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ABSTRACT 
 
It is sometimes argued that if PDP networks can be trained to 
make correct judgements of grammaticality we have an existence proof 
that there is enough information in the stimulus to permit learning 
grammar by inductive means alone.  This seems inconsistent 
superficially with Gold's theorem and at a deeper level with the fact 
that networks are designed on the basis of assumptions about the 
domain of the function to be learned.  To clarify the issue I consider 
what we should learn from Gold's theorem, then go on to inquire into 
what it means to say that knowledge is domain specific.  I first try 
sharpening the intuitive notion of domain specific knowledge by 
reviewing the alleged difference between processing limitatons due to 
shartage of resources vs shortages of knowledge.  After rejecting 
different formulations of this idea, I suggest that a model is 
language specific if it transparently refer to entities and facts 
about language as opposed to entities and facts of more general 
mathematical domains.  This is a useful but not necessary condition. 
I then suggest that a theory is domain specific if it belongs to a 
model family which is attuned in a law-like way to domain 
regularities.  This leads to a comparison of PDP and parameter setting 
models of language learning.  I conclude with a novel version of the 
poverty of stimulus argument. 
 
INTRODUCTION  
 
It is widely assumed that PDP learnability has some bearing on 
questions of innateness.  If a PDP network could be trained to 
make correct judgements of grammaticality, for instance, it seems 
to follow that innate knowledge of grammar is not necessary for 
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language acquisition.  The reason, quite simply, is that the 
learning rules used in PDP learning -- whether backpropagation or 
related gradient descent methods-- are general, domain 
independent methods.  They are what AI theorists call weak 
methods.  Hence in teaching a system to make correct judgements 
we seem to have an existence proof that there is enough 
information in the stimulus to permit learning by inductive means 
alone.   It is this idea, and the methodological implications 
that flow from believing it, that I wish to explore here. 
 
The problem I have with this argument is that to discover a 
network that will learn successfully designers must choose with 
care the network's architecture, the initial values the weights 
are set to, the learning rule, and the number of times the data 
set is to be presented to the network -- this latter parameter 
effects the smoothness of the estimated function.  If such 
parameters are not controlled for, successful learning is 
extremely improbable.  In thoughtful modelling, these parameters 
are chosen on the basis of assumptions about the nature of the 
function the system is to learn.  That is, on the basis of 
assumptions about the task and the task domain.   Prima facie, 
then, although the learning mechanism operating on data is a 
general one, the success of this mechanism depends equally on a 
set of antecedent choices that seem to be domain specific. 
 
If these assumptions are genuinely domain specific we ought to 
reject PDP learnability as proof of inductive learnability. 
Learning can be viewed as a controlled process of moving from an 
initial state of knowledge about a domain to a more advanced 
state.    The hallmark of true inductive learnability is that the 
initial state contains zero knowledge of the domain:  all domain 
knowledge is acquired through learning.    To accept PDP 
learnability as a sound non-innatist argument, then, requires 
accepting that the assumptions made in designing PDP experiments 
are not domain specific. 
 
The idea that assumptions are either domain specific or domain 
independent, and that the difference is not merely one of degree 
or merely in the eye of the beholder -- plays an important role 
in discussions of language learning.   It is Chomsky's belief, as 
well as that of many generative linguists who distinguish 
themselves from Chomsky, that children enter the language 
learning context (footnote 1) with biological constraints on the kind of 



grammars they will conjecture (learn).   It is not an accident of 
particular social conditions that humans have the type of 
languages they have, nor a consequence of more general 
constraints on terrestrial communication.  Human languages are 
the product of a specialized neuro-cognitive organ, whose 
development to full functionality is much like the pre-natal 
development to full functionality of the liver and kidneys, or 
the post-natal development to full functionality of flying in 
birds, a matter of powerful biological constraints.  Change and 
improvement, though dependent on the environment, is strongly 
predetermined.  The whole process is far more like a progressive 
tuning -- the progressive specialization of a dedicated organ -- 
than an enriching process where a more general purpose organ, 
largely non-specific, is converted by powerful learning and 
development processes into a computational device able to 
correctly assign meaning to linguistic structures. 
 
The standard view of the PDP approach is that it represents the 
more general cognitive approach in which general learning 
mechanisms and general cognitive architectures -- ie non special 
purpose networks -- do the learning.    Instead of interpreting 
language learning to be a matter of specialization of an already 
linguistic organ, it is more natural on the PDP model to 
interpret it to be the product of a progressive construction of 
intermediate properties which simplify the language learning 
problem but which might apply to domains beyond language. 
Networks often succeed because they build intermediate 
representations -- representations of properties that simplify 
the learning task.  If these intermediate properties or 
representations are also found in networks learning in different 
domains, we have a prima facie argument that network learning of 
language refutes innatist views of language. 
  
The argument must be called a prima facie argument because given 
the importance of what appears to be domain specific assumptions 
made in designing PDP experiments we may well question why we 
should believe that PDP language learning studies are free of 
domain specific constraints. 
 
The popular reason is that the PDP design assumptions required 
for studying language learning are no different, in principle, 
from the PDP design assumptions made for studying learning in 
other domains.  Presumably the same type of assumptions would 



have to be made in designing a network to learn English grammar 
as would have to be made if the network were to learn a function 
in logic, auditory perception, or motor control.  They are 
generic assumptions.   The networks are not gerrymandered or 
handcrafted, and the learning rule, number of repetitions, and 
diet are in some sense standard as well.   Even if language 
learning requires bigger networks than those for bird song 
learning, or furniture categorization, the networks are just 
bigger versions of the same sort.   Thus, runs this argument, if 
one day a network were in fact trained to judge English 
grammaticality, on that day we would have strong evidence that 
innate knowledge of language is not a prerequisite for language 
acquisition.  PDP learnability of language would serve as an 
existence proof that specific domain knowledge is not necessary 
for language learning. 
 
Now if this is a sound argument certain consequences follow that 
are methodologically significant.  First, PDP learnability would 
show that poverty of the stimulus arguments about a given domain 
are false. The thrust of all such arguments is that certain 
functions are not learnable because the available data do not 
contain enough structure to determine the relevant function. 
Accordingly, such functions are deemed unlearnable by inductive 
methods alone:  additional domain specific knowledge is required. 
This is the central argument generative grammarians have offered 
in support of their belief that `the child must come to the 
language learning task with inborn constraints about the possible 
form of linguistic rules'(footnote 2) or `with a schema of some sort as to 
what constitutes a possible natural language'.(footnote 3) 
 
In overthrowing poverty of the stimulus arguments it is natural 
to embrace a research strategy that looks for previously 
unrecognized sources of linguistic information.  These new 
sources of information may be located in the way examples are 
ordered in the training set, in the distribution of examples 
found in the set, in the frequency with which particular examples 
occur, or in properties of the context of usage.   The 
methodologically salient point is that whatever the source, this 
extra information is available through experience.  There is more 
structure present in the data confronting subjects than is 
apparent a priori.   It is not surprising, then, that much PDP 
natural language research is devoted to uncovering the learning 
potential of novel sources of linguistic information. (footnote 4) 



 
The second consequence of rejecting the need for innate knowledge 
of a domain is that we may substitute experiments in learnability 
for antecedent analysis of the domain -- at least in the first 
stages of research.  Because a function may be learned by a PDP 
system whether or not we already have a comprehensive theory of 
the function it is not necessary to spend long hours in analysis 
before we set our net to learn it.  One of the greatest 
differences between PDP approaches to language learning and 
innatist approaches is that innatists begin with a 
characterization of adult grammar and work backward to figure out 
how the child might arrive at this `steady state' 
characterization.(footnote 5) PDP and other more purely empiricist 
approaches work forward from the existing data about children's 
linguistic behaviour to some characterization of adult language. 
It is easy to imagine, therefore, that PDP theories of the 
`steady state', if such a community wide state even exists in 
their scheme, will be quite unlike theories of the steady state 
put forward in the generative tradition. 
 
Genuine success in this methodology would mark a strong victory 
for bottom up research.  At present, the best articulated and 
most widely admired method of cognitive research is the top down 
approach of David Marr.  In this methodology formal specification 
and mathematical analysis take place before computational 
modelling.  The prime defence of this top down style of research 
is an a priori argument: without antecedent analysis 
computational modelling can be no better than blind wandering in 
mechanism space.  A priori, the chance of striking on a plausible 
biological design, one that might explain what we know of an 
organism's behavioural capacities, is simply too small to warrant 
attempting a search in design space undirected by prior formal 
analysis of the task.   No general search techniques, no weak 
methods, can succeed.   Against this negativism, the promise of 
PDP research is that if it can deliver a few striking empirical 
successes -- cases where a plausible design has been found by 
using a general learning rule -- we have a good reason for being 
optimistic that the search in mechanism space can be made 
tractable.    The net effect might be to reset the agenda of a 
large, currently intransigent group of cognitive scientists. 
 
With such weighty consequences at stake it is worth exploring 
carefully what PDP learnability may teach us about innate 



knowledge.  My main concern in what follows is with the logic of 
the argument : vis. that a display of PDP learnability 
constitutes an existence proof of inductive learnability.    I 
will use language acquisition as my focal domain because it is an 
area so widely discussed.  But it is incidental to the main 
point. 
 
It seems to me that the heart of the anti-innateness argument 
requires a clear understanding of what the phrases domain 
specific knowledge and domain independent knowledge mean.  PDP 
learning is meant to be an example of domain independent learning 
-- learning that proceeds without the help of additional domain 
specific constraints or domain specific knowledge. If I am right 
the concepts of domain specific and domain independent are too 
ill understood to bare the weight of the innatist non-innatist 
rhetoric normally associated with them.   Accordingly, I doubt 
that the agenda of most cognitive scientists will be reset by a 
few PDP success stories. 
 
The paper is divided in three.  In part I, I reconsider some 
arguments deriving from Gold's theorem purporting to show that 
PDP learnability could not possibly disprove the need for innate 
knowledge of language.   Gold showed that it is impossible to 
learn a context-free (or more powerful) language purely on the 
basis of data about grammatical sentences -- a form of data that 
is usually called positive evidence.  The learner must have 
access (at least tacitly) to additional information.  In 
principle this information could come from many sources.  But 
typically the theorem is used to justify the belief that the 
relevant extra information is innate and is specifically about 
the formal structure of language.  I believe this is a mistake. 
But many innatists see Gold's theorem as a logical obstacle to 
anti-innatism -- PDP inspired or otherwise. 
 
In part II, I begin exploring in greater depth some of the hidden 
complexities behind the notions of domain specific and domain 
independent knowledge.  Part of the confusion enshrouding these 
ideas can be traced to the equally problematic notions of problem 
structure and task environment.  I discuss some problems with 
these in Part III. 
  
  
WHAT SHOULD WE LEARN FROM GOLD'S THEOREM? 



 
In 1967 Gold posed the problem of language learning in formal 
terms.(footnote 6) The field of language acquisition has never been quite 
the same since.  Gold asked the question: under what conditions 
is it possible to learn the correct context free grammar of a 
language given a set of training instances?  His most significant 
result was that it is impossible to learn the correct language 
from positive examples alone.  If a blind inductive program is 
given an infinite sequence of positive examples the program 
cannot determine a grammar for the correct context free language 
in any finite time.   The data underdetermine the language.  If 
learners are to induce correctly, they must have access (at least 
tacitly) to additional information. 
 
The simplest source of this information is an informant who can 
tell the learner whether or not a given string is grammatical. By 
using these extra negative examples the program can eliminate 
grammars that are too general.   If `negative evidence' is 
unavailable the language may still be learned but the additional 
information must come from different sources. 
 
Gold's result is thought to be relevant to human language 
learning and therefore to PDP research into language learning 
because there is a body of literature maintaining that negative 
evidence is not available to children.(footnote 7) Parents do not 
intentionally speak ungrammatically to their children, each time 
pointing out that this is the way not to speak.  Nor, apparently 
do they tell their children either directly or indirectly when 
the child itself is speaking ungrammatically -- not in any 
pervasive way.    They are more concerned, it seems, with the 
truth or appropriateness of utterances than with grammaticality 
per se. But then because there is no substantial negative 
evidence to stop the child from choosing a grammar that generates 
a superset of the sentences in its mother tongue, children ought 
to overgeneralize wildly.  They ought to be disposed to believe 
the grammaticality of sentences outside their language.  For 
without additional constraints on what their mother grammar is 
like, children have no reason to reject sentences consistent with 
everything they've heard but which nonetheless lie outside their 
language.   The psychological implication of the theorem, then, 
is that because children either do not overgeneralize wildly, or 
are able to recover from overgeneralization, they must have 
access to additional information about their language that has 



nothing to do with negative information. 
 
Gold's theorem has often been taken as supporting innatists in 
their belief that the extra information about language must be 
inborn. (footnote 8) Part of this belief is justified on the grounds that 
linguistic knowledge is so specific; linguistic properties seem 
to resemble little else.   Thus when Chomsky suggests that there 
are biological constraints on the kind of grammars children will 
conjecture he has in mind constraints on the sort of basic 
entities or categories -- the parts of speech -- children will 
consider trying out in rules of grammar.   There may be analogues 
of such sub-recursive structures in other cognitive domains, but 
it is not obvious where.  And when it comes to constraints on the 
way those entities or categories can be combined, transformed or 
removed, it is even less clear that there are other cognitive 
domains (universally learnable) which have as much structure. 
 
To take a simple example, a child is assumed to be able to detect 
at an early age that its linguistic community is using 
subject-verb-object word order.  The abstract categories of 
subject, object and verb are not inferred from observed 
regularities, it is said, they are innate.  More precisely, the 
child is innately predisposed, at a certain stage of maturity, to 
represent linguistic data in structural fashion.   This quite 
naturally simplifies the learning problem, for it allows that the 
input which serves as data for learning language comes in a 
preprocessed form.   Language acquisition starts only after these 
abstract categories are represented by the child.    They are 
called abstract because `their boundaries and labeling are not in 
general physically marked in any way; rather, they are mental 
constructions.' (footnote 9) 
 
According to innatist doctrine language acquisition is further 
simplified by additional constraints that come into play when 
triggered by certain discoveries.  Thus, once a child notes its 
language has S-V-O structure a set of triggers are fired -- or 
parameters set -- concerning related assumptions, such as that 
the language is not inflected. 
 
Now because of all these constraints (footnote 10) on how children conjecture 
grammars the class of learnable grammars is an immensely reduced 
subset of context free grammars plus transformations.   Only 
certain grammars are possible starting places because only 



certain grammars will satisfy the framework of rules and 
principles, and because of additional constraints only certain 
grammars are accessible at any point.  Universal grammar, 
therefore, constrains the possible trajectories of learning as 
well as the space of learnable grammars. 
 
Needless to say one of the most unpalatable aspects of the strong 
innatist position is the very specificity of the framework of 
rules and principles.   In order to combat this view and to show 
that stable grammars are learnable without such specific 
assumptions about the nature of linguistic structures and 
representations, PDP oriented linguists have sought new sources 
of empirical information about language. 
 
>From a PDP perspective where might this extra information come 
from?  Two empirical sources are obvious candidates: observable 
facts about the communicative context, and spoonfeeding the child 
a special diet of sentences to learn from.  Let us briefly 
consider each in turn. 
 
The first conjecture is the most obvious:  in early phases of 
language learning parents tie many of their utterances to visible 
circumstances.     If a child were to assume that what it hears 
at first relates to the structure of the visual scene in front of 
it, then it has extra information about the content of the 
utterance. 
 
No one of any linguistic persuasion, to my knowledge, has 
seriously denied that the context of utterance supplies valuable 
information to learners of a language.   Ostension is an integral 
part of language learning.   The mystery which all admit is to 
explain how the structuring process in visual understanding, or 
auditory understanding,(footnote 11) might effect the structuring process in 
language understanding, Indeed how are the two related at an 
abstract level? 
 
One suggestion by Langacker (footnote 12) is that the child has structural 
schemata to help it parse visual scenes into comprehensible 
structures.  If the structure of visual scenes is somehow 
mirrored at some level in the structure of the linguistic 
representations of those same scenes, then the child has specific 
information about linguistic structures that goes beyond positive 
examples, for it has pairings of , or, at any 



rate, additional information about the meaning of certain 
utterances. 
 
As attractive as this suggestion is, at this stage, convincing 
neuropsychological details of the alleged linkage between scene 
parsing and linguistic parsing are absent.    We suspect that 
visual scene parsing might be related to either syntactic or 
semantic structure because we currently believe that almost 50% 
of the brain is devoted to visual processing; that somehow vision 
and speech are linked since we can say what we see; and that 
lesions to the visual cortex can have surprising effects on 
speech abilities. (footnote 13) But we have no detailed accounts of how a 
child might use information about visual context to bootstrap its 
way to a rough grasp of syntax for even directly referential 
sentences.    Moreover, assuming such accounts are one day 
provided, they still will not serve as proof that context plus 
positive instances suffice for language learning unless two other 
conditions are proven: 1) that a child can recognize and treat as 
special the communicative context without having to be taught 
that fact using language; and 2) that no information beyond 
knowledge of context is required to overcome the insufficiency of 
positive information alone. 
 
In the absence of a formal proof of 2) a PDP demonstration of 
language learning on the basis of context and positive examples 
would only be suggestive in establishing their sufficiency for 
some languages, and some data sets.   Aside from the need to 
undertake enough mathematical analysis to generalize the result 
to many languages and many naturally occurring data sets , there 
remains our initial concern that PDP learnability is not itself 
an existence proof of inductive learnability because so much 
information is potentially hidden in the design of the PDP 
experiments.   PDP learnability cannot establish that no language 
specific knowledge is required for language learning until its 
own design assumptions have been shown to be language 
independent. 
 
The case is no better with the second possible source of extra 
information -- distributional properties of positive examples, 
and/or the frequency with which they are repeated.   If sentences 
are presented in a controlled manner, simple sentences being 
presented before harder ones, with the choice of the next 
sentence to be presented determined by a teacher aiming to push 



the student on to the best next grammar, might it not be possible 
to converge on an acceptable grammar? 
 
Perhaps spoonfeeding will work.   We already know that for 
context free grammars a careful diet of positive examples can 
guarantee convergence on the correct grammar.  For it has been 
proven that for stochastic context free grammars: 
 
 if the training instances are presented to the 
 program repeatedly, with the frequency proportional 
  to their probability of being in the language ...  
 the program can estimate the probability of a given 
 string by measuring its frequency of occurrence in  
 the finite sample.  In the limit, [this method of] 
 stochastic presentation gives as much information  
 as informant presentation of positive and negative 
  examples: Ungrammatical strings have zero  
 probability, and grammatical strings have positive  
 probability. (footnote 14) 
 
To date, however, this proof has not been generalized to harder 
than context free grammars. Eg. context sensitive,or unrestricted 
rewriting grammars. 
 
When formal proof is absent empirical success is informative.  A 
PDP network which learns a natural language when trained on a 
careful diet of positive examples, will, not surprisingly, be 
received with considerable interest.  But as with claims about 
structure from context, experimental demonstration of language 
learning can at best establish the possibility of learning 
certain languages in certain circumstances.  It is an existence 
proof that there are languages and data sets that can be learned 
by PDP networks.  The trick is to show that this result 
generalizes to all naturally learnable languages (or that the 
conditions of learning English, or French are isomorphic to the 
structured data sets used in successful simulations); and that 
the assumptions built into the design and learning rule of the 
successful PDP system are domain independent.   In short, it is 
necessary to show that PDP experiments in language learning do 
not presuppose the very assumption they wish to test: that 
specific knowledge of language is necessary for learning. 
 
It is time now to turn directly to the question of what domain 



specificity means. 
 
 
WHAT IS DOMAIN SPECIFIC KNOWLEDGE? 
 
In AI the notion of domain specific knowledge became familiar 
with the development of expert systems where an explicit 
distinction was drawn between the general principles of reasoning 
built into an inference engine, and the collection of problem 
specific facts, goals and procedures that serve as input to the 
inference engine.  In the simplest case, the inference engine is 
simply a box for deriving deductive conclusions. Domain knowledge 
might include premisses such as that all people are mortal, and 
that Socrates is a person. The output would be the conclusion 
that Socrates is mortal.    In slightly more complex cases, 
domain knowledge might include premisses plus control knowledge 
to reduce the search of the logic engine.   For given a set of 
axioms as input, it may take an enormous amount of undirected 
search of theorem space to locate the sought for conclusion.  In 
still more complex cases, the inference engine itself might be 
made more powerful, capable of drawing inductive or even 
abductive inferences.  In this last case, the engine conjectures 
hypotheses to explain the input data.  Language learning as 
portrayed in the parameter setting model can be interpreted in 
this light if we take as the data to be explained sentences about 
a language, and add to that data additional inputs concerning the 
type and range of plausible conjectures, and interparameter 
constraints.  See figure 1. 
 
The AI distinction between domain specific and domain independent 
is not a rigorous one.  The intuition appealed to is that a piece 
of information is domain specific if it is not useful or 
applicable in many different domains or many different types of 
problems.   General strategies for deduction, induction, and 
abduction, then, as well as general strategies for search, 
sorting, classifying, normally fall on the domain independent 
side.   On the domain dependent side we expect to find 
specialized search control knowledge, metrics on goodness etc, 
and factual data about the domain entities and their relations. 
 
Let us see if this intuitive idea can be tightened up. 
 
GENERAL COGNITIVE RESOURCES VS DOMAIN KNOWLEDGE. 



 
To begin, consider why we normally suppose there is a difference 
between general computational or cognitive resources and domain 
knowledge. 
 
Chomsky has long drawn a distinction between linguistic 
competence -- the system of knowledge an agent has about the 
grammar of its language -- and linguistic performance -- the 
system of linguistic behaviours an agent displays.   According to 
the doctrine linguistic performance inevitably falls short of 
displaying a speaker's full competence because real agents have 
limited memory, calculating speed, and awareness, in short, 
limited general cognitive capacities.  It is these resource 
limitations, not knowledge, which explains why we find people 
revealing deficits in comprehending sentences with embedded 
clauses and the like.  Central to the competence performance 
distinction, then, is the idea that these deficits are general, 
and have nothing to do with linguistic domains in particular. 
Computations have costs, and these invariably become reflected in 
performance.  Let us look at this difference between 
computational resource and domain knowledge more closely. 
 
Classically, computational resources are the primary quantitative 
features of a computation.   The amount of short and long term 
memory used, or the number of steps required to calculate an 
answer, are standard resource attributes of computations.  They 
are measurable aspects of a process. 
 
Knowledge, by contrast, is a qualitative feature (footnote 15) of both a 
computational process and a computational system.  In setting up 
a system to perform a given computation, knowledge of the 
algorithm driving the computation must be installed.   If this 
algorithm is correct the system can be interpreted as containing 
knowledge of this procedure as well as knowledge of certain 
aspects of the problem domain it was designed to work on.  This 
latter knowledge need not be explicitly represented anywhere in 
the system, and indeed is usually thought to be implicit 
knowledge of facts about the domain that are responsible for the 
algorithm's success.  Knowledge of the algorithm and its success 
conditions tend to remain constant throughout a computation.  But 
most of the remaining knowledge in the system is explicit and 
tends to change moment by moment as the computation unfolds. 
Thus, at the outset of a problem, a system may have explicit 



knowledge of the input of the particular problem instance it is 
to solve.  For example, it may know explicitly that its current 
problem is to derive the cube root of 125.   At the close of the 
computation it explicitly knows that the answer is 5.(footnote 16) The 
trajectory of explicit knowledge states in between is a function 
of both resources and algorithm. 
  
Owing to the difference in nature between resources and knowledge 
it is usually possible to distinguish limitations in processing 
capacity due to a shortage of resources from limitations due to 
shortages of knowledge.  Shortages of resources, unlike shortages 
of knowledge, typically show up as a system tackles problem 
instances of larger size.  For instance, a system endowed with 
the right (algorithmic) knowledge to calculate cube roots, should 
be able to compute the correct answer for any sized cube.  But of 
course, as the size of the input number grows, there inevitably 
comes a point where either more memory is required, or more time 
is needed than is available.   The knowledge sufficient to 
compute these larger numbers has not changed; so there is no need 
to add additional knowledge, although this would help.  The 
problem, rather, is that the system ran out of resources. 
 
Shortages of knowledge, unlike shortages of resources, typically 
show up even on the smallest problems.  A system that does not 
know how to calculate cube roots is no more likely to hit on the 
correct answer for a small number than a large number.  Its 
success is random with respect to number size.   Furthermore, the 
addition of knowledge, unlike the addition of resources, need not 
improve performance in linear or even monotonic fashion.  A 
system missing just one crucial piece of knowledge may perform no 
better than a system missing several pieces.  Characteristically, 
additions to memory or computing time monotonically increase 
performance. 
 
The upshot is that change in resources, seem to have domain 
independent effects -- either increasing or decreasing 
performance across domains -- while change in knowledge seems to 
have domain specific effects -- either increasing or decreasing 
performance on specific problems.   This correlation becomes even 
more robust when we consider how a system might compensate for a 
loss of knowledge as compared with how it might compensate for a 
loss of general memory or allotted time.   A reduction in memory 
or processing time can be accommodated on any specific problem 



simply by adding more assumptions -- knowledge -- about that 
problem's solution.  As more information is made explicit about 
the answer set, less computation is required.  This follows 
because at bottom computation is nothing more than the process of 
making explicit information available in an implicit form in a 
complete specification of the problem.   For any particular 
problem, then, knowledge can compensate for resource loss.    But 
no amount of additional computational power can make up for a 
knowledge poor system.    If there is not enough information in a 
complete specification of a problem to determine an answer set, 
the problem is ill posed, and no amount of cleverness in search, 
or of brute computation can compensate.  The answer is not 
implicit in the problem.  Hence resources cannot compensate for 
lack of domain knowledge. 
 
Domain knowledge, on this account, is primarily about the problem 
to be solved:  the kinds of entities that can serve as answers to 
problems, their range of values, and facts about the particular 
problem instance.  This knowledge is necessary if the system is 
to have a clear idea of the problem.   Successful systems will 
have additional knowledge about potentially useful algorithms and 
possibly why they succeed.    If the knowledge in this 
algorithmic component is heuristic, it concerns methods, hints 
and ideas that can reduce search.  In principle it is not 
essential and its loss can be compensated for simply by 
generating more possible answers and testing them for 
correctness.   To do this requires knowledge of what can serve as 
a candidate answer and the conditions a correct answer must 
satisfy.  That is, essential knowledge of the problem. 
Accordingly, it would be more precise to say that resources 
cannot compensate for non-heuristic knowledge loss. 
 
We now can operationalize at least part of the intuitive notion 
of domain specific knowledge as follows: 
 
 A bit of knowledge is domain specific if  
 its loss would have an irremediable effect  
 on task performance.  No amount of additional 
 memory or time is able to bring performance  
 back to its prior level. 
 
Because this definition does not cover heuristic knowledge, which 
is widely understood to be knowledge of domain regularities 



necessary for converting weak methods to strong methods, I shall 
call it essential domain knowledge. 
 
On the assumption that this operational definition captures one 
important aspect of our intuitive idea of domain specificity let 
us try applying it to the assumptions built into PDP experiments. 
 
Recall the nature of the PDP design problem.  Working from a more 
or less careful account of a problem -- eg. learn phrase 
structure grammar from a given set of positive examples -- the 
PDP designer must choose an appropriate network type, topology, 
number of hidden units, momentum factor, ordering of the data, 
number of trials and so forth, that he believes will succeed. 
To inform his choices he will make certain assumptions about the 
order, smoothness, regions of greatest interest etc. of the 
function the network is to learn (henceforth, the target function 
). 
 
How are these assumptions embodied in PDP systems?  The order of 
the target function correlates with the number of hidden units, 
that is, space; the smoothness of the function correlates with 
the number of times the data set is trained on (footnote 17) , that is, the 
time the leaning rule is to be run; the regions of greatest 
interest correlate with the distribution of samples in the data 
set, that is, with factors external to the computation, and the 
choice of net type -- feedforward, Boltzman, fully recurrent , 
etc. -- correlate with the type of function (associative, 
predictive), that is, with the structure of the network itself. 
In short, at least two of the assumptions built into PDP 
experiments -- assumptions of the order and smoothness of the 
target -- which on the surface appear to be domain specific, fail 
to be so according to our operational definition of essential 
domain specificity because there is a correlation between 
resource and knowledge. 
 
What then are we to say about the status of these assumptions? 
If it is true that in PDP systems one of the ways to embody 
knowledge about the target function is by altering the resources 
available for computation, for instance, by adding (memory) 
units, or by adding to training time, we seem obliged to regard 
much of the design knowledge built into networks to be domain 
independent. 
 



Admittedly, there remains the possibility that this knowledge is 
heuristic knowledge; it is not essential domain knowledge, but 
nonetheless domain specific.  But I doubt that this can be 
correct.    First, if choice of number of hidden units were 
important for efficiency only, and networks with the wrong number 
of units were capable of learning, only less likely to do so on 
any given learning attempt, then it ought to be possible in 
principle to learn arbitrary functions even in networks with few 
units.  But we know from Minsky and Papert's analysis of 
perceptrons (footnote 18) that this is false.  Second, if the choice of the 
number of learning trials were merely of heuristic value, it 
ought to be possible to learn functions of arbitrary smoothness. 
Yet as is well known, the smoothness of a function cannot be 
estimated reliably from noisy data.  It is a desideratum which 
must be set.   But then number of learning trials, like number of 
hidden units, is not merely heuristic knowledge, it is essential 
knowledge, for it effects the very way we understand the problem. 
 
Should we reject our operational definition of essential domain 
knowledge, or should we reject the idea I have been tacitly 
assuming all along, that choice of hidden units and trial 
repetitions is domain dependent, that is, domain specific 
knowledge?   My inclination is to drop the definition.  In fields 
like econometrics where statistical estimation of target 
functions is the stuff of life, the shape of the target (eg. 
y=ax3 + bx2 + cx + d or yt = ayt - 1 + b ) drawn from the theory 
of economics.  The econometrician `relies heavily on a priori 
knowledge [drawn from] economic theory'.  (footnote 19) These assumptions 
are not merely heuristic; they are necessary to an adequate 
specification of the estimation problem.   But then are they not 
as domain specific as assumptions can be?  If domain specific 
knowledge is necessary for statistical estimation of functions in 
econometrics, why would it not also be necessary for PDP 
modelling of cognitive capacities, which is also interpreted as a 
mechanism for estimating functions? 
 
Let us try another tack at making more precise the intuitive 
notion of domain specific knowledge. 
 
  
TRANSPARENCY OF DOMAIN KNOWLEDGE 
 
 



Why do the assumptions made in the language learning models of 
generative linguistics seem to be domain specific?   One easy 
answer is that those assumptions transparently refer to entities, 
facts and regularities of languages. 
 
Parameter setting models are based on the theory of UG (universal 
grammar) which adverts to structural descriptions of sentences, 
to constraints on transformations between those essentially 
linguistic structures, and to entities or notions such as bound 
anaphor which are undefined outside of language studies. 
Parameter setting models are transparently about language because 
the concepts mentioned in these language learning models cannot 
be readily divorced from language.  One could define a set of 
mathematical structures that are isomorphic to the structures 
discussed in generative linguistics. And so convert linguistics 
into a branch of mathematics that now is about formal structures 
rather than human languages. But these formal structures are not 
motivated by extra-linguistic considerations.  They are solely 
motivated by the study of language.  Thus it is not an accident 
that there is an independent mathematical theory of tree 
structures, but not of phrase structures, or bound anaphors. 
These last are too idiosyncratic.  See figure 2. 
 
 
It is worth putting this argument in simpler terms.  What makes a 
set of assumptions specific to a domain is that those assumptions 
are about entities and structures that are special to that 
domain.  They are not general mathematical entities, such as 
functions or graphs, which have general application to many 
fields.   They are highly specific and idiosyncratic -- so 
idiosyncratic that the only natural way of talking about those 
entities and structures is in the terms developed in the 
empirical domain they belong to.  Non-generality of structure 
naturally leads to transparency of discourse. 
 
 Knowledge is domain specific if it transparently  
 refers to entities and facts that are not general 
  or generic, but rather specialized and idiosyncratic  
 to the domain in question. 
 
On this account PDP based theories of language learning, based as 
they are on assumptions about the form, style and size of 
networks needed to instantiate certain linguistic functions, the 



learning rule, the kind and distribution of data it will be 
trained on, and the number of times the data will be sent 
through, mention nothing that is transparently about language. 
Virtually the same assumptions could apply, for all we know, to 
auditory processing, linguistic processing or visual processing; 
and the very same network and learning rule if fed different data 
could be used to learn other functions.  So prima facie language 
learning networks do not contain knowledge about the linguistic 
domain per se; they contain knowledge about the formal properties 
of certain functions.   Hence PDP learning models contain no 
domain specific knowledge. 
  
 
As reasonable as this argument may seem there is at least one 
good reason for not accepting it: descriptions do not have to 
appear to be about the objects they refer to to actually refer to 
them.   Transparency of reference cannot be necessary for domain 
specificity. 
 
The argument for non-transparency is familiar in philosophical 
circles. Descriptions may be referentially opaque.  It is 
possible to refer to the actions of a pocket calculator as the 
manipulation of numbers rather than the manipulation of numerals 
or electric currents, and to the field of physics as whatever 
physicists study.   The common feature of these descriptions is 
that they refer indirectly.  They seem to be about one thing -- 
numerals, electric current, the actions of physicists -- but in 
fact refer to entities that are more directly designated by other 
expressions -- numbers, quarks and force fields. 
 
But then we can grant that transparency can serve as a sufficient 
condition for knowledge being specifically about a domain, yet 
deny that it is a necessary condition.  It is entirely natural 
that descriptions of networks and data sets appear to be about 
networks and data sets, and that the assumptions going into the 
choice of an architecture seem to be about the order and shape of 
the target function, yet they nonetheless refer to assumptions 
about linguistic properties and structures.    Transparency is 
not necessary. 
 
LAW-LIKE ATTUNEMENT TO DOMAIN REGULARITIES 
 
Perhaps the strongest reason for considering parameter setting 



models of language acquisition to be so clearly about language 
specific entities and facts is that every accessible parameter 
setting in one of these theories defines a possible language -- a 
possible human grammar.  Parametric space somehow mirrors 
linguistic space.  The intuition here is that the parametric 
framework is perfectly tuned to the structure of human language. 
(footnote 20) This means that the assumptions that are built into a 
parametric model are not just about English or French or a few 
other natural languages -- ie. particular examples of the 
language learning task.  They are about any language that a human 
now or in the future could speak -- any example of the task.  All 
and only possible human languages are definable as vectors in 
parameter space.   No non-human languages are describable. See 
figure 3.  Thus what makes parameter setting models seem to be 
about human language rather than, say, about some formal game, is 
that they are tuned to the possible, not merely the actual.   The 
formalism of parametric theories is (supposed to be) perfectly 
adapted to language.  It is related in a lawlike way to language 
because it captures what is essential to language -- the 
constraints on possibility. See Figure 3. 
 
The idea here is that the way to decide whether a system has 
knowledge about a given domain and not about some other domain is 
to consider the counterfactual implications of the assumptions it 
embodies.  There is a familiar precedent for this.  The normal 
way of deciding whether a person has a particular concept -- say 
the concept of cup -- is to see if he or she calls all cups cups 
and then to see if s/he is disposed to go on to use cup in the 
right way in the future.  Shown cup-like objects they have never 
before seen they must classify them the way people who we agree 
understand the term would also classify them. That is, we assume 
they have the right counterfactual dispositions.  It is this 
counterfactual ability that is thought to distinguish 
coincidental connection from lawlike connection.    It locks the 
concept to its referent. 
 
We can state this condition on domain specificity as follows: 
 
 Knowledge is specific to a domain if it is connected  
 in a lawlike way to the possible entities and structures  
 of that domain. 
 
Although we cannot use this as an operational definition of 



domain specific knowledge unless we can decide when the elements 
of knowledge are connected to entities in a lawlike way, we can 
still put to use the idea that assumptions built into a 
computational system are domain specific, or task specific, when 
they are exactly tuned to the properties of the task. 
 
For instance we can ask what conditions would a network have to 
satisfy to be counterfactually attuned to language in just the 
way parameter setting models are.   If we were to discover that 
successful language learning networks satisfy these conditions, 
then we would have reason to suspect that the assumptions that go 
into their design are equal in size and specificity to those 
built into parameter setting models.  If we think the one has 
domain knowledge built into it, we ought to believe the other has 
it too. 
 
Here then are the conditions on a networkese version of a 
parameter setting model. 
 
 1) There is a well defined family of networks N0 --  
 the class of networks pre-tuned to the structure of  
 human languages -- that have the appropriate design  
 to learn any human language when subjected to the same  
 type of linguistic data as human children. 
 
 2) The trajectory of grammars (system of linguistic  
 behaviours) these networks would describe as they  
 converge on the steady state grammar mirrors that  
 of human children.  That is, when learning human  
 languages, these networks are constrained to pass 
 through phases or stages of behaviour that duplicate  
 those which children pass through.  Only certain  
 grammars can be tried out in the course of learning. 
  The learning rule, therefore, must be such that when 
 coupled with the data set it issues in `stable 
 points' -- regions of current best estimate of the  
 best function fitting the data -- that mimic allowable  
 vector trajectories in parameter space.  Each of  
 these stable points represents one of the possible  
 grammars the child is trying out.  It is a grammar 
 of a possible natural language. 
 
 



If the choice of architecture, learning rule, diet, number of 
epoques and the rest are as constraining to network and network 
trajectory as 1) and 2) I cannot see how anyone can deny that 
network models of language contain domain specific information, 
and that N0 , in particular, has as much information about 
language as a parameter setting model.   That would settle the 
question once and for all whether PDP networks have domain 
specific knowledge in them. 
 
Once more, however, the matter is not so easily resolved. There 
is at least one good reason for supposing that the assumptions 
that go into choice of architecture, etc., are not in fact this 
constraining.   Gradient descent methods, such as backprop, are 
too sensitive to initial settings of the weight vector to expect 
all paths leading to stable grammars to be similar.  The same 
network starting from slightly different intializations could 
describe substantially different trajectories.   The same is true 
if we are comparing the trajectory of different networks in N0: 
each will have its own idiosyncratic path from initial to final 
state.    Moreover, gradient descent methods are weak methods; 
there is no provision for extra control information (footnote 21) of the sort 
that would overrule choice of the steepest descent.   As a 
result, there is nothing to prevent networks from trying out 
weight vectors that have no counterpart in parameter space. 
They are not prohibited from temporarily settling on intermediate 
representations and sub functions in their inductive search for 
the steady state grammar just because those representations or 
sub functions are not linguistically `natural'.  From the 
network's vantage nothing is linguistically natural or unnatural. 
The learning rule is domain independent. 
 
Here again is an argument for less innate domain knowledge.   But 
note, it cannot be an argument for no domain knowledge.  For in 
the phrase `counterpart in parameter space' we are making tacit 
reference to an interpretation function that maps vectors in 
weight space to expressions in another more linguistically 
transparent formalism.    If we could agree on such a formalism 
we could apply it to the initial conditions of the entire family 
of successful PDP language learning networks and look for 
invariants.   Accordingly, in my opinion, the interesting 
question PDP studies of language learning raise is not how much 
of language is innate, but what about language is innate. 
 



To solve this will require agreeing on an interpretation function 
for language learning networks. One major source of dispute among 
PDP oriented linguists and generative linguists is over what the 
appropriate linguistically transparent formalism should be.   It 
is fairly clear that some such formalism is necessary.  For if 
there were not some way of interpreting the linguistic 
information in networks there would be no way of knowing whether 
two networks converge on the same grammar or different grammars. 
Similarly there would be no way of knowing if there were any 
interesting linguistic information present in the starting state 
of all successful networks.  It would not even be possible to 
derive linguistic generalizations from studying families of 
successful networks.  So settling on an interpretation function 
is essential to PDP linguistic studies.   But it also throws us 
right back to the question of what constitutes the domain of 
language -- a question which some see as the defining question of 
the empirical field of linguistics. 
  
 
SUMMARY 
 
I have been considering some of the problems undermining efforts 
to use PDP simulations of language learning as existence proofs 
that innate knowledge of language is not necessary for language 
learning.   Virtually all parties to the dispute agree that some 
knowledge or some learning strategies must be innate but there 
has been widespread disagreement over how domain specific that 
innate knowledge must be. 
 
I tried to elucidate the notion of domain specificity by 
appealing to reasonable intuitions we have.   We think that there 
is a genuine difference between cognitive limitations brought on 
by scarce cognitive resources and cognitive limitations due to 
insufficient knowledge.  A difference, moreover, that might 
clarify the meaning of domain specific.  But when applied to PDP 
style architectures this distinction proved parochial. 
 
I then tried linking domain specificity to referential 
transparency:  an assumption is about a specific domain if the 
entities and structures it refers to are idiosyncratic -- highly 
specialized.  The more specific the entities the fewer the 
domains those entities could belong to.  Assumptions about those 
entities, therefore, would have to be about the specific domain 



they belong to.   This intuition I granted could serve as a 
sufficient condition for domain specific knowledge, but it was 
too exclusive to be a necessary condition.   PDP systems might be 
built on more generic assumptions about functions, and so forth, 
and yet incorporate domain specific knowledge. 
 
This led me to my final intuition that an assumption that is 
built into a system carries information specific to a domain if 
it is connected to entities in that domain in a law-like manner. 
This has the virtue that some assumptions can be about 
non-idiosyncratic entities.  But it left us grasping for a way of 
translating the assumptions built into a computational system 
into a transparent formalism.    I argued that because networks 
are not transparently about language we must have an 
interpretation function to map PDP design assumptions into 
expressions in another more linguistically transparent formalism. 
Else we could not determine what entities particular system 
assumptions corresponded to.  The very question of linguistics, 
however, is what should this formalism be.  It is the hope of PDP 
linguists that the way to discover this formalism is by extensive 
PDP modelling.    It is too early to say how successful this 
approach will be.  One thing we can be certain of, though, 
whatever theory is eventually preferred it will show that there 
is substantial information about language in the initial states 
of language learning networks.  What I hope I have established is 
that this is not in itself an interesting question.  The real 
question is what is this innate knowledge of language. 
 
I want to close now with an argument that should chasten anyone 
who believes that vanilla domain assumptions will suffice for PDP 
learnability of language, and that the vaunted power of PDP 
systems to learn intermediate representations can do away with 
all but the most rudimentary assumptions about language.   In my 
opinion it is more likely that substantial innate knowledge of 
language -- in particular, knowledge of the constraints on 
intermediate representations -- will have to be built into PDP 
language learning systems, although as yet we have no settled 
idea what this innate knowledge will look like and how it will 
play itself out in the design of networks complex enough to learn 
natural languages. 
 
 
 



THE NEED FOR CONSTRAINTS ON INTERMEDIATE REPRESENTATIONS 
 
In any multi-layered PDP system part of the job of intermediate 
layers is to convert input into a suitable set of intermediate 
representations to simplify the problem enough to make it 
solvable.   One reason PDP modelling is popular is because nets 
are supposed to learn intermediate representations.  They do this 
by becoming attuned to regularities in the input. 
 
What if the regularities they need to be attuned to are not in 
the input?   Or rather, what if so little of a regularity is 
present in the data that for all intents and purposes it would be 
totally serendipitous to strike upon it?   It seems to me that 
such a demonstration would constitute a form of the poverty of 
stimulus argument. 
 
The example I wish to discuss is illustrative only.  I have no 
reason to suppose that it is especially analogous to the problem 
of language learning.  But it is consistent with the theoretical 
nature of much of generative linguistics. 
 
Consider, then, the problem of representation posed by the 
mutilated checkerboard.  See figure 4.   The problem is a 
straightforward tiling question:  can dominoes 1 by 2 in size, be 
placed so as to completely cover an 8 by 8 surface with 1 by 1 
regions missing from position (1 8) and (8 1). 
 
To solve tiling problems in general requires substantial search. 
But as is well known, we are able to quickly solve this 
particular problem by treating the surface as a square 
checkerboard missing the opposite ends of a diagonal.  We can 
then exploit the familiar property that all tiles along a 
diagonal of an n by n checkerboard will be the same colour. 
Clipping the ends off a diagonal will therefore reduce the number 
of, say, black squares by 2 while leaving the number of white 
squares constant.  Because each domino covers exactly one black 
and one white square there can be no pattern of tiling to 
completely cover diagonally mutilated boards. See Figure 4. 
 
There are several ways we might interpret this patterned 
Euclidean space but the one I prefer treats checkering as akin to 
a geometric construction.  A legitimate geometric construction 
never violates the rules of geometry.  It adds additional 



structures which if well chosen alter the original problem 
situation by making explicit properties and constraints that were 
otherwise implicit.  When such properties are felicitous they 
make discovery of the target property easier. 
 
In checkering a board we are adding a structure to the bare 
statement of the tiling problem.  This structure is not in the 
input, so it is not inductively inferable.   It is a legitimate 
addition because the way a given space will checker, and the set 
of properties that follow from checkering it, is determined by 
the axioms of the space.   But there are also an indefinite 
number of structures consistent with Euclidean geometry which we 
are not considering, because they are irrelevant to solving the 
current problem.   Choosing the right structure to add requires 
insight.  Accordingly, we ought to view checkering to be a hint, 
or better, a facilitating property, that lets us discover 
properties of Euclidean surfaces that would otherwise be hidden. 
 
What if the discovery of grammar requires the same felicitous 
addition of structure to the data of discourse?    If such 
structure is consistent with the data but not inductively 
derivable from it then inductive engines, such as PDP systems, 
might yet discover grammar by other more lengthy methods, but 
miss the quick discovery that comes from operating with the right 
hint.   This is the spirit in which I interpret Chomsky's 
arguments about the necessity of recoding the input of speech in 
structured form. 
 
Now prima facie there is no reason PDP networks cannot be 
designed to bias recoding input in ways which lend themselves to 
discovery of the best intermediate representations.   But to do 
so requires substantial prior analysis of the linguistic domain. 
The translation to networkese may be as natural as constructing a 
net in phases, with the global language learning problem broken 
down into tractable subproblems, each assigned to separate nets 
to learn.  Or again, perhaps the solution will involve creating 
low bandwidth linkages between appropriately designed subnets. 
If either of these cases are close to the mark, PDP theorists 
will have to enter the design phase with a tremendous amount of 
domain specific information.  For now we are not just concerned 
with the order of a function but with its internal structure too. 
That is, we have decomposed the function into a set of composable 
parts -- each with its own order etc -- and we have chosen a way 



for the parts to interact. 
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