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Abstract

Questions regarding the nature and acquisition of mathematical knowledge are
perhaps as old as mathematical thinking itself, while fundamental issues of
mathematical ontology and epistemology have direct bearing on mathematical
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cognition. Several original contributions to logic and mathematics made by the
American polymath, Charles Sanders Peirce, are of direct relevance to these
fundamental issues. This chapter explores scientific reasoning as it relates to
abduction, a name that Peirce coined for educated “guessing” of hypotheses,
which he took to be “the first step of scientific reasoning” and the only creative
one. Yet he also argued that all deductive reasoning is mathematical and that all
mathematical reasoning is diagrammatic. Representation, especially in the form
of a diagrammatic system of logic that Peirce developed, is explored here along
with his logic of inquiry, most notably in terms of its manifestation as the logic of
ingenuity. Originating in the field of engineering, here the diagram of a problem
serves as a heuristic substitute for evaluating the actual situation, an approach that
can be extended to other forms of practical reasoning such as ethical deliberation.
This chapter also touches upon such diverse but related subjects as non-Euclidean
geometry and nonclassical logic, with additional examples that help to elucidate
cognitive elements of mathematical knowledge.
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Introduction

Epistemological debates over the nature of mathematical knowledge and how it is
acquired—if it is “acquired” rather than innate, at least on some level—have been
waged ever since the first mathematicians began to think seriously about what it
means to think mathematically. Is there some fundamental sense in which mathe-
matical knowledge is innate, or is it something that must be taught and/or learned
through experience and by example? The age-old question of whether mathemati-
cians create or discover mathematical objects also relates to these fundamental issues
of ontology and epistemology and ultimately to the essence of mathematical cogni-
tion with which this book is concerned. It turns out that the American polymath,
Charles Sanders Peirce (1839–1914), founder of pragmatism and semiotics pioneer,
had much to say of interest on these diverse yet related subjects.

The second of five children of Harvard mathematician Benjamin Peirce and Sarah
Mills Peirce, Charles (Fig. 1) was considered a child prodigy and was home tutored
by his father. He went on to receive his undergraduate degree from Harvard in 1859,
whereupon he began to work on various projects with the US Coast and Geodetic
Survey, where his father was also active and served as Superintendent from 1867
until 1874. In 1861 Charles began graduate studies at Harvard’s Lawrence Scientific
School, from which he received a B.Sc. degree in chemistry, the first awarded
summa cum laude, in 1863.

At the Coast Survey, Peirce devoted himself primarily to geodesy and gravimet-
rics using pendulums, some of which he designed himself, to carry out accurate
measurements of the Earth’s gravitational field and in turn to provide an accurate
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description of its topology and overall shape. The accuracy of the pendulum
measurements depended upon precise measurements of time. Meanwhile, Peirce
was also doing additional work at the Harvard College Observatory, which resulted
in his only book published during his lifetime, Photometric Researches, in 1878.

Peirce’s Tiffany Watch

The following year, Peirce was aboard an overnight coastal steamer en route to
New York when an incident occurred that he would later recount to his friend, the
Harvard philosopher and psychologist William James. The story Peirce told James
was a curious incident involving a stolen Tiffany watch and the remarkable means by
which he was able to recover it. On his own account, he departed the boat in a rush
early in the morning on June 21, 1879, leaving behind his coat and the watch, both of
which were missing when he returned to retrieve them. The watch was no ordinary
watch; it was a gold Tiffany chronometer that was on loan to Peirce from the Coast
Survey to ensure the accuracy of his gravimetric studies. Peirce insisted that the
captain of the ship line up all hands on deck, whom he proceeded to interrogate one
by one. As he tells the story:

I went from one end of the row to the other, and talked a little to each one, in as dégagé a
manner as I could, about whatever he could talk about with interest, but would least expect
me to bring forward, hoping that I might seem such a fool that I should be able to detect some
symptom of his being the thief. When I had gone through the row, I turned and walked from
them, though not away, and said to myself, “Not the least scintilla of light have I got to go
upon.” But thereupon my other self (for our own communings are always in dialogues,) said

Fig. 1 Charles S. Peirce
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to me, “But you simply must put your finger on the man. No matter if you have no reason,
you must say whom you will think to be the thief.” I made a little loop in my walk, which had
not taken a minute, and as I turned toward them, all shadow of doubt had vanished. (Peirce
1929: 271)

Peirce offered his suspect $50, but to no avail. He then took a taxi straight to
Pinkerton’s, the detective agency, where he described the suspect and predicted that
the thief would try to pawn the watch. Peirce then asked Pinkerton’s to follow the
man when he left the ship and, as soon as he had the pawn ticket, have him arrested,
and reclaim the watch. When this plan failed, Pinkerton’s sent a postcard (Fig. 2) to
pawnbrokers in New York, Philadelphia, and Boston, offering $150 for return of the
stolen watch. Within 24 hours the watch was located, and the pawnbroker who had
received the watch described the man Peirce had previously identified “so graphi-
cally that no doubt was possible that it had been ‘my man,’” as he later recalled
(Peirce 1929: 275). For a more detailed account of this and other related events that
also transpired at the time, in Peirce’s own version of the story, see (Dauben 1995:
146–149).

When Peirce described these events many years later to James, he cited it as a
perfect example of what he had come to regard as the essence of abductive reason-
ing, which he took to be an inclination to entertain hypotheses. This all served to
explain, he believed, why it is that people so often guess right.

Abductive Reasoning

Peirce regarded what he called abduction as “the first step of scientific reasoning”
(Peirce 1901: CP 7.218). By this he meant the way in which we formulate hypoth-
eses, abduction being “all the operations by which theories and conceptions are
engendered” (Peirce 1903: CP 5.590). Peirce explains it in somewhat greater detail

Fig. 2 Pinkerton’s postcard
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as “the process of forming explanatory hypotheses. It is the only logical operation
which introduces any new idea” (Peirce 1903: CP 5.172).

As Arthur Burks pointed out in an early article about Peirce and abduction still
worth reading today (Burks 1946), Peirce initially spoke in terms of “hypothesis” but
later adopted the word “abduction” as a type of reasoning distinct from either
induction or deduction, citing Aristotle’s discussion of it in the Prior Analytics
once a single word is changed to correct what he maintained to be a corruption of
the original Greek text (Peirce 1901: CP 7.250–251; Peirce 1903: CP 5.144).
Sometimes, Burks points out, Peirce also referred to this type of reasoning as
“retroduction” or “presumption” (Burks 1946: 271), and he seems to have ultimately
preferred “retroduction” for the narrower notion of “reasoning from consequent to
antecedent” (Peirce 1908: CP 6.469).

By whatever name, abduction is only the first step in scientific reasoning, because
while it generates hypotheses, they do not lead to certainty. That can only be
achieved, Peirce believed, through deductive reasoning, which deals with idealized
objects. Moreover, the only way to determine the extent to which an abductive
hypothesis is correct, or at least more in conformity with the facts of nature than any
identified alternatives, is by making predictions (deduction) and then testing them by
observation and experiment (induction). Peirce further explained these three kinds of
elementary reasoning:

The first, which I call abduction . . . consists in examining a mass of facts and in allowing
these facts to suggest a theory. In this way we gain new ideas; but there is no force in the
reasoning. . . . The second kind of reasoning is deduction, or necessary reasoning. It is
applicable only to an ideal state of things, or to a state of things in so far as it may conform to
an ideal. It merely gives a new aspect to the premises. . . . The third way of reasoning is
induction, or experimental research. Its procedure is this. Abduction having suggested a
theory, we employ deduction to deduce from that ideal theory a promiscuous variety of
consequences to the effect that if we perform certain acts, we shall find ourselves confronted
with certain experiences. We then proceed to try these experiments, and if the predictions of
the theory are verified, we have a proportionate confidence that the experiments that remain
to be tried will confirm the theory. I say that these three are the only elementary modes of
reasoning there are. (Peirce c. 1905: CP 8.209)

One of Peirce’s favorite historical examples of abduction was the discovery by
Johannes Kepler (1571–1630) that the orbit of Mars is an ellipse. In The Watershed
(1960), Arthur Koestler elaborated on a treatment of Kepler that he had already given
in The Sleepwalkers (1959), wherein he advanced a theory that likened creative
discoverers to sleepwalkers, suggesting that even a great genius is never fully aware
of what is actually involved in any truly creative act. In the case of Kepler, this was
an easy conclusion to assert, given his own famous statement about his discovery of
the elliptical orbit of Mars. Kepler gives a lengthy account of his step-by-step,
painful progress toward unlocking the secret in his Astronomia Nova (1609),
Chapter LVI, where he reveals his frustration in dealing with the planet and his
eventual triumph:

Peirce on Abduction and Diagrams in Mathematical Reasoning 5



While I was anxiously turning this thought over in my mind, reflecting that absolutely
nothing was accomplished by chapter XLV, and consequently my triumph over Mars was
futile, quite by chance I hit upon the secant of the angle 5�180, which is the measure of the
greatest optical equation. And when I saw that this was 100429, it was as if I was awakened
from sleep to see a new light. (Kepler 1609: 267)

Kepler had tried everything, from circles moving on circles to ovals and ovoid
egg shapes, hoping to find a path that would account for the positions of Mars that
had been carefully observed by the Danish astronomer Tycho Brahe (1546–1601),
who had recorded the positions of Mars over years of observations, resulting in the
most accurate data then available. When Kepler finally realized the many mistakes
he had made, seeing that mathematically the only possible shape the orbit of Mars
could take—and likewise all of the other planets—must be an ellipse, it was, as he
says, like having awoken from sleep and seeing the light, the answer clearly revealed
(Figs. 3, 4 and 5).

But the secret was in the mathematics all along, not in the various given forms he
had tried at first. The cognitive inspiration leapt out as soon as Kepler saw a
connection only someone who had steeped himself in the numbers would have
seen, and that “habit of thought,” as Peirce might have said, in this case led Kepler
not so much to guess right, but to work out the correct solution: the one that, in the
end, having tried all other possibilities he could think of, led him to his final
conclusion that the orbit Mars followed in its path around the sun must be an ellipse.
As Peirce summarized:

Fig. 3 Kepler, from (Figuier
1876, vol. 4: facing p. 49)
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Thus, never modifying his theory capriciously, but always with a sound and rational motive
for just the modification he makes, it follows that when he finally reaches a modification—of
most striking simplicity and rationality—which exactly satisfies the observations, it stands
upon a totally different logical footing from what it would if it had been struck out at random,
or the reader knows not how, and had been found to satisfy the observation. Kepler shows his
keen logical sense in detailing the whole process by which he finally arrived at the true orbit.
This is the greatest piece of Retroductive reasoning ever performed. (Peirce
c. 1896: CP 1.74)

In fact, Kepler always regarded his discovery as a matter of divine providence for
numerous reasons, including the fact that there was a serendipitous conjunction of
three great astronomers in Prague in 1600: Kepler, Tycho, and Tycho’s assistant,
Longomontanus (1562–1647), who had just begun to focus his efforts on the orbit of

Fig. 4 Astronomia Nova
(1609), Ch. 56: p. 267
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Mars as Kepler was about to do so as well. Kepler himself said of this wonderful
coincidence that had it not been for Tycho and Longomontanus concentrating on the
case of Mars when Kepler met them in Prague in 1600, he never would have made
one of his most profound discoveries.

Mathematics as the Epitome of Abduction

Michael Hoffmann, in considering various problems with Peirce’s theory of abduc-
tion, clarifies what Peirce had in mind in regarding abductive reasoning as a form of
guessing:

[W]hile deduction is apodictic and truth preserving reasoning (cf. Peirce 1902c, CP 4.233),
abduction only infers guesses from guesses. When we have found in theorematic reasoning a
new perspective, or when we have “added” something else to our diagram and “the
conclusion appears” (Peirce 1909, NEM 3: 870), this conclusion is as apodictically true as
any corollarial deduction. In abduction, however, if we guess that a certain curve A might
describe our measured data of marathon races, and if we infer from this guess that “there is
reason to suspect that A is true,” it is one thing to prove a theorem and another to formulate it,
even if it might again be necessary for proving a theorem to formulate further theorems.
Thus, it would make sense to describe the first task as theorematic deduction and the second
task as abduction. With regard to abduction in mathematics, the reader is invited to try some
experiments with an example developed by Otte (1998) . . .. If you click at the figures

Fig. 5 Chapter 27,
triangulation revealing the
orbit of Mars (p. 150)
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presented there, you can move certain points of geometrical diagrams. You will find yourself
confronted with surprising mathematical “facts” that will give you an idea of abduction in
mathematics. (Hoffmann 1999: 293–294)

This raises immediately for anyone interested in mathematical cognition the
difference between formulating a theorem in mathematics and proving
it. Formulation of a theorem involves an abductive process of perhaps guessing
that a particular situation plausibly holds. The deductive part of the process then
produces a proof that the hypothesis is correct, establishing it as a matter of fact, as a
theorem. This is what Peirce had in mind by “theorematic reasoning,” in contrast to
“corollarial deduction”:

Deductions are of two kinds, which I call corollarial and theorematic. The corollarial are
those reasonings by which all corollaries and the majority of what are called theorems are
deduced; the theorematic are those by which the major theorems are deduced. If you take the
thesis of a corollary,—i.e. the proposition to be proved, and carefully analyze its meaning, by
substituting for each term its definition, you will find that its truth follows, in a straightfor-
ward manner, from previous propositions similarly analyzed. But when it comes to proving a
major theorem, you will very often find you have need of a lemma, which is a demonstrable
proposition about something outside the subject of inquiry; and even if a lemma does not
have to be demonstrated, it is necessary to introduce the definition of something which the
thesis of the theorem does not contemplate. (Peirce 1901: CP 7.204)

The key difference in mathematical reasoning is the introduction of a lemma from
“outside the subject of inquiry” in accordance with the “form of inference” for
abduction, as partially quoted above by Hoffmann: “The surprising fact, C, is
observed. But if A were true, C would be a matter of course. Hence, there is reason
to suspect that A is true” (Peirce 1903: CP 5.189). Peirce goes on to acknowledge
that this requires recognition, in the wake of the surprising observation, that it would
follow necessarily if a certain hypothetical premiss were true. This is the abductive
step, the leap or conjecture by which “the well-prepared mind [like Kepler’s] has
wonderfully soon guessed each secret of nature” (Peirce 1908: CP 6.476).

The history of mathematics has numerous examples of such hypotheses
conjectured or believed to be true but lacking a cogent proof. One of the most
renowned of these is the famous “last theorem” of Pierre de Fermat (1607–1665),
which was finally proved by the British mathematician Andrew Wiles and published
in 1995. For more about Wiles and Fermat, see (Aczel 1997). As he was reading a
Latin translation of the Arithmetica by the Greek mathematician Diophantus, Fermat
recorded comments in the margins in his copy of the book. At one point, when he
had reached a particular problem in the Arithmetica, II.8, he was inspired to consider
something even more general. Problem II.8 asks, given a square, that it be divided
into the sum of two smaller squares. This reduces arithmetically to the problem,
given a number c2, to find numbers a and b such that c2¼ a2 + b2. For powers greater
than 2, Fermat conjectured there were no possible solutions. Unfortunately, his proof
was too long, he said, to fit into the space available in the margin of his copy of
Diophantus, as he duly noted. Figure 6 is the title page and page 61 with Fermat’s
annotation noting his famous conjecture, from the 1670 edition of the translation
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from the Greek into Latin by Claude-Gaspard Bachet. The 1670 edition was
published by Fermat’s son, Samuel Fermat, with his father’s marginal annotations
as they appeared in his copy, an edition of 1637, of the Bachet translation first
published in 1621.

Another example of a “guess” that demonstrates the powerful intuition of a
mathematician is the equally famous continuum hypothesis, first advanced by the
German mathematician Georg Cantor (1845–1918). This concerns a matter in which
Peirce himself was particularly interested and on which he held views quite incon-
sistent with those of Cantor. Basically, the continuum hypothesis states that if the
cardinal number of the set of all natural numbers N is ℵ0 (aleph-null), then the
cardinality of the set of all real numbers is of the next higher cardinality, 2ℵ0 ¼ ℵ1,
such that there are no sets of numbers of cardinality between them. This was
something that Cantor first formulated in the 1890s and spent the rest of his life
trying to prove. It was a guess that he was certain for multiple reasons must be true,
but one that he could never establish (Dauben 1979). It remains unproven to this day.

Diagrams and Abductive Reasoning

Diagrams have also been essential to the advance of mathematics throughout its
history. In 1703, when Oxford University Press published a dual-language edition of
all then-known works of the Greek mathematician Euclid, it issued a magnificent
quarto volume, Euclidis quae supersunt omnia (Euclid’s Collected Works; lit.
Everything that Survives of Euclid), by the Savilian Professor of Astronomy,
David Gregory (1659–1708). The university engraver, Michael Burghers, was called
upon to design an appropriate frontispiece. In doing so, Burghers drew on a famous
story recounted by Vitruvius (De architectura, Book VI) about the Socratic philos-
opher Aristippus, shipwrecked off the island of Rhodes. Encountering geometric
diagrams drawn in the sand, he exclaims: “hominum enim vestigia video” (I see a
vestige of man). In Burghers’ frontispiece (Fig. 7), with mathematics representing
the epitome of human reason, there are three geometric diagrams, and the one to
which the foremost figure points with his foot is the diagram for a particular theorem
in Euclid’s Elements, Proposition I.32.

It may be worth noting that Oxford actually used this same frontispiece on two
subsequent occasions: first, less than a decade later when it published a Latin
translation of the Conics of Apollonius (Apollonii Pergaei conicorum) by Edmund
Halley, Savilian Professor of Geometry, in 1710, and again in 1792 when it
published a dual-language edition in Greek and Latin, this time the collected
works of Archimedes (Archimedis quae supersunt omnia) in an edition by Giuseppe
Torelli. However, the diagrams suitable for Gregory’s Euclid would not do for
volumes on conic sections or the works of Archimedes, so appropriate diagrams
were substituted (Figs. 8, 9 and 10).

For Peirce, each diagram would have represented a different sort of reasoning, a
means of exploring certain hypotheses about parallel lines, conic sections, or the
properties of spirals. In the case of the diagram for Euclid’s Proposition I.32
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(Fig. 11), its accompanying text reads as follows: “In any triangle, if one of the sides
be produced, the exterior angle is equal to the two interior and opposite angles, and
the three interior angles of the triangle are equal to two right angles” (Heath
1908: 316).

It is not the proposition or its proof that matters here, but the postulate on which
its proof depends, namely, the famous fifth postulate of Euclid’s Elements, which
asserts: “That, if a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right angles”
(Heath 1908: 202). For further discussions of the problematic nature of Euclid’s fifth
postulate, see (Heath 1908: 202–220; Trudeau 2001: 118–153; Gray 2007: 79–88).

Fig. 6 (Top left) Title page of the edition of Claude-Gaspard Bachet’s Latin translation of
Diophantus’ Arithmetica, in the edition of 1670 incorporating Fermat’s marginal note on page
61 (top right), with the “Observatio” enlarged (below), showing the famous marginal note of Fermat
about his “proof” of what came to be known as “Fermat’s last theorem”
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On the simpler equivalent of Postulate 5, the “parallel postulate” first advanced by
Proclus in his commentary on Euclid and later by Playfair—that given a line and a
point not on the given line, only one line can be drawn through the given point that is
parallel to the given line—see (Grabiner 2009: 4). Note that in Euclid’s version of the
postulate, there is no reference to parallel lines, which may be his reason for not
wishing to assume a simpler version of this hypothesis like those advanced by
Proclus and Playfair.

There are many things that are odd about this appearing as a postulate in Euclid’s
geometry. All the other postulates are immediately self-evident, e.g., that a straight
line may be drawn between any two points or that all right angles are equal. But the
fifth is not self-evident, and for more than two millennia, mathematicians tried to
prove that the parallel postulate was in fact derivable from the other definitions and
axioms of Euclidean geometry. Euclid himself may have tried to prove it and, failing

Fig. 7 David Gregory:
Euclidis quae supersunt
omnia (1703): frontispiece

Fig. 8 Euclid (1703)
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to do so, included it instead as a postulate because it was necessary to prove
important basic theorems in his geometry, especially those dealing with parallel
lines in Book I, like Propositions 1.31 and 1.32, and later theorems that in turn use
either of these propositions.

Diagramming the Parallel Postulate

As it turns out, the parallel postulate is not provable from the other axioms of
Euclid’s geometry and thus on Peircean terms may be taken as a hypothesis to be
investigated, the examination of which should depend upon diagrams like those
drawn by Burghers in his frontispiece for Wallace’s edition of Euclid’s geometry. In
fact, to enable exactly this sort of investigation, Peirce even provided a diagram for

Fig. 9 Apollonius (1710)

Fig. 10 Archimedes (1792)

Fig. 11 Thomas Heath’s
diagram accompanying his
translation of Euclid’s
Proposition I.32 (Heath
1908: 317)
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the parallel postulate (Fig. 12) as part of his development of existential graphs in a
long manuscript called “Logical Tracts No. 2” (Peirce 1903: CP 4.471, Fig. 120).

Perhaps in all of pure mathematics, there is no more famous hypothesis than this
one, whose history spans from the Greeks to the present. As Judith Grabiner
explains:

The historical focus on the fifth postulate came because it felt more like the kind of thing that
gets proved. It is not self-evident, it requires a diagram even to explain, so it might have
seemed more as though it should be a theorem. In any case, there is a tradition of attempted
proofs throughout the Greek and then Islamic and then eighteenth-century mathematical
worlds. (Grabiner 2009: 4)

Kant’s views on geometry and space may have influenced Peirce’s thinking, as well:

Kant argued that we need the intuition of space to prove theorems in geometry. This is
because it is in space that we make the constructions necessary to prove theorems. And what
theorem did Kant use as an example? The sum of the angles of a triangle is equal to two right
angles, a result whose proof requires the truth of the parallel postulate. (Kant, “Of space,”
cited in (Grabiner 2009: 12))

In 1806, Joseph-Louis Lagrange was among the last of the great mathematicians
to try and prove the parallel postulate. Although never published, a paper he wrote

Fig. 12 Peirce’s holograph diagram; Peirce papers, Houghton Library, Harvard University
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on this subject was presented to the Institute de France, one in which he argued that
the postulate should not in fact be assumed but ought to be provable from the
definitions, axioms, and postulates of Euclidean geometry. Why was Lagrange so
interested in proving the parallel postulate rather than simply accepting it as a
necessary assumption? Again, Judith Grabiner explains:

Because there was so much at stake. Because space, for Newtonian physics, has to be
uniform, infinite, and Euclidean, and because metaphysical principles like that of sufficient
reason and optimality were seen both as Euclidean and as essential to eighteenth-century
thought. How could all of this rest on a mere assumption? So, many eighteenth-century
thinkers believed that it was crucial to shore up the foundations of Euclid’s geometry, and we
can place Lagrange’s manuscript in the historical context of the many attempts in the
eighteenth century to cure this “blemish” in Euclid by proving Postulate 5. (Grabiner
2009: 14)

Early in the nineteenth century, several mathematicians suspected that consistent
geometries could be devised without the parallel postulate, among them the German
Carl Friedrich Gauss, but he was so concerned that no one would take such ideas
seriously that he withheld them from publication. Instead, the two earliest published
pioneers of non-Euclidean geometry were well out of the mainstream of European
mathematics, namely, the Russian Nikolai Ivanovich Lobachevsky (1792–1856) and
the Hungarian János Bolyai (1802–1860). By midcentury, other mathematicians like
Bernhard Riemann (1826–1866) and Eugenio Beltrami (1835–1900) had presented
non-Euclidean geometries in ways that many mathematicians could follow and
begin to appreciate. Among them was Charles Sanders Peirce.

Peirce and Non-Euclidean Geometry

In a letter to William James in 1909, Peirce urged him to learn about non-Euclidean
geometry (Eisele 1975: 151). Why was this a matter of such importance to Peirce? In
part because, on a cognitive level, he was convinced that it was relevant to what we
know about physical space and even the very laws of nature. Peirce had come to
appreciate non-Euclidean geometry, perhaps first through the work of Lobachevsky,
which was translated into English by the American mathematician George Bruce
Halsted in 1891 as Geometrical Researches on the Theory of Parallels. Peirce was
asked to review this for The Nation in 1892. In doing so, Peirce wrote that
Lobachevsky’s “overthrow of the axioms of geometry . . . must lead to a new
conception of nature, less mechanical than that which has guided the steps of science
since Newton’s discovery” (Peirce 1892: CP 8.91).

Peirce predicted that the revolution in mathematics caused by the discovery and
acceptance of non-Euclidean geometry would lead to a parallel revolution in meta-
physics, namely, the end of a belief in mechanistic determinism. From the axiomat-
ization of Euclidean geometry, including Postulate 5, it is possible to prove by
deductive means alone that, for example, the sum of the angles of any triangle
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equals two right angles. This is the purport of Euclid’s Proposition I:32. But as
Shannon Dea puts it:

Lobachevsky’s and Riemann’s combined discoveries showed that the sum of a triangle’s
angles does not necessarily equal the sum of two right angles. In doing so, they revealed the
question of the actual sum of a triangle’s angles to be an empirical question subject to
measurement. (Dea 2008: 615)

As Dea continues, this permitted Peirce “to carve out a space for chance and
vagueness in the physical universe,” one that was more in keeping with the idea of a
world in which the laws of nature were not fixed but might have changed and might
still be changing over time, one that “more easily conformed to an evolving universe
characterized by stochastic causation than the static universe of mechanistic deter-
minism.” By Dea’s count, in various writings between 1891 and 1893, Peirce
repeated his contention that the discovery of non-Euclidean geometry “spells the
end of mechanistic determinism” (Dea 2008: 615).

How does all this relate to Peirce and his interest in diagrammatic reasoning?
Peirce agreed with Kant in believing that mathematics consisted of “the study of
schematic shapes in the form of diagrams, where observation and testing bring out
the new relations between the parts” (Eisele 1975: 151). In a short piece written in
the spring of 1890, “The Non�Euclidean Geometry Made Easy,” Peirce included a
diagram (Fig. 13) to illustrate Lobachevsky’s “imaginary geometry,” although for
Peirce the image was a diagram in space.

He then went on to draw several important conclusions:

We have an a priori or natural idea of space, which by some kind of evolution has come to be
very closely in accord with observations. But we find in regard to our natural ideas, in
general, that while they do accord in some measure with fact, they by no means do so to such
a point that we can dispense with correcting them by comparison with observations. (Peirce
1890: W 8: 25)

Peirce’s many years of gravitational research “swinging pendulums” for the US
Coast and Geodetic Survey placed him in an excellent position to appreciate the
curved geometry of the Earth’s surface. That being the case, he surely would have
welcomed the experiment that Einstein had suggested to demonstrate the correctness
of another triumph of abduction, his general theory of relativity, confirming his
prediction of the gravitational curvature of space itself as verified by two expeditions
to observe a solar eclipse in 1919 (Landau 2019; Gilmore and Tausch-Pebody 2020).
Peirce likewise advocated further empirical study to ascertain the real shape of the
universe:

Thus, the postulates of geometry must go into the number of things approximately true. It
may be thousands of years before men find out whether the sum of the three angles of a
triangle is greater or less than 180 degrees; but the presumption is, it is one or the other.
(Peirce c. 1893: CP 1.130)
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For Peirce, the cognitive elements in all this are related to diagrammatic reasoning
and the role that diagrams play in the study of space, as well as the possibility that
rejecting the famous Postulate 5 of Euclid’s Elements does not lead to inconsistent
geometries. For a recent, detailed study of Euclid examined diagrammatically,
including analysis of the syntax and semantics of diagrams, see (Miller 2007).
Moreover, the discovery of non-Euclidean geometries linked mathematics to
Peirce’s rejection of mechanistic determinism. Just as for Lagrange proving the
parallel postulate was essential to affirming the order of the Newtonian view of
absolute space and time and a wholly deterministic clockwork universe, Peirce saw
in the triumph of non-Euclidean geometry a non-Newtonian world in which even the
most fundamental “laws” of nature were subject to evolution, to change, a view that
he called tychism.

Peirce and Nonclassical Logic

A similar situation exists in the field of logic, where at least since Plato and Aristotle
two primary “laws of thought” have been recognized: noncontradiction as “not both
A and not-A” and excluded middle as “either A or not-A,” where “A” is any
proposition whatsoever and “not-A” is its negation. Systems of logic are considered
to be “classical” if they conform to these two “laws,”which taken together constitute
the principle of bivalence: No proposition is both true and false, and every propo-
sition is either true or false. However, “nonclassical” systems of logic have emerged
in recent decades that dispense with one or the other. For example, “paraconsistent”
or “dialethic” logics permit some contradictions as a way of accommodating certain
paradoxes, while “fuzzy” logics facilitate approximate reasoning by assigning a
range of values rather than only two.

Throughout his life, Peirce considered himself to be first and foremost a logician,
and he is widely credited with several significant advances in the field including the
independent invention of quantification, the first use of the truth-table method to
define two- and three-valued operators, and the introduction of a particular formu-
lation of excluded middle that is now called “Peirce’s law.” This name for it is ironic,
because although Peirce steadfastly maintained the inadmissibility of contradictions,
he recognized that excluded middle is not without exceptions:

Logic requires us, with reference to each question we have in hand, to hope some definite
answer to it may be true. That hope with reference to each case as it comes up is, by a saltus

Fig. 13 Peirce’s diagram
illustrating Lobachevski’s
non-Euclidean geometry.
(Peirce 1890: W 8: 25)
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[leap], stated by logicians as a law concerning all cases, namely, the law of excluded middle.
(Peirce n.d.: NEM 4: xiii)

In fact, his landmark paper, “On the Algebra of Logic: A Contribution to the
Philosophy of Notation” (Peirce 1885: CP 3.359–403), “anticipated the development
of mathematical logic by about 40 years” by identifying five “icons” that effectively
serve as a set of axioms for classical logic, the last of which is the “law” that now
bears his name. Moreover, “his axiomatization of 1885, omitting Peirce’s Law,
which he included as a last resort to prove the completeness of Classical Proposi-
tional Logic, hides the nucleus of an axiomatization of Intuitionistic Propositional
Logic” (Oostra 2013: 20–22; own translation). This is another nonclassical system,
which is analogous to non-Euclidean geometry in that its only difference from
classical logic is the omission of a single “postulate,” namely, excluded middle
and its corollaries such as Peirce’s “law” and double negation elimination. L. E.
J. Brouwer initially outlined intuitionism in 1907, while his student Arend Heyting
first formalized its logic in 1930, which is also commonly referred to as constructive
logic because of its original philosophical motivation:

[A] characteristic feature of intuitionism is the requirement that the notion of truth of a
proposition should be explained in terms of the notion of proof, or verification, rather than as
correspondence with some sort of mind-independent realm of mathematical objects; from
this one concludes that not every sentence is either true or false. (Raatikainen 2004: 131)

In other words, constructivism in general and intuitionism in particular seek to
account for subjective or epistemological indeterminacy: There are some proposi-
tions that cannot currently be evaluated as either true or false because knowledge is
indeterminate, since there is not (yet) a proof one way or the other. This contrasts
with Peirce’s primary reason for being skeptical of excluded middle, which he stated
in two slightly different ways:

To speak of the actual state of things implies a great assumption, namely that there is a
perfectly definite body of propositions which, if we could only find them out, are the truth,
and that everything is really either true or in positive conflict with the truth. This assumption,
called the principle of excluded middle, I consider utterly unwarranted, and do not believe
it. (Peirce 1893: NEM 3:758)

No doubt there is an assumption involved in speaking of the actual state of things . . .
namely, the assumption that reality is so determinate as to verify or falsify every possible
proposition. This is called the principle of excluded middle. . . . I do not believe it is strictly
true. (Peirce 1893: NEM 3:759–760)

In other words, Peirce sought to account for objective or ontological indetermi-
nacy: There are some propositions that are neither true nor false because reality is
indeterminate. As he wrote years later in his Logic Notebook, “every proposition, S
is P, is either true, or false, or else S has a lower mode of being such that it can neither
be determinately P, nor determinately not-P, but is at the limit between P and not P”
(Peirce 1909: MS 339). This is consistent not only with his tychism but also with his
overarching synechism: “that tendency of philosophical thought which insists upon
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the idea of continuity: as of prime importance in philosophy and, in particular, upon
the necessity of hypotheses involving true continuity” (Peirce 1902: CP 6.169).

For Peirce, “true continuity” contrasts with “a pseudo-continuum as that which
modern writers on the theory of functions call a continuum” (Peirce 1908: CP 6.176).
He thus rejected the growing consensus among the mathematicians of his time, led
by Richard Dedekind and Georg Cantor, that all the real numbers together constitute
a continuum. Their conception was grounded in set theory, such that a continuum
could be built up from a sufficiently large transfinite multitude of distinct parts, while
Peirce viewed the whole as more fundamental, having parts that are indefinite unless
and until they are deliberately marked off for some purpose (Schmidt 2020). The
upshot is that he steadfastly maintained the reality of infinitesimals, a stance that has
arguably been vindicated by the subsequent development of synthetic differential
geometry and smooth infinitesimal analysis, the logic of which—i.e., the logic of
true continuity—is intuitionistic (Bell 2006: 294–297). Consequently, had Peirce
followed through on his remarkably prescient insights and fully developed such a
system, it might instead be known today as synechistic logic.

Moving Pictures of Thought

In any case, Peirce himself ultimately considered his most important contribution to
logic to be the development of a “diagrammatic syntax” for propositions and a set of
transformation rules for carrying out deductive inferences from them, a system that
he dubbed “existential graphs.” He had three objectives in mind for it: “to afford a
method (1) as simple as possible (that is to say, with as small a number of arbitrary
conventions as possible), for representing propositions (2) as iconically, or diagram-
matically and (3) as analytically as possible” (Peirce 1908: CP 4.561n).

A blank sheet stands for the continuum of all true propositions, any of which may
be explicitly “scribed” on it as a graph-instance consisting of a single letter in the
“Alpha” version for propositional logic or of names denoting abstract general
concepts and heavy lines denoting concrete indefinite individuals (“something”) in
the “Beta” version for first-order predicate logic. Each name has one, two, or three
“pegs” where a heavy line may be attached, signifying the attribution of the concept
to that individual. The number of pegs associated with the name corresponds to the
“valency” of the concept as monadic (“redness”), dyadic (“killing”), or triadic
(“giving”); see Fig. 14.

There is no limitation on the number of graph-instances that may be scribed on
the sheet, which signifies the primitive relation of coexistence such that juxtaposing
multiple graph-instances expresses the conjunction of the propositions that they
represent. There is also no limitation on the number of branches that may be
added to a heavy line, which corresponds to the primitive relation of identity such
that each branch attached to a name attributes another concept to the same individ-
ual. Coexistence and identity are thus continuous relations, and they are also
symmetrical: “A and B” is logically equivalent to “B and A,” while “some S is P”
is logically equivalent to “some P is S.”
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A third primitive relation is required, and for Peirce it is the most fundamental of
all: “The first relation of logic, that of antecedent and consequent, is unsymmetrical.
Now an unsymmetrical relation cannot result from any combination of symmetrical
relations alone” (Peirce 1905: NEM 3:821). This is what he usually called “conse-
quence,” now typically referred to as “implication.” It is represented in existential
graphs by a “scroll,” which is “a curved line without contrary flexure and returning
into itself after once crossing itself, and thus forming an outer and an inner ‘close.’
. . . In the outer I scribed the Antecedent [A], in the inner the Consequent [C]” (Peirce
1906: CP 4.564); see Fig. 15.

The continuity of the scroll itself thus reflects the continuity of the inference from
the antecedent to the consequent, and disjunction is derived from it by simply adding
more loops with inner closes. Any graph-instance, including the blank, is always
interchangeable with a scroll that has an empty outer close and that same graph-
instance in its inner close.

Fig. 14 Existential graphs
for “some apple is red,” “Cain
killed Abel,” and “Bob gives a
ball to Larry”

A C

Fig. 15 Existential graph for
“if A then C”
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On the other hand, the scroll also serves as a discontinuity or topical singularity
that interrupts the sheet. With that in mind, Peirce eventually realized that shading
oddly enclosed areas is the best way to distinguish them from unenclosed and evenly
enclosed areas, which are unshaded: simpler than counting lines, more iconic for
conveying that they are different surfaces, and more analytical because shaded areas
correspond to a universe of possibility rather than actuality (Peirce 1906: CP 4.576–
581). The permissible transformations of graph-instances, which correspond to rules
of inference, are then summarized as follows:

1. Erasure—In an unshaded area, any graph-instance or portion of a line may be
deleted.

2. Insertion—In a shaded area, any graph-instance may be added and any lines may
be joined.

3. Iteration—Any graph-instance already scribed may be reproduced identically in
the same area or in a more enclosed area, and any unattached end of a line may be
extended into a more enclosed area.

4. Deiteration—Any graph-instance that could have resulted from iteration may be
deleted.

For classical logic, a continuous scroll is logically equivalent to nested “cuts,”
which are simple oval lines or shaded/unshaded areas that represent negation. Peirce
derived this from a scroll whose consequent is “a proposition implying that every
proposition is true,” resulting in “a black spot entirely filling the close in which it is,”
which “may be drawn invisibly small” (Peirce 1906: CP 4.454–456). However, at
one point he retracted this last provision and instead advocated retaining a small
blackened inner close attached to the cut as a reminder of its theoretical basis
(CP 4.564n, c. 1906). Moreover, he called it an “error” and an “inaccuracy” to
analyze “if A then C” as no different from “not both A and not-C”; see Fig. 16:

For in reasoning, at least, when we first affirm, or affirmatively judge, the conjugate of
premisses, the judgment of the conclusion has not yet been performed. There then follows a
real movement of thought in the mind, in which that judgment of the conclusion comes to

Fig. 16 Existential graph for
“not both A and not-C”
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pass. Now surely, speaking of the same A and B as above, it were absurd to say that a real
change of A into a sequent B consists in a state of things that should consist in there not being
an A without a B. For in such a state of things there would be no change at all. (Peirce
1908: MS 300)

It is interesting to note that in intuitionistic logic, negation is likewise defined as
the implication of falsity, and although “if A then C” implies “not both A and not-C,”
the inference in the other direction is invalid. In fact, simply by explicitly
distinguishing a scroll for implication from nested cuts for double negation, exis-
tential graphs can be employed in accordance with intuitionistic logic rather than
classical logic (Oostra 2010, 2011). Either way, implementing a series of diagram-
matic transformations to draw a deductive conclusion from a set of premisses serves
as “a moving-picture of Thought” (Peirce 1906: CP 4.11). For a more detailed
exposition of existential graphs, see (Roberts 1992).

Representation and Semeiotic

The parallel postulate and the “law” of excluded middle are presuppositions that,
contrary to conventional ways of thinking as shaped by the Euclidean geometry and
classical logic of experience, may nevertheless give way to useful alternatives when
subjected to careful “experimentation.” Such activities might be in physical terms as
was the case with the eclipse observations confirming the curvature of space, or the
kinds of imaginative exercises that Peirce considered in geometry of the
Lobachevskian sort, or reasoning in accordance with classical vs. intuitionistic
logic by employing existential graphs with different rules.

These specific examples relate to the problem of representation more generally.
Representation is intrinsic to human life and essential for human communication.
Words, gestures, symbols, signs, and diagrams, among other means of conveying
information, involve mental, informational, and computational models, the intent of
which is to capture the relevant characteristics of the reality that such constructs are
intended to explore or express.

In ordinary day-to-day activities, it is a matter of determining informally what
characters and characteristics are to be conveyed. However, it is not only in math-
ematics, logic, and the sciences generally, whether pure or applied like engineering,
but in virtually any intellectual discipline, including philosophy, that it is necessary
to incorporate appropriate assumptions and simplifications. There are two common
strategies for doing this, namely, abstraction and idealization. Abstraction involves
bracketing out and ignoring certain aspects of reality in order to gain a better
understanding of the other aspects, while idealization involves replacing a complex
aspect of reality with a necessarily simplified version. Thus, such strategies entail
that no representation can be completely accurate, and this raises the question of how
they relate to reality. For Peirce, this is the domain of semeiotic—his preferred
spelling for the science that studies signs and signification (Peirce 1903: CP
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1.191). As he expressed it: “A sign is something which stands to somebody for
something in some respect or capacity” (Peirce 1897: CP 2.228).

Most modern semiotic theories, such as Saussure’s, have been dyadic, emphasiz-
ing only two components, namely, the signifier and that which is signified, the
relationship holding between these being essentially arbitrary. Their limitations
became evident with the emergence of deconstruction and other aspects of postmod-
ernism that effectively preclude objective meaning. Peirce developed an alternative,
founding what eventually came to be known as pragmatism, involving a theory of
signs that is triadic, emphasizing the irreducible relation of three correlates: the sign
itself, that which it signifies, and the effect that it produces, the last brought about by
a “habit of interpretation.” He aligned these elements—sign, object, and
interpretant—with three fundamental categories that he identified, initially through
exploring whatever is or could be present to the mind (phenomenology) and then by
reasoning about the underlying nature of reality (scientific metaphysics). Peirce
named these categories Firstness, Secondness, and Thirdnesss (Richmond 2005).

Firstness is quality, feeling, possibility, spontaneity, and vagueness; Secondness
is reaction, difference, actuality, persistence, and particularity; Thirdnesss is media-
tion, generality, purpose, regularity, and order. For example, in Peircean semeiotic an
icon relates to its object through some kind of resemblance (Firstness), an index due
to a physical or other direct connection (Secondness), and a symbol by means of
conventions or rules, the habits of interpreters that ensure their being so understood
(Thirdnesss) (Peirce 1911: EP 2:461). Hence a statue is an icon, a weathervane is an
index, and a word or a sentence is a symbol.

It should never be forgotten that for Peirce, representation—semiosis—is closely
connected with reality, since he held that “all this universe is perfused with signs, if it
is not composed exclusively of signs” (Peirce 1906: CP 5.448n). Because thought
itself consists of signs, inquiry is seen by Peirce as a deliberate, collaborative
endeavor to process such thoughts in a way that results in genuine knowledge.
Scientific inquiry involves all three basic modes of inference: abduction as the
formulation of an explanatory hypothesis, deduction as the explication of what
else would be the case if that hypothesis is correct, and induction as the examination
of whether those consequences ever fail to materialize in an appropriate experiment,
which would falsify the hypothesis.

Diagrammatic Logic

Peirce further held that all deductive reasoning is mathematical and that all mathe-
matical reasoning is diagrammatic, i.e., it proceeds by creating, manipulating, and
observing an icon meant to reflect the form of the significant relations among the
parts of the object of interest. Mathematicians need to discern, as best they can,
which relations are indeed significant in order to devise suitable icons of their form.
While the word “diagram” may typically be associated with some sort of picture,
Peirce considered a diagram more broadly as a mental image, possibly changing or
developing, of such a thing as it represents. Although a physical sketch or model
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may be employed as an aid, the essential thing to be performed is the act of
imagining (Peirce 1906: NEM 4:219n1). While diagrams embody formal relations,
it is not essential that they do so visually. Thus, while a geometric figure is surely a
kind of diagram, so too are algebraic expressions.

What makes diagrammatic reasoning powerful is that, although it essentially
involves deductive inference—for there is nothing in the conclusion that was not
already present in some way in the premisses—it can, nonetheless, reveal something
that was not initially evident, or at least not clearly so. Yet a diagram must neces-
sarily be provisional, as it always includes abstractions and idealizations chosen by
whomever is employing it. In that choosing, it is active, that is, it involves creativity:
“It is necessary that something should be DONE. In geometry, subsidiary lines are
drawn. In algebra permissible transformations are made” (Peirce 1902: CP 4.233).
Such modifications or transformations are, of course, not completely arbitrary, since
they must conform to the precepts of the representational system involved, which
then will also dictate their outcomes.

In this regard, Peirce wrote that “all reasonings turn upon the idea that if one
exerts certain kinds of volition, one will undergo in return certain compulsory
perceptions” (Peirce 1905: CP 5.9). Still, an important question remains: While
nature corroborates or falsifies a theory through encounters in the real world, what is
the normative aspect of a hypothetical one? Peirce suggests an answer:

[C]ertain modes of transformation of Diagrams . . . have become recognized as permissible.
Very likely the recognition descends from some former Induction, remarkably strong owing
to the cheapness of mere mental experimentation. Some circumstance connected with the
purpose which first prompted the construction of the diagram contributes to the determina-
tion of the permissible transformation that actually gets performed. (Peirce 1906: NEM 4:
318)

In other words, which transformative moves are legitimate becomes apparent
mainly through the persistent activity of the intellect, which is far less costly or time-
consuming than a genuinely inductive investigation because it does not deal with a
course of experience, but rather with whether or not a certain state of things can be
imagined (Peirce 1902: CP 2.778). How one proceeds in an individual case of
diagramming is subject to constraints, depends on one’s intentions, and indeed
involves the entire train of thought, which from the semiotic standpoint is a contin-
uous stream of signs. To be effective, such a diagram must incorporate the features
that are relevant to achieving the end being pursued, while most other considerations
need to be bracketed and ignored.

Operations upon diagrams, whether external or imaginary, take the place of the
experiments upon actual things that are performed in scientific research (Peirce
1905: CP 4.530). Moreover, diagrams and representational systems are artifacts
that people design. As Michael Hoffmann puts it: “. . . seeing a solution presupposes
seeing a problem . . . The central idea of this kind of reasoning is that we see
problems when we try to represent what we know about something . . . We have to
represent what we know – or think to know – in order to see, first, its limitations and,
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second, new possibilities” (Hoffmann 2006: 3–4). This hints at very broad applica-
tions that Peirce begins to take up in the normative sciences: theoretical esthetics,
theoretical ethics, and logic broadly conceived as semeiotic.

Inquiry and Ingenuity

For Peirce, normative science is “the science of the laws of conformity of things to
ends,” such that “esthetics considers those things whose ends are to embody qualities
of feeling, ethics those things whose ends lie in action, and logic those things whose
end is to represent something . . . That is right action which is in conformity to ends
which we are prepared deliberately to adopt” (Peirce 1903: CP 5.129–130). He
eventually came to view logic as a form of ethics, because thought is a form of
conduct, and self-control is essential to both thinking well and acting well. This is
important because while neither the past nor the immediate present is affected by the
will, the future is susceptible to being influenced to some extent through deliberate
thought and action.

Accordingly, although the logic of inquiry applies most directly to science, it also
manifests as a logic of ingenuity. Schmidt (2016) coined this term in a series of
magazine articles written for an audience of practicing structural engineers, observ-
ing that the English words “ingenuity” and “engineer” have the same etymological
root. While Peirce largely concentrated on the logic of inquiry, he did some work as a
consulting engineer in the 1890s and wrote about the logic of ingenuity as described
here (without calling it that) during the same time frame (e.g., Peirce 1898: CP
3.559). In modern engineering practice, the logic of ingenuity is the process of
(abductively) creating a diagrammatic representation of a problem and its proposed
solution and then (deductively) working out the necessary consequences, such that
this serves as an adequate substitute for (inductively) evaluating the actual situation.
Here abduction constitutes the creative process that leads to the selection of one
preliminary solution from multiple candidates. Deduction corresponds to the ana-
lyses that indicate the expected behavior of that design, given certain idealized
presuppositions. Induction operates over time as an engineer learns from experience
to develop competence, proficiency, and eventually expertise, which manifests as the
ability to make better abductions.

Hence both inquiry and ingenuity employ signs in the interest of making that
which is indeterminate more determinate. However, neither can make the indeter-
minate fully determinate, because according to Peirce the only complete sign is the
entirety of reality itself, consisting of continuous and complex systems of relations. It
follows that the fallibility of any current understanding must be acknowledged, since
uncertainty in representation is constrained by reality and can never be completely
eliminated.

Determination occurs primarily as discovery in science, conforming representa-
tion to reality, but as decision in engineering, conforming reality to representation.
Moreover, while Peirce insisted on grounding science firmly in fact and reason, he
was equally adamant that practical matters should be governed primarily by instinct
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and sentiment. When it comes to “topics of vital importance”—an expression
William James once used in a letter to Peirce intended to encourage him to avoid
his usual penchant for logical and metaphysical analyses in a series of upcoming
lectures, which James thought impenetrable to most audiences—people must rely on
their existing beliefs, which turn out to be none other than their established habits of
feeling, action, and thought.

Moreover, while science is often regarded as a collaborative endeavor by a large
community of investigators working together over an extended period of time to
discover general laws and the like, for a single individual under ordinary conditions,
“the sole object of inquiry is the settlement of opinion. We may fancy that this is not
enough for us, and that we seek, not merely an opinion, but a true opinion. But put
this fancy to the test, and it proves groundless; for as soon as a firm belief is reached
we are entirely satisfied” (Peirce 1877: CP 5.375). To phrase this somewhat differ-
ently, it could be said on the one hand that truth is the goal of inquiry only in the long
run, since ongoing interaction with nature prevents people from ever being perma-
nently satisfied with their beliefs as they repeatedly confront evidence that some of
them are false. On the other hand, the goal of ingenuity is something that we may
hope to achieve in the short term: solving a problem despite incomplete knowledge.
In both cases, the upshot of most thinking is, as in engineering, an exercise of
volition (Peirce 1878: CP 5.397).

Logic is often most closely identified with strictly deductive reasoning and
ingenuity with mere cleverness, but it was Peirce’s tendency to think of logic in
the broader sense as the norms of thought in general, and one can think of ingenuity
in the narrower sense as the distinctive essence of the practice of engineering. While
they are structurally analogous, scientific and engineering reasoning are widely
understood as pursuing very different ends. Rather than the discovery of a universal
theory with general application, an engineer typically works toward the design of a
particular artifact for a specific purpose. Much as science is viewed as an especially
systematic way of knowing, engineering may thus be viewed as a particularly
systematic way of willing (Schmidt 2013).

Modeling and Analysis

Especially in large, complex projects as opposed to mass-produced products, the
abductive aspect of engineering involves developing an idealized model of the
artifact and its immediate environment. The deductive aspect is processing this
model in accordance with idealized assumptions, often facilitated by a computer.
Finally, the inductive aspect is interpreting the results by comparing them with
idealized rules, codes, and various industry standards. As previously remarked,
Peirce argued that the logic of inquiry in science is ordinarily self-correcting in the
long run, such that the existent world will confront a persistent investigator with
unpleasant surprises if a hypothesis is inconsistent with how it really operates. When
this happens in engineering, there tends to be a high cost in dollars or even lives, so
that the logic of ingenuity quasi-necessarily involves the assessment of the model
rather than of the artifact itself. If the conclusion of such an analysis is not

26 J. W. Dauben et al.



acceptable, then it is necessary to revise the model as well as the corresponding
design and then carry out another analysis.

In short, the engineer must deem everything to be satisfactory before moving on
to drafting instructions for constructing the artifact. Therefore, in formulating a
model, it is crucial that the engineer discerns which relations are truly significant
and only then devises a suitable icon of their form accordingly. This requires good
judgment grounded in considerable experience because it is rarely feasible to
incorporate all aspects of the situation into an engineering model. In fact, for a
complex system, it is not even feasible to incorporate all relevant aspects. Despite
being the creator of the model and presumably familiar with it in all its details and in
most cases having an approximate idea of what to expect, the engineer will not
necessarily be able to anticipate all its results and their consequences in advance, and
revisions may well be needed.

This can be true even for the simplest design scenarios. The problem of deter-
mining the static forces associated with a simply supported beam under a uniform
loading so that it can be sized appropriately is one of the first that students confront in
any structural engineering curriculum. It is relatively easy to describe and captures
the central aspects of the logic of ingenuity. Three kinds of diagrams are commonly
employed (Fig. 17).

The first diagram represents the beam itself, how it is attached at its two ends, and
the loading that is applied to it. The triangle at each end is an icon of a pin that
restrains horizontal and vertical movement but not rotation. The connected series of
downward-pointing arrows symbolizes a distributed loading, and their constant
length indicates its constant magnitude (w), which results in the reactions that the
beam transfers to whatever is supporting it (V1 ¼ V2). The second diagram

Fig. 17 Top: Diagram of a
simply supported beam with
uniformly distributed loading.
Middle: Diagram representing
the shear along the length of
the beam. Bottom: Diagram
representing the moment
along the length of the beam
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represents the shear (V) along the length of the beam (L), which is the vertical force
at each location (x) whose equation is the integral of the distributed loading (w). The
third diagram represents the moment (M) along the length of the beam (L), which is
the bending force at each location (x) whose equation is the integral of the shear (V).
These relations reflect how the diagrammatic nature of mathematics is not limited to
geometry, but also encompasses algebra.

A real structure almost never contains even one beam that conforms to the
assumptions underlying this analysis. There is no such thing as a frictionless pin
or roller. Floors and roofs typically bear the weights of discrete furniture, equipment,
people, etc. Nevertheless, by calibrating the code provisions that establish uniform
loadings for different kinds of occupancies and incorporate factors of safety into the
calculated member capacities, effective and economical structures are routinely built
in accordance with such a simplified procedure.

Practical and Ethical Reasoning

To sum up, since diagrams and representational systems are artifacts that humans
design, it should not be surprising that engineers routinely employ them. But it
should be added that the logic of ingenuity may apply to the consideration of any
potential activity that could be undertaken voluntarily. This logic thus extends
beyond engineering into the much broader domain of ethics, a subject hardly
touched upon by Peirce until relatively late in his career. In a lecture titled “What
Makes a Reasoning Sound?” (Peirce 1903: EP 2:242–257), he answered his own
question by drawing a parallel with what makes an action morally right. Regarding
this, Campos (2015) summarizes six stages identified by Peirce as directly relating
logic to ethics:

1. Affirming ideals that together constitute a worldview and shape one’s character.
2. Establishing an intention to behave in accordance with those ideals.
3. Formulating rules of conduct, “practical maxims for what ought to be done in

circumstances that fall under a more or less vague description”.
4. Making a resolution for how to act if and when a specific occasion arises that is

foreseen through the use of “semiotic imagination—the ability to create and
transform signs—guided by practical knowledge of what paths events may
follow”.

5. Converting this resolution into a determination, an abiding disposition that is
“capable of effectively guiding conduct”.

6. Engaging in critical review of one’s actions in relation to all the above, which
produces approval or disapproval of the former and sometimes revision of the
latter.

Peirce wrote of the fourth step, “This resolution is of the nature of a plan, or, as
one might almost say, a diagram” (Peirce 1903: EP 2:246). Prompted by this hint,
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Campos suggests that each of the others is likewise analogous to an aspect of
diagrammatic reasoning:

1. Ideals correspond to a set of “framing hypotheses” that comprise a representa-
tional system.

2. An intention corresponds to the purpose of the exercise.
3. Rules of conduct correspond to “heuristic[s] . . . that direct an inquirer to employ a

certain method of solution depending on the general type of problem under
investigation.”

4. A resolution corresponds to “a mathematical model that may be formulated and
investigated abstractly but is intended to apply to a concrete state of things.”

5. A determination corresponds to the intellectual virtue of judgment that eventually
emerges from “mathematical experience.”

6. Review corresponds to observation of the results of diagram manipulation.

Such an analysis is consistent with the claim that engineering is an especially
systematic way of willing, because if this is so, then the former’s distinctive
reasoning process should be paradigmatic for the latter. However, engineering
mostly deals with material phenomena, which Peirce conceptualized as “inveterate
habits becoming physical laws” (Peirce 1891: CP 6.25), while the behavior of people
is always subject to change because their habits are far more malleable, with the
result that people are far less predictable. Consequently, rather than the quantitative
models that are routinely employed in engineering, practical reasoning and ethical
deliberation involve formulating and evaluating more qualitative representations
such as narratives.

Nevertheless, the key to success in these various domains is the same: having the
ability to discern the significant aspects of reality and consistently capture them
before definitively selecting a way forward from among multiple viable options.
Indeed, the logic of ingenuity—whether in engineering, in science more generally, or
in any other endeavor whatsoever—is itself a carefully cultivated habit that facili-
tates imagining possibilities, assessing alternatives, and selecting one of them to
actualize. From this standpoint, there is a sense in which all reasoning is an
implementation of diagrammatic reasoning, demonstrating the relevance of mathe-
matical cognition far beyond the boundaries of mathematics itself.

Guessing Right

Returning now to the example which introduced this reflection on the place of
diagrammatic reasoning in mathematics and which has focused especially on how
abduction plays a crucial role there as in all science and, ultimately, in all thought,
consider again Peirce’s “guess” as to who had stolen his Tiffany watch. In the
following passage, Peirce outlines what he considers to be the principles guiding
anyone who arrives at a promising hypothesis:
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Underlying all such principles there is a fundamental and primary abduction, a hypothesis
which we must embrace at the outset, however destitute of evidentiary support it may
be. That hypothesis is that the facts in hand admit of rationalization, and of rationalization
by us. . . . [N]o new truth can come from induction or from deduction . . .. It can only come
from abduction; and abduction is, after all, nothing but guessing. We are therefore bound to
hope that, although the possible explanations of our facts may be strictly innumerable, yet
our mind will be able . . . to guess the sole true explanation of them. That we are bound to
assume, independently of any evidence that it is true. Animated by that hope, we are to
proceed to the construction of a hypothesis. (Peirce 1901: CP 7.219)

It would seem, then, that the fundamental principle of hypothesis formation is a
bare “hope” that one will “guess” the very hypothesis which will explain the facts
and so lead to the solution of the problem at hand. While it has perhaps taken modern
science some time to catch up with this notion that “guessing” is indeed an essential
element in our thought and subsequent behavior, one finds contemporary thinkers
acknowledging the necessity and power of this natural first step in all inquiry. For
example, Usama Fayyad, a noted American data scientist, has remarked, “Some-
times guessing is the best you can do. In the real word, we guess all the time and its
serves us well.” In fact, guessing would seem to precede even human thinking, for as
Fayyad goes on to explain: “The brain has a good error rate. But, the point is, you can
function with that error rate. Animals do a lot guesswork” (Bearman 2003). Of
course, Peirce’s unique contribution is to recognize that this function is a third form
of inference as important as deduction and induction.

It appears that this natural tendency to guess right—at least some of the time—
would a fortiori be the case for even quotidian thought and action. As Peirce notes in
the quotation just above, “the facts at hand admit of rationalization, and of rational-
ization by us” such that “our mind will be able . . . to guess the sole true explanation
of them.” This seems as applicable to anyone in science as it was to Peirce’s recovery
of his expensive Tiffany watch, the valuable chronometer that he was determined to
find, however unlikely the means. The guess that led to its recovery, like abductive
hypotheses in mathematics and science, was not “lucky” but “educated.” As
discussed above, the researcher in any given discipline will tend to be well prepared
by experience and training to make fruitful guesses, abductions which can be
structured as hypotheses to be tested. Through deliberate training, people can
become more and more “attuned to the truth of things” (Peirce 1908: CP 6.476),
especially when concentrating on a particular field of inquiry.

Near the conclusion of his 1903 Harvard Lectures, Peirce introduced what he
called three “cotary propositions,” notions meant to “sharpen” the meaning of
pragmatism as he had outlined it. Especially in consideration of abduction, the last
of these is the most telling:

The third cotary proposition is that abductive inference shades into perceptual judgment
without any sharp line of demarcation between them; or, in other words, our first premises,
the perceptual judgments, are to be regarded as an extreme case of abductive inferences,
from which they differ in being absolutely beyond criticism. The abductive suggestion
comes to us like a flash. It is an act of insight, although of extremely fallible insight. It is
true that the different elements of the hypothesis were in our minds before; but it is the idea

30 J. W. Dauben et al.



of putting together what we had never before dreamed of putting together which flashes the
new suggestion before our contemplation. (Peirce 1903: CP 5.181)

This passage seems especially apposite for the question at hand. For if the order of
“abductive inference” and “perceptual judgments” is reversed in the text above, it
might be said of the Tiffany watch example that Peirce’s perceptual judgments
shaded into an abductive inference, an “abductive suggestion,” the correct guess
about the watch thief coming to him in a “flash.” Moreover, “Not the smallest
advance can be made in knowledge beyond the stage of vacant staring, without
making an abduction at every step” (Peirce 1901: LOS 900).

The final question that must be answered is this: If making educated guesses is
crucial to the advance of all knowledge, including mathematics, why is it that we so
often guess “right”? For Peirce, “It is a primary hypothesis underlying all abduction
that the human mind is akin to the truth in the sense that in a finite number of guesses
it will light upon the correct hypothesis” (Peirce 1901: CP 7.220). He believed that
this is what the history of science had demonstrated time and again. This in turn
depended upon what he termed an “instinct for truth”:

[T]he history of science proves that when the phenomena were properly analyzed, upon
fundamental points, at least, it has seldom been necessary to try more than two or three
hypotheses made by clear genius before the right one was found. . . . For the existence of a
natural instinct for truth is, after all, the sheet-anchor of science. From the instinctive, we
pass to reasoned, marks of truth in the hypothesis. (ibid)

There was a strong evolutionary component to this way of conceiving the world
and the capacity of the human mind to fathom its deepest workings:

This feature of the laws of nature is evidence that whatever power it be that is behind them is
behind the constitution of human reason, which has such a surprising facility in finding them
out. Nature is conformed to general formulae, which really determine how future events shall
turn, and these formulae are of such a character that human reason is closely allied to them.
Add to this that Nature was not made a long time ago but is even now in the process of being
brought about, and is every day growing more wonderfully admirable for human reason.
(Peirce 1901: LOS 888–89)

Human cognition is naturally attuned, Peirce believed, to the material world that
science and mathematics are able to reveal and model so successfully because they
are intimately connected with each other. This is linked to the human mind’s “inward
power of knowing,” and in a revealing discussion of the arguments Hume had
advanced against miracles and the working of natural laws in the physical world,
Peirce took this a step farther:

The mind of man has been formed under the action of the laws of nature, and therefore it is
not so very surprising to find that its constitution is such that, when we can get rid of
caprices, idiosyncrasies, and other perturbations, its thoughts naturally show a tendency to
agree with the laws of nature. (Peirce 1901: LOS 901)
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Peirce then went on to assert that the human mind exhibits a “magnetic turning
toward the truth.”As the case of Kepler so often reminded him, its compass is forged
in the experience of each lifetime, especially the experience of a scientist interacting
with the world that in turn shaped the mind that was following a cognitive instinct. It
was not that just anyone’s guess would do, but that as Louis Pasteur had said and
Peirce himself quoted, “chance favors only the prepared mind.”

Conclusion

This is exactly the point that Peirce believed his recovery of the Tiffany watch
demonstrated so dramatically and which he took to be typical of scientific discovery
generally: the mind’s intuitive compass always pointing toward the truth. Human
cognitive faculties have been attuned by nature to seek out the truths of the physical
world, even if they are often hidden in obscurity. Kepler was a paradigmatic example
for Peirce in that, even after having rejected the correct solution of the planetary
orbits as ellipses, he eventually came back to accept the fact that in the end, the
mathematics allowed only this one solution; and however much he might have
resisted it, resistance eventually yielded to acceptance. It was the principle of
Sherlock Holmes in action that when all else has been eliminated, then whatever
remains, however improbable, must be the truth. The ellipses, he knew, would
require a new physics of the heavens, as Kepler said, and a new mathematics as
well; but in pointing the way, he was among the great leaders of modern science.

This, it might be said, was the ultimate cosmic principle for Peirce. In the course
of all his writing about abductive reasoning, the mind’s ability to guess right was the
crux of his belief in the advance of science and the inevitable increase in positive
knowledge with the passage of time, no matter how much it might be detoured along
the way. The mathematical cognition of the human mind includes an intuitive gift for
finding the correct solutions to increasingly complex problems. This is akin to a
practiced engineer’s ability to anticipate in advance the general outcome of a given
model prior to going to the expense and trouble of constructing what has been
designed. It is the element in every creative act that brings the researcher, whether in
pure mathematics or in applied areas of science, to the ever-closer approximation of
a true understanding of the workings of the world.
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