

Two Problems With Cost Structures

There are two problems with the cost structure
approach that I will consider. The first concerns the
metrics used to cost activity. In order to get a single
number to use as the cost of an action at a state, Simon, as
well as other theorists, suppose that all the factors that go
into a cost can be compared. I argue that in Starbucks and
other café environments we need several orthogonal cost
metrics.
The second problem concerns the assumption that all

the relevant actions which agents perform in a setting can
be assigned values relative to one task environment or
another. In realistic environments where people do more
than one task, are not always by themselves, and
occasionally have other things on their minds some of
their actions are external to all task environments. They
are ‘inter-task’ actions.
For instance, the best remotes should accommodate the

realities of use, such as, being interrupted, multi-tasking,
sharing the remote, operating in the dark and other aspects
of real world environments where errors creep into
performance because of ‘extra-task’ factors. The need to
accommodate these additional elements puts a limit on the
empirical adequacy of all cost structure accounts as
currently practiced.

Ordering & Preparing Drinks: Starbucks

To study how the problems of multiple costs,
interruption, multi-tasking and multi-person coordination
affect design, I have used various ethnographic methods,
to observe routine activity in cafés, specifically the
interactions during ordering, communicating and
preparing espresso-based drinks at Starbucks. Starbucks
does not permit filming so we brought baristas into the lab
to interview them as they drew the layout and activity
flows of their workplace on a large whiteboard.
In any café there are five main tasks baristas must

perform: (1) interact with clients to specify and record
their order; (2) take cash and make change, offer a receipt
(step 2 may occur after step 3); (3) communicate the
order; (4) prepare the order; (5) announce completion of
order and queue drinks for clients to collect.
In addition to these obvious steps there are six or seven

support activities such as maintaining supplies of cups,
milk, coffee beans, grinding, cleaning up and so on, that
are not always visible to clients.
There are good practices for all these activities and each

step can be viewed as a task with an associated task
environment and activity space in which skilled agents
have learned routines for efficient performance. There are
routines and standard operating procedures for taking
orders, making cash, passing the order to a barista; of
course there are routines for preparing orders, for queuing
drinks, and for maintaining the requisite resources and the
general environment in which all these activities take
place. Each step corresponds to a functional role that
someone has to learn or be trained to fill.

The complication with this attractive and theoretically
tractable view of a collection of distinct tasks and task
environments is that in cafés the staff has to complete
their tasks in the same small physical space behind the
counter, and usually at the same time. Each person has
several tasks and often they multi-task. In typical shifts
during busy moments there are four or five people behind
the counter, two to take orders, two to make the drinks,
and occasionally a floater to help whomever is pressed.
The counter space serves multiple functions. It is not
uncommon for one person to reach over another, or in
spare moments to offer help. For instance, maintaining the
milk temperature in frothing pitchers, cleaning a
portafilter or the counter space, or restocking beans are all
tasks that anyone with the requisite skills and a free
minute can perform. Because of this dense sharing of
physical space an individual agent working on his or her
own task will often change the state of a surface also
being used by another, and change things in a way that
impacts on the other’s task. Sometimes this is anticipated,
sometimes not.
Starbucks is an intense environment. But it is not

unusual. Interruptions occur because people talk and
listen to each other all the time. Baristas at the bar – the
name for the region immediately encompassing the
espresso machine, its top, the surface directly in front, the
immediate surface to the right and left where the frothing
pitchers are kept – always listen to the next order being
taken at the register. They want to be prepared. They ask
each other for help or divide tasks: “you pull the shots
while I steam the milk”. They remind each other of
forgettable specifics: “Don’t forget it’s Soya milk”. These
sorts of reminders also may come from the register
person: “That’s sugar free vanilla.” Baristas reach over
each other: bringing in clean shot glasses or cups; they
share the same space, occasionally taking a shot (1 – 1.5
oz of espresso) just pulled by someone else. When one
makes an error another may notice it, or help recover. For
example, a shot that has been sitting too long – sometimes
as little as 40 seconds – may be thrown away and another
pulled to take its place.
Work in such a confined space where so much is going

on and where efficiency is so highly valued demands tight
coordination. In some modern cafés coordination occurs
by means of a monitor above the espresso machine
displaying drinks and queue structure. But at Starbucks
the fundamental coordinating mechanism is their paper
cup.
The Starbucks paper cup has a printed

form on one side whose 6 fields each
support a fixed vocabulary of symbols.
Fields are filled to indicate the specific
ways in which an order deviates from the
default. A standard Grande Cappuccino
would have only one symbol – C –
marked in the bottom field to indicate
drink type. It would receive the default
values of two shots of caffeinated

espresso, full fat milk and a normal amount of froth.
The Starbucks cup is a remarkable technology. It

tightens the interactions between workers by reducing the
number of places in the system where things can go
wrong. Because the barista at the register selects the right
sized cup, one parameter – size – can be ignored.
Because the barista at the register places each marked cup
in the queue building up beside the espresso maker, a
second parameter – queue position – can also be left
implicit. And because the cup encodes its specification
and often the customer’s name, baristas have a
mechanism for checking that the right drink is picked up
once it is placed in the collection zone. So many functions
for such a simple technology.

Increased Robustness Not Reduced Effort

Does the Starbucks cup actually lower cost structure?
That depends on how cost is measured. The greatest
virtue of the cup is the way it increases the robustness of
production. This focus on robustness is not the same as a
focus on performance time or effort. Order takers at the
register still need to encode orders and pass them on to
baristas at the bar. Arguably, it takes longer to write an
order than to call it out. So filling in a cup does not save
effort or time at the register. Similarly, it takes longer to
read a specification on a cup than to fill an order from
memory. So reading a cup does not save time.
But of course the cup more than pays for itself because

of the errors it prevents and the time saved in recovering
from errors. Given the prevalence of interruption,
distraction and multi-tasking in cafés, process
modifications that insulate baristas from the cognitive and
physical consequences of disruption are highly valued.
Insulation is even more important when a barista is
relatively inexperienced and has yet to develop the
internal strategies and expert memory of veterans.
 To capture the virtues of the cup let us distinguish

errors that affect quality from errors that affect time. For
instance, drinks suffer when espresso is pulled longer than
28 seconds, milk is heated above 170° F, or a shot of
decaf espresso is used when the customer ordered it
caffeinated. These errors affect quality. A well considered
cost or cost benefit function should include factors that
affect quality. When a barista knocks over a drink,
however, or bangs her thumb, or runs out of milk in the
nearby fridge, output is delayed but quality is unaffected.
 Because the cup changes the probability of meeting

specifications it improves aspects of the production
process which affect quality. If we treat loss of quality as
variance from the ideal, then the goal of reducing variance
is a different cost dimension than speed accuracy. The
two are independent because quality can rise while speed
accuracy remains constant.
Another function of the cup is to improve error

recovery. The most damaging effect on production time
occurs when one of the baristas is burned by scalding
coffee. The cup he or she has been working on is dropped
and spills, others stop what they are doing and offer help;

generally the whole system spasms and breaks down. It is
a huge interruption for everyone. Had requests been given
orally most of the orders would likely be lost at this point.
Had they been written down on paper the ink might
smear, papers get lost or confused with others. But with
the Starbucks cup simply by picking up the cup(s) that
were dropped a new barista can identify the order or
orders that were ruined. Each cup still has its
specification, so the new barista can restart the process
using fresh cups of the right size and maintain the queue
order intact. The cup is the great coordinator of the
Starbucks espresso making process, moving along with
production, rather than being just another resource to use
up and throw away.
Is recovery time a dimension of cost that can be merged

with speed accuracy – the major measure of efficiency?
One reason to keep them apart is that they operate on
different parts of the production process. Techniques and
artifacts that increase the speed of production when all
goes well are quite different than those that help recovery
once accidents occur.
Another important factor to consider when designing

environments concerns vigilance: how easy is it to
monitor the process? A process that offers greater
opportunity for vigilance, greater chance of detecting
when things seem to be going off track is to be preferred.
Being vigilance friendly is an attribute that fits well into
speed accuracy, but is conceptually distinct.
In economic models, and in current HCI models, costs

are not differentiated. Typically everything is reduced to
a single dimension of expected time or effort. Yet
distinguishing cost types is of real concern to
technologists because each has important design
implications. For instance, a well designed environment
will reduce error, improve quality and increase speed by:

• making it easy to track the current state of a process –
easy to monitor the key parameters that matter to
success – quality control, speed, error;

• allowing users to back off or abort a process up to the
last second without harmful consequences, thus
stopping serious error before it goes too far;

• making it easy to prepare for difficult moments as
when the café is crowded and everyone is working at
their fastest;

• having checks in place so when errors do occur the
recovery costs are low – a safe fail design.

Such concrete maxims for design follow from a better
specification of cost dimensions. Discovering such
dimensions requires micro-analysis of activity.

Complexity And Cognitive Costs

I have been arguing that to save the cost function
approach to environment design it is necessary to find the
right parameters to assign costs to. Determining these
costs requires a micro-analysis of the activity involved in

using the technology, at least in simulation. Errors have to
be anticipated and analyzed, recovery methods observed,
and attention has to be given to the way team members
coordinate their activity and respond to changes in load. A
second lesson the Starbucks cup offers is that the key cost
to lower may have more to do with cognitive costs than
physical costs. This is nicely illustrated by the increase in
drink complexity that the Starbucks cup system facilitates.
At modern cafés drink complexity has risen so

dramatically that it is no longer expected that an order
will be as simple as ‘One grande latte’. For example, a
client may now request a large cappuccino made from
non-fat milk with an extra shot of decaf espresso, more
froth, a standard dose of sugar free hazelnut syrup, a drop
of vanilla syrup, and a request that the drink be served at a
cooler temperature. The customer himself may then
garnish the drink with a few shavings of chocolate or
powdered sugar. For the attendant on cash to call out this
order to a barista – the tradition in classical European
cafés – takes an unacceptably long time, and puts an
unacceptable cognitive burden on the barista, who may
well be in the midst of making another drink. Any number
of errors can creep into this oral process: a miscall by the
order taker, the barista forgetting specifics, or confusing
some parts of the next order with the present order and
ruining the drink currently being prepared. Once
confusion has occurred, moreover, there is no easy way of
recovering the details of the order because there is no
persistent record to review.
As argued earlier the cup does not increase production

speed per se. The time it takes to produce a generic
grande latte is more or less the same whether the order is
requested using the cup, orally, or on a display board.
Shots still have to be pulled, milk frothed, poured and so
on. The division of labor is somewhat improved by
having the register person select the cup, and as we
mentioned earlier, the probability of confusing orders and
making errors during hectic moments is decreased, which
is a major cost saver. But time per drink, the basic speed
accuracy curve for preparing a generic drink exclusive of
error recovery time, remains about the same.
There is a clear cost reduction on the cognitive side,

however, when we consider the cognitive effort vs. drink
complexity tradeoff. When a drink’s specification is on
the cup the cognitive cost of reading three extra
specifications is not much greater than reading two or
one. If a barista cannot remember whether the third shot is
supposed to be decaf then she can consult the cup. The
same goes for whether the syrup was sugar free. Since
production can proceed incrementally – read the cup,
execute the operation, read, execute – the memory load on
the barista remains constant. An interruption, therefore,
only affects the current ingredient. Even if the barista
loses her place, the combination of specification on the
cup, layout and disposition of equipment, and visible state
of the cup, provide enough situational information for the
baristas to ‘see’ where they are and pick up the process.
This means that product quality will rise because now

drinks of greater complexity can be delivered in
acceptable time and within quality tolerance.
Graphically, the effect of the cup can be imagined as

shifting toward the origin the speed accuracy curves for
producing drinks of greater complexity. The more
effective a complexity reducing technology is the more
the cost profile of complex drinks will resemble generic
drinks. The cup technology lowers the cost structure of
more complex drinks. Since making such drinks are
among the tasks a barista must perform, an adequate cost
function would assign a cost structure to making drinks as

a function of
their complexity
and weight
different drinks
by their
importance to the
user.

What Is The Environment Of Activity?

So far, I have considered ways to enhance cost functions
in order to preserve the core idea that effective
technologies reshape the cost structure of activity. To
save the cost structure approach I argued that the range of
costs that must be measured is far greater than standard
cost accounts mention and it is not obvious that all these
different dimensions of cost can be meaningfully reduced
to a single number such as overall cost, goodness, or
fitness. One environment may be better than another
along some dimensions worse along others: costs need to
be traded off.
One reason to be skeptical of the entire approach,

though, is that the assumptions needed to define cost
functions seem to contradict most of the insights derived
from situated, distributed, and interactive cognition. This
argument comes in two forms. The first is easy to
dismiss. In studying situated activity, we are told, the
devil is in the details. Cost functions, with their coarse,
quantitative and objectivist approach, neglect practices
and other ‘cognitive’ factors that partially determine how
users think and behave. There is no such thing as an
objective cost function definable in abstraction from
users’ cognitive practices and processes in concrete
settings.
This is not compelling. In my accounts of recovery

cost, complexity and cognitive load, variance and
monitoring I have tried to show how qualitative and
cognitive factors can be incorporated into cost functions.
Clearly more needs to be done, but in showing the
diversity of cost dimensions we have at least dulled the
first argument.
A second and better reason to be skeptical of cost

function analyses, however, is that they are applied to
single tasks and to scale up to multi-tasking they make an
assumption about the additivity of costs that rests on a

Complex Drinks

Probability
of
Error

Time

Better

No CupCup

C
1

C
2

C
1

C
2

false assumption about the linear separability of tasks and
task environments. Since the real world rarely poses tasks
singly this is a strong argument. Indeed it is even a
challenge to single tasks because any task involving sub-
goals or conjunctive goals can be interpreted as a multi-
task context. Multi-tasking does not require the multiple
tasks to be unconnected. In Starbucks, when a barista
reaches for a second shot glass with her right hand while
using her left to fill up the first shot glass she is multi-
tasking among connected tasks. The second shot glass is
needed to complete the current drink, though it need not
be fetched while the first glass is being poured. Another
example arises when a barista reads the symbols on the
cup s/he is currently filling. The two activities, reading
and pouring are sub-tasks of the drink making process but
may be worked on at the same time. If there is something
about multi-tasking that ruins cost analyses the whole
approach of using cost structure to inform design will be
jeopardized.
The strongest grounds for challenging cost function

analyses then is that they rest on a false assumption about
multi-tasking. In classical cost analyses when one or
more agents multi-task in the same space, it is assumed to
be acceptable to suppose that each task occurs in its own
task environment, and that multiple task environments can
be superposed on the same physical space. Since
superposition implies additivity (and homogeneity) it is
permissible to add the costs and benefits of achieving
outcomes in each task and talk about the total costs
involved in performing multiple tasks. It is this
assumption that is false.

Superposition of Task Environments

Here is a quick argument to show why task
environments have to be superposed. Begin by assuming
two tasks can be performed in the same space only if they
can be completed successfully in that space. This implies
that it is possible to complete each task without making it
impossible to complete the other. If progress in task A
disrupts progress in task B, it must be possible to recover
one’s state in A without disrupting the state in B. If this
were false, the tasks could enter a self-destructive loop
and attempting both tasks could be self-defeating. For
example, attempting to cook pizza and peach pie in the
same oven, even using separate pans, is self-defeating
because the temperature needed to cook pizza burns pie,
and the temperature needed to cook pie undercooks pizza.
The goals of one task clobber the goals of the other.
The simplest way to deal with goal or sub-goal

interaction is to define a task broadly enough to include
consideration of all goals and then search for a viable path
in that more encompassing task environment. Multi-
tasking in a single task environment satisfies the
superposition condition when agents correctly order their
sub-goals to support simultaneous pursuit of those goals.
But if the tasks remain separate then coordination

between tasks becomes problematic because there are no

opportunities inside core tasks to protect other tasks from
negative side effects. Coordination between tasks is not a
goal of any task. Accordingly, agents who do perform
coordinating actions are stepping outside their task
environments and performing extra-task actions. Since
extra-task actions, by definition, lie outside the scope of
cost functions it follows that a cost function approach will
yield unreliable costs when coordination is required.
By assuming tasks can be superposed we guarantee that

costs can be added. Formally, two tasks are superposable
if any trajectory TA of states created by applying operators
in task A in a vector space (defined by property values at
points in an environment) never intersects a trajectory TB
of states created by applying operators in task B. This
implies that if A and B are performed in the same space
and time changes caused by A can be distinguished from
changes caused by B. If the states of tasks can’t be so
distinguished agents might lose their place in each task, or
the tasks might destructively interfere with each other.
The assumption of superposition and hence linear

separability also implies that the outcomes of the two
tasks can be separated as if they had been completed at
different times. For instance, if the dual task is to prepare
spaghetti for a first course, and chicken with rice for the
second course, then if we cook the rice and spaghetti in
the same pot of water, it is not feasible in any reasonable
sense, to separate them afterward. Hence we cannot
simultaneously perform those tasks in the same space.
An easy way to visualize the failure of superposition

here is to reflect on the way waves interact when they
move through the same region of space. Waves are
superposable because they combine in a well-defined
manner, maintaining their integrity when they overlap.
They can pass through each other without being
permanently changed. When cooking pasta and rice, the
two processes do not ‘pass through’ each other. Given
the operators for extracting pasta – a strainer or pasta claw
– and the operators for extracting rice – a spoon – it is not
possible to separate the two outcomes in the task
environments defined by each set of operators..
 Let us call tasks which can be physically separated and

accomplished in the same space or with the same
resources, physically separable. If two tasks are
physically separable, they are in a sense, physically
modular, and we expect them to pass the linear
separability requirement. They can be analyzed in their
respective task environments and their costs added.
Physical interaction between sub-goal states is not the

only way one task can produce unwanted side effects in
another. A second method of interfering with a task is to
disturb the cues, affordances, constraints or symbols
relied on. For instance, when an item in task A serves to
remind an agent to perform a certain action, or when the
position of an item is a landmark which the agent relies
on to know where s/he is in a task, then disruption or
displacement of that item by activity in task B affects the
‘informational state’ of A. Assuming the placement of
the item is not an actual sub-goal of task A but rather a

useful consequence of a goal directed action, then no sub-
goal in A, no task state, has been physically obstructed by
task B. Both tasks A and B may still be successfully
completed providing the agent has enough knowledge to
overcome the absence of situational cues. But because
important informational elements of the state have been
lost, the agent cannot complete task A the way s/he would
have were A performed in isolation. In such cases, A and
B fail to be informationally separable.
Given that the perception and extraction of information

about a state is partly independent of the operators
determining the state space in a task environment,
information separability does not imply physical
separability (.e.g. rice and noodles are informationally but
not physically separable) and physical separability does
not imply informational separability (e.g. cup position).
Co-located multi-tasking requires physical separability

and to be robust also requires informational separability.
If two tasks are not separable, then the actions taken in
one may lead to incorrect decisions in the other.
What do people usually do when collocated

environments become inseparable – when they fail the
superposition test? They add structure! They make them
superposable. At its simplest this just involves recall,
projecting ‘mental’ structure onto a scene: ‘I remember I
put down two clean cups over there, I see one of them is
still there.’ More broadly, though, there are hundreds of
mechanisms for adding structure physically. In chess if
one player forgets whose turn it is, and so the game
becomes inseparable for him, he can ask ‘whose move is
it?’ This linguistic move was not a defined move in the
chess task environment which is solely concerned with
movement of pieces. Similar extra-task moves are found
in almost every task-oriented activity. In managing a desk
an agent can break the confusion that arises from multi-
tasking by adding marks or annotations to documents.
Intentional placement of resources can help disambiguate
task elements, or specific cues or reminders can be laid
out to indicate what still needs to be done.
The significant element in all these actions is that they

are task external actions that fall outside the cost function
of the task. They are inter-task or coordinating actions.,
performed to enable tasks to be kept separate. Since these
actions are task external but can significantly affect costs
and benefits, cost functions are fundamentally incomplete.

Conclusion

Throughout this paper I have been considering an
intuitive account of technology that treats it as a force
which shapes and reshapes the cost structure of activity.
These costs can be represented by curves showing trade-
offs in speed-accuracy, variance, recovery time,
complexity and so on. Cost functions formally depend on
treating the setting of a task as a task environment, with
sparse choice points, circumscribed option sets and so on.
I argued that task environments are not realistic containers
for tasks if we recognize the universality of such events as

interruption, disruption, multi-person activity, and multi-
tasking in the same physical space. Task environments are
unrealistic because extra-task events intrude on behavior
and inevitably have an impact on how easily, how
reliably, how precisely an agent can do a task. Some of
these extra-task factors can be accommodated indirectly
in cost functions. But there are times when multi-tasking
causes side effects in each task in such a way that the
states of the tasks are inseparable, agents become
confused. If states cannot be separated then decision
errors can be expected to creep into task performance. To
insulate themselves from these unwelcome intrusions
human agents keep tasks separate by performing a wide
range of non-pragmatic actions, actions that are external
to the option sets formally defined in each task. Since
these actions are important to task completion they should
be part of the task, but they are not. Hence they cannot be
considered in cost functions. This puts an upper limit on
the usefulness of cost functions.
This limitation on cost functions should not be a

surprise. Given the importance which micro-analyses of
activity have for designers the concept of a cost function
is too coarse to serve as more than a rough explanation for
the success of certain technologies. Perhaps a more
ecological notion of cost structure will work. In that case,
the only real cost structure is the one that accommodates
all tasks, including coordination tasks. This more holistic
approach saves the idea of viewing design as an
evolutionary process but violates the assumption of task
superposition. This may be an improvement but we still
face the daunting problem of reducing the many
dimensions of cost to a single metric of overall cost.

Acknowledgments

I am grateful for support by the ONR under grant
N00014-01-1-0551, and for helpful conversations: Rick
Alterman, Aaron Cicourel, Peter Gärdenfors.

References

Card, S., et al., (1994) The Cost-of-Knowledge
Characteristic Function: Display Evaluation for Direct-
Walk Dynamic Information Visualizations.
Proceedings of ACM Conference Human Factors in
Computing Systems, CHI

Kirsh, D. (2005) Metacognition, Distributed Cognition
and Visual Design, Cognition, Education and
Communication Technology (eds.) P. Gärdenfors & P.,
Johansson, Lawrence Erlbaum.

Newell, A., & Simon, H.A. (1972). Human Problem
Solving. Englewood Cliffs, NJ: Prentice-Hall.

Russell, D. M., et al., (1993). The cost structure of
sensemaking. INTERCHI '93, ACM Conference on
Human Factors in Computing Systems.

Simon, H.A. (1997). The Sciences of the Artificial (3rd
ed.). Cambridge, MA: The MIT Press.

