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1.  Introduction

Recently there has been a lot of discussion on evolutionary debunk-
ing arguments, especially in the moral domain (e. g., Street 2006; see 
Vavova 2014 for review), and lately also in the mathematical domain. 
On the face of it, evolved features of numerical cognition support re-
alism about numbers. For instance, Joyce (2006, 135) has claimed that 
truth and fitness in the mathematical case, unlike in the moral case, 
do not come apart: “we have no grasp of how this belief [the belief 
that 1 + 1 = 2] might have enhanced reproductive fitness independent 
of assuming its truth”. By contrast, Clarke-Doane (2012) has argued 
that the evolutionary challenge for moral realism applies equally to 
mathematical realism: if evolutionary debunking arguments can suc-
cessfully undermine moral realism, they can also undermine math-
ematical realism. 

Surprisingly, in these discussions about mathematical realism and 
evolution, there has been no attention paid to evolved features of nu-
merical cognition in humans and other animals. For instance, Sinnott-
Armstrong (2006, 43) writes, “People evolved to believe that 2 + 3 = 
5, because they would not have survived if they had believed that 2 
+ 3 = 4, but the reason why they would not have survived then is that 
it is true that 2 + 3 = 5. The same goes for the belief that wild animal 
bites hurt. In such cases, the truth of the belief explains why it is use-
ful to believe it.” As I will demonstrate further on, the belief that 2 + 3 
= 5 lies outside of the scope of evolved numerical cognition — without 
the help of culturally developed tools such as counting, we would not 
know whether 2 + 3 = 4, 5, or even 8, although we’d know that 2 + 3 is 
definitely not 100. 

To find out whether evolved numerical cognition supports antire-
alism or realism about numbers, philosophers need to move beyond 
broad generalizations, and look at what the empirical data support. 
Fortunately, we are in an excellent epistemic situation to do this. Nu-
merical cognition ranks among the most extensively studied higher 
cognitive functions in animals, so we have at our disposal a wealth of 
empirical data that is potentially relevant for philosophical arguments 
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evolutionary debunking arguments. Such arguments have the follow-
ing general form:1

1. We have an evolved propensity to believe that p, where p is 
a belief about abstract objects in domain D, because this 
belief conferred an adaptive advantage to our ancestors.

2. Even if it were the case that ¬p in some realist sense, it would 
still have been more adaptively advantageous to believe 
that p.

3. (from 1 and 2) We would have believed that p regardless of 
the actual truth value of p.

4. Therefore, our belief that p does not track a mind-indepen-
dent property of abstract objects in D.

Premise 1 accords an important causal role to evolution in the forma-
tion of our beliefs: evolution has played a “tremendous role” (Street 
2006, 109) in shaping our belief-forming attitudes. Remarkably, prem-
ise 1 is seldom argued for in detail, yet, as Kahane (2011, 111) puts it, 
this premise makes an “extremely ambitious empirical claim”, espe-
cially given that the data to secure this premise are lacking for many 
domains in which evolutionary debunking arguments are proposed. 
The next section will consider the evolutionary origins of numerical 
cognition to evaluate the plausibility of premise 1. 

Premise 2 holds that a realm of abstract entities (in the moral, 
mathematical, religious, etc. domain), if it exists, does not influence 
the evolutionary trajectory of the cognitive faculties that represent 
them. Therefore, (3) evolved beliefs are insensitive to the truth-value 
of abstract objects, which leads to the conclusion (4) that our evolved 
beliefs do not track facts about abstract objects. Appealing to parsi-
mony, antirealists argue that antirealism is more compatible with the 
evolutionary history of our beliefs than realism. 

1.	 This schema captures the structure of evolutionary debunking arguments 
against realism. For a more general schema for evolutionary debunking argu-
ments, see Kahane (2011).

about the compatibility of numerical cognition with realism or 
antirealism. 

In this paper, I will look in detail at the functional properties of 
evolved numerical cognition and examine whether this supports re-
alism or antirealism. In section 2, I briefly review evolutionary argu-
ments and realism about numbers. Section 3 looks at the nuts and 
bolts of evolved numerical cognition, showing that there is over-
whelming empirical support for the claim that a wide range of animals 
(including humans) have an evolved propensity to represent discrete 
magnitudes in their environment (“numerosities”). Section 4 presents 
a positive program, where I explore how realism about numbers could 
be true, given what we know about evolved numerical cognition. I 
formulate an argument for mathematical realism as an inference to the 
best explanation for functional features of numerical cognition. Sec-
tion 5 concludes that evolved features of mathematical cognition can 
be explained in a realist way, challenging Clarke-Doane’s evolutionary 
argument against mathematical realism. 

2.  Evolution and realism about numbers

An enduring debate in the philosophy of mathematics concerns the 
ontological status of numbers, such as 2, π, and 34,295.17. Realists (e. g., 
Baker 2005) argue that numbers exist mind-independently, where-
as antirealists (or nominalists) propose that numbers do not exist 
apart from our own minds (e. g., Leng 2005). Among the varieties of 
mathematical realism, the most influential remains platonism, which 
specifies that abstract entities are nonphysical; they are not located 
in space-time, and cannot stand in causal relation to physical states 
of affairs. 

What reasons do we have to assume that such acausal entities ex-
ist? Realism about numbers, as well as about moral facts and other 
putative abstract entities, has recently come under pressure from 
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are not numbers, and so their properties do not directly bear on the 
question of whether numbers exist. However, without numerosities 
it is doubtful that we would be able to represent any numbers at all. 
Studies of patients with brain damage (e. g., Dehaene & Cohen 1997) 
that affects their ability to represent numerosities, and of children 
with developmental dyscalculia (Mussolin et al. 2010), suggest that 
symbolic arithmetic, including simple arithmetical operations such as 
addition and subtraction, crucially depends on our ability to repre-
sent numerosities. The majority of cognitive scientists believe that 
cultural numerical representations are understood by being mapped 
onto numerosities (see Ansari 2008 for a review, but see Rips et al. 
2008 for a dissenting voice). They reach this conclusion by observing 
that nonsymbolic and symbolic representations of numbers activate 
similar brain areas. For example, the spoken word ‘three’, the Arabic 
digit 3, and a collection of three items all activate the intraparietal 
sulci, which are implicated in a variety of numerical tasks (Eger et 
al. 2003). Thus numerosities are of crucial importance to understand 
how we represent numbers, even if the latter are culturally contingent, 
e. g., not all languages have systems of natural numbers (see De Cruz 
2008 for review). 

Mammals, birds, amphibians, and even insects can distinguish be-
tween small numerosities, consisting of up to three (sometimes four) 
entities (e. g., Dacke & Srinivasan 2008). This quick and unlearned 
ability to enumerate small collections, subitizing, has been found in 
all animals tested for it, including human newborns (Antell & Keating 
1983). Adults are faster and less error-prone when calculating with nu-
merosities that lie within the subitizing range than with larger numer-
osities (Revkin et al. 2008). When prevented from counting or using 
other symbolic representations of number, Western adults are unable 
to calculate precisely with numerosities > 3. For instance, adults pre-
vented from subvocal counting (by having to say ‘the’ aloud with each 
key press) become increasingly imprecise when having to estimate 
larger numbers of key presses to make (Whalen et al. 1999). 

Higher magnitudes are represented approximately, and can be 

Clarke-Doane (2012) has developed an evolutionary debunking 
argument specifically aimed at mathematical realism. It relies on intu-
itions elicited by the following toy example: Suppose that a lion is hid-
ing behind bush A, and a second lion is hiding behind bush B. Human 
ancestor P believes that 1 + 1 = 2 and flees. Human ancestor Q believes 
that 1 + 1 = 0 and stays. Prima facie, we can argue that because 1 + 1 = 2, 
ancestor P has an advantage over Q. This arithmetical truth figures in 
the evolutionary explanation, therefore, our belief that 1 + 1 = 2 tracks 
a mathematical truth. However, Clarke-Doane (2012) proceeds with a 
counterfactual scenario, imagining a world where 1 + 1 really equals 0. 
Realistically construed, 1 + 1 = 0 speaks about numbers. Now suppose 
we hold the first-order logical truths constant, but change the mathe-
matical truth to 1 + 1 = 0. In that case, ancestor Q, although she now has 
the correct mathematical belief, would still get eaten, as there would 
still be one lion and another lion waiting for her. Accordingly, numeri-
cal truths do not play a relevant role in this evolutionary scenario — if 
the numerical truths had been different, but the first-order properties 
remained the same, it would have been more adaptively advantageous 
to believe that 1 + 1 = 2. In the next section, I examine the psychological 
literature on numerical cognition to assess whether premise 1 holds for 
numbers. In section 4, I scrutinize Clarke-Doane’s argument in more 
detail. I argue that the current cognitive scientific literature on nu-
merical thinking gives us no good reasons to believe premise 2 is true, 
which opens the possibility of a realist understanding of this literature. 

3.  Evolved numerical cognition

3.1 An evolved ability to represent numerosities
A growing body of experimental and neuropsychological literature in-
dicates that animals have an evolved ability to detect discrete magni-
tudes in their environment. Cognitive scientists distinguish between 
numerosities, the concrete, discrete magnitudes that animals represent, 
and numbers, the abstract entities that are studied by mathematicians 
and philosophers of mathematics (De Cruz et al. 2010). Numerosities 
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the roars of either 1 or 3 unfamiliar individuals. As lionesses recognize 
each other’s voices, the recordings mimicked unfamiliar intruders into 
the territory. Lionesses were more likely to approach the tape recorder 
if the members of their own pride that were present outnumbered the 
recorded number of individuals (e. g., 6 of the own pride versus 3 re-
corded voices), presumably because the probability of winning a po-
tentially fatal confrontation was higher in such cases.

In mammals, numerical cognition depends on specialized areas in 
the neocortex, including the bilateral intraparietal cortex, angular gy-
rus, and prefrontal cortex (see Nieder & Dehaene 2009 for review). 
The brain areas involved in recognizing numerosities and perform-
ing arithmetic are similar in rhesus monkeys, three-month-old in-
fants, young children, and numerate adults (Izard et al. 2008). This 
suggests the continued importance of evolved neural structures in 
mature mathematical cognition. People with developmental damage 
to the intraparietal cortex have difficulties performing even simple ar-
ithmetical tasks, such as 4 + 5 (Molko et al. 2003). Also, the proficien-
cy with which children and adults can solve nonverbal, approximate 
numerical tasks correlates strongly with their mathematical aptitude. 
Lourenco et al. (2012) found that college students who were better at 
estimating differences in number and cumulative area were better at 
advanced arithmetic and geometry.

Taken together, this evidence indicates that vertebrates and inver-
tebrates can discriminate numerosities in their environment. Since 
animals spontaneously use numerical information to guide their deci-
sions (e. g., choosing a food source, approaching potential competitors, 
or joining a shoal), it seems plausible that numerical cognition has 
an evolved, adaptive function. Moreover, evolved numerical cognition 
also plays a critical role in our ability to engage in formal arithmetic. 
Thus, premise 1 seems fairly secure for the domain of number.

3.2.  Functional properties of numerical cognition
To assess whether evolved numerical cognition supports realism or an-
tirealism about numbers, we need to look at its functional properties. 

distinguished only with a large enough ratio difference; the higher the 
numerosities, the larger the ratio difference needs to be (Xu & Spelke 
2000). For instance, chicks can discriminate between collections of 2 
and 3 items, but not between 3 and 4, or between 4 and 6 (Rugani et 
al. 2008). Animals and infants can also perform operations such as 
addition and subtraction with small numerosities: babies look longer 
when 1 + 1 = 1 than when 1 + 1 = 2 (Wynn 1992). Dogs have similar 
abilities (West & Young 2002). Animals can also perform addition and 
subtraction on larger numbers, but then they can predict results only 
approximately; e. g., rhesus monkeys cannot exactly predict that 4 + 4 = 
8, but they can pick out 8 when presented with possible solutions 2, 4, 
and 8 (Cantlon & Brannon 2007a). 

For a long time, behavioral biologists assumed that numerical cues 
were a last resort on which animals rely only if no other information 
is available. However, when monkeys can choose between different 
types of cues, such as color, size, shape, and numerosity, to perform a 
matching task, they prefer numerical cues if the ratio differences are 
high enough to allow them to discriminate between different sets of 
items (Cantlon & Brannon 2007b). Under more naturalistic condi-
tions, animals spontaneously rely on numerical information to guide 
a wide range of adaptive decisions, such as where to feed, how to ag-
gregate in social groups, or whether or not to attack. Red-backed sala-
manders, when offered the choice between a tube with 2 live flies and 
one with 3 live flies, select the larger quantity (Uller et al. 2003). Juve-
nile guppies raised in total isolation can distinguish between groups 
composed of 1, 2, or 3 fish, and show an innate preference for larger 
shoals (Bisazza et al. 2010). Wood ducks, of a brood-parasitic species 
that lays its eggs in nests of other birds, use clutch size to guide their 
choice of their host’s nest. When given the choice between pairs of 
nests with different numbers of eggs (20, 15, 10, or 5), females choose 
the nest with the smaller clutch, presumably because in such a nest 
their offspring will likely receive more care (Odell & Eadie 2010). Mc-
Comb et al. (1994) conducted an experiment with free-ranging lions in 
Serengeti National Park, Tanzania, hiding a tape recorder that played 
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location. The resulting output feeds into the summation clusters, neu-
rons that fire at various thresholds (third layer). These summation clus-
ters provide input to the numerosity clusters, which encode cardinal val-
ues (fourth layer). In rhesus monkeys, summation clusters have been 
located in the lateral intraparietal area (Roitman et al. 2007), whereas 
numerosity clusters have been found in the intraparietal sulci and pre-
frontal cortex (Nieder et al. 2006). Neurons in the numerosity cluster 
appear insensitive to the physical characteristics of objects (e. g., their 
size or shape), but are sensitive to cardinality. They do not respond 
exclusively to given cardinalities but rather have a response that is dis-
tributed around given magnitudes. For example, in the rhesus monkey 
brain, individual neurons that have their optimal response rate when 
monkeys see 4 items also exhibit some activation for values between 

A consensus (e. g., Feigenson et al. 2004) holds that animals have two 
distinct systems for representing numerosities: one for small collec-
tions (the object-file system) and one for larger magnitudes (the mag-
nitude system). This two-systems account explains why animals rep-
resent numerosities ≤ 3 precisely, and larger numbers only approxi-
mately. The object-file system (Fig. 1a) represents small (≤ 3) sets of 
discrete objects in a placeholder format as slots that are kept in work-
ing memory. For example, 2 entities are represented as follows: there 
is an entity, and there is another entity numerically distinct from it, 
and each entity is an object, and there is no other object:

(∃x)(∃y){(object[x] & object[y]) & x ≠y & ∀z(object[z] → [z = x] ∨ [z = y])}

Due to limitations on working memory, the object-file system is lim-
ited to 3 (sometimes 4, depending on individual variation). Animals 
lose track when having to represent an entity, another entity, another 
entity, yet another entity, etc. This explains why animals can discern 
collections of ≤ 3 at a glance, but are inaccurate for larger cardinalities 
(Feigenson & Carey 2005).

The approximate-magnitude system handles numerosities > 3 (Fig. 1b). 
There is disagreement about how this system works, so I will focus on 
one neural network model, the numerosity-detector model2 (Dehaene 
& Changeux 1993; see also Dehaene 2007). In this model, numerosi-
ties are represented through a multi-layered neural network. Perceptual 
input, provided by visual, tactile, or auditory stimuli, constitutes the 
first layer of processing. The stimuli are converted into representations 
of discrete objects. For instance, our early visual processing detects 
boundaries between objects by their light and dark contrasts. These 
representations of discrete objects serve as input to the location map, 
the second layer of processing. The location map abstracts away from 
individual properties, converting each object into a separate, parallel 

2.	 A competing model is the mode-control model (e. g., Cordes et al. 2007), 
which proposes that numerical magnitudes are like cups of water that are 
being poured into a bucket (mental accumulator). Numerosities are repre-
sented along a mental number line, with each numerosity being represented 
by increasingly broadening tuning curves (scalar variability). 

Figure 1: Two models of numerical cognition: (a) the object-file 
system for small numerosities ≤ 3, (b) the approximate-magni-
tude system for larger numerosities.
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of antirealism. How can animals adaptively respond to first-order logi-
cal properties in their environment by representing numerosities, giv-
en that truths about numbers do not co-vary with first-order logical 
truths? There is a candidate cognitive mechanism that would explain 
animal adaptive behavior in the absence of numbers: the object-file 
system. As we saw earlier, the object-file system (e. g., Feigenson & Car-
ey 2005) maps onto first-order logical properties of the environment. 
The object-file system would provide a straightforward explanation for 
how animals can represent numerosities, assuming antirealism about 
numbers. This would provide support for the antirealist case. 

However, as we have seen, animals, infants, and even numerate 
adults who are prevented from counting cannot keep numerosities 
over 3 or 4 in working memory, and need to rely on approximate mag-
nitudes rather than the object-file system. They cannot use object files 
when comparing or reckoning with numerosities > 3. When ancestors 
P and Q have to decide whether to forage at a bush with 50 fruits or 
one with 100 fruits, they need to use approximate magnitudes, rather 
than object files. Similarly, when ancestors P and Q evaluate whether 
to engage in a fight with ancestors from a nearby group, they rely on 
approximate magnitudes to examine whether their own group or the 
rival group is larger. 

What do approximate magnitudes track? Given the naturalistic 
angle of evolutionary arguments for or against realism, it makes sense 
to let our ontological questions be informed by the scientific practices 
in a given domain (see Bangu 2012 for a defense of this claim). Sci-
entific practice suggests a crucial explanatory role for numbers in re-
search on numerical cognition. Cognitive scientists take care to isolate 
numerical properties (rather than other magnitude properties, such 
as visual density or continuous size) when testing animal numerical 
cognition. Such controls have become the standard in studies of math-
ematical cognition. For example, even when using naturalistic stimuli, 
such as fish in a shoal, to examine preferences for larger shoals, re-
searchers take care to control for visual density and for total area of the 
shoals (Dadda et al. 2009). In their fMRI study of numerical cognition, 

2 and 6 (Tudusciuc & Nieder 2007). Since neural resources are lim-
ited, this model predicts a logarithmic spacing of neural thresholds, 
such that a decreasing number of neurons are allocated to increasingly 
large numerosities. As a result, it becomes progressively harder to tell 
apart numerosities as they increase. Neurons in numerosity clusters 
respond to numerosities in a wide variety of formats, including visual, 
nonsymbolic, symbolic, and auditory formats (e. g., Piazza et al. 2007). 

4.  A realist case for evolved numerical cognition

4.1 What does numerical cognition track?
Based on a thought experiment involving ancestors predicting the 
presence of lions behind bushes, Clarke-Doane (2012) argues that 
animals’ adaptive responses would remain the same — assuming first-
order logical truths remained constant — if the corresponding math-
ematical truths differed. Thus, even if 1 + 1 = 0 (a claim about numbers), 
we would still be better off believing 1 + 1 = 2 (our beliefs being in line 
with first-order logical truths about lions behind bushes), which pro-
vides the basis for premise 2 (Even if it were the case that ¬p in some 
realist sense, it would still have been more adaptively advantageous 
to believe that p). 

One difficulty with evaluating the plausibility of this claim is that 
Clarke-Doane does not say anything about the psychological proper-
ties of the ancestors in this scenario. All he argues is that the first-
order logical properties of the situation obviate any need to invoke 
numerical facts to understand the ancestors’ behaviors. He holds 
that their behavior can be adequately understood with the first-order 
logical properties at hand, but is silent on how exactly this corre-
spondence between first-order logical properties and adaptive be-
havior is achieved.3 

Thanks to the wealth of empirical information about numerical cog-
nition, we can examine whether Clarke-Doane’s claim is plausible by 
probing how numerical cognition would work under the assumption 

3.	 I am grateful to an anonymous referee for pressing me on this point. 
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this does not license belief in all its theoretical posits (Maddy 1992). 
It might be that mathematics plays an expressive role, an easy way 
to represent numerosities of objects that the brain represents, rather 
than a crucial explanatory role. 

To make the positive case for realism, I propose that the best ex-
planation for numerosities involves numbers — animals make repre-
sentations of magnitude in the way they do because they are tracking 
structural (or other realist) properties of numbers. A number of math-
ematical realists (e. g., Baker 2009, Lyon 2012) have formulated updat-
ed versions of the indispensability argument for mathematical realism, 
arguing that mathematical truths play an indispensable role in scien-
tific explanations. If we are ontologically committed to the existence 
of unobservable scientific properties that play a crucial explanatory 
role (like electrons), we should also be ontologically committed to the 
existence of mathematical entities. 

Baker (2005) considers the life cycles of species of the genus 
Magicicada. These North American insects have life cycles of either 13 
or 17 years (depending on the species), consisting of a long nymphal 
stage underground followed by a brief adult phase of only a few weeks 
above ground. It is evolutionarily advantageous for magicicadas to 
have long life cycles that do not intersect with other cyclical periods: it 
helps them to avoid predators or matings with similar species. 13 and 
17 are prime and thus do not intersect with smaller cyclical periods. 
The fact that 13 and 17 are prime is an essential element in the explana-
tion of why the Magicicada life cycles have these particular durations. 
While there are various physical, nonmathematical factors in this ex-
planation (e. g., why it is adaptive for cicadas not to have life cycles that 
coincide with those of other species), the primeness of 13 and 17 is an 
essential element in the explanation. Thus, according to Baker (2009, 
614), this case study provides an “indispensable, mathematical expla-
nation of a purely physical phenomenon”.

It seems mysterious that acausal entities can figure in causal ex-
planations. Clearly, long prime cycles do not intersect with smaller 
cyclical periods, but it remains unclear how this mathematical fact 

Cantlon et al. (2006, 845–846) write, “Arrays consisted of blue circle el-
ements that varied in density, cumulative surface area, spatial arrange-
ment, and size, but were constant in both the number of elements (16 
or 32) and in local element shape (circles). Thus, participants adapted 
to the constant number and shape of the elements.” The authors did 
this to prevent neural adaptation to surface area, spatial arrangement, 
and size, as they wanted to exclusively focus on number and shape of 
the elements. After habituating participants, the authors found that 
the bilateral intraparietal sulci (IPS) in children and adults were more 
responsive to changes in number than changes in shape, suggesting 
that “the IPS, known to be part of a cerebral network important for 
symbolic number processing, is also recruited in nonsymbolic numeri-
cal processing” (Cantlon et al. 2006, 852). Neuroscientists also explic-
itly appeal to numbers to explain the function of numerosity clusters, 
which are insensitive to the physical characteristics of objects (e. g., 
their size or shape), but respond to cardinality. Since the ancestors in 
the foraging and fight scenarios rely on the magnitude system, and the 
magnitude system represents numbers (at least according to cognitive 
scientists investigating it), we have prima facie support for the claim 
that animal mental representations of numerosities track numbers.

4.2 The indispensability of numbers for numerosities
I have so far argued that scientific practice provides a prima facie real-
ist case for numbers, since neuroscientists and cognitive psychologists 
are interested in isolating numerical properties of the environment, 
and since they refer to numbers in their explanations. An antirealist 
might respond that although cognitive scientists who propose the 
magnitude system invoke numbers, they also use fictional entities 
such as location maps, and clearly there are no location maps in the 
brain. Scientists often use idealizations (such as frictionless slopes) 
that play a crucial role in their theories. A particular model can con-
sist of real entities (e. g., unobservables, such as electrons, and observ-
ables, such as results of measurements) as well as fictional entities 
(e. g., computer simulations, idealizations). If a model is confirmed, 



	 Helen De Cruz	 Numerical cognition and mathematical realism

philosophers’ imprint	 –  8  –	 vol. 16, no. 16 (august 2016)

discriminated by the approximate numerical system, which allows the 
lioness to rely on it. So the ratio differences between the numbers of li-
onesses heard on the tape recorder and the number of group members 
present (another mathematical fact) also has explanatory value. For 
instance, McComb et al. (1994) observed that when the tape record-
er played 3 voices, the probability of any lioness approaching it was 
only 0.5 when 4 pride members were present, whereas it was close to 
1 when 7 pride members were in the vicinity. The mathematical facts 
that 7 > 3 and that the ratio difference between these numbers is rela-
tively large provide a general, high-level explanation for the behavior 
of individual lionesses in this experiment, as the numerical composi-
tion of the own and rival groups guide their behavior. 

To give another example where mathematical facts have explana-
tory value, take shoal selection in fish. Shoaling fish prefer to join large 
shoals to small ones to reduce their risk of being eaten: predators are 
confused by larger shoals, and there is safety in numbers, as a preda-
tor can eat only a limited number of individuals. Mosquito fish show 
a spontaneous preference for the larger of two groups, 3 versus 2 and 
8 versus 4. To examine what guides their choice, Dadda et al. (2009) 
controlled for the visual density of different shoals, and for the total 
space a shoal occupied. Nevertheless, fish consistently chose the shoal 
composed of more individuals. They were even successful in gauging 
this when they were able to see only one fish at a time. Here too, math-
ematical facts, such as that 3 > 2 and 8 > 4, provide a parsimonious 
explanation both for features of numerical cognition (e. g., choice of a 
larger shoal over a smaller one) and for the adaptive value of decisions 
based on numerical cues.

4.3 A realist account for numerosities
So far, I have suggested that what we know about evolved numerical 
cognition supports realism, drawing on the observation that scientific 
practice suggests a realist understanding of numbers, and that num-
bers are indispensable for explanations about mathematical cognition. 
Some realists, such as Joyce (2006) and Sinnott-Armstrong (2006), 

could influence the evolutionary history of life cycles in Magicicada. 
Lyon (2012) draws on the distinction between process and program 
explanations (proposed by Jackson & Pettit 1990) to elucidate the role 
of acausal mathematical entities in scientific explanations. A process 
explanation provides a detailed account of the proximate causes of the 
event to be explained. A program explanation, by contrast, appeals to 
a property or entity that is not causally efficacious but that neverthe-
less ensures the instantiation of a causally efficacious property that is 
an actual cause. For example, a square peg does not fit into a round 
hole with a diameter equal to the side of the square. The geometric 
properties are causally relevant in the explanation, even though they 
are not causally efficacious. In this case, the process explanation ap-
peals to physical properties (the impenetrability of the overlapping 
parts of the peg), whereas the program explanation cites geometric 
properties. The program explanation works at a higher level than the 
process explanation. While process explanations appeal to specific 
physical situations, program explanations provide modal information. 
They allow us to generalize: not only this particular peg and hole, but 
any square peg will not fit into any round hole where the diameter of 
the hole is equal to the side of the square. Similarly, the primeness of 
13 and 17 provides a program explanation for the life cycles of Magici-
cada, even if these mathematical facts do not contribute to the actual 
physical processes that are involved.

Using this strategy for evolved numerical cognition, the realist can 
argue that numbers are indispensable for program explanations of 
numerosities. Consider the behavior of a lioness in McComb et al.’s 
(1994) tape recorder experiment. The lioness decides to approach the 
auditory signal of 3 roaring individuals when 7 members of her own 
pride are in the vicinity. A plausible explanation for her decision (one 
also presumed by the researchers who conducted these experiments) 
is that the lioness forms the belief numerosityown > numerosityrival. 
Physical factors in this explanation are the seven lionesses of the group 
and the voices of the three roaring intruders. In this case, the ratio dif-
ference between the numerosities of the groups is large enough to be 
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restriction on the kinds of things that can exemplify relations (Shapiro 
1997, chapter 3).

The access problem arises when numbers are conceived of as ob-
jects that can be considered in isolation, like cats or fridges. Thus con-
ceived, knowledge of numbers seems dependent upon our ability to 
interact with them. In a platonist ontology, numbers are not spatio-
temporal objects, so it is hard to conceive of an interaction between 
natural beings like us and numbers (Resnik 1981). 

If numbers are positions in a certain structure, direct causal interac-
tion is not required to acquire knowledge about them; it suffices to be 
familiarized with specific instances of the relevant structure. Shapiro 
(1997, chapter 4) develops an account of how humans learn to grasp 
patterns.4 He outlines a rather elaborate staged model, where each 
stage is intended to account for our knowledge of increasingly com-
plex mathematical structures. For evolved numerical cognition, only 
his stage one (abstraction) is relevant. Abstraction takes place when 
subjects learn to recognize patterns, such as cardinalities of small sets. 
They recognize that the 2-pattern is common to all systems that con-
tain exactly two objects, the 3-pattern is common to systems with three 
objects, and so on. Shapiro invokes a domain-general capacity, termed 
pattern recognition, by which children learn the natural numbers:

In part, our child starts to learn about cardinal structures 
by ostensive definition. The parent points to a group of 
four objects, says “four,” then points to a different group of 
four objects and repeats the exercise. Eventually, the child 
learns to recognize the pattern itself (Shapiro 1997, 115).

This scenario provides a naturalistic account of how, from a real-
ist point of view, children can learn about numbers. Unfortunately it 
fails to capture the actual cognitive processes involved. As we have 
seen, our brains come equipped with a set of domain-specific skills to 

4.	 A similar account is Resnik’s (1982, 97) “experiencing something as patterned”. 
I will concentrate on Shapiro’s account, as it is the more elaborate. 

have argued that we can expect on evolutionary grounds that nu-
merical beliefs track numerical facts, but have not explicated how this 
tracking is supposed to take place. 

As with all naturalistic accounts of mathematics, the chief obstacle 
to fleshing out a functional account of numerical cognition from a re-
alist perspective is the access problem (Benacerraf 1973). Benacerraf 
originally understood the access problem in terms of a causal theory 
of knowledge. More recent ways of dealing with this problem have 
moved away from this framing. For example, Field (1989, 26) gloss-
es it as the challenge “to provide an account of the mechanisms that 
explain how our beliefs about these remote entities can so well re-
flect the facts about them” (see also Yap 2009). Still, any naturalistic 
account — causal or not — will have to grapple with the fact that the 
human mathematician is “a thoroughly natural being situated in the 
physical universe”, and that therefore “any faculty that the knower has 
and can invoke in pursuit of knowledge must involve only natural pro-
cesses amenable to ordinary scientific scrutiny” (Shapiro 1997, 110). 

I will here focus on ante rem structuralism, to give a sense of how 
realism about numbers could be true, given what we know about 
mathematical cognition. Structuralism holds that mathematical theo-
ries describe structures and positions in them. According to Shapiro’s 
(1997) ante rem structuralism, nonapplied mathematics is concerned 
with structures that are conceived of as abstract entities (platonic 
universals), i. e., structures that exist independently and prior to any 
instantiations of them. The precise nature of these entities is left un-
specified, as it is not essential to mathematical practice. Just as one 
can talk about a goalkeeper’s function in soccer (i. e., keeping the ball 
out of the goal) without going into detail about the precise proper-
ties of the person in this position (e. g., hair color), a mathematician 
can talk about the natural number 2 as a position within the natural 
number structure without having to worry about which set-theoretical 
conceptualization captures 2 best. Mathematical structuralism is not 
concerned with the internal nature of mathematical objects (e. g., num-
bers, functions), but with how they relate to each other. There is no 
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to allocate clusters of neurons to numerosities of increasing size ad 
infinitum. The adaptive and neural constraints together explain why 
decreasing numbers of neurons are allocated to increasingly large nu-
merosities. In this picture, arithmetical facts, realistically construed, 
form an indispensable part of a physical-cum-mathematical property 
complex.5 

Ante rem structuralism is a realist ontology compatible with the 
evolved features of numerical cognition. It can provide a general and 
straightforward explanation of what animals detect in numerical cog-
nition. It also meets a prima facie objection against mathematical real-
ism, namely the access problem. While ante rem structuralism may 
not be the only way to connect numerical cognition and mathematical 
ontology, this is a first stab at providing such a connection, bolstering 
the case for mathematical realism. 

5.  Conclusion

There is a tension between realism about abstract objects and evo-
lutionary accounts of human cognition. How can our evolved brains 
that only have access to the natural world acquire true beliefs about 
putative abstract entities like numbers and moral norms? Balaguer 
(1998, chapter 8) has argued that empirical evidence can never de-
cide between realism and antirealism because we have no epistemic 
access to the acausal mathematical realm. Nevertheless, I have dem-
onstrated that a closer look at evolved mathematical cognition — both 
its adaptive value and its functional properties — can address the evo-
lutionary challenge to mathematical cognition. An influential version 
of this evolutionary challenge (Clarke-Doane 2012) does not provide 
any details of how numerical cognition is supposed to work under the 
5.	 There are other forms of structuralism, such as modal structuralism (Hell-

man 1989). Modal structuralism holds that mathematical statements are 
statements about possible structures. Modal structuralists aren’t ontologi-
cally committed to mathematical structures over and above the structures 
we perceive. They use S5 modal logic for this. Given that evolved numerical 
cognition is focused only on structures we perceive, it would require further 
philosophical work, beyond the scope of this paper, to determine which form 
of structuralism is most compatible with it.

recognize numerosities, rather than with an undifferentiated capacity 
to recognize patterns. However, we can provide a structuralist devel-
opmental account that is compatible with the functional properties of 
numerical cognition, as follows. Even after extensive training, nonhu-
man animals (such as chimpanzees) fail to represent natural numbers 
> 3 precisely (Biro & Matsuzawa 2001). They represent numerosities 
approximately, with increasing imprecision with larger magnitudes. 
How then do humans learn to represent a natural number like 54? 
Through their object-file system, young children have an innate capac-
ity to distinguish 1-patterns, 2-patterns, and 3-patterns. As they learn 
to count, they realize that these patterns correspond to the linguistic 
utterances ‘one’, ‘two’, and ‘three’. Remarkably, preschoolers always 
learn the numbers 1, 2, and 3 in that order (i. e., children learn that ‘one’ 
represents a unique cardinal value, then ‘two’, then only ‘three’). While 
one would expect the next step is four, children make a crucial induc-
tion: they make an analogy between next in the numeral list and next in 
series of object-files: if n is followed by n + 1 in the counting sequence, 
adding an individual to a set with cardinal value n results in a set with 
cardinal value n + 1. Children generalize this to higher magnitudes, 
which helps them to understand the successor function (Sarnecka in 
press). Next to object-files, the approximate-magnitude system contin-
ues to play a critical role in arithmetical skills in adults, as it helps them 
to gain semantic access to symbolic representations of numerosities 
> 3. Cultural means, such as counting words, fingers and other body 
parts, and tallies, help to represent natural numbers (De Cruz 2008). 

Why did natural selection not allow for animals to represent natural 
numbers > 3 exactly? This is probably due to the adaptive function of 
numerical cognition. For example, animals require increasingly large 
differences to distinguish between larger numbers. Smaller numbers 
are more ecologically relevant: the nutritional difference between 1 
and 2 apples is large; the difference between 10 and 11 apples is mar-
ginal. A fish is a great deal safer in a shoal of 3 individuals than in 
one of 2, whereas the difference is negligible for shoals of 13 or 12 
fish. There are also neural constraints: brains do not have the space 
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College Publications.
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assumption of antirealism. The properties of evolved numerical cogni-
tion are more readily explained by a realist ontology of numbers than 
by an antirealist one, and realism is also more in line with the practices 
of cognitive scientists who investigate animal and infant representa-
tions of number. I explored one realist view in detail, ante rem struc-
turalism, to give a sense of how a realist, sophisticated understanding 
of numerical cognition could work.

My account does not provide a decisive argument for realism about 
numbers, but it poses a new challenge for the antirealist: to tell a plau-
sible nominalist story that can explain the adaptive behaviors of ani-
mals that rely on numerosities, especially given the practices of cogni-
tive scientists which suggest that numbers play a crucial explanatory 
role in animal adaptive behavior. 
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