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Abstract

Given a three-valued definition of validity, which choice of three-valued
truth tables for the connectives can ensure that the resulting logic co-
incides exactly with classical logic? We give an answer to this question
for the five monotonic consequence relations st, ss, tt, ss ∩ tt, and ts,
when the connectives are negation, conjunction, and disjunction. For ts
and ss ∩ tt the answer is trivial (no scheme works), and for ss and tt it
is straightforward (they are the collapsible schemes, in which the middle
value acts like one of the classical values). For st, the schemes in question
are the Boolean normal schemes that are either monotonic or collapsible.

1 Characterizing classical logic

Our goal in this paper is to provide a characterization of different ways in which
classical logic can be presented in a three-valued setting. More precisely, our goal
is to inventory which three-valued truth tables for negation, conjunction and
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disjunction can be paired with three-valued definitions of validity so as to yield
exactly the same inferences that are obtained in more standard presentations of
classical logic. While this project is mostly theoretical, it also has philosophical
and conceptual motivations, about which we shall say more after stating the
central results.

Toward our main goal, we first need to say more about the more standard
ways in which classical logic has been characterized. Given a denumerable set of
propositional variables P = {p, q, r, p′, q′, r′, ..}, a propositional logic is a triple
⟨L, C,⊢⟩ such that C is a finite set of n-ary connectives, L is the set of formulae
generated from P by application of the connectives in C, and ⊢ is a relation
between sets of formulae in L. In this paper, we will mainly focus on the set
C = {¬,∨,∧}, comprised of negation, disjunction and conjunction, forming a
standard set of connectives in presentations of classical logic.

Given a propositional logic, what characterizes this logic as classical? One
prominent answer to this question relies on two-valued semantics. On that
view, a propositional logic is classical if the connectives are interpretable by
specific two-valued truth functions, and ⊢ is interpretable by a specific relation
between sets of truth values (where the values in question can be represented
by 1 and 0, standing for True and False). Thus, for negation, conjunction, and
disjunction to be classical, they must be interpretable by functions coextensional
with f¬(x) = 1 − x, f∨(x, y) = max(x, y), f∧(x, y) = min(x, y) on the set V =
{1, 0}. Moreover, ⊢ is classical provided Γ ⊢ ∆ if and only if for every valuation
function v which is a homomorphism from (L, (¬,∨,∧)) to (V, (f¬, f∨, f∧)),
{v(A) : A ∈ Γ} ⊆ {1} implies {v(B) : B ∈ ∆} ∩ {1} ≠ ∅. That is, for every
valuation, the truth of the premises in Γ implies the truth of some conclusion
in ∆, which we can write Γ ⊨2 ∆.

But what justifies the choice of these tables, and of this definition of va-
lidity? One possibility to answer this question is to look at syntax, namely
proof-theory. Of particular interest to us is Gentzen’s perspective on the con-
nectives and on the consequence relation. The leading idea behind Gentzen’s
approach in his seminal work [20] is that what makes a logic classical is the fact
that the connectives and the consequence relation obey specific rules. The way
Gentzen describes this is by specifying on the one hand structural rules govern-
ing the consequence relation ⊢, and on the other operational rules governing the
connectives. Arguably, this perspective is more explanatory than the semantic
perspective, because it tells us how inferences are shaped to begin with.

As structural rules, Gentzen proposed various properties such as reflexiv-
ity, monotonicity, contraction, and the Cut rule. For operational rules Gentzen
proposed analytic rules, telling us how an inference involving a connective in
premise position or in conclusion position depends on other inferences not involv-
ing that connective but only involving subformulae. For negation, conjunction,
and disjunction, the rules of his calculus LK are as follows:

Does it matter whether one starts from a proof-theoretic or from a semantic
characterization of classical logic? One may say that it does not, consider-
ing that the semantic and the syntactic perspective can be made to coincide.
Gentzen’s sequent calculus LK, which characterizes ⊢ syntactically, is sound
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Γ ⊢ A,∆

Γ,¬A ⊢ ∆

Γ, A,B ⊢ ∆

Γ, A ∧B ⊢ ∆

Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ, A ∨B ⊢ ∆

Γ, A ⊢ ∆

Γ ⊢ ¬A,∆

Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ A ∧B,∆

Γ ⊢ A,B,∆

Γ ⊢ A ∨B,∆

Figure 1: LK rules for negation (left), conjunction (middle), disjunction (right).

and complete for the semantic interpretation ⊨2 of the consequence relation be-
tween sets of formulae. However, Gentzen [20] has shown that Cut is eliminable
from LK. In other words, the set of provable sequents in LK minus Cut is
the same as the set of provable sequents in LK, i.e., exactly those that are
classically valid. So, in the same way in which there is a different syntactic
characterization of classical logic than the one based on LK, one can also ask
if there can be different semantic characterizations of classical logic beside the
two-valued approach.

As it turns out, some authors have provided various three-valued semantics
for classical logic. For instance, Girard in [21] offers a non compositional seman-
tics based on three-valued valuations (the so-called Schütte valuations), while
Cobreros et al. [8] do the same using the Strong Kleene valuations, and more
recently, Szmuc and Ferguson [31] and Ferguson [13] show that the Weak Kleene
valuations also work. All of these characterizations are given by the so-called
st-consequence relation, defined by the fact that when all premises in Γ take
the value 1 in the set {1, 1/2, 0}, some conclusion in ∆ takes a value other than
0—see [18] and [2] for related discussions of this notion of consequence.

In [5], it is shown that beside st, other substructural consequence relations
admit connectives satisfying Gentzen’s operational rules, and are representable
by means of three-valued operators. A case of interest is the non-reflexive rela-
tion ts, defined by the fact that when all premises in Γ take a value other than
0, some conclusion takes the value 1—see [22], [19] and [24]. Moreover, [5] shows
that when the language contains constants for the truth values, ts admits as
Gentzen-regular connectives the same Strong Kleene negation, conjunction and
disjunction as st. Similar results, both positive and negative, are obtained for
alternative definitions of logical consequence, in particular for ss (preservation
of the value 1 from premises to conclusion), for tt (preservation of non-falsity)
and for their intersection ss ∩ tt.1

The results in [5], however, did not purport to give a trivalent characteri-
zation of classical logic as defined above, namely in terms of both structural
and operational rules. Instead, they focus only on operational rules, and for the
most part they assume that the language can express all truth values, including
the third value 1/2. Given these results, we are led to the following more general

1The consequence relation ss∩tt over the Strong Kleene valuations renders the well-known
logic RMfde, i.e., the first-degree entailment fragment of the relevant logic R-mingle, as well
documented and discussed in [11].
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question: what are all the three-valued schemes that can be used to characterize
exactly those inferences valid in the two-valued presentation of classical logic,
i.e., ⊨2? To answer this question, we determine, for the five definitions of se-
mantic validity mentioned above (st, ss, tt, ss∩ tt, and ts), which three-valued
truth tables can be assigned to negation, conjunction, and disjunction so as to
yield all and only the inferences of the two-valued presentation of classical logic.
For ts, the answer is trivial: no scheme will work, since p ⊢ p fails in ts—see,
e.g., [22] and [8]. For the remaining four definitions of validity, the answer is less
obvious, in particular in the case of st. For st, it is a contested matter whether
it supports classical meta-inferences such as the Cut rule—see, e.g., [8] and [10].
However, here we are interested primarily in whether st can support the same
classical inferences as two-valued semantics.

Our work proceeds as follows: in Section 2 we start by a review of three-
valued definitions of validity, with an indication of the valuation schemes playing
a central role in our results. Section 3 presents our main results, whose proof we
defer to the Appendix to ease reading. Section 4 concludes with comparisons
and a discussion of the philosophical value of those results.

2 Definitions

The question we are investigating in this paper can be put as follows: given
a three-valued definition of logical consequence C, what set of truth tables X
(or scheme) for the connectives can be such as to ensure that the resulting
consequence relation ⊨C

X coincides with classical consequence. In this section
we first introduce the five notions of validity of interest in a trivalent setting,
where the truth values are going to be 1, 1/2, and 0. We then define the relevant
properties of connectives and their truth tables, and give an overview of the
way in which these properties constrain classicality for different consequence
relations.

2.1 Logical Consequence

This section introduces five entailment relations corresponding to distinct ways
of thinking of validity in a three-valued setting. They include the so-called pure,
mixed and intersective definitions of logical consequence, as defined in [6].

Definition 2.1. Let a valuation be a function v from formulae to the set
{1, 1/2, 0}.

(ss-validity) Γ ⊨ss ∆ if and only if for every valuation v,
if v(A) = 1 for every A ∈ Γ, then v(B) = 1 for some B ∈ ∆.

(tt-validity) Γ ⊨tt ∆ if and only if for every valuation v,
if v(A) ∈ {1, 1/2} for every A ∈ Γ, then v(B) ∈ {1, 1/2} for some B ∈ ∆.

(st-validity) Γ ⊨st ∆ if and only if for every valuation v,
if v(A) = 1 for every A ∈ Γ, then v(B) ∈ {1, 1/2} for some B ∈ ∆.
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(ts-validity) Γ ⊨ts ∆ if and only if for every valuation v,
if v(A) ∈ {1, 1/2} for every A ∈ Γ, then v(B) = 1 for some B ∈ ∆.

(ss ∩ tt-validity) Γ ⊨ss∩tt ∆ if and only if Γ ⊨ss ∆ and Γ ⊨tt ∆;
or equivalently, if and only if for every valuation v,
inf{v(A)|A ∈ Γ} ≤Q sup{v(B)|B ∈ ∆}, where ≤Q is the usual order over
the rational numbers.

Basically, the pure notions of validity are the ones definable in terms of the
preservation of a fixed set of designated values between premises and conclusions,
they include ss (preservation of value 1) and tt (preservation of values that are
not 0). The mixed notions of validity st and ts define logical consequence not
in terms of preservation but in terms of specific constraints between values that
can differ for premises and conclusions (not going from truth to falsity for st, or
from non-falsity to non-truth for ts). Finally, the intersective notion of validity
ss ∩ tt has also been called order-theoretic in [14, 6], because it is equivalent
to requiring that, relative to the total ordering of truth-values 0 < 1/2 < 1, the
largest value of the conclusions should not be smaller than the smallest value of
the premises.

Although more entailment relations are conceivable, in [6] these five were
identified as the so-called intersective mixed consequence relations.2 They form
a natural class by corresponding to the three-valued monotonic consequence
relations (namely such that if Γ ⊢ ∆, then Γ,Γ′ ⊢ ∆,∆′). These consequence
relations are related as depicted in Figure 2, in which a lower relation is an
extensional subset of a higher relation.

2.2 Schemes for the connectives: Boolean normal, Mono-
tonic, Collapsible

We define a three-valued valuation scheme X as a triple (f¬, f∧, f∨) of opera-
tions, namely of three-valued truth tables for the connectives. The properties
of a scheme are defined in terms of the properties of its operations. Here we
single out three main properties of interest: Boolean normality, monotonicity,
and collapsibility.

We first define Boolean normal operations, that is operations that behave
on Boolean values like their corresponding (“normal”) counterpart in classical
logic. This property is also referred to in the literature as normality ([27]), or

2These consequence relations are called intersective mixed consequence relations in [6]
because they are all the consequence relations definable as intersections between mixed conse-
quence relations (which include pure consequence relations as defined in [6]). From the lattice
displayed in Figure 2 notice that ss∩ tt is the only intersective consequence relation which is
not a pure or a mixed consequence relation. Given the inclusion between the logics, the other
consequence relations are all the possible intersections between mixed and pure consequence
relations. See [6] for more details.
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st

ss tt

ss ∩ tt

ts

Figure 2: The five intersective mixed consequence relations

as regularity ([28]). For more on the origin of this terminology, going back to
[26] and [29], see [32] and references therein.3

Definition 2.2 (Boolean normality). An n-ary operation ⋆ is Boolean normal
if and only if for {a1, ..., an} ⊆ {0, 1}, ⋆(a1, ..., an) = ⋆CL(a1, ..., an), where ⋆CL

is the corresponding operation over the usual two-element Boolean algebra. A
scheme is Boolean normal iff each of its operations is.

Next, we assume that truth values are ordered with regard to ≤I in terms
of their so-called informational value, as described in [15], that is: 1/2 <I 0
and 1/2 <I 1, as depicted in Figure 3. Given such an ordering relation <I,
we can define the componentwise ordering based on this order as follows:
⟨a1, ..., an⟩ ≤comp

I ⟨b1, ..., bn⟩ if and only if aj ≤I bj for all 1 ≤I j ≤I k.

Definition 2.3 (Monotonicity). An n-ary operation ⋆ is (upward) mono-
tonic if and only if whenever ⟨a1, ..., an⟩ ≤comp

I ⟨b1, ..., bn⟩ then ⋆(a1, ..., an) ≤I

⋆(b1, ..., bn). A scheme is monotonic if and only if each of its operations is.

In 2D truth table format, monotonic operations are such that no two distinct
classical values are found next to one another, horizontally or vertically. This
is easy to prove and we refer to Appendix C for a tighter characterization.

By combining Boolean normality and monotonicity, we obtain the Boolean
normal monotonic operations for negation, conjunction and disjunction pre-
sented in the truth tables in Figure 4. Here and elsewhere, when a cell contains

3The authors in [4, p.129] have introduced a related property which they called hyper-
classicality which they defined as follows: “a three-valued matrix is hyper-classical if the
restriction of its associated function to the classical domain (values 1 and 0) will have its
image in the classical codomain (values 1 and 0)”. According to this definition, all Boolean
normal schemes are hyper-classical.
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1/2

1 0

Figure 3: Hasse diagram of the information order ≤I

more than one value, this means that any choice of a value renders an operation
with the desired properties, independently of the choice of values in other cells
(in this case, Boolean normality and monotonicity).

¬
1 0
1/2 1/2
0 1

∧ 1 1/2 0
1 1 1/2 0
1/2 1/2 1/2 1/2, 0
0 0 1/2, 0 0

∨ 1 1/2 0
1 1 1, 1/2 1
1/2 1, 1/2 1/2 1/2
0 1 1/2 0

Figure 4: All the Boolean normal monotonic schemes

To introduce our last relevant property, we define “α-collapsers”, operations
τα defined as τα(0) = 0, τα(1) = 1, and τα(1/2) = α, for α = 0 or α = 1. As can
be seen, collapsers preserve Boolean values, and collapse the third value onto α.

Definition 2.4 (Collapsibility). An n-ary operation ⋆ is an α-collapsible version
of a classical operation ⋆CL iff τα(⋆(x1, . . . , xn)) = ⋆CL(τα(x1), . . . , τα(xn)). A
scheme is α-collapsible if and only if all of the operations are α-collapsible.

In terms of truth tables, the 1-collapsible (henceforth, truth-collapsible)
and the 0-collapsible (falsity-collapsible) operations are as reported in Fig-
ures 5 and 6, respectively.

¬
1 0
1/2 0
0 1, 1/2

∧ 1 1/2 0
1 1, 1/2 1, 1/2 0
1/2 1, 1/2 1, 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1, 1/2 1, 1/2 1, 1/2
1/2 1, 1/2 1, 1/2 1, 1/2
0 1, 1/2 1, 1/2 0

Figure 5: All the truth-collapsible schemes

We can see how these translates the definitions. First, the Boolean corners of
the table should yield the same values as the corresponding Boolean operations,
up to τα. Second, in an area in which one can move by applying τα to one
or both of the inputs, all output values should be the same, again up to τα.
Therefore, the truth-collapsible scheme is one in which the values 1 and 1/2 play
the same functional role, whereas in the falsity-collapsible case the values 0 and
1/2 play the same role. Figures 7 and 8 display the Boolean normal collapsible
operations.

Finally, notice that no collapsible negation is monotonic, because the third
value yields a determinate value for collapsible negations, and an indetermi-

7



¬
1 1/2, 0
1/2 1
0 1

∧ 1 1/2 0
1 1 1/2, 0 1/2, 0
1/2 1/2, 0 1/2, 0 1/2, 0
0 1/2, 0 1/2, 0 1/2, 0

∨ 1 1/2 0
1 1 1 1
1/2 1 1/2, 0 1/2, 0
0 1 1/2, 0 1/2, 0

Figure 6: All the falsity-collapsible schemes

¬
1 0
1/2 0
0 1

∧ 1 1/2 0
1 1 1, 1/2 0
1/2 1, 1/2 1, 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1, 1/2 1
1/2 1, 1/2 1, 1/2 1, 1/2
0 1 1, 1/2 0

Figure 7: All the Boolean normal truth-collapsible schemes

nate for the monotonic negation. This implies that no collapsible scheme is
monotonic, and conversely.

Various examples from the literature can be given to illustrate those schemes.
The well-known Strong Kleene scheme and the Bochvar/Weak Kleene scheme
are both Boolean normal monotonic schemes. Boolean normal monotonic
schemes also include other schemes, such as the scheme characteristic of Lisp
logic as discussed in Fitting’s [15], first introduced by McCarthy in [23]—also
to be found in the presupposition projection literature, in particular in Peters’
[25].4 Likewise, the collapsible schemes are not just theoretical possibilities:
an example of truth-collapsible scheme can be found in Cantwell’s [3], under
the name “non-bivalent classical valuation”. Cantwell gives tables for negation,
conjunction, and disjunction that are Boolean normal truth-collapsible. Addi-
tionally, he defines a conditional operator (originally introduced independently
by Cooper in [9]), which is not Boolean normal (it yields the value 1/2 when the
antecedent has value 0, and takes the value of the consequent otherwise), but
which could be shown to be truth-collapsible.5

2.3 Interaction of logical consequence and schemes:
Overview of the results

With the definition of logical consequence and of a valuation scheme in hand,
we can restate our main goal more precisely as follows.

Definition 2.5. Given a scheme X and a definition of logical consequence C,
we write ⊨C

X the corresponding consequence relation, namely the set of valid

4This scheme can be viewed as a compromise between a Strong Kleene and a Weak Kleene
scheme in that it is asymmetric: binary operations are understood as Weak Kleene on their
first argument, and Strong Kleene on the second.

5For visually-inclined readers, we include Cantwell’s truth-tables below:

¬
1 0

1/2 0
0 1

∧ 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2
0 1 1/2 0

→ 1 1/2 0
1 1 1/2 0

1/2 1 1/2 0
0 1/2 1/2 1/2

8



¬
1 0
1/2 1
0 1

∧ 1 1/2 0
1 1 1/2, 0 0
1/2 1/2, 0 1/2, 0 1/2, 0
0 0 1/2, 0 0

∨ 1 1/2 0
1 1 1 1
1/2 1 1/2, 0 1/2, 0
0 1 1/2, 0 0

Figure 8: All the Boolean normal falsity-collapsible schemes

arguments based on the scheme X relying on the C definition of validity.

Our key question is: for a given definition of validity C, what scheme is inferen-
tially classical? The relevant definition of inferential classicality is as follows:

Definition 2.6. Given a scheme X and a definition of logical consequence C,
we say ⊨C

X is inferentially classical if and only if for every pair of sets of formulae
Γ,∆, we have Γ ⊨C

X ∆ if and only if Γ |=2 ∆.

Before stating the main result of this paper, we justify the choice of the
properties of the schemes highlighted above. Boolean normality provides an
upper bound for classicality: for every consequence relation, it ensures that
the arguments it supports involving negation, conjunction, and disjunction are
a subset of the classical arguments (see Lemma A.1), and is furthermore a
necessary property for this to hold with many consequence relations (see Lemma
A.6). Monotonicity, for the specific case of st, provides a lower bound: it
ensures that the classical inferences are a subset of the ones supported (Lemma
A.4). Collapsibility, finally, provides either a lower bound or an upper bound,
depending on which consequence is considered (Lemmas A.3, A.2, A.12, A.9).

3 Main characterization results

With these ingredients in place we are ready to present the main results of this
paper. The results fall in two main classes : each of the consequence relations
st, ss, tt supports a positive characterization of classical logic ; ss ∩ tt and ts,
on the other hand, fail to support classical logic for any scheme. We start
with the presentation of those negative results, for which the explanation is
straightforward, reading Figure 2 bottom up.

3.1 Negative results: ts and ss ∩ tt

As is well-known, the consequence relation ts is nonreflexive, hence no scheme
can combine with it to make it classical.

Theorem 3.1. ⊨ts
X ̸= ⊨2, for every three-valued scheme X.

Proof. For an atomic proposition p, independently of X, p ⊨ts
X p does not hold,

while p ⊨2 p does.
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In Section 4.1 and in Appendix B we will show that inferential classicality
can be obtained inductively from two parts, essentially distinguishing the role
of formulae with and without connectives: (i) some structural properties for
atomic propositions (namely reflexivity), (ii) some Gentzen regularity for the
connectives. Here, with ts we show how the first condition is broken and prevents
inferential classicality, independently of the connectives.

From a structural point of view, ss ∩ tt is a Tarskian relation, unlike ts: it
is reflexive, monotonic, and transitive. Despite that, it fails to support classical
logic. As the following result shows, it cannot support both the Law of Excluded
Middle and the principle of Explosion in a way that makes negation coherent.

Theorem 3.2. ⊨ss∩tt
X ̸= ⊨2, for every three-valued scheme X.

Proof. First, consider a formula p and a valuation v in which v(p) = 1/2. For
the classical inference ⊨2 p,¬p to ss ∩ tt-hold, it must be that v(¬p) = 1, that
is ¬(1/2) = 1. Second, consider atomic formulae p, q and a valuation v in which
v(p) = 1/2 and v(q) = 0. For the classical inference p,¬p ⊨2 q to ss ∩ tt-hold, it
must be that ¬(1/2) = 0. Contradiction.

This result is closely related to Theorem 4.3 of [5], showing that ss∩tt admits no
Gentzen-regular negation. The result holds even when the consequence relation
is restricted to single conclusions. To validate explosion, the negation of 1 and
of 1/2 must be 0. To satisfy the entailment from p to ¬¬p the negation of 0 must
be different from 0 when p is valued to 1/2. To satisfy the converse entailment
from ¬¬p to p, the negation of 0 cannot be 1, so must be 1/2. But then when p
is valued to 1, ¬¬p is valued to 1/2, so p cannot entail ¬¬p in all cases.

A simple takeaway from this result is that when entertaining the ss ∩ tt
definition of logical consequence there isn’t a three-valued scheme X that sup-
ports the same valid inferences as the two-valued presentation of classical logic,
mainly because there isn’t a truth table for negation that supports the same
valid inferences in that respect. But the problem isn’t restricted to negation:
as shown in [5] other connectives also cannot find an appropriate truth table
so as to validate the intended inferences, for example, the material conditional.
Interestingly enough, in [5] it is shown that some connectives (like conjunction
and disjunction) do indeed have compatible truth tables that validate the target
inferences—at least in the restricted language where only those connectives are
featured. With these reflections, we hope to shed some light on the aforemen-
tioned impossibility regarding ss∩tt, by making the appropriate qualifications.6

Before turning to the positive results, it is important to mention that the neg-
ative results presented in this section can be easily generalized to many-valued
semantics with more than three values, since the proofs of these statements
appear to be independent of the number of nonclassical values. The natural
requirement for this generalization is that the ts-consequence relation defined

6One may wonder whether this result shows that “negative” or negation-related connectives
cannot be supported by any three-valued truth table when the ss ∩ tt consequence relation
is around, but “positive” or non-negation-related connectives can. A discussion of this is far
beyond the scope of this paper, but we hope to elaborate on this in further research.
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for this many-valued semantics be nonreflexive and that the ss∩ tt be such that
ss lacks tautologies and tt lacks logical contradictions.

3.2 Positive results: ss, tt, and st

The fact that ss and tt can support classical logic separately follows from the
simple fact that the value 1/2 can be made to mirror the role of either 0 or 1 in
a given scheme. This is the sense in which collapsibility (whether for falsity, or
truth) yields classical logic.

Theorem 3.3. Let X be a three-valued scheme. ⊨ss
X = ⊨2 if and only if X is

falsity-collapsible (see Fig. 6).

Proof. See Theorems A.10 and A.11 in Appendix.

Theorem 3.4. Let X be a three-valued scheme. ⊨tt
X = ⊨2 if and only if X is

truth-collapsible (see Fig. 5).

Proof. See Theorems A.13 and A.14 in Appendix.

One direction to those two results—the one stating the sufficient
conditions—is not surprising, arguably: ss and tt are pure consequence rela-
tions, i.e. can be formulated as preservation of some set of values, usually called
designated values. In this sense, the set of designated values that characterizes
ss-validity consists in the singleton {1}, while tt-validity can be characterized
as preserving the values on the set {1, 1/2}. If we think of designated values as
representing truth and undesignated values as representing falsity, the results
above are foreseeable. In ss, the intermediate value doesn’t belong to the set
of designated values: that is why the falsity-collapsible schema works. On the
other hand, in tt, the intermediate value belongs to the set of designated val-
ues, and in this case, the truth-collapsible schema works. However, the other
direction of these results—the one stating the necessary conditions—is more
surprising in that no other schemes than those collapsible work in the intended
way.

The case of st is the least straightforward among the five trivalent conse-
quence relations examined here. For this scheme we get a disjunctive charac-
terization involving collapsibility and monotonicity as separate conditions. One
way in which this may be understood is by looking at negation first: when nega-
tion is monotonic, the value 1/2 cannot be interpreted uniformly as 1 or 0, and
likewise for the other connectives. When negation is collapsible, then 1/2 can be
thought of as playing the role of 1 or 0 across connectives.

Theorem 3.5. Let X be a three-valued scheme. ⊨st
X = ⊨2 if and only if X is

Boolean normal and either monotonic (see Fig. 4) or collapsible (see Fig. 7 and
8).

Proof. See Theorems A.5 and A.8 in Appendix.
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It follows from Theorem 3.3, using the ss-consequence relation, that there are
8192 different three-valued presentations of classical logic. Similarly, according
to Theorem 3.4, we can obtain also 8192 different three-valued presentations of
classical logic using the tt-consequence relation. Finally, as a consequence of
Theorem 3.5 there are 528 different three-valued presentations of classical logic,
with the st-consequence relation.

In the next section, we will explore how all of these results can be connected
with similar investigations about whether ss, tt, st and ts and ss∩tt can support
the operational rules of Gentzen’s proof system for classical logic.

4 Comparisons and Perspectives

The results of the previous sections tell us, given a three-valued definition of
validity, exactly which three-valued truth tables for negation, conjunction, and
disjunction, warrant classical inferences for the resulting logic. In subsection
4.1, we compare this finding to results established in [5]. In subsection 4.2 we
discuss some philosophical implications of our work regarding the definition of
classical logic.

4.1 Gentzen-regular connectives

In [5], a goal partly related to the one discussed here was pursued. Namely, given
a three-valued definition of validity, it was asked which three-valued operators
are Gentzen-regular relative to it. Basically, a Gentzen-regular connective is a
connective whose behavior can be characterized in terms of the bidirectional
rules of Gentzen’s LK—these rules can therefore be understood as introduc-
tion and elimination sequent rules, respectively. For example, the rule whereby
Γ, A,B ⊢ ∆ iff Γ, A ∧ B ⊢ ∆ corresponds to Gentzen’s rule when conjunction
occurs in premise position. And the rule whereby Γ ⊢ A∧B,∆ iff Γ ⊢ A,∆ and
Γ ⊢ B,∆ corresponds to Gentzen’s rule for conjunction in conclusion position—
see also Figure 1. We give a more precise definition of Gentzen-regularity in
Appendix B, since the definition applies to any n-ary connective, beyond nega-
tion, conjunction, and disjunction.

Clearly, when dealing with the usual two-valued semantics for classical logic,
all connectives are Gentzen-regular. However, a consequence relation can fail to
be classical at the structural level, but still admit Gentzen-regular connectives.
This means that unlike us here, [5] did not seek a three-valued characterization of
classical logic qua combination of operational and structural rules. Instead they
focused merely on the operational side of Gentzen’s proof system for classical
logic.

Furthermore, [5]’s results did not seek to characterize schemes (namely sets
of truth tables), but they look at connectives one by one. Consequently, their
approach is not limited to negation, conjunction and disjunction, or to a partic-
ular set of operators, but it covers arbitrary n-ary truth-functional operators.
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However, they assume the language to be constant-expressive, which means that
the constants 1, 0 and 1/2 are expressible by means of constant symbols.

For comparison, let us consider st and ts first. Under the assumption of con-
stant expressiveness, [5] proved that st and ts admit a unique Gentzen-regular
negation, a unique Gentzen-regular conjunction, and a unique Gentzen-regular
disjunction, described by the Strong Kleene tables. In the case of ts, it therefore
admits exactly one Gentzen-regular scheme involving negation, disjunction and
conjunction. Above we saw that ts admits no trivalent scheme supporting clas-
sical logic. There is no contradiction there, since Gentzen-regularity pertains
only to the operational rules of a proof system for classical logic, and not to
structural rules. This situation may be interpreted by saying that although ts
does not support classical inferences, it can support Gentzen-regular connectives
that describe, in a way, classical connectives.

For st, the situation is different: as mentioned in the previous section, Fig-
ures 4 and 7 and 8 together indicate that st admits 528 distinct schemes in-
volving negation, conjunction and disjunction, supporting classical inferences,
including the Weak Kleene scheme and more (512 collapsible schemes, and
16 monotone schemes). However, [5]’s result implies that st admits a unique
Gentzen-regular scheme, namely the Strong Kleene one. Whence comes the dif-
ference? Here the answer concerns the assumption of constant expressiveness.
In [5], Chemla and Egré left as an open issue the characterization of Gentzen-
regular three-valued operators when the language does not admit constants for
all truth-values. The present inventory can be seen as answering this problem
for the case in which the constants are not expressible.

These comparisons raise the more general question of what may be needed
beside the Gentzen-regularity of a connective in order to guarantee that the logic
be inferentially classical. The following result gives an answer to this question:

Lemma 4.1. A propositional logic L = ⟨⊢, C⟩ is (inferentially) classical if and
only if its connectives in C are Gentzen-regular and ⊢ is such that for Γ and ∆
two sets of atomic propositions, Γ ⊢ ∆ iff Γ ∩∆ ̸= ∅.

Proof. See Appendix B.

A consequence relation like ts obviously fails the structural condition ex-
pressed in this lemma, and so cannot support classical logic despite admitting
Gentzen-regular connectives. On the other hand, st satisfies the condition, just
like ss and tt. Finally, while ss∩ tt too satisfies it, it is shown in [5] that it does
not admit a Gentzen-regular negation.

More generally, we believe the above lemma could be used to answer the
question we posed relative to arbitrary connectives beside negation, conjunc-
tion and disjunction, drawing on the fact that the notion of Gentzen-regularity
can be defined for arbitrary finite operators as discussed in [5]. We leave this
investigation for future work.
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4.2 Philosophical perspectives

The results of this paper show that classical logic can be obtained in a variety
of ways in a three-valued setting. This raises the following question: from these
various presentations of classical logic, is one of them more fundamental than
the others? Besides, aren’t all of them just superfluous in comparison to the
the standard two-valued presentation of classical logic?

Let us consider ss and tt first. Relative to those systems, Theorems 3.3
and 3.4 establish that the collapsible schemes support exactly the classical in-
ferences. But they are also schemes in which the middle value mirrors exactly
one of the classical values. Hence, this middle value may be judged entirely re-
dundant. We can find instances of this observation in the literature. In [3], for
instance, Cantwell puts forward a system of trivalent truth tables for negation,
conjunction, disjunction, and a conditional operator. This system turns out to
encapsulate exactly one of the truth-collapsible schemes of Figure 5, and it is
called “Non-Classical Bivalent” by Cantwell, precisely because it yields classical
logic when paired with tt-validity, as presented in [3, Theorem 4.4]. In this
regard, the interest of Cantwell’s conditional operator—proposed earlier by [9],
see [12] for a comparison—shows up precisely when his conjunction, disjunc-
tion and conditional are paired with Strong Kleene negation so as to yield a
noncollapsible, nonclassical system.

More generally, the collapsible schemes can be applied a reduction technique
on truth values presented as a “grouping reduction” in [7, Appendix C], whose
goal is precisely to merge truth values that play the same role in premise position
and in conclusion positions of arguments. As shown there, for ss and tt, grouping
reductions basically fulfill Suszko’s goal in [30]: they suggest that an appeal to
three truth values is idle when it comes to representing classical inferences in a
compositional way, and that two values are all we need.

What about st? It was proved that the determination of the minimum
number of truth values needed to represent a reflexive, monotonic and transitive
consequence relation is exactly two, but that it is three if the relation is reflexive
and monotonic but nontransitive (viz. [7], Corollary 4.7). But as shown by [1, 8,
10], st is not a transitive consequence relation. For st, therefore, we cannot argue
in the same way as ss and tt-systems that three values are idle in comparison to
using just two values. Besides, as argued by [8] and by [31], the use of a third
truth value is independently motivated to represent special semantic status,
such as vagueness, or absurdity, or paradoxicality. And for systems of inferences
involving sentences with this third semantic status, preserving classical logic for
inferences is a conservative benefit.7

We can therefore answer the questions raised above as follows: for conse-
quence relations like ss and tt, collapsible schemes constitute roundabout ways

7Notice, however, that not all the schemes that render classical logic with the st conse-
quence relation are compatible with naive non-trivial theories of truth, vagueness, paradox-
icality and so on. In fact, only the monotonic ones are. To wit, consider a Liar sentence
λ and observe that there can’t be a stable valuation for it in a collapsible schema where
v(λ) = v(¬Tr⌜λ⌝), where obviously Tr is a naive truth predicate and ⌜λ⌝ is a quotation name
for the Liar sentence.

14



of representing classical logic compared to the two-valued definition. In the case
of st, the situation is more complex: while the two-valued approach to classical
logic sets a benchmark for the definition of classicality all across the board, we
may find different foundations for classicality at the inferential level. At this
point, however, more work remains to be done to generalize the present re-
sults to more connectives, but also to many-valued logics beyond three values.8

Furthermore, the present investigations are limited to the propositional case,
but one may also be interested in looking at the question of which are all the
three-valued presentations of classical logic when such a system is understood
as first-order logic. Interestingly enough, the generalizations of the previously
discussed results are not always immediate, and the issue is somehow related
to the understanding of the universal and existential quantifiers as infinitary
versions of conjunction and disjunction, respectively.9

A Appendix: proofs

A.1 Proofs common to several consequence relations

Lemma A.1. Let X be a three-valued scheme. If X is Boolean normal, then
⊨C
X ⊆ ⊨2, with C ∈ {ss, tt, st}.

Proof. We need to prove that if Γ ⊭2 ∆ then Γ ⊭C
X ∆, for every Γ,∆. By

a straightforward induction, under the assumption of Boolean normality, it is
easy to show that for every classical two-valued valuation v, there is a three-
valued X valuation v∗ such that v = v∗. Thus given the notions of ss-,tt- and
st-consequence relations, if v is a witness of Γ ⊭2 ∆, then v∗ is a witness of
Γ ⊭C

X ∆.

Lemma A.2. Let X be a three-valued scheme. If X is falsity-collapsible, then
⊨2 ⊆ ⊨sy

X , with y ∈ {s, t}.

Proof. Suppose Γ ⊭sy
X ∆, i.e.,either there is a three-valued valuation v such that

v(A) = 1 and v(B) = 0, for every A ∈ Γ and B ∈ ∆, if y = t, or there is

8This last point has been explored recently by Fitting in [16], [17]. In those papers, the
author shows how to build the counterpart of some nonclassical logics using the st consequence
relation defined for algebras with more than three values.

9For some cases, like the strong Kleene or the weak Kleene schemes, it is well-known and
relatively obvious how to devise appropriate quantifiers. This is also true for some Boolean
normal collapsible schemes whose operations have only classical outputs. However, both when
looking at the Boolean normal monotonic, and the Boolean normal collapsible schemes, there
are some (algebraically speaking) asymmetric schemes, where the same pair of inputs gives a
certain output in a given order, and another output when considered in the opposite order.
For instance, some Boolean normal monotonic schemes are such that 0 ∧ 1/2 = 1/2 although
1/2∧ 0 = 0. How is one supposed to generalize this asymmetric behavior in order to conceive,
e.g., an appropriately infinitary version of this conjunction? It is not obvious whether having
a false instance is enough for the quantified statement to be false, or if it’s also required that
no instances receive the value 1/2. These, and other similar issues, replicate in the case of the
other quantifier, as they do for the Boolean normal collapsible schemes.

15



a three-valued valuation v such that v(A) = 1 and v(B) ∈ {0, 1/2}, for every
A ∈ Γ and B ∈ ∆, if y = s.

Now we will show that in both cases Γ ⊭2 ∆, i.e.,that there is a classical
two-valued valuation v∗ such that v∗(A) = 1 and v∗(B) = 0, for every A ∈ Γ
and B ∈ ∆. Consider any of the cases and take v∗ to be defined as follows:

v∗(p) =

{
0 if v(p) = 1/2

v(p) otherwise

Now we show by induction on the complexity of the formula that, on the one
hand, if v(A) = 1, then v∗(A) = 1 and, on the other hand, if v(A) ∈ {0, 1/2},
then v∗(A) = 0.

Base case: If A is a propositional letter, then it holds by definition of the
valuation v∗.

Inductive step: Here we need to consider three cases:

• A = ¬B.

– If v(¬B) = 1 then v(B) ∈ {0, 1/2}. By IH v∗(B) = 0, then v∗(¬B) =
1.

– If v(¬B) ∈ {0, 1/2} then v(B) = 1. By IH v∗(B) = 1, then v∗(¬B) =
0.

• A = B ∧ C.

– If v(B ∧ C) = 1 then v(B) = v(C) = 1. By IH v∗(B) = v∗(C) = 1,
then v∗(B ∧ C) = 1.

– If v(B ∧ C) ∈ {0, 1/2} then v(B) ∈ {0, 1/2} and v(C) ∈ {0, 1/2}. By
IH v∗(B) = v∗(C) = 0, and then v∗(B ∧ C) = 0.

• A = B ∨ C.

– If v(B ∨C) = 1 then v(B) = 1 or v(C) = 1. So, depending on which
of these two is the case, by IH v∗(B) = 1 or v∗(C) = 1, and then
v∗(B ∨ C) = 1.

– If v(B ∨C) ∈ {0, 1/2} then v(B) ∈ {0.1/2} and v(C) ∈ {0.1/2}. By IH
v∗(B) = v∗(C) = 0, then v∗(B ∨ C) = 0.

This shows v∗ is a classical two-valued valuation witnessing Γ ⊭2 ∆, and
therefore that ⊨2 ⊆ ⊨st

X as desired.

Lemma A.3. Let X be a three-valued scheme. If X is truth-collapsible, then
⊨2 ⊆ ⊨yt

X , with y ∈ {s, t}.

Proof. The proof is similar to the previous Lemma, and so we leave it to the
reader.
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A.2 The proofs for st

Lemma A.4. Let X be a three-valued scheme. If X is monotonic, then ⊨2 ⊆
⊨st
X.

Proof. Assume there is a inference such that Γ ⊭st
X ∆. Then, there is a valuation

v, such that v(A) = 1 for every A ∈ Γ and v(B) = 0 for every B ∈ ∆. Now we
will show that Γ ⊭2 ∆, i.e.,that there is a classical two-valued valuation v∗ such
that v∗(A) = 1 and v∗(B) = 0, for every A ∈ Γ and B ∈ ∆. We take v∗ to be
defined as follows:

v∗(p) =

{
0 if v(p) = 1/2

v(p) otherwise

Now we show by induction on the complexity of the formula that, on the
one hand, if v(A) = 1, then v∗(A) = 1 and, on the other hand, if v(A) = 0, then
v∗(A) = 0.

Base case: If A is a propositional letter, then it holds by definition of the
valuation v∗.

Inductive step: Here we need to consider three cases:

• A = ¬B.

– If v(¬B) = 1 then v(B) = 0. By IH v∗(B) = 0, then v∗(¬B) = 1.

– If v(¬B) = 0 then v(B) = 1. By IH v∗(B) = 1, then v∗(¬B) = 0.

• A = B ∧ C.

– If v(B ∧ C) = 1 then v(B) = v(C) = 1. By IH v∗(B) = v∗(C) = 1,
then v∗(B ∧ C) = 1.

– If v(B ∧ C) = 0 then v(B) = 0 or v(C) = 0. Then depending on
which of the disjuncts holds, by IH v∗(B) = 0 or v∗(C) = 0, and
then v∗(B ∧ C) = 0.

• A = B ∨ C.

– If v(B ∨C) = 1 then v(B) = 1 or v(C) = 1. So, depending on which
of these two is the case, by IH v∗(B) = 1 or v∗(C) = 1, and then
v∗(B ∨ C) = 1.

– If v(B ∨ C) = 0 then v(B) = 0 and v(C) = 0. By IH v∗(B) =
v∗(C) = 0, then v∗(B ∨ C) = 0.

This shows v∗ is a classical two-valued valuation witnessing Γ ⊭2 ∆, and
therefore that ⊨2 ⊆ ⊨st

X as desired.

Theorem A.5. Let X be a three-valued scheme. If X is Boolean normal mono-
tonic, or Boolean normal collapsible, then ⊨st

X = ⊨2.

Proof. From Lemmas A.1, A.4, A.2 and A.3.
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Up until now we proved that certain three-valued schemes—belonging in
particular into the class of normal Boolean monotonic, or normal Boolean col-
lapsible schemes—render classical logic when equipped with the st definition of
logical consequence. If possible, we also would like to prove the converse. That
is to say, that if a three-valued scheme renders classical logic when equipped
with the st definition of logical consequence, then said scheme belongs in one
and only one of the two classes described before. Below, we show this to be the
case. However, to prove this we need both some definitions and some important
lemmata, that will do all the heavy-lifting for us.

Lemma A.6. Let X be a three-valued scheme. If X is not Boolean normal,
then ⊨st

X ⊈ ⊨2.

Proof. Suppose X is not Boolean normal, then some operation behaves in a way
such that some classically invalid inferences are valid in X.

1. Let’s start with negation. If X is such that ¬(1) ∈ {1/2, 1} then p ⊨st
X ¬p.

On the other hand if ¬(0) ∈ {1/2, 0}, then ¬p ⊨st
X p.

2. So, having proved that negation must be Boolean normal, if it is ∨ which
is not Boolean normal, then ¬p∨¬p ⊨st

X p, or ¬p∨p ⊨st
X p, or p ⊨st

X ¬p∨¬p

3. Again, knowing that negation is Boolean normal, if it is ∧ which is not
Boolean normal, then p ⊨st

X p ∧ ¬p, or ¬p ∧ ¬p ⊨st
X p, or p ⊨st

X ¬p ∧ ¬p

But none of these are valid in classical logic, whence ⊨st
X ⊈ ⊨2.

From this Lemma, since the classical values are determined, we can con-
clude that there are in principle at most three possible negations to consider:
¬(1/2) ∈ {0, 1/2, 1}. And actually, what we will prove next is that each of these
negations selects exactly the truth tables we have proved are enough to obtain
classical logic. In other words, we will prove the following:

Lemma A.7. Let X be a three-valued scheme. If ⊨st
X = ⊨2 we have three cases:

(1) If ¬(1/2) = 1/2 then conjunction and disjunction are Boolean normal mono-
tonic (the operations on Fig. 4).

(2) If ¬(1/2) = 0 then conjunction and disjunction are operations of a Boolean
normal truth-collapsible scheme (the operations on Fig. 7).

(3) If ¬(1/2) = 1 then conjunction and disjunction are operations of a Boolean
normal falsity-collapsible scheme (the operations on Fig. 8).

Proof. By Lemma A.6 we assume Boolean normality. We will prove cases (1)
and (2), since (3) is similar.

Case (1) Assume then that ¬(1/2) = 1/2. We will show that the other opera-
tions are monotonic.
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• The case of the conjunction:

– First we show that in every X, (1/2 ∧ 1/2) = 1/2.

∗ Assume on the contrary that (1/2∧ 1/2) = 1. Then we would
have a counterexample to the following classically valid in-
ference: p ∧ ¬p ⊭st

X q (v(q) = 0, v(p) = 1/2).

∗ Assume now that (1/2 ∧ 1/2) = 0. Then we would have a
counterexample to the following classically valid inference:
¬(¬p ∧ ¬p) ⊭st

X p ∧ p (v(p) = 1/2).

– Now, having proved the previous case, we show that (1/2∧1) = 1/2
(we leave to the reader the case (1 ∧ 1/2) = 1/2).

∗ Assume on the contrary that (1/2 ∧ 1) = 0. Then we would
have a counterexample to the following classically valid in-
ference: p ⊭st

X ¬(q ∧ ¬q) ∧ p (v(p) = 1, v(q) = 1/2).

∗ Assume now that (1/2 ∧ 1) = 1. Then we would have a
counterexample to the following classically valid inference:
(p ∧ ¬p) ∧ q ⊭st

X ¬q (v(p) = 1/2, v(q) = 1).

– We show now that (1/2 ∧ 0) ̸= 1 (we left to the reader the case
(0 ∧ 1/2) ̸= 1). If it were the case that (1/2 ∧ 0) = 1 then we
would have a counterexample to the following classically valid
inference: p ∧ q ⊭st

X q (v(p) = 1/2, v(q) = 0).

• The case of the disjunction:

– First we show that in every X, (1/2 ∨ 1/2) = 1/2.

∗ Assume on the contrary that (1/2∨ 1/2) = 1. Then we would
have a counterexample to the following classically valid in-
ference: p ∨ p ⊭st

X ¬(¬p ∨ ¬p) (v(p) = 1/2).

∗ Assume now that (1/2 ∨ 1/2) = 0. Then we would have a
counterexample to the following classically valid inference:
⊭st
X p ∨ ¬p (v(p) = 1/2).

– Now, having proved the previous case, we show that (1/2∨1) ̸= 0
(we left to the reader the case (1 ∨ 1/2) ̸= 1/2)). If it were the
case that (1/2 ∨ 1) = 0 then we would have a counterexample to
the following classically valid inference: q ⊭st

X p ∨ q (v(p) = 1/2,
v(q) = 1).

– We show now that (1/2 ∨ 0) = 1/2 (we left to the reader the case
(0 ∨ 1/2) = 1/2).

∗ Assume on the contrary that (1/2 ∨ 0) = 1. Then we would
have a counterexample to the following classically valid in-
ference: ¬(p ∨ ¬p) ∨ q ⊭st

X q (v(p) = 1/2, v(q) = 0).

∗ Assume now that (1/2 ∨ 0) = 0. Then we would have a
counterexample to the following classically valid inference:
⊭st
X (p ∨ ¬p) ∨ q (v(p) = 1/2, v(q) = 0).

Case (2) Assume now that ¬(1/2) = 0. We will show that the other operations
belong to some of the truth-collapsible schemes.
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• The case of the conjunction:

– First we show that (1 ∧ 1/2) ̸= 0 (we left to the reader the case
(1/2 ∧ 1) ̸= 0). Assume on the contrary that (1 ∧ 1/2) = 0. Then
we would have a counterexample to the following classically valid
inference: ¬(p ∧ q), p ⊭st

X ¬q (v(p) = 1, v(q) = 1/2).

– Now, we show that (1/2 ∧ 1/2) ̸= 0. Assume on the contrary that
(1/2 ∧ 1/2) = 0. Then we would have a counterexample to the
following classically valid inference: ¬¬p ⊭st

X p ∧ p (v(p) = 1/2).

– We show now that (1/2 ∧ 0) = 0 (we left to the reader the case
(0 ∧ 1/2) = 0).

∗ Assume on the contrary that (1/2 ∧ 0) = 1. Then we would
have a counterexample to the following classically valid in-
ference: p ∧ ¬p ⊭st

X q (v(p) = 1/2, v(q) = 0).

∗ Assume now that (1/2 ∧ 0) = 1/2. Then we would have a
counterexample to the following classically valid inference:
⊭st
X ¬(p ∧ ¬p) (v(p) = 1/2).

• The case of the disjunction:

– First we show that (1 ∨ 1/2) ̸= 0 (we left to the reader the case
(1/2 ∨ 1) ̸= 0). Assume on the contrary that (1 ∨ 1/2) = 0. Then
we would have a counterexample to the following classically valid
inference: p ⊭st

X p ∨ q (v(p) = 1, v(q) = 1/2).

– Now, we show that (1/2 ∨ 1/2) ̸= 0. Assume on the contrary that
(1/2 ∨ 1/2) = 0. Then we would have a counterexample to the
following classically valid inference: ¬¬p ⊭st

X p ∨ p (v(p) = 1/2).

– We show now that (1/2 ∨ 0) ̸= 0 (we left to the reader the case
(0 ∨ 1/2) ̸= 0). Assume on the contrary that (1/2 ∨ 0) = 0. Then
we would have a counterexample to the following classically valid
inference: ⊭st

X p ∨ ¬p (v(p) = 1/2).

Case (3) Similar to the Case (2), so we leave it to the reader.

Theorem A.8. Let X be a three-valued scheme. If ⊨st
X = ⊨2, then X is Boolean

normal, and either monotonic, or collapsible.

Proof. Immediate from Lemmas A.6 and A.7.

A.3 The proofs for ss

Lemma A.9. Let X be a three-valued scheme. If X is falsity-collapsible, then
⊨ss
X ⊆ ⊨2.

Proof. Suppose Γ ⊭2 ∆, i.e.,there is a two-valued valuation v such that v(A) = 1
and v(B) = 0, for every A ∈ Γ and B ∈ ∆. Now we will show that Γ ⊭ss

X ∆,
i.e.,that there is a three-valued valuation v∗ such that v∗(A) = 1 and v∗(B) ∈
{1/2, 0}, for every A ∈ Γ and B ∈ ∆. We take v∗ to be defined as follows:
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v∗(p) = v(p)

Now we show by induction on the complexity of the formula that, on the one
hand, if v(A) = 0, then v∗(A) ∈ {1/2, 0} and, on the other hand, if v(A) = 1,
then v∗(A) = 1.

Base case: If A is a propositional letter, then it holds by definition of the
valuation v∗.

Inductive step: Here we need to consider three cases:

• A = ¬B.

– If v(¬B) = 0 then v(B) = 1. By IH v∗(B) = 1, then since X is
falsity-collapsible v∗(¬B) ∈ {0, 1/2}.

– If v(¬B) = 1 then v(B) = 0. By IH v∗(B) ∈ {1/2, 0}, then since X is
falsity-collapsible v∗(¬B) = 1.

• A = B ∧ C.

– If v(B ∧ C) = 0 then v(B) = 0 or v(C) = 0. By IH v∗(B) ∈ {1/2, 0}
or v∗(C) ∈ {1/2, 0}, then since X is falsity-collapsible v∗(B ∧ C) ∈
{0, 1/2}.

– If v(B ∧ C) = 1 then v(B) = v(C) = 1. Then, by IH v∗(B) =
v∗(C) = 1. Thus, since X is falsity-collapsible v∗(B ∧ C) = 1.

• A = B ∨ C.

– If v(B ∨C) = 1 then v(B) = 1 or v(C) = 1. So, depending on which
of these two is the case, by IH v∗(B) = 1 or v∗(C) = 1, and then
since X is falsity-collapsible v∗(B ∨ C) = 1.

– If v(B ∨ C) = 0 then v(B) = v(C) = 0. By IH v∗(B) ∈ {1/2, 0}
and v∗(C) ∈ {1/2, 0}, then since X is falsity-collapsible v∗(B ∨ C) ∈
{0, 1/2}.

This shows v∗ is a three-valued valuation witnessing Γ ⊭ss
X ∆, and therefore

that ⊨ss
X ⊆ ⊨2 as desired.

Theorem A.10. Let X be a three-valued scheme. If X is falsity-collapsible,
then ⊨ss

X = ⊨2.

Proof. From Lemmas A.2 and A.9

Theorem A.11. Let X be a three-valued scheme. If ⊨ss
X = ⊨2, then X is

falsity-collapsible (i.e.,the operations are those of the schemes in Figure 6).

Proof. We will show that if a three-valued scheme X is not falsity-collapsible
then ⊨2 ⊈⊨ss

X . We will show it by cases, considering in order each of the
connectives of each possible non-falsity-collapsible scheme.
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• The case of the negation:

1. Assume X is such that ¬1 = 1. Then, p,¬p ⊭ss
X q, but of course

p,¬p ⊨2 q.

2. Assume X is such that ¬1/2 ̸= 1. Then, q ⊭ss
X p,¬p, but of course

q ⊨2 p,¬p.
3. Assume X is such that ¬0 ̸= 1. Then, q ⊭ss

X p,¬p, but of course
q ⊨2 p,¬p.

• The case of the conjunction:

1. Assume X is such that x ∧ y ̸= 1, for x = 1 and y = 1. Then,
p, q ⊭ss

X p ∧ q, but of course p, q ⊨2 p ∧ q.

2. Assume X is such that x ∧ y = 1, for x ̸= 1. Then, p ∧ q ⊭ss
X p, but

of course p ∧ q ⊨2 p.

3. Assume X is such that x ∧ y = 1, for y ̸= 1. Then, p ∧ q ⊭ss
X q, but

of course p ∧ q ⊨2 q.

• The case of the disjunction:

1. Assume X is such that x ∨ y ̸= 1, for x = 1. Then, p ⊭ss
X p ∨ q, but

of course p ⊨2 p ∨ q.

2. Assume X is such that x ∨ y ̸= 1, for y = 1. Then, q ⊭ss
X p ∨ q, but

of course q ⊨2 p ∨ q.

3. Assume X is such that x ∨ y = 1, for x ̸= 1 and y ̸= 1. Then,
p ∨ q ⊭ss

X p, q, but of course p ∨ q ⊨2 p, q.

A.4 The proofs for tt

We omit all the proofs of this section, since basically they are dual to those for
ss.

Lemma A.12. Let X be a three-valued scheme. If X is truth-collapsible, then
⊨tt
X ⊆ ⊨2.

Theorem A.13. Let X be a three-valued scheme. If X is truth-collapsible, then
⊨tt
X = ⊨2.

Proof. From Lemmas A.12 and A.3.

Theorem A.14. Let X be a three-valued scheme. If ⊨tt
X = ⊨2, then X is

truth-collapsible (i.e.,the operations are those of the schemes in Figure 5).
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B Gentzen-regularity and classical logic

Following [5], we call a connective Gentzen-regular if its behavior, whether in
the conclusion or in the premise of an argument, can be explained fully in terms
of conjunction of sequents involving the subformulae related by that connective.
Formally, the definition is the following:

Definition B.1 (Gentzen-regular connectives). Given a consequence relation
⊢, an n-ary connective C (for n ≥ 0) is Gentzen-regular for it if there exist
Bp ⊆ P({1, ..., n}) × P({1, ..., n}) and Bc ⊆ P({1, ..., n}) × P({1, ..., n}) such
that ∀Γ,∆,∀F1, ..., Fn :

Γ, C(F1, ..., Fn) ⊢ ∆ iff
∧

(Bp,Bc)∈Bp

Γ, {Fi : i ∈ Bp} ⊢ {Fi : i ∈ Bc},∆

Γ ⊢ C(F1, ..., Fn),∆ iff
∧

(Bp,Bc)∈Bc

Γ, {Fi : i ∈ Bp} ⊢ {Fi : i ∈ Bc},∆

The next lemma relates this feature of the connectives, what it is for a
logic to be classical, and a structural condition on sets of atomic propositions
(atom-sharing between premises and conclusions).

Lemma B.2. A propositional logic L = ⟨L,⊢, C⟩ is inferentially classical if and
only if its connectives in C are Gentzen-regular and ⊢ is such that for Γ and ∆
any two sets of atomic propositions, Γ ⊢ ∆ iff Γ ∩∆ ̸= ∅.

Proof. The left-to-right direction holds because in classical logic, and in any
logic that satisfies the same inferences, connectives are Gentzen-regular, and
inferences involving only atomic propositions behave as described.

Conversely, suppose the right-hand-side holds for a logic L. Consider then
sets of premises and conclusions Γ and ∆. If Γ and ∆ only contain atomic
propositions, then Γ ⊢ ∆ holds in L iff Γ ∩∆ ̸= ∅, by hypothesis, iff it holds in
classical logic then.

By induction on the complexity of the formulae involved, the assumption
of Gentzen-regularity allows us to generalize this equivalence between L and
classical logic to inferences with non-atomic propositions. Indeed, the Gentzen
regularity rules reduce the validity of any inference Γ ⊢ ∆ to the validity of a
conjunction of inferences involving formulae of strictly lower syntactic complex-
ity.10

For concreteness, consider Γ′, A ∨ B ⊢ ∆. This holds if and only if both
Γ′, A ⊢ ∆ and Γ′, B ⊢ ∆ hold. This shows how the Gentzen premise-rule reduces
the verification of inferences with disjunction in premises, to the verification
of strictly simpler inferences, with no disjunctions in premises. Eliminating
connectives one after the other thanks to Gentzen rules, in premises and in

10One limit case may be mentioned: Gentzen-regularity rules may reduce the complexity
so much that they eliminate the formula altogether. You may obtain this through an empty
conjunction in the Definition B.1. As an illustration, ⊤ seen as a 0-ary connective, has such
a rule for its Gentzen-conclusion-rule: Γ ⊢ ⊤,∆ is valid no matter what. This edge case does
not block the inductive step of this proof.
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conclusion, we can recursively reduce the complexity of the inferences until no
more reduction is possible. That is, we can find sets of atomic propositions
Γi,∆i such that Γ ⊢ ∆ holds if and only if the conjunction of the Γi ⊢ ∆i

hold.

Three remarks may be made about this result. The first is that a logic
can obey the conditions of Lemma B.2 without coinciding exactly with classical
logic. For instance, if C = {¬,↔}, with ¬ and ↔ obeying the expected Gentzen
rules, then the resulting logic is inferentially classical but is only a fragment
of classical logic (because it is functionally incomplete). The second is that
irrespective of how Gentzen regular connectives are named in L, what matters
concerns which operations they correspond to. To use the same example as
in the proof, if Γ′, A ∧ B ⊢ ∆ holds iff Γ′, A ⊢ ∆ and Γ′, B ⊢ ∆ hold in L,
then it means that “∧” is actually just another name for disjunction in that
logic. The third finally is that the structural condition in the Lemma simply
corresponds to a form of (strong) Reflexivity on the atoms. It can be verified that
it directly implies the admissibility of other classical structural rules, including
Exchange, Contraction, Weakening, and Cut, for sequents involving only atoms.
For example, if Γ,Γ′,∆,∆′ are sets of atoms, then it follows that Γ ⊢ ∆, p and
Γ′, p ⊢ ∆′ imply Γ,Γ′ ⊢ ∆,∆′.

C Monotonic operators

Fact C.1. Given a truth table for a unary or binary operator f , the opera-
tor is monotonic only if no two horizontally or vertically adjacent cells of the
corresponding matrix contain a 1 and a 0.

Proof. In the unary case, suppose as a particular case that f(1/2) = 0 and
f(1) = 1. Then, although 1/2 <I 1, their images by f are incomparable. The
other cases are symmetric. In the binary case, suppose as a particular case
of vertical adjacent cells that f(1/2, 1) = 0 when f(0, 1) = 1. Then although
(1/2, 1) <comp

I (0, 1), their images by f are incomparable, which violates mono-
tonicity. The other cases are symmetric.

Fact C.2. A binary normal Boolean operator f is monotonic if and only if
no two adjacent cells of its matrix get values 1 and 0 and if f(1/2, 1/2) is not
greater than or incomparable with the value of any other cell.

Proof. From left-to-right, suppose that f(1/2, 1/2) is incomparable with or
greater than the value of some other cell. Since (1/2, 1/2) <comp

I (x, y) for
all other cells (x, y), this violates monotonicity. The other condition is entailed
by Fact C.1.

From right-to-left, suppose that f is normal but not monotonic. Then there
exist (x, y) ≤comp

I (x′, y′), but either f(x, y) ≥comp
I f(x′, y′), or f(x, y) and

f(x′, y′) are incomparable. If (x, y) is of type (c, 1/2) or (1/2, c) with c classical,
and (x′, y′) of type (c, c), then necessarily one of them is 1 and the other 0.
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If (x, y) is (1/2, 1/2), then the violation is necessary because f(x, y) = c and
f(x′, y′) is 1/2 or incomparable.
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