

þ �m
Xr
i¼1

ci grad �
ch
i � div Jq:

ð63Þ

The formulae (62) and (63) express the first law of thermodynamics in the multicomponent

continuum.

2.8. Separation of mechanical and thermal terms

The separation of the entropy and mechanical energy terms in Equation (63) is convenient

in many applications [13]. Thus, one can write Equation (63) as

Xr
i¼1

ci
D�	i
Dt

����
�m
¼ �e :Grad �m þ �m

Xr
i¼1

ci grad �
ch
i , ð64Þ

�
DTs

Dt

����
�m
¼ �p :Grad �m � div Jq: ð65Þ

To complete the separation of the mechanical and entropy terms, Equations (64) and (65)

must be extended to include the dissipation of energy due to the diffusion [13].

From Equations (51) and (52), the Gibbs–Duhem relation has the form

�sdT ¼ �
Xr
i¼1

cid�
	

i
¼ �

Xr
i¼1

cid �
ch
i þ �

m
i

� �
, ð66Þ

and the energy dissipated due to the diffusion, i.e. the work done by the chemical forces

(diffusion forces) equals

wdiffusion ¼ �
Xr
i¼1

ci�
d
i grad �

	
i : ð67Þ
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This work has to be included into the energy balance, Equations (64) and (65), in such

a way that it will not change the total energy conservation equation, Equation (63) [13].

Consequently, we get

Xr
i¼1

ci
D�	i
Dt

����
�m
¼ �e : Grad �m þ �m

Xr
i¼1

ci grad �
ch
i þ

Xr
i¼1

ci�
d
i grad �

	
i , ð68Þ

�
DTs

Dt

����
�m
¼ �p : Grad �m � div Jq �

Xr
i¼1

ci�
d
i grad �

	
i : ð69Þ

The last terms in Equations (68) and (69) describe the fact that diffusion does not affect the

internal energy of the mixture. Entropy is produced at the expense of mechanical energy

of the mixture. One may note that, upon adding Equations (68) and (69) we get

Equation (63).

3. Discussion

One can show that the presented method is based on the inertial reference frame and

reduces to well known relations when simplified conditions are valid.

3.1. Invariance of diffusion

The diffusion occurs in a certain medium that may move with a drift velocity, �drift, and
the velocity of diffusion is measured with respect to it. When the diffusion flux is expressed

by the Nernst–Planck formula, then the diffusion velocity equals

�di t, xð Þ :¼ �Bi grad �i t, xð Þ: ð70Þ

The obvious inference is that this speed must be equal to all observers. Moreover, the mass

conservation law of every component must always be valid. When the chemical reactions

do not occur, it has form of Equation (38):

@�i t, xð Þ

@t
þ div �i�ið Þ t, xð Þ ¼ 0: ð71Þ

Again, it is evident that this law must be valid to all observers.
The reference frame is chosen as a matter of convenience, and generally varies

from one observer to another. To relate data from different frames we need

a rule, a transformation law, that translates the reading in one frame to another

and such a law must be independent of the observer. The transformation law must be

expressed by an equation that has the same form in all frames. In other words, the

physical laws and constitutive equations must be invariant with respect to the

transformation law. The parameterisation of absolute space–time by vectors x¼

(x1,x3, x3) (Principia, Newton 1642–1727) is not unique and the choosing of coordinates

is arbitrary.
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3.2. Translation

The coordinates x may be changed, e.g. by as a matter of convenience, and the translated

coordinates equal

x0 ¼ xþ x0: ð72Þ

The translated diffusion velocity satisfies Equations (70) and (71). The same is true for

a translated time:

t 0 ¼ tþ t0: ð73Þ

This property is referred to as active translational symmetry in the space–time continuum

and the procedure given by Equations (72) and (73). A further transformation specifies the

coordinates of a physical system moving relative to an observer with velocity �0:

x0 ¼ xþ �0t: ð74Þ

Again, the translated diffusion velocity satisfies Equations (70) and (71). Including

rotation, the full set of all transformations is called the Galilei group defined by successive

transformations:

x0i ¼ Ri
j x

j þ �i0tþ xi0, ð75Þ

t 0 ¼ tþ t0, ð76Þ

where Ri
j ¼ cos � �ij þ ð1� cos �Þ �̂i�̂j þ sin � "ijk�̂k; �̂i denotes a directional unit vector of the

rotation axis [34]. The repeated spatial index in Equation (75) denotes a sum 1 to 3.

Following Newton, the all coordinate frames in which diffusion velocities and

mass conservation have a simple form given by Equations (70) and (71) are called

inertial frames.

3.3. Generalised method vs. Darken

We show now that when the Darken simplified conditions are valid, Equation (34) results

in the Darken expression. Kirkendall experimentally [21], Darken theoretically [15] and

one of the authors in multicomponent solid mixtures [16] have shown that diffusion fluxes

are locally not balanced and their sum depends on time and position, i.e.

div
�Pr

i¼1 ci�i�
d
i

�
6¼ 0 and the law of the lattice sites conservation does not exist [19].

Consequently, the volume continuity implies that the Darken velocity, �D, has to be

generated during the interdiffusion process. We consider pure diffusion in the

incompressible, ideal solid solution. In such a case:

(1) the deformation velocity equals zero(��(t, x)¼ 0);
(2) translation depends on time only (�tr¼ �tr(t));
(3) molar volumes are constant and equal V¼Vi¼ const for every component

(c¼ const);
(4) activity coefficients equal unity (ai¼ ci);
(5) external forcing is negligible (gradVext

ffi 0).
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From Equation (31) it follows that

div
Xr
i¼1

ci�i�
D þ

Xr
i¼1

ci�i�
d
i

 !
¼ div c��D þ

Xr
i¼1

ci�i�
d
i

 !
¼ 0, ð77Þ

where the Darken drift velocity is the mixture velocity generated by diffusion.
In such a case, the term that describes unbalanced chemical potentials, Equation (44),

vanishes:

Xr
i¼1

ci grad �
ch
i ¼

Xr
i¼1

ciRT grad ln ai ¼
ai¼ci RT

Xr
i¼1

grad ci ¼ RT gradc ¼ 0, ð78Þ

and the centre of mass position is not affected by diffusion (Equations (50) and (78)):

�
D�m

Dt

����
�m
¼ 0:

From Equation (77), the Darken velocity equals [15]

�D t, xð Þ ¼ �
Xr
i¼1

ci�i�
d
i ¼ �

1

c

Xr
i¼1

ci�
d
i ¼ �

Xr
i¼1

Ni�
d
i :

Thus, we have proved the identity of the presented and Darken methods when Darken

constraints are valid. The volume continuity law defines the lattice-fixed reference frame

for diffusion and will allow proving the uniqueness of the Matano surface in

multicomponent systems [35].

4. Summary

We have shown that in the multicomponent systems the fluxes and velocities of the local

centre of mass, �m, composition, �M and volume, �V, are defined by densities and velocities

of diffusion and drift:

��m ¼
Xr
i¼1

�i�
drift þ �i�

d
i

� �
and �m :¼ �drift þ

Xr
i¼1

Mi

M
Ni�

d
i ,

c�M ¼
Xr
i¼1

ci�
drift þ ci�

d
i

� �
and �M :¼ �drift þ

Xr
i¼1

Ni�
d
i ,

c��V ¼
Xr
i¼1

ci�i�
drift þ ci�i�

d
i

� �
and �V :¼ �drift þ

Xr
i¼1

�i

�
Ni�

d
i ,

where Vc and Vici are the total (Vc� 1) and partial volume densities.
Basing our analysis on the Euler’s and Lagrange theorems we derived the formula of

volume density conservation, i.e. the volume continuity equation. This fundamental

formula defines the volume-fixed frame of reference in the multicomponent solid, gas and
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liquid solutions. The volume continuity equation allows the defining of the drift velocity,

i.e. the coordinate axes for diffusion:

div
Xr
i¼1

ci�i�i

 !
¼ div �drift þ

Xr
i¼1

ci�i�
d
i

 !
¼ 0,

where the diffusion velocity is given by an appropriate constitutive expression.
The volume-fixed frame of reference is an inertial frame. It allows the use of the

Navier–Lamé equation of mechanics of solids. Proposed modifications of Navier–Lamé

and energy conservation equations are self-consistent with the literature for solid-phase

continua dating back to the classical experiments of Kirkendall and their interpretation by

Darken. No basic changes are required in the foundations of linear irreversible

thermodynamics, except recognising the need to add volume density to the usual list of

extensive physical properties undergoing transport in every continuum.
The local momentum density depends on the diffusion of mass as well as on all other

transport processes, e.g. on the Darken velocity. The balance of momentum, Equation

(50), fulfils the condition, that the local acceleration of the body depends on its mass, not

on its internal energy and that the local centre of mass position is not affected by diffusion.
We have proved the identity of the presented and Darken methods when Darken

constraints are valid.
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Notes

1. In what follows, it is understood that the volume velocity is identical to the material velocity,
lattice sites velocity, the convection velocity and Kirkendall velocity. The volume reference
frame is the unique reference frame identical to the material velocity and defines the coordinate
axes for diffusion.

2. Unless we consider/allow the formation of cracks and/or voids.
3. Unless voids and/or cracks are formed.
4. In this work, we consider the deformation, translation and Darken velocities. Their sum results

in the drift velocity in the mixture. Incorporating velocity due to thermal expansion, etc. does
not affect the formalism.

5. To simplify the relations, in this work we do not consider the chemical and/or nuclear reactions
in the mixture, i.e. we neglect the local sources and sinks of mass.

6. We do not consider here the electromagnetic field, e.g. the diffusion of charged species (ions).
7. The stress-free deformation tensor equals zero in the case of an ideal mixture.
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[6] H.C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley, New Jersey, 2005.
[7] S.R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam,

1962.
[8] G.D.C. Kuiken, Thermodynamics of Irreversible Processes: Applications to Diffusion and

Rheology, Wiley, New York, 1994.
[9] C. Truesdell, Am. Math. Mon. 60 (1953) p.445.
[10] G.B. Stephenson, Acta Metall. 36 (1988) p.2663.

[11] J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids, translated by
S.J. Rothman, (EDP Sciences Editions, Les Ulis, 1991) Appendix 1.

[12] M. Danielewski and W. Krzy _zański, Phys. Stat. Sol. (a) 145 (1994) p.351.

[13] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, 2nd ed., Butterworth-Heinemann, Oxford,
1987.

[14] P. Kofstad and M. Liu, Phys. Rev. E 58 (1998) p.5535.

[15] L.S. Darken, Trans. AIME 174 (1948) p.184.
[16] K. Holly and M. Danielewski, Phys. Rev. B 50 (1994) p.13336.
[17] T. Shimozaki and M. Onishi, Trans. Japan Inst. Metals 24 (1983) p.301.
[18] M. Danielewski and B. Wierzba, J. Phase Equilibra Diffusion 26 (2005) p.573.

[19] M. Danielewski and B. Wierzba, Physica A 387 (2008) p.745.
[20] R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, Reading, MA, 1969.
[21] O. Kirkendall, Trans AIME 147 (1942) p.104.

[22] W. Nernst, Z. Phys. Chem. 4 (1889) p.129.
[23] M. Planck, Ann. Phys. Chem. 40 (1890) p.561.
[24] J. Frenkel, Z. Phys. 26 (1924) p.117.

[25] J. Frenkel, Z. Phys. 35 (1926) p.652.
[26] W. Schottky, H. Ulich and C. Wagner, Thermodynamik, die Lehre von den Kreisprozessen, den

physikalischen und chemischen Veränderungen und Gleichgewichten, Verlag Julius Springer,
Berlin, 1929.

[27] W. Schottky, Z. Phys. Chem. B 29 (1935) p.335.
[28] L. Bonpunt, N-B. Chanh and Y. Haget, J. Phys. C 18 (1985) p.5697.
[29] A.J. Chorin and J.E. Mardsen, A Mathematical Introduction to Fluid Mechanics, Springer-

Verlag, New York, 1990.
[30] R.J. Borg and G.J. Dienes, The Physical Chemistry of Solids, Academic Press, New York, 1992,

p.571.

[31] T. Chaundy, The Differential Calculus, Clarendon Press, Oxford, 1935, p.157.
[32] A.E. Fick, Prog. Ann. 94 (1855) p.59.
[33] I. Prigogine, Nature 246 (1973) p.67.

[34] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, World
Scientific, Singapore, 2007.

[35] C. Matano, Jap. J. Phys. 8 (1933) p.109.

348 M. Danielewski and B. Wierzba

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
k
a
d
e
m
i
a
 
G
o
r
n
i
c
z
o
-
H
u
t
n
i
c
z
a
]
 
A
t
:
 
0
7
:
0
3
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
0
9


