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Abstract. The boundless nature of the natural numbers imposes para-
doxically a high formal bound to the use of standard artificial computer

programs for solving conceptually challenged problems in number the-

ory. In the context of the new cognitive foundations for mathematics’
and physics’ program immersed in the setting of artificial mathematical

intelligence, we proposed a refined numerical system, called the physical

numbers, preserving most of the essential intuitions of the natural num-
bers. Even more, this new numerical structure additionally possesses

the property of being a bounded object allowing us to work with quite

similar axioms like the classic Peano axioms, but in a finite environment
and with an enriched physical dimension. Finally, we present several en-

lightening examples and we conclude that the physical numbers provide
a natural formal setting for approaching classic problems in number the-

ory from a more hybrid perspective, i.e. with a potential participation

in the generation of solutions, not only of working mathematicians but
also of more sophisticated artificial interactive (mathematical) intelli-

gent agents (within the context of cognitive-computational metamath-

ematics or artificial mathematical intelligence) and more controlled by
physically-inspired principles. Finally, this paper addresses a highly

new, bottom-up and paradigm-shifting approach to the foundations of

physics: One should refine and improve the conceptual formal setting
of the language that we use for understanding physical phenomena (e.g.

the mathematical grounding concepts and theories) for being able to

understand better more subtle and complex physical phenomena.
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1. Introduction and the New Cognitive Foundations for Physics’
Program

The New Cognitive Foundations for Mathematics’ program (NCFM-P) is
the first seminal pillar for Cognitive-Computational Metamathematics (or Ar-
tificial Mathematical Intelligence (AMI)) [6, Part I]. It encompasses, roughly
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speaking, the generation of new and refined grounding structures for (modern)
mathematics with a stronger multidisciplinary basis and more suitable to be
‘computationally simulated’ by an Universal Mathematical Artificial Agent
[8, 7]. In particular, one of its central principles is to transcend and to extend
the mono-disciplinary and purely logical setting of the fundamental mathe-
matical structures (e.g. the numerical systems, sets, the membership relation,
first-order logic) by including cognitive, computational and physical principle,
among others [7]. Now, due to the omnipresent fact that mathematics is the
most natural language for physics, it is obvious that the materialization of
this new (trans-, inter-, intra- and) multidisciplinary foundational program
for mathematics would immediately set the initial basis of a corresponding
New Cognitive Foundations for Physics’ Program (NCFP-P). Even more, this
NCFP program should be extended for seminal (physical) notions that come
from an experimental and heuristic setting and that goes beyond the purely
mathematical domain (e.g. physical unities, measurements, uncertainty prin-
ciples, approximations, etc.).

So, the NCFP program constitutes the first pillar of Artificial Physical
Intelligence as originally described in [10], i.e., the generation of all the neces-
sary theoretical and computational setting needed for the implementation of
a co-creative interactive artificial agent being able to help us solving (mainly
theoretical and secondary experimental) open problem in physics.

The aim of this article is to present one central primary notion for both
foundational programs, i.e. the physical numbers. In other words, a new nu-
merical system that not only refines the most basic counting structures that
we use very often in mathematics and physics, i.e. the natural numbers [21,
Ch. 4]; but also that conceptually fits better into the design of a new genera-
tion of artificial (mathematical/‘physical’) agents immersed in the context of
artificial mathematical (physical) intelligence. Along the way, we present as
well, several major consequences that the integration of the physical numbers
would have in the development of a more precise re-framing of central (solved
and open) questions in (elementary) number theory.

Our approach here goes in the direction of sculpting the theoretical highway
of mathematics and physics in such a way that the fundamental questions
can be solved more naturally and straightforwardly with the building made
[18], [16]. In contrast with the classical procedure of producing highly tricky
solutions to the open problems based on the grounding theories at hand. In
the following sections, we present the formal setting required for structuring
the physical numbers, their connections with the classic Peano axioms and
the standard arithmetic.

Additionally, we present a formal way to connect the physical numbers
with the natural numbers via the physical natural map, and we discuss the
‘physical versions’ foundational problems in number theory like Fermat’s last
theorem, Goldbach’s Conjecture, some Diophantine equations and Hilbert’s
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tenth problem. Finally, we state the main conclusions of our work with an
implicit projection toward future work.

2. Initial Foundational Intuitions about the Physical Numbers

In this section, we review the basic informal features about the physical
numbers. The reader may consul [11] for the major reference on these sub-
jects. In fact, for more examples and initial intuitions of how this construction
refines a lot of aspect of the natural numbers, the reader is invited to see in
more detail [11]. Indeed, the primary calculation tool for physical numbers is
the formation of physical partitions of external reality, rather than the more
traditional technique of ’counting’ objects that served as the intuitive founda-
tion for natural numbers [26]. Furthermore, for being able of forming such a
partitions, we make two seminal assumptions: i) The existence of an external
physical reality (going beyond the existence of subjective observers1), and ii)
the assumption that there exists a finite number of physical quanta in the
external reality (which may be quantitatively conditioned by a temporal pa-
rameter of consideration). With both assumptions, we establish the existence
of the two most fundamental physical numbers, namely, the initial physical
number α, which represents the trivial physical partition consisting of the
external reality as a whole; and the final physical number ω, which represents
the most refined partition consisting of each quantum of the physical realm
as a constituent member.

3. A Formalization of the Physical Numbers

In this article, we provide in detail the essential formal framing of physical
numbers. They are a novel class of structures in which physical and abstract
logic-mathematical things are combined (and subsequently blended) in a for-
mal way.

First, we establish primal structures and relations among them, which
should be understood as the improved interpretations of the concepts of set,
and the membership relation in the Zermelo-Fraenkel Set Theory with the
Axiom of Choice [21]. Furthermore, let us assume that we have constructed a
refined logical formalism, similar to ZFC, but with features more in accordance
with the new cognitive foundations for mathematics’ program [7]. Thus, we
will present more explicitly some of the features that such a formalism should
have, without going deeper into the details, since this matter goes beyond the
scope of this article, for more details on this matters, please see [7].

Second, we present our fundamental axioms in a setting similar to many-
sorted logic [20]. Effectively, we quantify over entities having a purely phys-
ical nature (e.g. physical sub-spaces), as well as entities having a mixed
formal/physical nature (e.g. the ph-numbers).

1For an initial form of this axiom see [25]. A more refined version is given in [11].
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Third, let ER be the External (Physical) Reality. Let us represent by A
any well-defined sub-space of ER (e.g. the (current) collection of all photons;
planets; stars; the Milky Way; the sun, among others2). We use the symbol
F to denote the ph-numbers. In this situation, we can speak about a physical
membership relation among the physical elements of F. Thus, we denote this
ph-relation by ∈p.

Furthermore, let us fix a physical sub-space A (this can be denoted by
A ⊆ss ER). Generally, if A and B are physical sub-spaces, then we denote
the fact that A is (physically) contained in B by A ⊆ss B (i.e. each quantum
of any kind of A belongs to B). Pa(C) denotes the space of (all potential)
finitely constructed partitions of C; i.e., ‘physically-disjointed’ finite gathering
of sub-spaces of B, whose physical union restores B again. Note that Pa(B)
is a formal-physical entity, where any partition of B can be identified, but
not where all the partitions of B are simultaneously found3, 4. If E is a fixed
partition of B, then we denote this as E ∈f Pa(B). Additionally, the fact
that a physical sub-space e belongs to a particular partition E is indicated
by e ⋐ E. If a partition E contains exactly all of the subspaces A1,⋯,Am,
then we more clearly identify this as E = ⟦A1,⋯,Am⟧. Let P1 ∈f P (A1) and
P2 ∈f P (A2) denote partitions whose physical domains are disjoint (i.e. A1

and A2 possess no quantum in common), thus we denote the new partition
generated by integrating both of them by P1 ⊎par P2, with physical domain
A1 ⊎f A2, in other words, the physical union of both physical subspaces A1

and A2. If e ⋐ P1, then we symbolise by P1 ∖par ⟦e⟧, the partition of the
(physical) subspace A1 ∖f e, consisting of all the physical subspaces of P1 but
e.

Fourth, the fundamental partial ‘physical’ functions are the following: The
physical cardinal, (or physical cardinality) of a partition of A, CA ∶ Pa(A)→ F;
the physical successor sp ∶ F ↛ F; the physical addition +p ∶ F × F ↛ F; the

2It is worth ot observe that any of these physical sub-classes can be seen as things which

depend on time, particularly, they depend on the time when they are being considered.
For example, the collection of planets now will be different from the collection of planets a

million years ago.
3The last requirement is due to physical considerations, due to the fact that the amount

of energy required for replicating all the possible sub-spaces of B (which is required to induce

all its partitions) increases exponentially, and in a lot of cases is simply not available, e.g.
B = ER.

4For a better illustration of the idea behind this concept, let us consider the entity S
consisting of a person I, a board and a marker. This object can be thought of as ‘the

collection of all (potential) possible written (short) manifestations of thoughts of I’. In
fact, one could (potentially) find in S any feasible (short) written expression of thoughts of
I, just by asking I. Nonetheless, S does not consist, at any time, of the gathering of all the

possible (short) written expressions of thoughts of I entirely.
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physical multiplication ∗p ∶ F × F ↛ F; and the physical quotient between ph-
numbers, ÷p ∶ F × F ↛ F. The related relations are =p,<p and ≤p contained in
F ×p F.

Fifth, the ‘initial’ physical number corresponding to the simplest partition
consisting of just one subspace i.e. the whole corresponding subspace in con-
sideration, will be denoted by α, i.e. CA(⟦A⟧) = α, for a physical subspace A.
This physical number corresponds (intuitively) to the natural number zero.
On the other hand, the ‘last’ physical number corresponding to the maximal
physical partition of the whole external reality, into all its physical quanta
(Emax

R ) will be betoken by ω, i.e., CER
(Emax

R ) = ω. Analogously, for any
A ⊆ss ER, one can define the maximal partition relative to A, (i.e. Amax) in
the same manner, and the corresponding maximal, or final, physical number
relative to A, by ωA ∶= CA(A

max). Therefore, ω = ωER
. Let us notice that

intuitively a physical number emerging from a partition that classically pos-
sesses n + 1 physical subspaces (n + 1 understood as a natural number), will
simulate the natural number n (see [11, §5.12]).

Now, we present all the seminal axioms describing, in an implicit way, the
essence of the physical numbers.

3.1. Axioms characterizing the Initial Physical Number. We define
the fundamental formal features of the initial physical number α.

(∀A,Z ⊆ss ER)(CA(⟦A⟧) =p CZ(⟦Z⟧) =p α).

And the condition describing the fact that only the trivial partitions cor-
respond to the initial number

(∀B ⊆ss ER)(∀P ∈f Pa(B))(CB(P ) =p α↔ P =p ⟦B⟧).

3.2. Axioms describing the Final (Global and Relative) Physical
Number. The following axiom guarantees that ωA is the biggest physical
number relative to partitions in a physical subspace B ⊆ss ER.

(∀B ⊆ss ER)(∀P ∈f Pa(B))(CB(P ) ≤ ωB ∧ ωB ≤ ω)

Now, we secure that the maximal relative partitions are the only ones
producing the maximal relative physical numbers

(∀B ⊆ss ER)(∀P ∈f Pa(B))(CB(P ) =p ωB ↔ P = Bmax),

here the symbol = among partition means that both partitions are exactly
the same, i.e. they incorporate exactly the same physical subspaces.
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3.3. Axioms for describing the (Physical) Equality. We characterize
the (physical) equality among physical numbers, implicitly through a finite
recursion procedure. Thus, the initial step was already defined on the former
axioms structuring α by defining (physical equality) for trivial partitions.

Now, on the basis of that we define (physical) equality more generally

(∀a, z ∈p F)((a ≠f α∧z ≠p α)→ ((∀A,Z ⊆ss ER)(∀P1 ∈f Pa(A))(∀P2 ∈f Pa(Z))

(∀A1 ⋐ P1)(∀Z1 ⋐ P2)((CA(P1) = a ∧CB(P2) = z)→

(CA∖fA1(P1 ∖par ⟦A1⟧) = CZ∖fZ1(P2 ∖par ⟦Z1⟧))))).

The following axiom guarantees the non-triviality of the equality:

(∀D ⊆ ER)(∀P ∈p Pa(D))(∀D1 ⋐ P )(CD(P ) ≠p α →

CD(P ) ≠p CD∖fD1(P ∖par ⟦D1⟧) ∧CD(P ) = CD∖fD1(P ∖par ⟦D1⟧) + s(α)).

3.4. Partitioning Axiom. This axiom guarantees the quantitative coher-
ence of physical numbers when one adds (resp. suppresses) subspaces to
partitions:

(∀X ′,X ′′ ⊆ss ER)(∀P
′,Q′ ∈f Pa(X

′))(∀P ′′,Q′′ ∈f Pa(X
′′))((∃B′ ⋐ P ′)(∃B′′ ⋐ P ′′)

(∃C ′,G′,C ′′,G′′ ⊆ss ER)(B
′ = C ′⊎fG

′∧B′′ = C ′′⊎fG
′′∧Q′ = (P ′∖par⟦B

′⟧)⊎par⟦C
′,G′⟧

∧Q′′ = (P ′′∖par⟦B
′′⟧)⊎par⟦C

′′,G′′⟧)→ (CX′(P
′) =p CX′(Q

′)↔ CX′′(P
′′) =p CX′′(Q

′′)))

3.5. Retraction-Extension Axiom. This axiom ensures the quantitative
immutability of the physical numbers with respect to the inner size of the
subspaces of partitions

(∀Y ⊆ss ER)(∀P ∈f PY (Y ))(∀B ⋐ P )(∀C ⊆ss ER)(C ⊆ss B →

CA(P ) =p C(Y ∖fB)⊎fC((P ∖par ⟦B⟧) ⊎par ⟦C⟧))

3.6. Axiom describing the (Physical) Successor Function. This axiom
characterizes the refinement of the classic successor function for the Peano
Arithmetic (see [21, Ch.3]).

(∀x, y ∈p F)(x =p s(y)↔ (∃X ′,X ′′,X ′′′ ⊆ss ER)(∃P
′, P ′′ ∈f P (ER))(X

′ =X ′′⊎fX
′′′

∧X ′ ⋐ P ′ ∧X ′′,X ′′′ ⋐ P ′′ ∧CER
(P1) =p y ∧CER

(P ′′) =p x

∧P ′′ = (P ′ ∖par ⟦X
′⟧) ⊎par ⟦X

′′,X ′′′⟧)).
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3.7. (Physical) Addition Axiom. This axiom assures the existence of the
(physical) addition of two physical numbers only in the cases that the physical
quantitative constrains allow such an addition to exist.5

(∀a, h, z ∈p F)(a+ph =p z ↔ ((a =p α → h =p z)∧(a ≠p α → (∃a
′ ∈p F)(a =p s(a′)∧

(∃A′,A′′,A′′′ ⊆ss ER)(∃P
′ ∈f Pa(A

′))(∃P ′′ ∈f Pa(A
′′))(∃P ′′′ ∈f Pa(A

′′′))

(A′′′ = A′ ⊎f A′′ ∧ P ′′′ = P ′ ⊎par P
′′ ∧CA′(P

′) =p a
′

∧CA′′(P
′′) =p h ∧CA′′′(P

′′′) =p z))))).

3.8. (Physical) Multiplication Axiom. For an easier understanding, we
divide this axiom in two parts by using an auxiliary multiplicative operation
∗′p. Thus, firstly let us define this operation in an axiomatic way

(∀s, t, v ∈p F)(s =p t ∗′p v↔ (∃A ⊆ss ER)(∃x, y, z ∈f P (ER))

(CER
(x) = s ∧CER

(z) = v ∧CER
(y) = t∧

(∀w ⋐ y)(∃hw ∈f Pa(w))(Cw(hw) = c)) ∧ ⊎w⋐y(hw) = x),

where ⊎w⋐y(hw) describes the partition of ER formed by the physical (dis-
joint) union of all fixed hw. Informally, the operation ∗′p is the only one that is
axiomatized in a manner that the multiplication of (physical) numbers corre-
sponding to partitions with n and m elements (n,m ∈ N) generates a physical
number with a partition of n ∗ m elements. This minor intermediate step
must be done in order to understand better the central axiom structuring the
(physical) multiplication:

(∀s, t, u ∈p F)(s =p t ∗p u↔ ((t =p α → s =p α)∨

((s ≠p α ∧ t ≠p α ∧ u ≠p α)→ (∃s
′, t′, u′ ∈p F)(s(s) =p s′ ∧ s(t) =p t′ ∧ s(u) =p u′

∧s′ =p t
′ ∗′p u

′)))).

3.9. (Physical) Quotient Axiom. This axiom defines the (physical) divi-
sion in a natural way, in terms of the (physical) product:

(∀f, g, h ∈p F)(f =p g ÷p h↔ (g ≠p α ∧ f =p g ∗p h)).
From an ontological point of view, one can say that physical division is

a fundamental operation because it allows us to keep ‘control’ over the size
of the ph-number, based on a physical fact (i.e., the quantitative shape of
the physical partitions of sub-spaces of ER). This type of formal regulation
is harder to obtain if we consider operations which expand, quantitatively
speaking, the size of computed numbers through addition and multiplication,
respectively.

5Remember all the physical considerations done in the former sub-sections of this section.
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3.10. (Physical) Order Axioms. The following axioms determine the mean-
ing of the (physical) order relation for the ph-numbers.

(∀a, e ∈p F)(a ≤p e↔ (∃b ∈p F)(a +p b =p e)).

(∀a, e ∈p F)(a <p e↔ (∃b ∈p F)(b ≠p α ∧ a +p b =p e)).
All the former axioms provide a formal environment of modeling the shap-

ing intuitions about the physical numbers, and in an extended manner some
of the original intuitions that we are used to perceive about the natural num-
bers. Nonetheless, we enrich here the merely logical-mathematical defining
principles used classically with a more multi- and trans-disciplinary perspec-
tive using implicitly more cognitive and physical precepts (see for example
[12]).

4. Updating the Peano Axioms in a Bounded Discrete Context

At this point it is important to study how the classic formal axioms shaping
the natural numbers (e.g. the Peano axioms) can be updated and refined from
the axioms presented in the former section.

With the help of the former axioms one can see that the following axioms
hold, which refine the classic Peano axioms for our multidisciplinary discrete
setting. Most of them are almost identical versions of its classic counterparts,
others are slightly different:

(1) (∀x, y, z ∈p F)(x =p y → (x =p z → y =p z))
(2) (∀x, y ∈p F)((x ≠p ω ∧ y ≠p ω)→ (x =p y → s(x) =P s(y)))
(3) (∀x ∈p F)(s(x) ≠p α)
(4) (∀x ∈p F)(x ≤p ω)
(5) (∀x, y ∈p F)(s(x) =p s(y)→ x =p y)
(6) (∀x ∈p F)(x +p α =p x)
(7) (∀x, y, z ∈p F)(x +p s(y) =p z → x +p s(y) =p s(x +p y))
(8) (∀x ∈p F)(x ∗p α =p α)
(9) (∀x, y, z ∈p F)((s(α) <p y ∧ s(α) ≤p x)→ x <p x ∗p y)
(10) (∀x, y, z ∈p F)(x ∗p s(y) =p z → (x ∗p s(y) =p x ∗p y +p x))
(11) (Principle of Discrete (Physical-Finite) Induction) LetD(x) be a well-

formed formula (in our formalism6) with a single free variable. Then
D(α) → ((∀x ∈p F)(x ≠p ω → (D(s) → D(s(a))) → (∀y ∈p

F)(D(y))))
The former axioms represent genuine refinements of the classic Peano Ax-

ioms in the sense that all of them are formally supported by physical parti-
tions.

6Here, we implicitly assume that we have constructed an enriched and expanded logical
system being able to simulate some of the basic features of a first-order logic theory, and

following the requirements described in [7].
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5. Towards Bounded (Physical) Number Theory

The origins of the physical numbers as a modern multi- and trans-disciplinary
refinement of the natural numbers, imposes the question of translating classic
number theory into this new hybrid numerical system.

So, let us start with some basic considerations for a better understanding
of this translation process.

Explicitly, although the physical and the natural numbers belong to two
different kinds of formal worlds, we can compare them in a simple intuitive
manner. Namely, let us consider the following correspondence G ∶ F → N,
sending a physical number v to the cardinal of any partition characterizing
it minus one, i.e. G(v) = ∣cv ∣ − 1, where cv ∈f Pa(A), for some physical sub-
space A ⊆ss ER, and such that CA(Cv) = v. Note that G is not a surjective
correspondence due to the fact that the physical numbers constitutes a finite
formal structure and the natural numbers constitutes an infinite set. Further-
more, we can also see G as a correspondence from the physical numbers into
the integers by composing with the natural inclusion i ∶ N→ Z, i.e. G ∶ F→ Z.
Moreover, it is worth noting that G is also a one-to-one correspondence, which
respects all the physical arithmetic operations defined in the former axioms.
So, we can partially identify7 the physical numbers with a particular subset
of the natural numbers (resp. integers) respecting the corresponding arith-
metic operations. Let us call the correspondence G the physical natural map.
Furthermore, we will name the image of G, i.e. G(F), the physical natural
numbers. We denote the preimages of a physical natural number n, as n(p),
in other words, G(n(p)) = n.

From the former considerations we can deduce that for any natural num-
ber n coming from a physical number under G, we still can have a kind of
physical well-founded intuition, or (physical) model, about the whole amount
of elements it possesses. So, we can say that n is a natural physical number.

On the other hand, if n do not correspond to any physical number under G,
then, per definitionem, we cannot have any kind of model of the cardinality
that n represents by mean of a physical sub-space. Thus, we can talk in this
case of n being a natural meta-physical number (or a mental natural number),
i.e. a natural number whose quantitative structure goes beyond the physical
realm, and is situated more in a cognitive phenomenological realm.

Let Q(Z) be a (open) question (conjecture) in classic number theory. Then,
with all the former clarifications in mind, if we want to solve Q(Z) in the
classic setting of arithmetic, we can first try to solve (prove or disprove)
the corresponding (open) question (conjecture) Q(F), which is the carefully

7Here, we clarify that the identification is partial because the physical numbers as hybrid

structure possesses a more robust nature, meanwhile the corresponding subset of the natural
numbers (resp. integers) identified as its image under G is simply a classic mathematical

(set-theoretical) structure.
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translation of Q(Z) into the physical numbers; and then try to solve the
original one.

An advantage of the former procedure is that in the setting of Q(F) we
have a finite structure and an enriched gathering of intuitions coming from
the physical principles framing F, which are not present, in principle, in the
setting of the natural numbers. Similarly, since we are located in a finite
deductive framework working with the physical numbers, and additionally
we possess an axiomatization in a many-sorted first-order-like framework, we
can use computer-based specifications supported by software like the hetero-
geneus tool set (HETS) [22], described in the common algebraic specification
language CASL [1]. More generally, one can enhance the classic human-based
logical deductive methods with techniques coming from the new paradigm of
conceptual computation [14].

For example, one can easily specify the first Peano axioms for the physical
numbers using a CASL language:

logic CASL

%%SOME PEANO AXIOMS FOR THE PHYSICAL NUMBERS

spec PeanoPhysicalAxioms =

sort F

op alpha : F

op omega : F

op s__ : F -> F

op __+__ : F * F -> F

op __*__ : F * F -> F

preds __leq__: F * F -> F

preds __les__: F * F -> F

forall x, y : F. (x = y -> (x = z => y = z))

forall x, y : F. ((not x = omega) /\

(not y = omega) => ( x = y => s(x) = s(y)))

forall x : F. not s(x) = omega

forall x : F. x leq omega

forall x, y : F. s(x) = s(y) => x = y

forall x : F. x + alpha = x
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forall x, y, z : F. x + s(y) = z => x + s(y) = s(x + y)

forall x : F. x * alpha = x

forall x, y, z : F. (s(x) les y /\ s(alpha) leq x) => (x les x * y)

forall x, y, z : F. x * s(y) = z => x * s(y) = x * y + x

end

Note that nowadays this hybrid approach for generating interactive proofs
of theorems not only in number theory, but also in algebra, topology and
many other mathematical sub-disciplines is getting more and more attention
from the (multi-disciplinary) academic community (see for example [15], [13],
[3], [2] and [9]).

6. Some Seminal Examples of Problems in Physical
(’Observable’) Number Theory

In this section we will describe how to translate some seminal problems
in (elementary) classic number theory into the formal realm of the physical
number.

Let us start with a well-known solved problem in number theory, the Fer-
mat’s Last Theorem.

6.1. Fermat’s Last Theorem. This problem is one of the most famous
and most astonishing ‘diamonds’ in modern number theory, since its solution
finally founded by Andrew Wiles in 1995, involves several quite elaborated
branches of mathematics, like Iwasawa theory, the theory of Elliptic curves,
Galois cohomology, algebraic geometry, among others [27]. On the other hand,
the statement of the problem is so simple that at the level of elementary school
one could grasp the essence of the question. Explicitly, Fermat’s Last Theorem
states that for any natural number n ≥ 3, the equation

(6.1) zn = xn + yn,

has no solution in the natural numbers with xyz ≠ 0.
Now, note that through the physical natural map we can state the corre-

sponding question in the context of the physical numbers, since the operations
of addition, multiplication and exponentiation are defined in a partial man-
ner as well, e.g., the binary (physical) operations defined with the physical
numbers are partial (and not total) maps.

So, the corresponding statement is the following:
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Physical Fermat’s Last Theorem. For any physical number n(p) ≥p 3(p), the
equation

(6.2) zn(p) =p x
n(p) +p y

n(p)

has no solutions where x, y, z ∈p P and x ∗p y ∗p z ≠p α =p 0(p).
Now, the former statement is also true for the physical numbers. In fact, let

us assume by the sake of contradiction that there exist m(p), a(p), b(p), c(p) ∈p
P, with m(p) ≥p 3(p) and a∗p a∗p c ≠p α such that cn(p) =p a

n(p) +p b
n(p) . Then,

via the physical natural map, we would obtain a counter-example of (classic)
Fermat’s last theorem given by cm = am + bm, where m,a, b, c ∈ N with abc ≠ 0
and n ≥ 3. This is a contradiction with wiles’ proof. So, Physical Fermat’s
theorem holds as well.

6.2. Non-solvable Diophantine equations in the Natural Numbers.
Let us consider a Diophantine equation D(x1,⋯, xs) = 0, where D(x1,⋯, xs)
is a polynomial with coefficients in the natural numbers. Assume that D = 0
has no solution over the natural numbers. Then, applying a completely
similar argument as the one presented for the physical Fermat’s last theo-
rem, one can prove that the corresponding physical Diophantine equation
Dp(x1(p),⋯, xs(p)) =p α has no solutions over the physical numbers. More
generally, if D is a polynomial with integer coefficients then, it is straight-
forward to see that there exists two polynomials D1 and D2 with coefficient
in the natural numbers with s variables such that the Diophantine equation
D = 0 has (no) solutions over the natural numbers if and only if the equation
D1 =D1 has (no) solutions over the natural number, and, in fact, the solutions
are exactly the same. So, again one can simulate the same argument as before
for proving that the equation D1p(x1(p),⋯, xs(p)) =p D2p(x1(p),⋯, xs(p)) has
no solutions over the physical numbers.

Let us continue with with a classic old open problem in number theory
known as the Goldbach’s conjecture.

6.3. Goldbach’s Conjecture. Goldbach’s conjecture states that every even
natural number greater than four can be written as the sum of two odd prime
numbers [19]. This conjecture is around 280 years old and has been (compu-
tationally) verified for all even numbers up to 4 × 1018 [23].

Again, through the physical natural map we can state the corresponding
conjecture in the setting of the physical numbers, since the notions of even,
odd and prime number; addition and multiplication are defined partially as
well.

Physical Goldbach Conjecture (PGC). Any even physical number bigger than
4(p) can be written as the (physical) sum of two physical odd prime numbers.
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First, note that this physical version of the Goldbach conjecture should be
verified only in a finite number of cases, since the physical numbers form a
finite entity.

Even more, if we want to have more concrete upper bounds for verifying
this conjecture, we can restrict ourselves a little bit more to physical numbers
into the observable universe. In other words, we say that a physical number
n(p) is an observable physical number, if there exists at least one partition
Q, and a subspace A completely contained in the observable universe such
that CA(Q) = n(p), i.e., one can codify n(p) with a partition formed with only
observable subspaces.

So, we can consider the more restricted form of the former conjecture:

Observable Physical Goldbach Conjecture (OPGC). Any even observable phys-
ical number bigger than 4(p) can be written as the (physical) sum of two
observable physical odd prime numbers.

Now, due to the fact that we can compute rough estimates of the total
amount of elementary particles in the observable universe using basic results in
cosmology and particle physics, we can estimate a more concrete upper bound
for the OPGC. Effectively, one general accepted estimate for the number of
elementary particles in the observable universe is the one given by the British
physicist Antonio Padilla of 3.28 × 1080 [24].8

Thus, roughly speaking, we can say that for proving the OPGC, it is enough
to check for physical natural numbers up to 3,28 × 1080.

So, combining this with the results of Oliveira e Silta et al we conclude
that the interval of interest for proving the OPGC is [4 × 1018,3.28 × 1080].

Therefore, in order to solve the mono-disciplinary (i.e. entirely mathemat-
ical problem) given in the Goldbach conjecture, it seems very natural to solve
firstly the OPGC, which is a more multidisciplinary problem, where one can
use techniques not only from pure mathematics, but also one could integrate
on its potential solution estimates and techniques of high energy physics and
cosmology, among others; as well as the whole cognitive-meta-mathematical
setting of tools developed in artificial mathematical intelligence.

7. Hilbert’s Tenth Problem

One of the most fundamental questions in the elementary theory of Dio-
phantine equations from the computational perspective is the one asking if
there is an algorithm (at least theoretically speaking) being able to decide
if an arbitrary Diophantine equation D(x1,⋯, xs) = 0 has a solution in Ns.
This question is generally known as the Hilbert’s tenth problem due to his-
torical reasons [17]. Now, the query was negatively solved in 1970 in a
common effort by Martin Davis, Julia Robinson, Hilary Putnam and Jury

8In more refined calculations one could include massless particles like photons and glu-

ons, but for initial simplicity in this article we only include particles with mass.
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Matiyasevich and it is known as the MRDP theorem (or Matiyasevich’s the-
orem) [4], [5]. As we have done in the former section, given a Diophan-
tine equation D = 0, one can find two polynomials D1 and D2 with coeffi-
cients in N such such D(x1,⋯, xs) = 0 has a solution in Ns, if and only if
D1(x1,⋯, xs) = D2(x1,⋯, xs) has a solution in Ns. So, in this setting we can
state the counterpart of Hilbert’s tenth problem for the physical number as
follows:

Physical Hilbert’s Tenth Problem (PHTP). There is a general algorithm which
is able to decide if an arbitrary physical Diophantine equation of the form
D1p(x1(p),⋯, xs(p)) =p D2p(x1(p),⋯, xs(p)) has at least a solution in Ps, where
D1 and D2 are polynomials in s variables with coefficients in P.

In comparison with the classic Hilbert’s tenth problem, the former physical
version of the question can be solved positively, at least theoretically. In fact,
since the physical numbers form a finite structure, an algorithm for solving
PHTP should simply verify if the corresponding equation D1(x1,⋯, xs) =
D2(x1,⋯, xn) has (or not) a solution for s−tuples of physical natural numbers,
which form a finite set, since the physical natural numbers so are. In other
words, this algorithm must check tuple by tuple the Diophantine equation
tuple by tuple over all the physical natural numbers and finally decide if
a solution was (or not) found. Note that the algorithm in this bare form
would require an immense amount of time for computing the answer about
the solvability of any Diophantine equation, however this technical fact, in
principle, is not directly relevant for answering PHTP.

8. Main Logic-Epistemological Conclusions

From all the formal framework described before we can obtain general
pragmatics conclusions in the following manner.

Firstly, the classic numerical system used in several ways for our under-
standing of ‘counting’, ‘gathering’ and arithmetic operations should be refined
in a way that allows us to introduce principles and intuitions from near scien-
tific disciplines like physics and cognitive sciences. This should be done with
the purpose of founding more robust and solid foundational grounds to the
study of number theory (from a multi- and trans-disciplinary perspective).

Secondly, the fast development of multifaceted methods in artificial intel-
ligence, and in particular in artificial mathematical intelligence compel us to
discover/invent enriched numerical structures for number theory that we can
use in a mixed manner (i.e. a man-machine approach) to decipher the semi-
nal open questions in modern (elementary) number theory from a bottom-up
perspective, in comparison with the top-down classic point of view.

Thirdly, from an epistemological point of view it seems to be more accurate
to face (open) questions in number theory firstly in a bounded discrete man-
ner, i.e. in the setting of the physical numbers, which is a framework based
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essentially on finite structures. The main reason for this lies in the fact that
the working mathematicians may be (dangerously) get used to the endless
and meta-physical character of the natural numbers, without noticing that
they can encode easily meaningless, or kind of semantically empty, (open)
questions covered in well-established logic-mathematical formalism (e.g. first-
order logic). In this sense, the first titanic work of Ludwig Wittgenstein is
still very relevant and inspiring [28].

Finally, the wide and huge sophistication that lots of open questions in num-
ber theory possess should inspire us to follow a modern bottom-up integrative
approach. In other words, we should re-build the very seminal structures and
methods used for describing formally number theory with the help not only of
disciplines beyond mathematics and (classic) logic, but also with (a stronger
use of present and coming) artificial devices emerging, for example, from mul-
tidisciplinary scientific disciplines like artificial mathematical intelligence.

Acknowledgements

The author wants to thank sincerely to Maria Valeria for all the (in)visible
support and love beyond words. Moreover, he thanks to Juan Carlos Dı́az
and Fabian Suarez for all his sincere friendship and support.

References

1. Michel Bidoit and Peter D. Mosses, Casl user manual, Lecture Note in Computer

Science 2900, Springer-Verlag, Berlin, Heidelberg, 2004.
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14. Danny A. J. Gómez-Ramı́rez and Yoe A. Herrera-Jaramillo, Conceptual computation

in artificial mathematical intelligence as a paradigm-shifting technique in physics and

mathematics, Journal of Physics: Conference Series, vol. 1672, IOP Publishing, 2020,
p. 012015.

15. Danny A. J. Gómez-Ramı́rez and Alan Smaill, Formal conceptual blending in the (co-)
invention of (pure) mathematics, Concept Invention, Springer, 2018, pp. 221–239.
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