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ABSTRACT. We describe (essential features and an axiomatization of) a new
metamathematical (cognitive) ability, i.e., functional conceptual substratum,
used implicitly in the generation of several mathematical proofs and defini-
tions, and playing a fundamental role in Artificial Mathematical Intelligence
(or Cognitive-computational metamathematics). Furthermore, we present
an initial (first-order) formalization of this mechanism together with its char-
acterizing relation with classic notions like primitive positive definability and
Diophantiveness. Additionally, we analyze the semantic variability of func-
tional conceptual substratum when small syntactic modifications are done.
Finally, we describe cognitively natural inference rules for (mathematical)
definitions inspired by functional conceptual substratum and we show that
they are sound and complete w.r.t. standard calculi.
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INTRODUCTION: INITIAL ONTOLOGICAL AND COGNITIVE MOTIVATIONS

During the last decades outstanding interdisciplinary research has emerged
involving the identification and subsequently formalization of the most basic
cognitive mechanisms used by the mind during mathematical invention/creation.
Among these processes one can mention formal conceptual blending [Bou
et al., 2015], [Fauconnier and Turner, 2003]; analogical reasoning [Gick and
Holyoak, 1980], [Schwering et al., 2009]; and metaphorical thinking [Lakoff
and Johnson, 2008], [Lakoff and Núñez, 2000], among others.

One of the most outstanding modern research programs in this direction
is the foundation of artificial mathematical intelligence (AMI) or cognitive-
computational metamathematics Gomez-Ramirez [2020]. In particular, within
the second pillar of the AMI research program, a new cognitive metamathe-
matical mechanism called conceptual substratum is proposed and used widely
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as a fundamental tool for the subsequent theoretical (and pragmatic) con-
struction of universal mathematical artificial agents (UMAA-s) [Gomez-Ramirez,
2020, Ch.1-Ch.9].

More explicitly, in [Gomez-Ramirez, 2020, Ch.9] a new cognitive (meta-
mathematical) mechanism was explicitly introduced, which encompasses the
prototypical ability of the mind to use abstract morpho-syntactic configura-
tions of symbols as valuable tokens for performing advanced formal infer-
ences, specially in the field of mathematical research. Moreover, several ex-
amples were used for supporting the introduction and the importance of this
new mechanism. Furthermore, an initial formalization of conceptual substra-
tum was made in a quite general setting as well as in a setting of first-order
logic. Specifically, a cognitive characterization of the Church-Turing Thesis
was proved in terms of the former formalization and in terms of well-known
arithmetical-computational results. Finally, the dual cognitive ability, called
conceptual lining was introduced.

In this paper, we present an natural continuation and enrichment of the re-
sults presented in [Gomez-Ramirez, 2020, Ch.9]. Explicitly, we enhance the
original motivations originating this (metamathematical) ability with a new
philosophical dimension coming from a Lockean perspective (§1). In addition,
we offer a plethora of new motivating examples expanding the range of use-
fulness of this mechanism (§2). For the sake of completeness we also present
here the original formalization of conceptual substratum originally described
in [Gomez-Ramirez, 2020, Ch.9], with the seminal difference that we prove
the additional fundamental result regarding the invariance of the arithmetic
context (involving either the natural or the integer numbers) for a concept to
possess (functional) conceptual substratum (§3). And not only that, but we
also prove how to generate with the help of our formalization of conceptual
substratum, cognitively solid inference rules being sound and complete with
respect to the standard calculi (§4). So, we present results supporting the nat-
ural evolution and coherence of conceptual substratum in the context of the
three pillars of the artificial mathematical intelligence’s program: 1) the new
cognitive-computational foundations for mathematics’ program (§1 and §2),
2) the generation of a solid and global taxonomy of (metamathematical) cog-
nitive mechanisms supporting and structuring mathematical formal research
(§3) and the generation of initial computational-feasible formal structures
(e.g. proof systems) and software being able to materialize initial versions
of an UMAA (Universal Mathematical Artificial Agent) (§4) Gomez-Ramirez
[2020].

1. INITIAL ONTOLOGICAL AND COGNITIVE MOTIVATIONS

One of the most fundamental questions related with the metamathemat-
ical, cognitive and pragmatic aspects of mathematical research involves the
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description of a global taxonomy of the cognitive mechanisms used (for in-
stance) by working mathematicians for creating/inventing new mathematical
results.

So, in this paper we present an additional metamathematical (and, at
some extent cognitive) ability, called (formal) conceptual substratum, used
frequently and implicitly in the construction of mathematical arguments and
definitions. From a philosophical point of view, specially assuming a Lockean
approach, conceptual substratum of a (mathematical) notion X can be con-
sidered as a concrete form of taking the (morpho-syntactic) nominal essence
of X [Owen, 1991]. Informally, conceptual substratum involves the essential
morpho-syntactic configurations of (mathematical) concepts and structures
that we (sub-)conscious- ly used when we attempt to solve a specific conjec-
ture or problem. Here, we are basically pragmatic in our approach, i.e., we
focus on the identification of the explicit symbolic configurations that allow
us to capture mentally and visually the essential features of (mathematical)
concepts.

Regarding the ontological nature of conceptual substrata, we implicitly as-
sume the thesis that conceptual substrata exists at least at the nominal, mental
and linguistic levels. Now, a deeper philosophical and metaphysical analysis
of this notion goes beyond the scope of this presentation and has no explicit
implications on the results developed in the following sections.

The name conceptual substratum was chosen as the simplest ways of refer-
ring to a core symbolic configuration which codes mentally as well as prag-
matically the essential features of a (mathematical) notion.

Metaphorically speaking, we would describe a conceptual substratum as
the most compact semantic and syntactic characterization of a concept, given
in terms of a symbolic configuration and immersed in a specific conceptual
environment, from which one could reconstruct explicitly the whole meaning
of it.

From a cognitive perspective, conceptual substrata can be seen as meta-
mathematical form of doing (abstract) ‘line drawings’ (of a specific concept),
where the graphic initial input corresponds to the explicit formal (logic) de-
scription of the mathematical structure in consideration (e.g. given in a first-
order logic setting) [Liu et al., 2016]. Now, due to the fact doing line draw-
ings (or sketchs) involves processes like perception, memory and judgment,
there can exist several conceptual substrata of a single (mathematical) no-
tion, depending of the specific conceptual environment and the concrete goal
involved (see further sections for explicit examples) [Liu et al., 2016, §2].

We support our presentation by a significant amount of examples. Addi-
tionally, we show an initial (first-order) formalization of this mechanism and
its relation with classic notions like primitive positive definability, recursive
enumerability and Diophantiveness. In addition, we analyze how strongly
the semantic range of this meta-notion varies (or not) when gradual changes
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are done to the language and to the formal structures in consideration. Fi-
nally, we present natural inference rules, inspired by the notion functional
conceptual substratum, and prove them sound and complete w.r.t. standard
calculi.

Here is worth to mention that the role of the conceptual substratum is
so central regarding cognitive-computational metamathematics that one can
characterize cognitively the classic Church-Turing Thesis in terms of (func-
tional) conceptual substratum (see [Gomez-Ramirez, 2020, Thesis 9.1]).

2. TAKING INSPIRATION FROM EXAMPLES

Suppose that one should solve the following elementary question:
Why when we add two even (integer) numbers is the result again an even

number?
This seems to be true for small pairs of numbers 2 ` 6 “ 8, 12 ` 18 “

30 and 214 ` 674 “ 888. Now, for getting a general proof of this fact, we
should consider syntactic expressions which can allow us to represent the
even numbers in a compact way. Therefore, we typically come up with a
mental-symbolic representation of the form 2 ¨ n. This means that essentially
we are able to represent the collection of even numbers simultaneously with
the single expression 2 ¨n, where we assume implicitly that n is an integer. On
the other hand, if we know that a number c can be written as 2 ¨ d, where d is
an integer, then by definition c should be an even number. In conclusion, we
have found a compact (morphological-syntactic) expression for representing
every even number in a unified way.

Now, let us consider again the former question with the former represen-
tation in mind: First, we need to consider two (potentially different) even
numbers, so we consider (or imagine) a first even number 2 ¨ a and a second
one 2 ¨ b, where a and b are integers. Second, we sum these numbers gener-
ically, namely, we obtain the expression 2 ¨ a ` 2 ¨ b. In addition, we check if
the final syntactic expression corresponds to an even number. Thus, we try to
give it the desired form 2 ¨ #, where # is an integer. So, we factorize the for-
mer algebraic expression and get an expression of the form 2 ¨ pa` bq. Lastly,
we realize that this number has the desired form 2 ¨ x, where x “ a ` b is
an integer. In conclusion, we explicitly justified an affirmative answer for the
former question by performing symbolic operations on morphological generic
representations for even numbers.

More generally, when someone tries to solve a mathematical problem,
(s)he considers, in a lot of cases, generic representations for the most stan-
dard elements living in the corresponding mathematical structures and, sub-
sequently (s)he performs symbolic computations with these representations
for solving the problem and for obtaining further insights towards a final so-
lution.
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Let us consider a second example: Let fpxq be a polynomial with integer
coefficients. Then the polynomial hpxq “ fpxqf2pxq has even degree, where
f2pxq denotes the second derivative of f .

A very usual way for finding a proof of this statement is by taking a syntac-
tic formal representation for fpxq. Effectively, from the hypothesis we see that
fpxq can be explicitly written as amxm ` ¨ ¨ ¨ ` a0, where m P N, ai P Z and
am ‰ 0. So, we find a representation of f2pxq as mpm´1qamx

m´2 `¨ ¨ ¨`2a2.
In conclusion, we write hpxq as

mpm´ 1qa2mx
2pm´1q ` ¨ ¨ ¨ ` 2a0a2.

So, from this representation we verify that hpxq has even degree.
These morphological-syntactic representations are the seminal tools which

allow us to perform general logical inferences with single syntactic elements
and, simultaneously prevent us from repeating the same kind of arguments
for several specific instances of fpxq varying on their degrees or coefficients.

A third example comes from linear algebra. Let us assume that we have
two bases A “ tu1, . . . , unu and B “ tv1, . . . , vmu for a vector space V . So, if
we want to prove (in a standard way) that the cardinality of these two bases
is the same, i.e., m “ n, then we need to use syntactic representations of
the elements of V such as

řn
i“1 αiui (or

řm
j“1 βjvj). Effectively, one of the

simplest arguments consists of replacing gradually the elements of one base
with the elements of the other in such a way that the resulting finite set again
builds a basis. So, one begins by writing u1 in terms of the elements of B, i.e.,
u1 “

řm
j“1 γjvj , and, subsequently, one chooses a coefficient γj1 ‰ 0 in order

to obtain a expression of the form

vj1 “
1

γj1
u1 `

m
ÿ

j“1,j‰j1

p
γj
γj1

qvj .

Thus, one can replace vj1 by u1 in B. Now, the next steps go essentially in
the same (symbolical) way.

Fourth, the classic Euclidean proof (by contradiction) of the existence of
infinitely many prime numbers uses in its core argument a kind of global
syntactic description for a number

śn
i“1 pn ` 1 bigger than one, which has no

prime divisors.1

Finally, the classic proof of the fact that the cardinality of the real numbers
between zero and one (i.e. r0, 1s) is uncountable uses as seminal argument

1Here, the assumption is that there exist finitely many prime numbers denoted by p1, . . . , pn.
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the formal existence of a real number λ “
ř8

i“1 bi10
´i, whose explicit dec-

imal representation was chosen based on the corresponding decimal repre-
sentations of the elements of (an hypothetical enumeration) of r0, 1s, (i.e.,
aj “

ř8

r“1 aj,r10
´r) such that for all i P N, 9 ‰ bi ‰ ai,i.2

In conclusion, this kind of generic syntactic representation is fundamental
in several mathematical areas.

So, what lies behind the above examples is simply a specific and basic
cognitive ability in which our minds choose conceptual substrata of certain
mathematical notions (e.g. even numbers and polynomials in one variable
with coefficient in the integers) at a suitable level of generality, and in such
a way that solving the problem simultaneously for several instances of the
concepts involved can be translated into formal manipulations of fixed single
conceptual representations chosen in advance.

In other words, the cognitive ability of conceptual substratum can be seen
as a way of identifying and effectively using the essential (e.g. proto-typical)
information of a concept in order to carry out successful deductions for solv-
ing several kinds of (mathematical) problems. Implicitly, we assume morpho-
syntactic mental representations for seminal mathematical concepts like con-
crete (natural) numbers, sets and the membership relation, geometrical fig-
ures, (graphics of mathematical) functions, among others. Subsequently, the
conceptual substrata of more complex mathematical structures are built.3

Let us consider several additional examples which allow us to enhance our
initial intuitions about what the substratum of a (mathematical) concept is,
and about how we can get more elements towards a first precise formaliza-
tion of it. As a matter of notation we will write conceptual substrata between
brackets “r´s”, in order to clarify that we are talking about cognitive repre-
sentations of the underlying concepts and not explicitly about the concepts
themselves.

So, if D denotes a mathematical concept (e.g., even numbers, polynomials,
matrices, vector spaces), then we will denote by CSpDq a conceptual substra-
tum of D. It is important to clarify at this point that one single concept can
have several conceptual substrata depending on the way in which we express
such a concept syntactically. For instance, the concept of a (positive) prime
number has the following two natural definitions:

πppq “ p@d P Nqpd|p Ñ pd “ 1 _ d “ pqq,

or equivalently

2The additional condition given by 9 ‰ bi can be added for avoiding difficulties involving the
ambiguity of the decimal representation.

3The cognitive processes and metamathematical causes behind the conceptual substrata of
the above elementary structures go beyond the scope of this paper.
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πppq “ p@a, b P Nqpp|a ¨ b Ñ pp|a_ p|bqq.

From these notions one can obtain two conceptual substrata as follows:

CSpPrime Numbersq “ rd P N, d|p Ñ pd “ 1 _ d “ pqs,

and

CSpPrime Numbersq “ ra, b P N, p|a ¨ b Ñ pp|a_ p|bqs.

Now, if one wishes to capture the essence of the notion of a prime number
through an expression given by a term instead of the former expressions given
by formulas, one can use a result of Ruiz [Ruiz, 2000] (among others) in order
to find a quite explicit substratum for being a prime number:

CSpPrimesq “

»

—

—

–

1 `

2ptnlnnu`1q
ÿ

k“1

¨

˚

˚

˝

1 ´

—

—

—

—

—

–

řk
j“2 1 `

Z

´
řj

s“1pt j
s u´t j´1

s u´2q
j

^

n

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‚

fi

ffi

ffi

fl

.

Most of the former conceptual substrata were expressions describing terms.
Nonetheless, there are also a whole collection of concepts whose substrata are
typically syntactic descriptions of relations, e.g. the number-theoretic concept
of perfect number [Apostol, 1976]. Effectively, for this concept we can write

CSpPerf. Numbersq “

»

–2 ¨ n “
ÿ

pd|nq,pdą0q

d, n P N

fi

fl .

Another enlightening example is the concept of ’representation of the nat-
ural numbers in base m (m P N)’. Here we get

CSpm-ary Rep.q “

«

n
ÿ

i“0

αim
i : m P N, αi P N, 0 ď αi ă m

ff

.

We write the minimal amount of syntactic information that is required for
recovering the essential features of this kind of representation.

Our approach has some informal similarities to the one based on (proto-
)typicality presented in [Osherson and Smith, 1997]. In fact, finding the con-
ceptual substratum of a concept can be seen as trying to present explicitly
a morphological mathematical description of arbitrary instances of the cor-
responding concept, by starting with the typical ones. For instance, in our
second example related with polynomials with coefficient into the integers,
one can say that an expression of the form

ř2
i“0 cixi “ c0 ` c1x ` c2x

2, is a
more typical instance of a polynomial than a constant c0, or a monomial xm,
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since the first one uses the whole spectrum of potential operations which con-
stitute a polynomial (e.g., addition, multiplication and exponentiation), and
the last ones use at most one of them. Effectively, the description of the qua-
dratic polynomial resembles the formal substratum of the ring of polynomials
better than constants or monomials.

3. TOWARDS A FIRST FORMALIZATION

As argued above, the ability to represent an arbitrary object having a cer-
tain property in a syntactic-morphological way plays a key role from a cogni-
tive point of view. From a logical point of view this means that we are dealing
with a definition by a term, or, in the case of an r-ary property, by a tuple of
terms. Such a conceptual substratum will be called functional conceptual sub-
stratum. Let us fix a first-order logic language L and an L´structure M . Now,
taking inspiration from some of the former examples we state the following
definition:

Definition 3.1. We say that a concept defined by a (r-ary) property Ω in M
(i.e. Ω Ď Mr) has a functional conceptual substratum, if there exist terms
ti (for i “ 1, . . . , r) and atomic formulas A1, . . . , Am whose variables are
contained in tx1, . . . , xnu, such that for all a1, . . . , ar P M , pa1, . . . , arq P Ω
if and only if

M |ù pDx1q ¨ ¨ ¨ pDxnqpy1 “ t1^¨ ¨ ¨^yr “ tr^A1^¨ ¨ ¨^Amqry1 ÞÑ a1, ¨ ¨ ¨ , yr ÞÑ ars

where t1, . . . , tn are L-terms whose variables are among x1, . . . , xn.

So, it is straightforward to verify that the notions of even, odd and compos-
ite numbers; perfect squares and (more generally) nth-powers have functional
conceptual substrata.

In addition one can prove that this notion coincides with primitive positive
definability (see for example [Bodirsky and Nešeťril, 2006]).

3.1. Classic Arithmetic Structures. Now, let us see how the fact that having
this kind of ‘functional conceptual representations’ materializes for several
language-structure combinations.

First, it is worth noting that if we do not put any additional restriction on
the atoms Aj in the former definition, then for some Ω it could happen that
these atoms contain even more important information about the concept C
than the terms ti, for i “ 1, . . . , n. Later, we will show explicitly this phenom-
enon with an example.

Let us consider the language L “ t0, 1,`,´, ˚,“,ău and the structure
Z, the integers. Then, each Aj has the form of either u1px1, . . . , xnq “

u2px1, . . . , xnq or u1px1, . . . , xnq ă u2px1, . . . , xnq, where u1 and u2 are the
corresponding polynomials in Zrx1, . . . , xns representing the terms appearing
in Aj .
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Now, in the first case Aj can be rewritten as hpx1, . . . , xnq “ 0, where
h “ u1 ´ u2. For the second case, we can use the well-known fact that any
natural number can be written as the sum of four perfect squares [Hardy and
Wright, 2008] (i.e., Lagrange’s theorem) in order to express the condition
described by Aj in a Diophantine way, i.e.,

pDz1 ¨ ¨ ¨ z4qpu1 ´ u2 “ z21 ` z22 ` z23 ` z24 ` 1q.

In addition, one can also express finite conjunctions of polynomial equa-
tions through a single equation by using the fact that over the integers

řm
i“1 a

2
i “

0 if and only if each ai “ 0. So, combining all the former steps one can
construct an explicit polynomial Hpy1, . . . , yr, x1, . . . , xnq such that for all
a1 . . . , ar P Z, a1, . . . , ar P Ω if and only if

Z |ù pDx1 ¨ ¨ ¨xnqpHpy1, . . . , yr, x1, . . . , xnq “ 0qqry1 ÞÑ a1, ¨ ¨ ¨ , yr ÞÑ ars.

In other words, Ω defines a Diophantine set [Matiyasevich, 1993, Ch. 1].
Furthermore, by the MRDP theorem [Matiyasevich, 1993, Ch. 2] Ω defines

a recursively enumerable set. In fact, one can easily prove that a concept C
over the integers, described with the former language which has a functional
conceptual substratum, must be recursively enumerable. Conversely, if C is
a concept defining a recursively enumerable property Θ, then by the MRDP
theorem Θ is Diophantine. Thus, for all a1 . . . , ar P Z, a1, . . . , ar P Θ if and
only if

Z |ù pDx1 ¨ ¨ ¨xmqpF py1, . . . , yr, x1, . . . , xmq “ 0qqry1 ÞÑ a1, ¨ ¨ ¨ , yr ÞÑ ars.

We can rewrite this formula as

Z |ù pDx1 ¨ ¨ ¨xmqpDx1
1 ¨ ¨ ¨x1

rqpa1 “ x1
1 ^ ¨ ¨ ¨ ^ ar “ x1

r ^A1qq

where A1 denotes the atom F px1
1, . . . , x

1
r, x1, . . . , xmq “ 0qq.4

In conclusion, for Z expressed in the language L “ t0, 1,`,´, ˚,“,ău a
concept C describing an n´ary property Ω has functional conceptual substra-
tum if and only if Ω is recursively enumerable, which is equivalent to being
Diophantine.

This fact can be interpreted as a kind of extension of the Church-Turing
thesis to the cognition of (elementary) arithmetical creation in the following
sense. All the concepts describing recursively enumerable sets (in the classic
sense of Church-Turing computation) are exactly the concepts that can be

4In this case, the essential information of the concept can be, at least formally, codified more
in the atom A1 rather than in the initial polynomial expressions.
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explicitly characterized as a concrete functional conceptual substratum of an
ideal cognitive agent.5

3.2. The Notion of a Prime Number. By the former considerations, the set
of prime numbers has a functional conceptual substratum. More explicitly,
one can find an explicit polynomial inequality in the integers characterizing
the positive prime numbers. For example, based on the main result of [Jones
et al., 1976] we can describe an (atomic) conceptual substratum of the prime
numbers as follows

CSpPrime Numbersq “ rk ` 2 P N, pk ` 2qp1 ´ pwz ` h` j ´ qq2

´ppgk`2g`k`1qph`jq`h´zq2´p2n`p`q`z´eq2´p16pk`1q3pk`2qpn`1q2`1´f2q2

´pe3pe`2qpa`1q2`1´o2q2´ppa2´1qy2`1´x2q2´p16r2y4pa2´1q`1´u2q2

´pppa`u2pu2´aqq2´1qpn`4dyq2`1´px`cuq2q2´pn`l`v´yq2´ppa2´1ql2`1´m2q2

´pai` k ` 1 ´ l ´ iq2 ´ pp` lpa´ n´ 1q ` bp2an` 2a´ n2 ´ 2n´ 2q ´mq2

´pq`ypa´p´1q`sp2ap`2a´p2´2p´2q´xq2´pz`plpa´pq`tp2ap´p2´1q´mpq2q ą 0,

a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z P Ns

This representation can only be fully comprehended and capture as a con-
ceptual substratum of the prime numbers if one gradually studies and under-
stands each of the arithmetical issues codified by its construction (see explic-
itly [Jones et al., 1976]).6

In addition, by Lagrange’s theorem and by adding four new existentially
quantified variables replacing each of the former 26 variables, one can show
that there exists a polynomial P px1, . . . , x104q with integer coefficients, such
that

CSpPrime Numbersq “

5An ideal cognitive agent is, in our context, simply an agent possessing an ideal human mind
without any restriction regarding working memory and such that with enough time it can ‘un-
derstand’ any intellectual task that a human being can.

6One of the reasons for that is the fact that one needs a more explicit use of working memory
together with the suitable storage of former conceptual substrata materialized in the form of the
single sub-polynomials (expressed as perfect squares).
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rx21 ` x22 ` x23 ` x24 P Z, P px1, . . . , x108q ą 0, x1, x2, . . . , x108 P Zs

So, the concept of prime numbers has a functional conceptual substratum
over Z described in the former language.

Now, let us focus on the subsequent natural (arithmetical) question of de-
ciding if the concept of prime numbers has a functional conceptual substratum
where the atoms Aj have either the form xrj ă cj or cj ă xrj .

So, essentially this question is equivalent to finding a polynomial fpx1, . . . , xnq

with integer coefficients such that the set of the prime numbers is generated
as the image of the domain defined by the atomic restrictions A1, . . . , Am. Let
us prove by induction on n that this cannot happen.

First, let us suppose that fpxq is a polynomial in one variable with restric-
tions given byA1 – x ă c1 and/orA2 – c2 ă x. The case where the domain is
either empty or finite (parametrized by two atoms) is clearly ruled out, since
its image should be an infinite set. The single cases given by just one of the
former atoms can be reduced to the case x ą c1, because the second case can
be reduced to this one by means of the change of variables y “ ´x.

In conclusion, let us assume for the sake of contradiction that there exists a
polynomial fpxq with integer coefficients together with a constant c P Z such
that the image under f of the set Ząc is the set of the prime numbers (or an
infinite subset of it). Let us choose an integer d ą c. If we denote by p the
prime number fpdq, it is an elementary fact to see that for all z P Z

fppz ` dq ” fpdq ” 0 pmod pq.

Thus, since fppz ` dq should be a prime number for all z ě 0, then
fppz ` dq “ p. Therefore, f should be a constant polynomial, which is a
contradiction.

Now, let us assume the induction’s hypothesis for any k ă n. Again, sup-
pose by contradiction that there exists a polynomial fpx1, . . . , xnq with coeffi-
cients in the integers and atoms (restrictions) A1, . . . , Am such that the image
of the domain determined by the restrictions consists of (an infinite subset
of) the prime numbers. Again, by doing suitable changes and permutations of
variables we can assume without loss of generality that there exists s P Z with
1 ď s ď m, and constants ci P Z such that Ai – xi ą ci, for all i “ 1, . . . , s.
Thus, since there are just finitely many potential choices for the values of the
xi’s (with i ą s) which satisfy the restrictions, we see that there are con-
stants es`1, . . . , en P Z satisfying all the remaining conditions As`1, . . . , Am,
such that the image of the domain described by the first s atomic restrictions
under the polynomial

gpx1, . . . , xsq “ fpx1, . . . , xs, es`1, . . . , emq
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is an infinite subset of the prime numbers. So, if s ă m we are done by the
induction’s hypothesis, since g has fewer variables than f .

In the second case, it is an elementary fact to see that for any non-constant
polynomial gpx1, . . . , xsq in several variables with integer (or even real) coef-
ficients, and for any parameters c1, . . . , cs P R (defining atomic restrictions as
before), there exists an index i1 and an integer (resp. a real number) e ą ci
such that h “ fpx1, . . . , xi´1, e, xi`1, . . . , xsq is a non-constant polynomial.

Now, using this fact, we obtain a non-constant polynomial h in s ´ 1 vari-
ables, such that the image of the remaining restrictions under h is an infinite
subset of the prime numbers, which is a contradiction.

Summarizing, the existence of functional conceptual representations de-
pends strongly on the degree of freedom that we give to the corresponding
atomic formulas and on the particular language used. From a cognitive per-
spective, this fact implicitly suggests that it is worth studying in deeper detail
how to develop formal languages that permit to describe more complex con-
cepts through (functional) conceptual substrata, and in that way to be able
to find easier argumentation guidelines for open (mathematical) problems,
among others.

On the other hand, let us modify the language slightly by trying to charac-
terize the prime numbers as a kind of ‘sub-concept’ of the natural numbers N
with the language L´ “ t0, 1,`, ˚,“,ău, and with the former constraints for
the atoms Ai. So, by applying basically the same method as before, we obtain
again a negative answer.

However, if we do not impose any kind of restriction on the atoms, then us-
ing the same former result of Jones et al. one can find two explicit polynomial
P1pa, b, . . . , zq and P2pa, b, . . . , zq with coefficients into the natural numbers
such that

CSpPrime Numbersq “ rk, P1pa, b, . . . , zq ą P2pa, b, . . . , zq, b, c, . . . , zs

So, the notion of prime numbers also has a conceptual substratum over N
with the restricted language L´.

3.3. The Arithmetical Invariance of Functional Conceptual Substrata. More
generally, if we restrict ourselves to a concept C described by a r´ relation
in N, then the fact that C has a functional conceptual substratum does not
change if we expand the language involved (resp. the corresponding struc-
ture) by adding the operation of subtraction ´p˚q. Specifically, the following
general fact holds:

Proposition 3.2. Let C be a concept described by a r´ary relation Ω in N.
Then C has a functional conceptual substratum in L´, if and only if C (seen as
a concept described by the corresponding r´ary relation Ω Ď Z) has a functional
conceptual substratum in L.
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Proof. Without loss of generality, we can assume that r “ 1 (the general
argument is essentially the same). First, let us suppose that there is an
L´functional conceptual substratum forC involving the polynomial fpx1, . . . , xnq

and atoms A1, . . . , Ar. Now, we will add an extra variable z in order to be
able to codify the fact that a1 “ fpx1, . . . , xnq through the atoms a1 “ z and
Ar`1 ” z “ fpx1, . . . , xnq. This allows us to update f by a polynomial with
positive coefficients.

By Lagrange’s theorem and by adding (eventually) new existentially quan-
tified variables, we can assume that all the atoms involve only the equality
relation. Effectively, this follows from the relations

p@a, b P Zqpa ă b Ø a` 1 ď bq,

p@c, d P Zqpc ď d Ø pDy1, y2, y3, y4 P Zqpd´ c “

4
ÿ

i“1

y2i qq.

An additional simplification consists in reducing the number of atoms to
one, by using the fact that

p@e, g P Zppe “ 0 ^ g “ 0q Ø e2 ` g2 “ 0qq.

So, let us assume the we have just one atom A.
Furthermore, the fact that there are existential conditions for A involving

variables z and x1, . . . , xn varying over Z, can be re-written as new atom A1

involving variables z1 and x1
1, . . . , x

1
n varying now over N.

In fact, if A ” h1pz, x1, . . . , xnq “ h2pz, x1, . . . , xnq, then the fact that there
exists z, x1, . . . , xn P Z such that Apz, x1, . . . , xnq is equivalent to saying that
there exist z1, x1

1, . . . , x
1
n P N such that

ł

ph1p˘z1,˘x1
1, . . . ,˘x

1
nq “ h2p˘z1,˘x1

1, . . . ,˘x
1
nqq,

where the former expression involves 2n`1 atoms corresponding to all the
possible combinations of signs. Now, by writing each of the former equalities
as φjpz1, x1q “ 0, for j “ 1, . . . , 2n`1, we can re-write the former expression
as the single atomic condition

Φpz1, x1q “

2n`1
ź

j“1

φjpz1, x1q “ 0.

Finally, we can re-write this condition as a polynomial equality of the form
γ1pz1, x1q “ γ2pz1, x1q involving only positive coefficients.

So, for all a P N, a P Ω if and only if

pDw1 ¨ ¨ ¨wn`1qpa “ w1 ^ γ1pw1, . . . , wn`1q “ γ2pw1, . . . , wn`1qq.
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This means that C has L´´functional conceptual substratum.
Conversely, we replace in a L´´functional conceptual subtratum, any vari-

able xj by four variables yj,1, yj,2, yj,3 and yj,4; and we replace each occur-
rence of xj by

ř4
i“1 y

2
i . So, by Lagrange’s theorem, we obtain an L´functional

conceptual substratum for C. □

Remark 3.3. If we replace in the former proposition functional conceptual
substratum by Diophantine, then the answer is quite different. Effectively, by
the MRDP theorem we know that the ‘Diophantine’ L´concepts are exactly
the recursively enumerable. However, the set of Diophantive L´´concepts
corresponds to a strictly smaller sub-collection of them. Specifically, if r “

1, then it is an elementary exercise to prove that the only two Diophantine
L´´subsets of N (i.e. subsets described as projections over N of a polynomial
with non-negative coefficients) are t0u and N. In general, one can verify by
induction over r that a subset Ω Ď Nr is L´´Diophantine if it has the form

finite
ď

i“pi1,...,ikq

k
ź

r“1

Npirq,

where ir P t0, 1u and we define N0 “ t0u and N1 “ N.

4. NATURAL AND COMPLETE DEFINITION RULES FOR FUNCTIONAL

CONCEPTUAL SUBSTRATUM

Let us denote by LKe the sequent calculus for first-order predicate logic
with equality (over a language L) with the standard inference rules (see for
instance Buss [1998], Takeuti [2013]). Let us enlarge the language L with a
new r´ary predicate symbol D which we will define in terms of a functional
conceptual substratum in the language L, i.e., by a definition of the form

Dpa1, . . . , arq ô pDx1 ¨ ¨ ¨xnqpa1 “ t1 ^ ¨ ¨ ¨ ^ ar “ tr ^A1 ^ ¨ ¨ ¨ ^Amq

where t1, . . . , tn are L´terms and A1, . . . , Am are L-atoms whose variables
are (both) among x1, . . . , xn.

Now, a standard approach to incorporate definitions into a sequent calculus
is to add definition rules which allow unfolding the defined predicate symbol.
In our setting this gives rise to the rules

ϕpa1, . . . , arq,Γ Ñ ∆

Dpa1, . . . , arq,Γ Ñ ∆
DL and

Γ Ñ ∆, ϕpa1, . . . , arq

Γ Ñ ∆, Dpa1, . . . , arq
DR

where ϕpa1, . . . , arq abbreviates the formula defining Dpa1, . . . , arq as above.
We denote the sequent calculus obtained from adding these rules to LKe as
LKepDq. These rules correspond to inferences that syntactically replace into
a proof the former definition of the new relational symbol within the left and
right part of a sequent, respectively.
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Lemma 4.1. For any formula ψ, LKepDq $ ψ Ø ψrDzϕs, where ψrDzϕs

denotes the formula obtained after replacing D by ϕ in ψ.

Proof. This fact can be straightforwardly proved by induction on the (syntac-
tic) complexity of ψ, decomposing the equivalence into two implications and
using the new pair of rules. □

The calculus LKepDq is a conservative extension of LKe in the following
sense:

Theorem 4.2. For any formula ψ, LKepDq $ ψ if and only if LKe $ ψrDzϕs.

Proof. pñq Let P be a proof of ψ in LKepDq. Then, by replacing D in P by
ϕ and removing DL- and DR-inferences, we obtain a proof P 1 of ψrDzϕs in
LKe.

pðq Let P be an LKe-proof of ψrDzϕs. Obtain an LKepDq-proof Q of
ψrDzϕs Ñ ψ from Lemma 4.1. Then a cut on P and Q gives an LKepDq-
proof of ψ. □

The above definition rules treat definitions in general. However, a defini-
tion of a concept that has a functional conceptual substratum is typically used
in a more specific way in mathematical proofs. For example, when showing
that the sum of n and m is even if m and n are, one may start the proof by a
phrase like “Since n is even, n “ 2a (for some a P N)”. For the general case,
this is formalized by the rule

a1 “ t1rxzζs, . . . , ar “ trrxzζs, A1rxzζs, . . . , Amrxzζs,Γ Ñ ∆
Dfcs

LDpa1, . . . , arq,Γ Ñ ∆

Similarily, one may end the proof with a phrase like “2 ¨ pa ` bq is even”. For
the general case, this is formalized by the rule

Γ Ñ ∆, A1rxzus ¨ ¨ ¨ Γ Ñ ∆, Amrxzus

Γ Ñ ∆, Dpt1rxzus, . . . , trrxzusq
Dfcs

R

We write LKfcs
e for the calculus obtained from LKe by adding these two

rules. We will now verify that LKfcs
e pDq is sound and complete w.r.t. LKepDq.

To that aim, we first relate it to LKe.

Lemma 4.3. For any formula ψ, LKfcs
e pDq $ ψ Ø ψrDzϕs.

Proof. We proceed by induction on the syntactic complexity of ψ. The only
non-trivial case is when ψ is Dpv1, . . . , vrq.

We obtain an LKfcs
e pDq-proof of Dpv1, . . . , vrq Ñ ϕpv1, . . . , vrq by applying

a Dfcs
L -inference, n Dr-inferences, and r `m´ 1 ^r-inferences.
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In the other direction, we obtain an LKfcs
e pDq-proof of ϕpv1, . . . , vrq Ñ

Dpv1, . . . , vrq as follows:

A1rxzζs Ñ A1rxzζs ¨ ¨ ¨ Amrxzζs Ñ Amrxzζs

A1rxzζs, . . . , Amrxzζs Ñ Dpt1rxzζs, . . . , trrxzζsq
Dfcs

R

v1 “ t1rxzζs, . . . , vr “ trrxzζs, A1rxzζs, . . . , Amrxzζs Ñ Dpv1, . . . , vrq
eq.

v1 “ t1rxzζs ^ ¨ ¨ ¨ ^ vr “ trrxzζs ^A1rxzζs ^ ¨ ¨ ¨ ^Amrxzζs Ñ Dpv1, . . . , vrq
^

r`m´1
l

ϕpv1, . . . , vrq Ñ Dpv1, . . . , vrq
Dnl

□

Theorem 4.4. For any formula ψ, LKfcs
e pDq $ ψ if and only if LKe $ ψrDzϕs.

Proof. pñq Let P be a proof of ψ in LKfcs
e pDq. We replace D in P by ϕ,

simulating a Dfcs
L -inferece by n Dl-inferences, and m` r´ 1 ^l-inferences and

a Dfcs
R -inference by

Γ Ñ ∆, A1rxzus ¨ ¨ ¨ Γ Ñ ∆, Amrxzus

Γ Ñ ∆, A1rxzus ^ ¨ ¨ ¨ ^Amrxzus
^m´1

r

Γ Ñ ∆, t1rxzus “ t1rxzus ^ ¨ ¨ ¨ ^ trrxzus “ trrxzus ^A1rxzus ^ ¨ ¨ ¨ ^Amrxzus
eq.

Γ Ñ ∆, ϕpt1rxzus, . . . , trrxzusq
Dnr

Thus we obtain a proof P 1 of ψrDzϕs in LKe

pðq Let P be an LKe-proof of ψrDzϕs. Obtain an LKepDq-proof Q of
ψrDzϕs Ñ ψ from Lemma 4.3. Then a cut on P and Q gives an LKfcs

e pDq-
proof of ψ. □

Corollary 4.5. For any formula ψ, LKfcs
e pDq $ ψ iff LKepDq $ ψ.

Thus one does not loose power by using these specialized definition rules
for defined predicate symbols with functional conceptual substratum. On the
other hand, one gains a mathematically more natural use of these defined
symbols.

5. CONCLUSIONS

The general meta-notion of conceptual substratum (and its particular form
as functional conceptual substratum) serves as a new kind of meta-mathematical
mechanism of outstanding importance with a strong cognitive dimension used
(implicitly) in mathematical creation/invention.

Moreover, the initial first-order formalization of this meta-concept turns
out to be equivalent to central notions in theoretical computer sciences and
elementary number theory. In addition, (functional) conceptual substratum
suggests an additional way of developing proof-theoretical frameworks with
a stronger human-style structure. One of the main reasons supporting this
thesis is the fact that the new deduction rules and definitions simply mirror
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specific instances of the human mathematical practice in an explicit morpho-
syntactic way, and, simultaneously preserving exactly the same deductive
power.

So, subsequent formalizations of conceptual substrata (and of the notion
of conceptual substratum) in higher-order frameworks could bring new light
in our quest for understanding how mathematical creation/invention works
and for developing software able to solve mathematical problems at higher
levels of abstraction.

More explicitly, the results presented here, together with the general for-
malizations of pragmatic and purely formal conceptual substratum presented
in [Gomez-Ramirez, 2020, Def. 10.18,Ch.10] suggests a research program,
where the local conceptual substrata for each relevant mathematical sub-
discipline should be characterized and used for computing the corresponding
pseudo-precode aiming to obtain general algorithmic commonalities, which
can served as the basis for generating the corresponding computer programs
serving as (local) co-creative assistants in several mathematical sub-areas.

Even more, a suitable analysis for conceptual substrata in related field like
physics, chemistry and biology, is the initial key point for being able to materi-
alize the corresponding programs of of artificial physical/chemical/biological
intelligence from the perspective of artificial mathematical intelligence [Gomez-
Ramirez, 2020, Ch.12]. Moreover, the same strategy can be potentially used
for developing more concrete pragmatic and morpho-syntactic prevention
guidelines for viruses like COVID-19, as well as similar ones, following the
lines along Gómez-Ramı́rez et al. [2021] and Herrera-Jaramillo et al. [2021].

The relation with existing theorem provers is more implicit and at the meta-
level. In other words, any theorem prover explicitly based on versions of the
sequent calculus can be potentially updated with specific exemplifications of
the new functional calculus, that preserve the theoretical deductive scope that
increase the cognitive plausibility.

The importance of conceptual substratum for mathematical creation/invention
refers to the fact that obtaining more useful and explicit conceptual substrata
for mathematical structures has the potential of facilitating and speeding up
the creativity in mathematical reasoning.

Extensions of the formalization of (functional) conceptual substratum to
second order logic could also be used for helping us to understand even more
deeply the technical deductive aspects of our daily (natural) language [Mo-
towski and Szymanic, 2012].
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