


 

Two Problems With Cost Structures  

There are two problems with the cost structure 
approach that I will consider.  The first concerns the 
metrics used to cost activity.  In order to get a single 
number to use as the cost of an action at a state, Simon, as 
well as other theorists, suppose that all the factors that go 
into a cost can be compared. I argue that in Starbucks and 
other café environments we need several orthogonal cost 
metrics.   
The second problem  concerns the assumption that all 

the relevant actions which agents perform in a setting can 
be assigned values relative to one task environment or 
another.  In realistic environments where people do more 
than one task, are not always by themselves, and 
occasionally have other things on their minds some of 
their actions are external to all task environments.  They 
are ‘inter-task’ actions. 
For instance, the best remotes should accommodate the 

realities of use, such as, being interrupted, multi-tasking, 
sharing the remote, operating in the dark and other aspects 
of real world environments where errors creep into 
performance because of ‘extra-task’ factors.  The need to 
accommodate these additional elements puts a limit on the 
empirical adequacy of all cost structure accounts as 
currently practiced. 

Ordering & Preparing Drinks: Starbucks 

To study how the problems of multiple costs, 
interruption, multi-tasking and multi-person coordination 
affect design, I have used various ethnographic methods, 
to observe routine activity in cafés, specifically the 
interactions during ordering, communicating and 
preparing espresso-based drinks at Starbucks. Starbucks 
does not permit filming so we brought baristas into the lab 
to interview them as they drew the layout and activity 
flows of their workplace on a large whiteboard.  
In any café there are five main tasks baristas must 

perform: (1) interact with clients to specify and record 
their order; (2) take cash and make change, offer a receipt 
(step 2 may occur after step 3); (3) communicate the 
order; (4) prepare the order; (5) announce completion of 
order and queue drinks for clients to collect. 
In addition to these obvious steps there are six or seven 

support activities such as maintaining supplies of cups, 
milk, coffee beans, grinding, cleaning up and so on, that 
are not always visible to clients.    
There are good practices for all these activities and each 

step can be viewed as a task with an associated task 
environment and activity space in which skilled agents 
have learned routines for efficient performance. There are 
routines and standard operating procedures for taking 
orders, making cash, passing the order to a barista; of 
course there are routines for preparing orders, for queuing 
drinks, and for maintaining the requisite resources and the 
general environment in which all these activities take 
place.  Each step corresponds to a functional role that 
someone has to learn or be trained to fill.   

The complication with this attractive and theoretically 
tractable view of a collection of distinct tasks and task 
environments is that in cafés the staff has to complete 
their tasks in the same small physical space behind the 
counter, and usually at the same time. Each person has 
several tasks and often they multi-task. In typical shifts 
during busy moments there are four or five people behind 
the counter, two to take orders, two to make the drinks, 
and occasionally a floater to help whomever is pressed. 
The counter space serves multiple functions. It is not 
uncommon for one person to reach over another, or in 
spare moments to offer help. For instance, maintaining the 
milk temperature in frothing pitchers, cleaning a 
portafilter or the counter space, or restocking beans are all 
tasks that anyone with the requisite skills and a free 
minute can perform.  Because of this dense sharing of 
physical space an individual agent working on his or her 
own task will often change the state of a surface also 
being used by another, and change things in a way that 
impacts on the other’s task. Sometimes this is anticipated, 
sometimes not.   
Starbucks is an intense environment. But it is not 

unusual.  Interruptions occur because people talk and 
listen to each other all the time. Baristas at the bar – the 
name for the region immediately encompassing the 
espresso machine, its top, the surface directly in front, the 
immediate surface to the right and left where the frothing 
pitchers are kept – always listen to the next order being 
taken at the register. They want to be prepared. They ask 
each other for help or divide tasks: “you pull the shots 
while I steam the milk”. They remind each other of 
forgettable specifics: “Don’t forget it’s Soya milk”. These 
sorts of reminders also may come from the register 
person: “That’s sugar free vanilla.”  Baristas reach over 
each other: bringing in clean shot glasses or cups; they 
share the same space, occasionally taking a shot (1 – 1.5 
oz of espresso) just pulled by someone else. When one 
makes an error another may notice it, or help recover. For 
example, a shot that has been sitting too long – sometimes 
as little as 40 seconds – may be thrown away and another 
pulled to take its place.     
Work in such a confined space where so much is going 

on and where efficiency is so highly valued demands tight 
coordination. In some modern cafés coordination occurs 
by means of a monitor above the espresso machine 
displaying drinks and queue structure. But at Starbucks 
the fundamental coordinating mechanism is their paper 
cup.   
The Starbucks paper cup has a printed 

form on one side whose 6 fields each 
support a fixed vocabulary of symbols. 
Fields are filled to indicate the specific 
ways in which an order deviates from the 
default. A standard Grande Cappuccino 
would have only one symbol –  C – 
marked in the bottom field to indicate 
drink type. It would receive the default 
values of two shots of caffeinated 



 

espresso, full fat milk and a normal amount of froth. 
The Starbucks cup is a remarkable technology. It 

tightens the interactions between workers by reducing the 
number of places in the system where things can go 
wrong. Because the barista at the register selects the right 
sized cup, one  parameter – size – can be ignored. 
Because the barista at the register places each marked cup 
in the queue building up beside the espresso maker, a 
second parameter – queue position – can also be left 
implicit. And because the cup encodes its specification 
and often the customer’s name, baristas have a 
mechanism for checking that the right drink is picked up 
once it is placed in the collection zone. So many functions 
for such a simple technology.  

Increased Robustness Not Reduced Effort 

Does the Starbucks cup actually lower cost structure? 
That depends on how cost is measured. The greatest 
virtue of the cup is the way it increases the robustness of 
production. This focus on robustness is not the same as a 
focus on performance time or effort.    Order takers at the 
register still need to encode orders and pass them on to 
baristas at the bar. Arguably, it takes longer to write an 
order than to call it out. So filling in a cup does not save 
effort or time at the register. Similarly, it takes longer to 
read a specification on a cup than to fill an order from 
memory. So reading a cup does not save time. 
But of course the cup more than pays for itself because 

of the errors it prevents and the time saved in recovering 
from errors. Given the prevalence of interruption, 
distraction and multi-tasking in cafés, process 
modifications that insulate baristas from the cognitive and 
physical consequences of disruption are highly valued.  
Insulation is even more important when a barista is 
relatively inexperienced and has yet to develop the 
internal strategies and expert memory of veterans. 
  To capture the virtues of the cup let us distinguish 

errors that affect quality from errors that affect time. For 
instance, drinks suffer when espresso is pulled longer than 
28 seconds, milk is heated above 170° F, or a shot of 
decaf espresso is used when the customer ordered it 
caffeinated. These errors affect quality. A well considered 
cost or cost benefit function should include factors that 
affect quality. When a barista knocks over a drink, 
however, or bangs her thumb, or runs out of milk in the 
nearby fridge, output is delayed but quality is unaffected. 
 Because the cup changes the probability of meeting 

specifications it improves aspects of the production 
process which affect quality.  If we treat loss of quality as 
variance from the ideal, then the goal of reducing variance 
is a different cost dimension than speed accuracy.  The 
two are independent because quality can rise while speed 
accuracy remains constant.  
Another function of the cup is to improve error 

recovery. The most damaging effect on production time 
occurs when one of the baristas is burned by scalding 
coffee. The cup he or she has been working on is dropped 
and spills, others stop what they are doing and offer help; 

generally the whole system spasms and breaks down. It is 
a huge interruption for everyone. Had requests been given 
orally most of the orders would likely be lost at this point. 
Had they been written down on paper the ink might 
smear, papers get lost or confused with others. But with 
the Starbucks cup simply by picking up the cup(s) that 
were dropped a new barista can identify the order or 
orders that were ruined. Each cup still has its 
specification, so the new barista can restart the process 
using fresh cups of the right size and maintain the queue 
order intact. The cup is the great coordinator of the 
Starbucks espresso making process, moving along with 
production, rather than being just another resource to use 
up and throw away.   
Is recovery time a dimension of cost that can be merged 

with speed accuracy – the major measure of efficiency? 
One reason to keep them apart is that they operate on 
different parts of the production process.  Techniques and 
artifacts that increase the speed of production when all 
goes well are quite different than those that help recovery 
once accidents occur.   
Another important factor to consider when designing 

environments concerns vigilance: how easy is it to 
monitor the process? A process that offers greater 
opportunity for vigilance, greater chance of detecting 
when things seem to be going off track is to be preferred.   
Being vigilance friendly is an attribute that fits well into 
speed accuracy, but is conceptually distinct. 
In economic models, and in current HCI models, costs 

are not differentiated.  Typically everything is reduced to 
a single dimension of expected time or effort. Yet 
distinguishing cost types is of real concern to 
technologists because each has important design 
implications. For instance, a well designed environment 
will reduce error, improve quality and increase speed by: 

• making it easy to track the current state of a process – 
easy to monitor the key parameters that matter to 
success – quality control, speed, error; 

• allowing users to back off or abort a process up to the 
last second without harmful consequences, thus 
stopping serious error before it goes too far; 

• making it easy to prepare for difficult moments as 
when the café is crowded and everyone is working at 
their fastest; 

• having checks in place so when errors do occur the 
recovery costs are low – a safe fail design. 

Such concrete maxims for design follow from a better 
specification of cost dimensions. Discovering such 
dimensions requires micro-analysis of activity. 

Complexity And Cognitive Costs 

I have been arguing that to save the cost function 
approach to environment design it is necessary to find the 
right parameters to assign costs to. Determining these 
costs requires a micro-analysis of the activity involved in 



 

using the technology, at least in simulation. Errors have to 
be anticipated and analyzed, recovery methods observed, 
and attention has to be given to the way team members 
coordinate their activity and respond to changes in load. A 
second lesson the Starbucks cup offers is that the key cost 
to lower may have more to do with cognitive costs than 
physical costs. This is nicely illustrated by the increase in 
drink complexity that the Starbucks cup system facilitates. 
At modern cafés drink complexity has risen so 

dramatically that it is no longer expected that an order 
will be as simple as ‘One grande latte’. For example, a 
client may now request a large cappuccino made from 
non-fat milk with an extra shot of decaf espresso, more 
froth, a standard dose of sugar free hazelnut syrup, a drop 
of vanilla syrup, and a request that the drink be served at a 
cooler temperature. The customer himself may then 
garnish the drink with a few shavings of chocolate or 
powdered sugar. For the attendant on cash to call out this 
order to a barista – the tradition in classical European 
cafés – takes an unacceptably long time, and puts an 
unacceptable cognitive burden on the barista, who may 
well be in the midst of making another drink. Any number 
of errors can creep into this oral process: a miscall by the 
order taker, the barista forgetting specifics, or confusing 
some parts of the next order with the present order and 
ruining the drink currently being prepared. Once 
confusion has occurred, moreover, there is no easy way of 
recovering the details of the order because there is no 
persistent record to review. 
As argued earlier the cup does not increase production 

speed per se. The time it takes to produce a generic 
grande latte is more or less the same whether the order is 
requested using the cup, orally, or on a display board. 
Shots still have to be pulled, milk frothed, poured and so 
on. The division of labor is somewhat improved by 
having the register person select the cup, and as we 
mentioned earlier, the probability of confusing orders and 
making errors during hectic moments is decreased, which 
is a major cost saver. But time per drink, the basic speed 
accuracy curve for preparing a generic drink exclusive of 
error recovery time, remains about the same.   
There is a clear cost reduction on the cognitive side, 

however, when we consider the cognitive effort vs. drink 
complexity tradeoff. When a drink’s specification is on 
the cup the cognitive cost of reading three extra 
specifications is not much greater than reading two or 
one. If a barista cannot remember whether the third shot is 
supposed to be decaf then she can consult the cup. The 
same goes for whether the syrup was sugar free. Since 
production can proceed incrementally – read the cup, 
execute the operation, read, execute – the memory load on 
the barista remains constant. An interruption, therefore, 
only affects the current ingredient. Even if the barista 
loses her place, the combination of specification on the 
cup, layout and disposition of equipment, and visible state 
of the cup, provide enough situational information for the 
baristas to ‘see’ where they are and pick up the process. 
This means that product quality will rise because now 

drinks of greater complexity can be delivered in 
acceptable time and within quality tolerance.  
Graphically, the effect of the cup can be imagined as 

shifting toward the origin the speed accuracy curves for 
producing drinks of greater complexity. The more 
effective a complexity reducing technology is the more 
the cost profile of complex drinks will resemble generic 
drinks. The cup technology lowers the cost structure of 
more complex drinks. Since making such drinks are 
among the tasks a barista must perform, an adequate cost 
function would assign a cost structure to making drinks as 

a function of 
their complexity 
and weight 
different drinks 
by their 
importance to the 
user.  
 

 

What Is The Environment Of Activity? 

So far, I have considered ways to enhance cost functions 
in order to preserve the core idea that effective 
technologies reshape the cost structure of activity.  To 
save the cost structure approach I argued that the range of 
costs that must be measured is far greater than standard 
cost accounts mention and it is not obvious that all these 
different dimensions of cost can be meaningfully reduced 
to a single number such as overall cost, goodness, or 
fitness.  One environment may be better than another 
along  some dimensions worse along others:  costs need to 
be traded off. 
One reason to be skeptical of the entire approach, 

though, is that the assumptions needed to define cost 
functions seem to contradict most of the insights derived 
from situated, distributed, and interactive cognition. This 
argument comes in two forms.  The first is easy to 
dismiss. In studying situated activity, we are told, the 
devil is in the details. Cost functions, with their coarse, 
quantitative and objectivist approach, neglect practices 
and other ‘cognitive’ factors that partially determine how 
users think and behave. There is no such thing as an 
objective cost function definable in abstraction from 
users’ cognitive practices and processes in concrete 
settings.  
This is not compelling. In my accounts of recovery 

cost, complexity and cognitive load, variance and  
monitoring I have tried to show how qualitative and 
cognitive factors can be incorporated into cost functions.  
Clearly more needs to be done, but in showing the 
diversity of cost dimensions we have at least dulled the 
first argument. 
A second and better reason to be skeptical of cost 

function analyses, however, is that they are applied to 
single tasks and to scale up to multi-tasking they make an 
assumption about the additivity of costs that rests on a 
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false assumption about the linear separability of tasks and 
task environments.  Since the real world rarely poses tasks 
singly this is a strong argument. Indeed it is even a 
challenge to single tasks because any task involving sub-
goals or conjunctive goals can be interpreted as a multi-
task context. Multi-tasking does not require the multiple 
tasks to be unconnected. In Starbucks, when a barista 
reaches for a second shot glass with her right hand while 
using her left to fill up the first shot glass she is multi-
tasking among connected tasks. The second shot glass is 
needed to complete the current drink, though it need not 
be fetched while the first glass is being poured. Another 
example arises when a barista reads the symbols on the 
cup s/he is currently filling.  The two activities, reading 
and pouring are sub-tasks of the drink making process but 
may be worked on at the same time. If there is something 
about multi-tasking that ruins cost analyses the whole 
approach of using cost structure to inform design will be 
jeopardized.  
The strongest grounds for challenging cost function 

analyses then is that they rest on a false assumption about 
multi-tasking.  In classical cost analyses when one or 
more agents multi-task in the same space, it is assumed to 
be acceptable to suppose that each task occurs in its own 
task environment, and that multiple task environments can 
be superposed on the same physical space.  Since 
superposition implies additivity (and homogeneity) it is 
permissible to add the costs and benefits of achieving 
outcomes in each task and talk about the total costs 
involved in performing multiple tasks. It is this 
assumption that is false. 

Superposition of Task Environments 

Here is a quick argument to show why task 
environments have to be superposed. Begin by assuming 
two tasks can be performed in the same space only if they 
can be completed successfully in that space. This implies 
that it is possible to complete each task without making it 
impossible to complete the other. If progress in task A 
disrupts progress in task B, it must be possible to recover 
one’s state in A without disrupting the state in B. If this 
were false, the tasks could enter a self-destructive loop 
and attempting both tasks could be self-defeating. For 
example, attempting to cook pizza and peach pie in the 
same oven, even using separate pans, is self-defeating 
because the temperature needed to cook pizza burns pie, 
and the temperature needed to cook pie undercooks pizza.  
The goals of one task clobber the goals of the other. 
The simplest way to deal with goal or sub-goal 

interaction is to define a task broadly enough to include 
consideration of all goals and then search for a viable path 
in that more encompassing task environment.  Multi-
tasking in a single task environment  satisfies the 
superposition condition when agents correctly order their 
sub-goals to support simultaneous pursuit of those goals.  
But if the tasks remain separate then coordination 

between tasks becomes problematic because there are no 

opportunities inside core tasks to protect other tasks from 
negative side effects.  Coordination between tasks is not a 
goal of any task. Accordingly, agents who do perform 
coordinating actions are stepping outside their task 
environments and performing extra-task actions.  Since 
extra-task actions, by definition, lie outside the scope of 
cost functions it follows that a cost function approach will 
yield unreliable costs when coordination is required.   
By assuming tasks can be superposed we guarantee that 

costs can be added.  Formally, two tasks are superposable 
if any trajectory TA of states created by applying operators 
in task A in a vector space (defined by property values at 
points in an environment) never intersects a trajectory TB 
of states created by applying operators in task B.  This 
implies that if A and B are performed in the same space 
and time changes caused by A can be distinguished from 
changes caused by B.  If the states of tasks can’t be so 
distinguished agents might lose their place in each task, or 
the tasks might destructively interfere with each other.  
The assumption of superposition and hence linear 

separability also implies that the outcomes of the two 
tasks can be separated as if they had been completed at 
different times. For instance, if the dual task is to prepare 
spaghetti for a first course, and chicken with rice for the 
second course, then if we cook the rice and spaghetti in 
the same pot of water, it is not feasible in any reasonable 
sense, to separate them afterward. Hence we cannot 
simultaneously perform those tasks in the same space.   
An easy way to visualize the failure of superposition 

here is to reflect on the way waves interact when they 
move through the same region of space.  Waves are 
superposable because they combine in a well-defined 
manner, maintaining their integrity when they overlap. 
They can pass through each other without being 
permanently changed.  When cooking pasta and rice, the 
two processes do not ‘pass through’ each other.  Given 
the operators for extracting pasta – a strainer or pasta claw 
– and the operators for extracting rice – a spoon – it is not 
possible to separate the two outcomes in the task 
environments defined by each  set of operators..   
 Let us call tasks which can be physically separated and 

accomplished in the same space or with the same 
resources, physically separable. If two tasks are 
physically separable, they are in a sense, physically 
modular, and we expect them to pass the linear 
separability requirement.  They can be analyzed in their 
respective task environments and their costs added. 
Physical interaction between sub-goal states is not the 

only way one task can produce unwanted side effects in 
another.  A second method of interfering with a task is to 
disturb the cues, affordances, constraints or symbols 
relied on.  For instance, when an item in task A serves to 
remind an agent to perform a certain action, or when the 
position of an item is a landmark which the agent relies 
on to know where s/he is in a task, then disruption or 
displacement of that item by activity in task B affects the 
‘informational state’ of A.  Assuming the placement of 
the item is not an actual sub-goal of task A but rather a 



 

useful consequence of a goal directed action, then no sub-
goal in A, no task state, has been physically obstructed by 
task B.  Both tasks A and B may still be successfully 
completed providing the agent has enough knowledge to 
overcome the absence of situational cues.  But because 
important informational elements of the state have been 
lost, the agent cannot complete task A the way s/he would 
have were A performed in isolation. In such cases,  A and 
B fail to be informationally separable.  
Given that the perception and extraction of information 

about a state is partly independent of the operators 
determining the state space in a task environment, 
information separability does not imply physical 
separability (.e.g. rice and noodles are informationally but 
not physically separable) and physical separability does 
not imply informational separability (e.g. cup position). 
Co-located multi-tasking requires physical separability 

and to be robust also requires informational separability. 
If two tasks are not separable, then the actions taken in 
one may lead to incorrect decisions in the other.  
What do people usually do when collocated 

environments become inseparable – when they fail the 
superposition test? They add structure!  They make them 
superposable. At its simplest this just involves recall, 
projecting ‘mental’ structure onto a scene: ‘I remember I 
put down two clean cups over there, I see one of them is 
still there.’ More broadly, though, there are hundreds of 
mechanisms for adding structure physically. In chess if 
one player forgets whose turn it is, and so the game 
becomes inseparable for him, he can ask ‘whose move is 
it?’ This linguistic move was not a defined move in the 
chess task environment which is solely concerned with 
movement of pieces. Similar extra-task moves are found 
in almost every task-oriented activity. In managing a desk 
an agent can break the confusion that arises from multi-
tasking by adding marks or annotations to documents.  
Intentional placement of resources can help disambiguate 
task elements, or specific cues or reminders can be laid 
out to indicate what still needs to be done.   
The significant element in all these actions is that they 

are task external actions that fall outside the cost function 
of the task.  They are inter-task or coordinating actions., 
performed to enable tasks to be kept separate.  Since these 
actions are task external but can significantly affect costs 
and benefits, cost functions are fundamentally incomplete.   

Conclusion 

Throughout this paper I have been considering an 
intuitive account of technology that treats it as a force 
which shapes and reshapes the cost structure of activity. 
These costs can be represented by curves showing trade-
offs in speed-accuracy, variance, recovery time, 
complexity and so on. Cost functions formally depend on 
treating the setting of a task as a task environment, with 
sparse choice points, circumscribed option sets and so on.  
I argued that task environments are not realistic containers 
for tasks if we recognize the universality of such events as 

interruption, disruption, multi-person activity, and multi-
tasking in the same physical space. Task environments are 
unrealistic because extra-task events intrude on behavior 
and inevitably have an impact on how easily, how 
reliably, how precisely an agent can do a task. Some of 
these extra-task factors can be accommodated indirectly 
in cost functions. But there are times when multi-tasking 
causes side effects in each task in such a way that the 
states of the tasks are inseparable, agents become 
confused. If states cannot be separated then decision 
errors can be expected to creep into task performance. To 
insulate themselves from these unwelcome intrusions 
human agents keep tasks separate by performing a wide 
range of non-pragmatic actions, actions that are external 
to the option sets formally defined in each task. Since 
these actions are important to task completion they should 
be part of the task, but they are not. Hence they cannot be 
considered in cost functions. This puts an upper limit on 
the usefulness of cost functions. 
This limitation on cost functions should not be a 

surprise. Given the importance which micro-analyses of 
activity have for designers the concept of a cost function 
is too coarse to serve as more than a rough explanation for 
the success of certain technologies. Perhaps a more 
ecological notion of cost structure  will work. In that case, 
the only real cost structure is the one that accommodates 
all tasks, including coordination tasks.  This more holistic 
approach saves the idea of viewing design as an 
evolutionary process but violates the assumption of task 
superposition.  This may be an improvement but we still 
face the daunting problem of reducing the many 
dimensions of cost to a single metric of overall cost. 
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