260 HORGAN AND TIENSON
B One of the most mmq features of connectionist architecture is ma{ there is no d::r
istiction etwecn memry and <l prosesstng T ony epresenatons il prcen

P oy gien s e

ted on the
s . !
v
of eniational states that ocur, the system's subrepresentational sructure woul
riapts |wm):!“w eniaiona et (bt s Mgy sensiiv 10 th srucure
ST S
determined

In some case, mam!orxhucdﬂpeunnmw!u(mlym 'él:&w inducive

will be bath eormplex and remote, o that, for example, hwvixdu ve el b i
iy 25 3 whole, Ther wil o 10 sige veigh, or smll et of wighs i
pasticular item of knawledge.

component connedtionistically. Ses Note 11
 Simple rules of logic are sometimes cited &8 sxamples of hard rules in human

copaition. But
Wyuubelwll?:nnywbﬂmuﬂ’ tnen Q. youpu themtogethe, i do o follow bt
believe Q. You mght be uwilling to aceept o give up P (or

Q, and hen:
oot

¥ Ses our "Representations without Rules” Phifasophical Topics 17 (1989), 1471
Laws,”, Mma'mtamfhmpphyu(lm) 86279 and Connectionism and.

of Pycholog, Cambridge, MA:

Department of Philasophy

Memphis State University

Memphis, TN 38152

Kirsh, D. Putting a Price on Cognition, Southern Journal of

Philosophy, Supp. volume XXVI, 1987. pp. 119-135, Reprinted in

= | Connectionism and Philosophy of Mind. T. Horgan, J. Tienson, (ed),
‘i Kluwer. 1990
i
i

DAVID KIRSH

PUTTING A PRICE ON COGNITION

INTRODUCTION

In this essay I shall consider a certain methodological claim gaining currency
in connectionist quarters: The claim that variables are costly to implement
in PDP systems and hence are not likely to be as important in cognitive
processing as orthodox theories of cognition assume.

It is widely argued, as a consequence of connectionist accounts, that an
adequate theory of human activity must explain how we can act intelligently
without much formal reasoning, even at an uneonscious level. Formal
inference, whether mathematical or purely logical, is something ordinary
people do poorly in their heads. To prove theorems, we generally need the
help of pencil and paper to keep track of our progress. The same holds for
generating proos in grade school algebra, or in searching a network of
possibilities. Humans do not find it easy to recall dozens of freshly
generated premises. It is easier to write down intermediate results and then
act responsively to those scribblings.

What applies at a conscious level may also apply at an unconscious level
due to the nature of the human processor. From a computational viewpoint,
an agent places the same demands on memory and processing power
whether he reasons consciously or unconsciously. Inference is inference.
Whatever makes it difficult for us to reason at a conscious level in a logical
manner may also make it difficult for us to reason logically at an
unconscious level. In each case, our memory is required to store the values
of a large number of variables. If our memories are not appropriately
designed for this task, this will be difficult.

According to the classical theory of Artificial Intelligence, (hereafter AT),
most intelligent actions presuppose a sizable amount of internal search,
which in turn presupposes a sizeable amount of variable binding.
Unconscious inference is rampant. For instance, Al dogma holds that
rational agents decide what to do next by running through in their heads the
consequences of performing chains of actions. They plan. They weigh

261

22 DAVID KIRSH

alternative courses of action, simulating the consequences of selecting ane
over another, and choose the best.
. Variables enter this picture because actions are defined in Al theories
in a sufficiently general way to be applied in many situations. Thus an
action, such as MOVE X, will standardly be defined by a set of pre and
posteonditions, which state that IF X satisfies properties P, P, ..such as
is-lifiable, X is-graspable, X is-freely-movable THEN X will satisfy certain other
properties such as X' irion, X is-freely i
to decide whether it s wise to move a certain book, an Al system will fs,
bind X to the particular object in question, say book-9107, then determine
whether book-8107 satisfies MOVE's preconditions, then update book-9107s
properties and relations in accordance with MOVE's postconditions in order
to determine whether the changes in the world as 2 whole bring the agent
closer to its goals.

Variables, and the process of binding variables to specific values are an

essential part of the standard Al model of reasoning. Indeed, the standard
model does not bind variables every now and then; variables are continually
being bound. To retum to the planning example, a plan itself is represented
in an Al planner as a variable that takes a sequence of actions as a value.
As a plan is built up, more actions are added to the sequence. The plan is
lengthened, hence the variable plan is given new values. But old bindings
are not dropped away. In many planning contexts we will have to backirack:
we will have to delete members in our action sequence, because we discover
that certain sequences lead to a dead end, or paint us into a corner, or cause
looping. In those cases, we want to be able to unwind the action sequence,
and pick up our simulation of the effects of the plan at an earlier choice
point where we believe we first chose unwisely. If actions are not totally
reversible, the only way we can pick up our simulation at an earlier point
without having to start all over again from world state zero, is if we have
stored a trace of the world state at each choice point in our plan.

The upshot is that intelligent action, on the received view, involves
reasoning with hundreds, perhaps thousands of variables and names. To
cope with this complicated assignment of values to variables, standard
computers maintain a Jarge address space where they can keep track of the
<connections between variables and their values, and between variables and
other variables. As changes occur the memory cells assigned to store the.
current value of a variable change. Similarly, as new connections are made
between variables, such as that K=X, or that G belongs to the same family

PUTTING A PRICE ON COGNITION 2%3

H, additional pointers are introduced to ensure that the relevant
saferences about inherited properties etc. can be made.
Now, if it is true that intelligent action requires much unconscious
e, and if it is true that variables are involved in inference, then
rure must have found a method of implementing variables neurally. One
of the more interesting ical premises of ionism is that if
I certain psychological capacities are expensive to implement in connectionist
ardware, then they are expensive to implement in neural hardware, and it
is reasonable 10 suppose that we exercise those psychological capacities far
Less regnlarly than assumed in standard computational modes. Accordingly,
if we wish to have psychologically realistic models of cognition, we should
construct computational models that are less profligate in their use of these
texpensive’ capacities. In particular, we should construct computational
models of, say, intelligent action, or skillful activity, which do not require
‘much reasoning in a rule governed, or algebraic style. We are advised, that
to rethink cognitive problems with an eye to finding computational
- solutions that do not rely on manipulation many explicit variables or names.
1f this methodological directive can be made to work, it will be of great
import. At present, we conceive of cognitive tasks in algebraic terms,
wherever possible. Much of cognition is modelled on problem solving, and
our understanding of problem solving is biased by the few explicit algebraic
‘models we have. Who is 1o say that we are not being narrow minded in our
conceptualization of these problems? According to the way we understand
cagnition now, most higher forms of cognition make cssential use of
variables, quantifiers, and search control knowledge. Might this not be a
bald mistake? Might it not be possible to rethink cognition in a way that
does nat require those mechanisms?

In what follows I shall make a first pass at appraising this argument.
How believable is it? Why couldn’t evolution build brains that paid the full
cortical price of variables? Do the benefits of having variables as basic

i paciti igh their costs? 7
And what exactly is the problem of building PDP networks with variables?

The paper itself is divided in three parts. In the first part, I discuss what
avariable is and what powers it confers upon its users. I then consider why
standard PDP sysiems have trouble learning variables and why specially
designed PDP systems that support variable binding must pay a high price
for that ability. T conclude with a brief discussion of alternative theories of
cognition that try to accommodate constraints on variable binding.

264 DAVID KIRSH
Wha Do Variabies Buy Us?

In algebra, variables serve two basic functions: as placeholders for
unknowns, and as simplifying descriptions for more complex structures or
expressions.

Fist, as placeholders for unknowns, variables serve to mark a subject
that we have yet to identify, as in ¢ is whatever satisties the following
conditions:

x>3
x is odd
xR T

That is, x serves the same function as the impersonal pronoun it in

It ransports about 7 people spacebound.
It is covered with heat resistan tles.
It weighs more than 10 tons.

To decide what it refers to, or to determine the value of x, we treat each
condition as imposing a constraint on the set of entities that might be
possible objects of reference. We then anadze the interaction of these
cenditions to single out the referent that satisfies all the constraints. That
is, if a given system of equations determines a unique answer, we can often
discover that answer analytically, rather than by plugging in separate values
for the equations in order to decide empirically by trial and error what the
solution is.

Moreaver, once we have variables around, we can often exploit them for
higher forms of analysis too. For instance, if we can deseribe the behavior
of a system by a set of linear equations in 17 variables, we can determine
without calculation that there is a unique answer. Similarly, we can
determine whether the behavior of a system is under-determined, and hence.
indeterminate with respect to our knowledge. The power of analysis should
not be underestimated,

Related 1o analysis, but worth distinguishing, is the power of
generalization or abstraction. This is the secand major function of variables.
It sometimes happens that we know the referent of a variable, or we know
a description that uniquely specifies it, but we need a way of referring to

PUTTING A PRICE ON COGNITION 25

that referent compendiously. In these cases, variables let us simplify
descriptions; they let us abstract from complexity.

For instance, to state that when we add two numbers together it does
not matter which number we take first (the commutative property of
addition), we write down the simple expression a + b = b + a.

Variables, here, provide us with a way of explicitly specifying constraints
or invariant relations that hold over a class of entities. There is no doubt
about what the variables refer to: numbers. But variables provide us with
the needed mechanism for stating what the generalization is. Without
wariables to range over all numbers we would have to specify the relation in
extension, showing for each number pair that it sums identically whatever its
arder.

‘The full power of this descriptive feature of algebra only becomes
evident if we consider just how complex the regularities are that we can
describe simply. This is the celebrated virtue of notation.

In the case of the set [(1,1)(24)(3,9) ... ()] it is easy to notice thaty
+ x’ expresses the invariant relation that holds among the members. As with
the commutative property, variables here let us state a general relation
compendiously, though it is less clear that we need variables themselves to
find the invariant relation in the first place.

But consider recursion. A sequence such as [1,% 6, 24, 120,720 ..] may
have no obvious structure to it until we think o compare each member with
the member preceding it. Even then, the structure is not transparent, for we
must note that if we divide every number by the number preceding it, we get
a factor that is equal to n, the position in the sequence. Clearly, the
invariant here is much harder to discover. And for a good reason, The
position a number has in a sequence is not explicitly represented as an
element in the sequence itself. The invariant here is not a relation between
members, but a relation between members and their position in the
sequence. How can we be expected to notice that?

We need a perspicuous notation. Owing to the creative nature of
algebra, we can create whatever notation we need. In this case, a notation
Using variabilized names, as in R, and R_,, where the variable 1 explicitly
designates the position in the sequence and R, designates the number at
that position, nicely exposes both position and number, With this notation
We can state the relevant invariance. Without such notation it is extremely
hard to describe and recognize such regularities. We cannot Kkeep track of
their structure.

2%6 DAVID KIRSH

It is one of the singular virtues of algebra, then, that it makes it easy to
generate increasingly abstract functions, abstract names for relations. This
power, too, should not be undercstimated,

To distinguish the o powers diseussed, let us call the first, the power
of analysis, and the second, the power of abstraction.

In order to be able to achieve these two powers a variable must satisfy
at least three conditions:

Variables must be logically distinct from their values. Thus tokens of x
must be logically distinct from tokens of the value of x. This means we
can create tokens of a variable on the fly, erase and duplicate those
tokens, (.., physically pass them around), while not physically touching
or creating tokens of its value.

N

Variables and their values must be semantically connested in the
interesting sense that values can be explicitly assigned to variables, as in

the statement Therefore x = 3and y = 1; or in the statement Lot £ = §

where x is assigned 2 value in order to test certain conjectures by
substituting 5 for x. Tn physical systems this semantic relation must be.
enforced by a process which can access x's assigned values and use that

value in place of x. Thus, characteristically, x will be physically
connected to its values. And x will hold that value stably until some

process alters it.

©

Variables, unlike names, must range over a set with more than one
element. Thus a variable is something with a suppressed quantifier.
This is the feature which allows them to encode gencralizations 50
simply, asin 'a + b = ¢, where , b, and ¢ are all universally quantified;
and alsa ta serve as logical subjects of predicates, 4s in < weighs more
than 10 tons, where the logical form displays an implicit existential
quantifier: “There exists an x, such that .

Variables behave in a related manner in programming languages. In LISE,
for instance, great power is achieved by relying on simple names and
variables to refer to the results of performing complex computations, We.
can call on a variable, or pass it around, without triggering the process that.
would determine its value. ‘The two entities: variable and value are logically
distinct, Thus we can use a variable to refer to the result of performing _

PUTTING A PRICE ON COGNITION 267

arbitrarily complex operations. In this way computational objects of
increasing complexity can be built up step by step. For once we have a
name for a function, we can use it as an argument in a higher order
function, and so incrementally increase the complexty of the functions we
can define. . e

For example, we may define (square x) to be the result of muliplying
x by itself, as in:

(define (square x) (* x x))

Once defined, however, we can use square as a building block in
defining other procedures. For example, &' + y* can be expressed as:

(+ (square x) (square y))

and we can define a new procedure sum-of-squares that, given any two
numbers as arguments, produces the sum of their squares:

(define (sum-of-squares x) (+ (square x)(square)))

And so on.

Moreover, power is exploited in g
the value sought after need not be known. We may wish to introduce a
variable 1o hold the place of the value we are trying to discover. As more
is known, constraints are added to the description of x. At some point it
may be possible to show that a unique answer exists, or that no answer
exists; or it may be possible to simply solve for x. . :

The power of a variable, then, whether in algebra or in programming,
comes from having something explicit in a system which can serve as a proxy
for a value (or a procedure if the value of the variable is a lprocedute).
Because the two entities, variable and value, are logically distinct we can
perform operations on variables without actually performing operations on
the values they designate.

We must now consider why it is hard for PDP systems to learn and
implement variables.

%8 DAVID KIRSH
Systerns Which Use Variables Do More Than Just Pass Values

The simplest explanation of PDPsystems have trauble I
and implementing variables is that PDP systems do not have separate tokens
for variables and their values. Hence, unless they are specially designed,
they cannot distinguish variables and values. Input entors a system as
activations on input nodes, it gets transformed by weights and nodal
functions, and finally it emerges as activations on output nodes, The whole
system works simply by modifying and passing activations from input to
output. The system simply propagates values. Hence standard PDP systems
crunch values, not variables.

Now of course at one level of analysis familiar variable ‘manipulating
computers simply work by modifying and passing activations from input to
output as well. All physical systems crunch values. But at another level of
analysis it is essential to the performance of di igital computers that they
explicitly repeesent variables and rules. This diffecence in explicitness marks
a real difference in possible performance.

To see this difference, imagine that we have an electrical circuit which
0beys the consiraints x +y = 4and 2x-y = 5 without explicitly representing
those constraints. See Figure 1a. This circuit performs as an activity passer.
Input enters the system as activations on certain wires, it gets transformed
at certain modules in accordance with certain functions, and finally it

emerges as activations on output wires. It is immaterial to our general point
that the modules are labelled and that it is easy for us to interpret the
‘meaning' of the signals flowing across wires. For whether we can interpret
what is happening in the system is irrelevant to whether the system itself is
merely an activity propagator, If at a certain point in its processing the
system passes a signal with the value of 6, we may interpret that signal, in
light of its function in the whole network, to mean something like ‘the value
of 2¢ s § right now. But our ability t0 so interpret the signal should not be
confused with that signal being treated by the system as a token of the
variable 2. The system has no wa of refering to 2 in general. It behaves
exactly like a localist connectionist device, passing values around without:
having a means of independently labelling those values,

PUTTING A PRICE ON COGNITION 29

yes/no

LY

x y

Xy
Figure la Figure 1b

Figare L. A non-comnectonit iruit which et i acordance wilh the s + = 4 and 2.
= 3. Becase tween itis

e STl Rt L 2 it sy o 0
represented axplicily. At each point in the procets there are only values. There i no logical
distnilon between a token of a value and a token of o variable. The system s 4 value
ropagator rather than @ variable manipuiaor. Figure 1b is a conneetionst verson. that
implements the same consiraint system. Exactly how the constraints are embedded in the
Retwork consicaints s more comples.

Such a circuit was designed to behave in a predictable matter. If we put in
any values for () other than (3,1) the system outputs (0). For (3,1), the
system outputs (1). What ensures that this system is a value propagator, and
nothing more, is that the only way it has of deciding whether a given pair
s acceptable--that is, of deciding whether the pair satisies the constraints--is
1o have the pair presnted as input. It can decide only by trial and error.
It cannot determine analytically that (3,1} is the only answer because analysis
requires explicit representation of the constraints.

‘Thus the system acts as a recognizer; it decides only by being presented
with input. It can never make any global judgments about possible inputs.
For systems that can pass only values of variables can reason only with single
values,

By contrast, systems that use variables as entities distinct from their
values can achieve the effect of reasoning over sets of values in single
transformations, as when x is assumed to refer to the odd integers, There

m DAVID KIRSH

is no way this extra power can be reeouped by a system lacking explicit
variables. Even if a system used some clever way of coding Lists of numbers
instead of singletons in order to operate over Lists, this clever coding could
never encode infinite lists. In any event, the type of circuits that would A3
operate over lists of numbers would be different in design than those
designed to act in accordance with the rules x + y = 4 and 2¢-y = 5 as
defined earlier. The st processing circuit would, in effect, be processing the
rulesx +y = dand 2 -y + 5, wherex, y, 4 and S refer to lists or matrices
of the same cardinality, as in [<, X, .3, + J; 3y = 4, 4,,4]. These are
different constraints entirely than the simplex +y = 4 and 2 -y = 5
constraints where x and y refer to single values.

‘The upshot is that systems that act in accordance with constraints (rules)
are not as powerful s systems which explicitly represent the constraints they
use. Explicit representation buys analytic power.

The Cost Of Implementing Genuine Variables

Suppose, now, that a connectionist wishes to instill his system with the power 3
to use explicit variables, This means that whatever implements the variable
must in principle be able to be bound to any value in the variable’s range, -
and to be usable in more ways than just as the object of a ‘retrieve value”
call--ie, 10 be manipulable. How might this be done?
In ordinary computers, to achieve this flexibility, and to permit the
variable o be bound as many times as is needed for reasoning, the standard
digital design is to append a binary pointer to the variable to indicate the
address of the memory cell containing its current value. If the same variable
is multiply instantiated, as when Px s instantiated by Ps, and Pb, and P, and.
all these bindings are held in memory, there is some contextual marker used 3
to distinguish when x is bound t0 a, b, or ¢. In both cases, though, each
memory cell is free to acoept any value, including a polnter to other memory
cells, for it often happens that the value bound to one variable is itself a S
variable which in turn has a value bound to it.
Such a system satisfies the three conditions of genuine variablehood:
mentioned above. Tt logically ically) separ i 3
value tokens; it permits explicit assignment of values; and becase of the
freedom, in principle, to write any value in a memory cell it treats. variables
as ranging over many possibilities. s

PUTTING A PRICE ON COGNITION 271

Pointers are an elegant, even if obvious, solution to the variable binding
problem. But they have their cost. They wark only if a system can read
addresses, write values and new addresses in memory cells, and follow the
address named in a pointer to the relevant memory location, Connectionist
systems do not operate like that. They are not designed to create and
exploit pointers on the fly,

How Do Connectionists Bind Variables?

One obvious way connectionists bind variables is shown in Figurc 2. Here
the fact that A can range over the values 1 to 4 means that we must be able
1o distinguish A with value 1, from A with value 2, and s0 on. As A’s value
changes, its effect on the computation performed by the network must
change. Thus A with the value 2 must effect the network as a whole
differently than A with the value 3.

To do this, a network is eonstructed with enough nodes to represent
every variable value pair. Thus, if we have r variables and »2 values, we will
have i times m nodes. The greater the number of values each variable can
range over, the greater the aumber of nodes that will be required. This
model s a purely localist representation, for each node has a unique
representational function in the system. Nodes are dedicated; the same
node ean never participate in the representation of other variable value
paies.

s Smolensky' has pointed out, purely local representations of variable
value pairs suffer from three problems:

(1) times m units are required, most of which are inactive and do no work
at any given time;

(2) the number of units and hence the number of possible pairings has a
fixed, rigid upper limit;

(3) the fact that different variables may take the same or similar values s
not ewploited; thus every pairing is distinct, displaging no common
structuze.

Bach of these problems, in effect, emphasizes that a localist representation
of pairings is not space efficient.

Smelensky’s own solution diverges from the localist answer in using
wholly distibuted representations. Accordingly, the same units may be used

m DAVID KIRSH

fo represent many different variable value pairs. This has the effect of
answering his three objections because 1) almost all units Wil be fnvelved
in representing variable value pairs, hence units will rarely be inactive; 2)the
number of units wil not set a rigid upper limit on possible pairings becanse
a set of units can always be trained to accept another distributed
representation defined over it, as long as all representations remain linearly
separable; and 3) similar pairings will be represented by simiay
representations because that is a natural feature of distributed
representations.

imultaneously represent one valuc for every variable; for each variable i,
s impossible in this design to assign more than one value 10 3 variables’

Yet this is still not good enough. A tensor product approach also suff

from inefficiency when we consider large value sets, Although we can bi
more variables to their values by superposition, we cannot bind more valu
to a variable without increasing the vector field. k
Furthermore, a tensor product approach does not distinguish a tokes
of a variable from a token of a value, This is not an intrinsic limitation, for’

PUTTING A PRICE ON COGNITION m

it is likely that if we added real nodes for the left column and bottom cow,
the matrix would now have distinct representations of variables and distinct
representations of values, but the cost will again be greater nodal size.

Other connectionists, such as, Touretzky and Hinton? Touretzky,* have
developed elaborately structured models which explicitly represent tokens of
variables and tokens of values. These support variable binding, and even
some measure of recursion. But, as Pollack has argued®

(1) A large amount of human effort was involved in the design of these
systems; and

(2) They require expensive and complex access mechanisms, such as pullout
networks or clause spaces.

In short, the various elaborate solutions seem both ad Ao, and more
importantly, incfficient. A high price is paid to be able to bind a small
number of variables to a small number of possible values. Once again, as we
increase the number of values the variables can be bound to, the size of the
network must be expanded by a multiple. This might not be a problem if we
never Use variables that range over large sets, but prima facie that is just
false. It is natural and easy to entertain thoughts.about arbitrary people we
have met, even though that number casily exceeds a thousand. The same
applies to numbers, books, houses, friends, countrymen and Romans. Prima
facie, we often think thoughts whose logical form quantifies over variables
with large ranges. There seems no ready way of escaping the fact that a
static network has to pay a high price for duplicating the powers of a
dynamically reconfigurable network.

Static vs. Reconfigurable Networks

To see what, at bottom, is the real problem of variable binding let us
consider in the simplest manner how both dynamically reconfigurable and
static networks might bind variables.

To make the problem concrete, fet us suppose we are a telephone
mpany hired to build a network which will link salesmen in Building A
with possible buyers in Building B. Each salesman wants to be able to talk
to each potential buyer, We may think of this association as follows: 4,
wishes to bind with B, ,B,,..,B,, A, wishes the same thing, and 0 on up to
Al

274 DAVID KIRSH

Now, the simplest case is where each salesman has a direct line to each
buyer. In Figure 3, we see what this looks like for the retrograde case where
there is only one salesman, and then in the complete case where there are
A, salesmen. Networks like 3b are called totally connected. The localist
nerwork deseribed earlier formally resembles this case. Perceptron models
are also examples of totally connected networks, as are the layers in PDP
networks, though characteristically these other systems use non-localist
representations.

munodes

0 22e3 B B oms

m values
B2 BS
B3 B4 BS
@) Q
|
@)
Al et el
Figure 3 Figure 3b

Figure 3. Tn3a and T we see examples of otally connected nevworks. 3a shows the etroprade

o hete there is orly one node {anc variabl) connected by dedicated lines 0 m nodes
(vahuos. 30 shows the andard gragh, where n variables are comnored wih vaucs. A$ e
mumber of +alues rises by the number of conntions increases by nj-

A reconfigurable network, by conteast, will be more like a telephone system,
where any salesman can reach any buyer by dialing his location. 1t is &
furthor characteristic of such systems that buyers too can reach any othet
buyer. ;
Reconfigurable networks have swisches which teanslate addresses ino
paths that lead to the physical unit residing at that address. In Figure 4we
see a simple switching network. It takes addresses as input, and locks open
the relevant path from origin to address,

PUTTING A PRICE ON COGNITION 215

Figurc 4. A switching h is designed 1o open
dehinations. In 2 stmple system, each numeral in the destination address corresponds to &
position of & switch, As the address courses through the Tocal switches mechanically
Feck the relevant digit and respond appropristely. In this figure we can se the sysiem opening
the path (L,LO)-

Now, let us consider how the twa networks fair on two cases: 1) whete x may
designate list of arbitrary length; and 2) where we stipulate that % +
1, as part of an iteration, or a recursive call.

To cope with a fist of arbitrary length, where x may be[n,] ocr, ;] ot
[#, 5), 2 static network of the sort just shovn must be large enough
to have direct lines not only to the # possible values that can occupy every
position, but 7 nodes, for each List structure is a distinct possible value.

Put in terms of buyers and scllers, if a certain seller wishes to canvass
the opinions of buyer 1, and buyer 2, first separately, then sequentially,
where the sequence could matter, he will have to have set up his lines
specially for each possibility. He cannot alter the set up once the lines are
laid down, 50 he cannot alter, on the fly, whom he speaks with. If he wishes
to speak with buyer 1, the system will be set up so that he speaks to buyer
1and no ane else. If he wishes to speak to several buyers simultancously,
the same network can be rewired to permit that t0o. But if he wishes to
speak to several buyers simultaneously where sequence matters-a type of
conference call where he hears from each buyer in predetermined order-the
netwoek will have to be extendad, for his lines cannot mark order.

2% DAVID KIRSH

By contrast, in reconfigurable networks we can handle sequences and
changes in values simply by binding the new values with pointers. Thus, to
handle extensions to a list, we can begin by pointing to [1] as the value of z,
and then if we discover that x now is [1,2], we cancel the left parenthesis
marker and add a pointer to a new memory cell which shows that the value
of the second position in the List is 2. Unlike static networks, longer Lists do
not require larger memory capacities, for we can introduce pointers that pick
out existing memeory cells, providing they contain the appropriate values.
Moreover, we are not obliged to destray our first entry; we simply add to it
by creating pointers as we need it. So the process is comservative,
monotonic. Whereas in static systems if the new values range beyond the
set of values the network was designed for, a new network would have to be
built by adding more units to the old one and then be retrained. Often the
new training is more like training from scratch, for the old leamed
connections do not carry over.

Smolensky maintains that totally distributed representations allow him
to reuse some of the same units over again when representing extensions of
a set such as the extension from the set [1] to the set [1,2]. This is

ished by seeing [1,2] as 2 ition of [1] and [2].

“This is a significant improvement as far as it goes. But as Smolensky
emphasizes, this technique applies only if the two values are linearly
separable. That means that a network will have trouble distinguishing the
sequence [1,2] from the sequence [2,1] unless it has further nodes to
represent position.

However, even with nodes for position the system falls short of a pointer
system. Suppose we wish to use the same network to represent ¥ = [,z
nJandy = [j, j, s-ujs]. It is reasonable to want to make use of large
networks to store bindings of more than one variable if they have the same
or overlapping ranges. Yet, how can we do this in a static distributed
network? The values of y must be superimposed on the network in the same
way that [1,-] as a value for x is superimposed on [--2] as a value for x t0
yield 1,2] as the composite value for x. But if we superimpose yet another
[1,-], this time as a value for , we will have altered the vector field that is
supposed to represent 's value as well. Thus we cannot make use of large
networks to store bindings of more than one variable if they have the same
or overlapping ranges.

The sccond task exposes the same difficulty. It is one of the great
virtues of a reconfigurable network that portions can be used again and

PUTTING A PRICE ON COGNITION 2n

again. Thus, if we have designed a network to perform the procedure x -
x + 1, we can reuse the same network as many times as we like just by
resetting the value of x and starting over again. Naturally, the process which
‘makes this possible involves pointers. For on each iteration we must quickly
set the new value of x before calling up x's value at the new start of the
procedure.

In a static feed-forward network, though, we have to know in advance
how many times the procedure in question will be reapplied. We then string
out in space as many duplicates of the procedure as will be needed.

To be sure this conversion of iteration to space can be surmounted by
having a static network feedback on itself, mediated by a counter which
checks that the system does not cycle past a certain value. But this style of
nemwork violates the spirit of connectionism. It presupposes that part of the
network--the counter--is insulated from the other processes--the procedure.
A mechanism had to be introduced to let cach iteration rapidly set a newr
value for the variable number-of-times-iterated-so-far. Yet this rapid setting
of a value is precisely one of the issues that makes variable binding so
different in connectionism. Arbitrary iteration then, is another problem for
static networks.

Some Consequences

T have been at pains to show that simple connectionist models do not make
use of variables in the full and proper sense. More complex models can be
constructed which do use variables explicitly, but they pay a high price in size
and complexity. If these complex models teach us anything about neural
design, it seems to be that nature does not encourage the type of reasoning
associated with explicit rules.

This is not a strong argument against rule-governed thought, however.
For a sequence of information states may be rule-governed even if there is
n0 rule explicitly represented in a system to structure the process. Such a
sequence is correctly called rule-governed, as opposed to rule-obeying, if it
supports the appropriate counterfactuals. For instance, if a certain bit of
information had not entered the system then the resulting information
trajectory would have to change exactly as predicted by the rule st.
Similacly, if the process were to be interrupted, or pushed to an extreme, the
state of the system at the halt point or at the point of system deviation
would make sense with respect to the rule set.

78 DAVID KIRSH

Nor does the argument establish that the adaptive benefits of reasoning
do not outweigh the adaptive costs of using up much of our cortex for
explicit variable binding. From an evolutionary standpoint, the one time set-
up costs involved in building networks able to manipulate variables may have
been well worth the price. Only neurophysiologists can tell us whether the
brain has a design that accommodates variable binding to a considerable
degree.

Tthink ionism justly forces us to
thece are altemative formulations of the problems the cognitive system
solves, formulations that lend themselves ta solution without much variable
value pairing either explicitly or implicitly.

It is patent that static networks run into trouble as soon as they must
represent large numbers of variables or small numbers of variables with large
ranges of values. But static networks may be quite adequate in
accommodating a reasonable number of variables with small ranges. The
trick of rethinking cognition, then, becomes that of finding a way to solve
problems with variables that have a restricted value set.

One suggestion® is to use indexicals in place of constants. This may
allow us to cope with complex situations, by using and reusing a small
number of binding slots. The fact that in many situations we do not care
whether the object we are dealing with is object-25 or object-26 as long as.
it ‘does the job,’ means that we may only have to keep in our minds a small
set of variable value pairings.

For example, in setting the table, I am usually indifferent to the token
identity of cutlery. I care whether I have laid a fork and Kaife, but not
whether Ilaid salad-fork-10. This generalization of instances may extend in
all directions. Accordingly, on this view the hard part of acquiring a skill is
to discover the general properties of the environment that matter in
performing the task. These general properties may well be non-standard,
and quite unintelligible outside the context of the task. Hence they must be
discovered through practice. Once they are learned, however, they have the
consequence of simplifying the complexity of the task with respect to the
number of variables and values that may be active at any one time.

To take another example, when driving a car, we seldom worry about the
token identity of other cars as they approach us. What matters is their
relative position, velocity, and 0 on. It is reasonable to expest &
connectionist system to learn the appropriate relations between these n-
tuples. And it is reasonable (o expect the system 1o be able to make

oo

o o

PUTTING A PRICE ON COGNITION m

appropriate responses. Whether these responses are readily codified by 2
set of rules is irrelevant to the basic issue. For the real prablem was to
Leam which properties of the world partition the task cnvironment in
tractable manner. That is, what propesties simplify the task of driving?
These may be arbitrarily task specific. Once we have discovered these
specialized properties, it may not be necessary to bind them to many
different values. Thus, from the vantage point of driving, it may not be
important to be able to identify and reidentify objects in any more satisfying
way than as ‘the-car-now-coming-at-me-fram-the-right.” At times there may
be more than one car filling the description. On those oesasions the system
will have to be able to bind the predicate to separate entitics, separate
values. Even under such conditions, though, the number of such bindings
can be expected to remain small.

Tt is an empirical matter how far the indexicalization of our knnwled.g,c
can be pushed. Some tasks lend themselves to this reduction, others resist
it. It is one of the virtues of the connectionist approach that it encourages
us to explore this problem.

ACKNOWLEDGEMENTS. 1 would lie to thank Phil Agre, David Chapman and Eric Saund
for many hours of helpful discussions.
NOTES

* % Method for Connectionist Variable Binding” Proceedings of the American Association of
the Arifica Intelliganse, 1987,

2 id. .

3 ‘Details of Connectionist hitecure,”

of the Ninth Internationa Jaint Conference on Arificial Inteligence, Los Angeles, s_a 1
“"BolzCONS: Reconciling Connectionism with the Recursive Nature of Stacks and Trees,” in
Procecdings o the Eighth Annusl Conference of the Cogniive Science Society, Amherst, MA,
0.5,

Devising Compositi

3 " i > e
Computing Research Laboratory, Now Metico Staie University, Las Cruces, MCCS-88-124.

i i i [use the pofn of
% This does not quite duplicate the binding problem in connestionism becs poi
‘binding in PDP is to tam on nodcs which have the right overal effect on the sysiem. This may
pe achieved without actually representing the varigble and its valuc in distinct nodes, as the

vary with 3 variable volue pairing- i
7 Although it is an open e question just how much new teaining is required to teach an
old netwark to tespond appropristely wic ics new nodes, i is clear that 23 more now Rodss are
added the amount of new training roquired rises nor-ineary.

280 DAVID KIRSH

® For an interesting first try at explaining a skill as a controlled response to “indexicale
{onaional propenic e . Agr, tnd . Crapran, Foug: “Inplemenng 3 Theury of
ity," in Proceedings of the American Association for Artificial Intelligence, 1

1. ibid.

Cognitive Science
Room D-015
University of Califoria
La Jolta, C4 92093

;-3

Fodor a
paradox

In this s
decision
between
argue th

