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Abstract. Every domain-specific ontology must use as a framework some upper-level
ontology which describes the most general, domain-independent categories of reality.
In the present paper we sketch a new type of upper-level ontology, and we outline an
associated knowledge modelling language called GOL (for: “General Ontological Lan-
guage”). It turns out that the upper-level ontology underlying well-known standard
modelling languages such as KIF, F-Logic and CycL is restricted to the ontology of
sets. In a set theory which allows Urelements, however, there will be ontological rela-
tions between these Urelements which the set-theoretic machinery cannot capture. In
contrast to standard modelling and representation formalisms, GOL provides a ma-
chinery for representing and analysing such ontologically basic relations. GOL is thus
a genuine extension of KIF and of similar languages. In GOL entities are divided into
sets and Urelements, the latter being divided in their turn into individuals and uni-
versals. Foremost among the individuals are things or substances, tropes or moments,
and situoids (entities containing facts as components).

1 Introduction

One important topic of formal ontology is the development of upper-level (or top-most) on-
tologies, which means: theories or specifications of such highly general (domain-independent)
categories as: time, space, inherence, instantiation, identity, processes, events, attributes, re-
lations etc. It turns out that the upper-level ontology of the well-known standard modelling
languages KIF, F-logic and CyCL are confined to set-theoretical construction principles, so
that the latter are essentially limited by the extensionalism of set theory. All domain-specific
and generic ontologies constructed within the framework of the aforementional standard lan-
guages also inherit the ontological weaknesses of set theory.!

There have been several attempts to develop a more expressive upper-level ontology, for
example by extending the ontology of KIF. Unfortunately, the known projects still employ
the reduced ontological basis dictated by standard extensional set theory.

In the current paper we outline a modelling language GOL (General Ontological Language)
which adopts a new approach based on recent results in formal ontology. The modelling lan-
guage GOL preserves set theory as a part of the upper-level ontology. Thus it accepts the
set-theoretic membership relation as ontologically basic. At same time however it introduces
several new types of ontologically basic entities and relations. Thus, GOL is a genuine exten-
sion of KIF and of similar languages.

GOL is an ongoing project which is aimed at the construction of an ontological language
powerful enough to serve as a framework for modelling complex ontological structures, espe-
cially in the medical field. In section 2 we discuss and motivate several ontologically basic

! Tllustrative examples of this phenomenon are presented und discussed in [9].



categories, and in section 3 a modelling language GOL is outlined. Section 4 presents some
examples showing the benefit and use of some the introduced basic categories, and in section
5 we compare GOL to other languages.

2 Ontologically Basic Relations and Types

In this section we will introduce and discuss several ontologically basic types of entities and
certain basic relations between them. Basic types of entities and basic relations are called in
the sequel by the common name “basic categories”. Our analysis draws on [21], but adds the
idea of large ontological regions such as the region described by set theory. The ontological
constituents of the real world are certain types of entities as individuals, universals, sets, and
immediately connecting relations as inherence, instantiation, and membership. Immediately
connecting relations hold of their relata without mediating additional entities; they hold as
soon as their relata are given.

Ontologically Basic Types of Entities. Our main distinction is that between urelements
and sets. We assume the existence of both urelements and sets and presuppose that both the
impure sets and the pure sets constructed over the urelements belong to the world. Urelements
are entities which are not sets. By a class we understand a collection of entities defined by a
condition.

We shall assume the existence of two main categories of urelements, namely individuals
and wuniversals. An individual is a single thing located in some single region of spacetime.
A universal is an entity that can be instantiated by a number of different individuals which
are similar in some respect. Universals are patterns of features which are not related to time
and space. We assume that universals exist in the individuals which instantiate them (thus
they exist in re); thus, our attitude is broadly Aristotelian in spirit. For every universal u
there is a set Ext(u) containing all instances of u as elements. The individuals are further
subcategorized into moments, substances, chronoids, topoids and situoids® -terms which will
be explained in more detail in what follows. This yields (at least) the following ontologically
basic predicates: Mom(x), Subst(zx), Sit(x), Chron(z), Top(x). We assume, that Subst(x) is
the extension of a universal we shall call Substance, Chron(z) is the extension of a universal
we shall call Time, and Top(z) is the extension of a universal we shall call Space.

Substances are individuals. A substance is that which can exist by itself, or does not need
another entity in order to exist. A substance is that which bears individual properties or
is connected to other substances by relational moments. A substance cannot be a bearer of
arbitrary individual properties. By the appearance of a substance we understand the moments
it bears and the relational moments connecting it to other substances. We assume the axiom
that every substance has an (non-empty) appearance. An alignment (a1, ..., a,) is a sequence
of substances ay,...,a,, the a;’s are called components. An alignment is an individual in
contradistinction to a list which is a set.

The origin of the notion of moment lies in the theory of “individual accidents” developed
by Aristotle in his Metaphysics and Categories. An accident is an individualized property,
event, or process which is not a part of the essence of a thing. We use the term “moment”
in a more general sense and do not distinguish between essential and inessential moments.
Moments include individual qualities, actions and passions, a blush, a handshake, thoughts
and so on; moments thus comprehend what are sometimes referred to as “events”. The loss
of a moment in this more general sense may change the essence of a thing. Moments have in

2 This classification is, of course, tentative.



common that they are all dependent on substances. Relational moments are dependent on a
plurality of substances.

A situoid is a part of the world that can be comprehended as a whole and which takes
into account the courses and histories of the ontological entities occurring in it. Situations are
special types of situoids: they are situoids at a time, so that they present a snap-shot view
of parts of the world. Situations can be defined as projections of situoids onto atomic (or
very small) time intervals or equivalently as situoids with an atomic (or very small) framing
chronoid. An elementary situation is composed of individual substances and the relational
moments which glue them together. Situations are constituted by using further ontologically
basic relations such as causality and intentionality. Analogously, we distinguish elementary
situoids from situoids. We assume that every situoid is framed by a chronoid and by a topoid.
For every situoid s there is a finite number of universals which are associated with s. ass(s,u)
has the meaning: s is a situoid and w is a universal associated with s. There is a basic predicate
Sitel(z) for elementary situoid, and a predicate Sit(z) for situoids in general. Qur approach
to situations differs essentially from that of Barwise [2], [3]. Barwise did not elaborate an
ontology of relations; thus in particular, the relation of inherence is missing from his theory.
The notion of an object is not subjected to analysis, and there is nothing in his theory that
corresponds to substances and the moments which inhere in them. Situation theory in the
sense of [2] uses abstract situations in order to analyse, describe and classify real situations.
However, abstract situations are set-theoretical constructions which can capture only limited
aspects of the ontology of real situations.

Chronoids and topoids are instances of the universals Time and Space. Chronoids can be
understood as temporal durations, and topoids as spatial regions with a certain mereotopo-
logical structure. Chronoids and topoids have no independent existence; they depend for their
existence on the situations which they frame. Our approach to space and time is based on
the ideas of F. Brentano [6], who developed and elaborated Aristotle’s remarks in the Physics
about boundaries and continua. Chisholm [7], [8] is a first step towards interpreting Brentano’s
idea in a formal manner, and this work is continued and extended in [22].

Ontologically Basic Relations. What are the basic ontological relations needed to glue
together the entities mentioned above?. Basic relations are membership denoted by €, and
part-of relations, denoted by <, < (reflexive part-of). Other basic relations are denoted by
symbols starting with a colon. In the current paper we additionally consider and discuss the
basic relation of inherence, denoted by :>, the relativized ternary part-of relation, symbolized
by :u, the instantiation relation, denoted by ::, the framing relation, designated by : C, the
containment relation, denoted by :I>, and the foundation relation, denoted by : L.

The phrase “inherence in a subject” can be understood as the translation of the Latin
expression in subjecto esse, in contradistinction to de subjecto dici, which may be translated
as “ predicated of a subject”. The inherence relation :> - sometimes called ontic predication
- glues moments to the substances, which are their bearers, for example it glues your smile to
your face, or the charge in this conductor to the conductor itself. We exclude the possibility
that the relation :> can be iterated, thus there are no moments inhering in moments; on
the other hand it is conceivable that there are higher-order ontological dependency-relations
between moments, but these are not covered by the present theory.

The part-of relations <, < should have in every case an individual as its second argument,
i.e. if a < b,a < b, then b is an individual. The ternary part-whole relation :u(z,y, z) has the
meaning: “z is a universal and x qua instance of z is a part of y”. Obviously, :u(z,y, z) implies
z < gy, but not conversely. These universal-dependent part-whole relations are important in
applications.

The symbol :: denotes the instantiation relation, its first argument is an individual, and



its second a universal. The instances of a universal v are “individualizations” of the time- and
space-independent pattern of features captured by wu.

The containment relation :>> captures the constituents of a situoid. z: > y means “z is
a constituent of the situoid y”. Among the constituents of a situoid s belong the occurring
substances and the moments inhering in them, but also the universals associated to s.

The binary relation : C glues chronoids or topoids to situations. We presume that every
situation is framed by a chronoid and a topoid, and that every chronoid or topoid frames a
situation. The relation x: C y is to be read “the chronoid (topoid) z frames the situation y”.
Let s be a situation, then chr(s) denotes the chronoid framing s.

The defined binary relation : L (z,y) expresses the foundation relation between a substance
and a moment. : L (z,y) has the meaning that z is the foundation of y or  founds the moment
Yy, as for example your hair founds the moment of your being hairy, and the moment of being
hairy inheres in your person. The defined binary relation :occ(x,y) describes a relation between
substances and topoids having the meaning: the substance = occupies the topoid y.

Note that none of these relations can be cashed out in set-theoretic terms. A universal, for
example, is a pattern of features which cannot be captured by the set of its instances. There
may be different universals with the same set of instances.

3 Outline of a Modelling Language

In this section we will outline a modelling language using the concepts which were expounded
in the preceding sections.

3.1 Syntax and Axioms

Our intended modelling language GOL (General Ontological Language) is formalized in a
first-order language. We presume a basic ontological vocabulary, denoted by Bas, containing
the following groups of symbols:

Unary basic symbols.

Ur(z) (urelement) |Set(xz) (set) Ind(z) (individual)
Univ(z) (universal) Mom(z) (moment) Subst(z) (substance)
Sit(xz) (situoid) Sitel(z) (elementary situoid) |Chron(z) (chronoid)
Top(xz) (topoid) Align(z) (alignment) Aggr(z) (aggregate)
Symbols for binary and ternary basic relations.

€ (membership) |:: (instantiation) - (inherence)

< (part-of) < (reflexive part-of) |:u(z,y,z) (rel. part-of)

:C (framing) :L(z,y) (foundation) > (is contained in)

:oce(z,y) (x occupies y) |: ass(z,y) (v ass. to y) : comp(z,y) (x component of y)

Furthermore, we use the following symbols: Sub (for the universal “substance”), Time (for
the universal “time”), Space (for the universal “space”). To the basic vocabulary we may add
further symbols used for domain specific areas; the domain specific vocabulary is called an
ontological signature, denoted by X. An ontological signature X is determined by a set S of
symbols used to denote sets (in particular extensional relations), by a set U of symbols used
to denote universals, and by a set K of symbols used to denote individuals. An ontological
signature is summarized by a tuple X' = (S ,U, K).



The syntax of the language GOL(X) is defined by the set of all expressions containing
the atomic formulas and closed with respect to the application of the logical functors V, A, —
,7, 4>, and the quantifiers V,3. We use untyped variables z,y, z, .. .; terms are variables or
elements from UU S U K; r, s, s;,t denote terms. Among the atomic formulas are expressions
of the following form: r =s,t € s, r :> (81,...,8p), Vi u, t: C 8, t: > 8.

The language includes an axiomatization capturing the semantics of the ontologically
basic relations. We do not present the axiomatization in full here, but rather illustrate the
main groups of axioms by selecting some typical examples. We introduce three groups of
axioms, whose union form the axioms Az(GOL) associated with the language GOL. Besides
the logical axioms we have the following groups of axioms.

Axioms of Basic Ontology

(a) Sort and Existence Axioms

. dz(Set(x)),

. Vz(Set(z) vV Ur(x))

. —3z(Set(x) AUr(z))

. Vz(Ur(z) < Ind(z) V Univ(z))

. =3z(Ind(z) A Univ(x))

. Vzy(z € y - Set(y) A (Set(z) vV Ur(z)))

(b) Instantiation

1. Vzy(z :: y — Ind(z) A Univ(y))
2. Vz(Univ(z) — Jy(Set(y) AVu(u € y +— u :: )))

(¢) Axioms about sets

1. Yuv3z(Set(z) Az = {u,v})
2. {9t | ¢ € ZF}, where ¢5¢ is the relativization
of the formula ¢ to the basic symbol Set(z).?

Z F is the system of Zermelo-Fraenkel. By 1. and 2. there exists arbitrary finite sets over the
urelements. Furthermore, we may construct finite lists. Note, that lists and alignments are
different sorts of entities.

(d) Axioms for Moments, Substances, and Inherence
1. Vz(Subst(z) — Jy(Mom(y) Ay :> x))

2. Ve(Mom(z) — Jy(Align(y) Az :>= y))
3. Veyz(Mom(z) Nz =y Az =2 >y =2)

Axiom 3 is called the non-migration principle: the substances (considered as an alignment)
in which a moment inheres are uniquely determined.

(e) Axioms about Part-of
D1 ov(z,y) =4 J2(z < x A 2 < y), (overlap)

1. Vz(—z < )
2. Voyz(z <yAy<z—-xz<2)

3 In the formula ¢t all variables and quantifiers in ¢ are restricted to sets.



3. Voy(Vz(z < z = ov(z,y)) = z < y))
4. Veyz(:u(z,y,2z) = Univ(z) Az < y)
5. Vayzu(u(@, y,u) A :ply, z,u) = u(@, 2, u))

(f) Axioms governing Chronoids and Topoids.

Topoids are three-dimensional spatial regions, chronoids are temporal durations.

1. Vz(Sit(xz) = Ft1ta(Chron(ti) ATop(ta) At1: Tz Ata: C z))

2. Ve(Chron(z) — Az13s(Chron(z1) A Sit(s) ANz < z1 Az1: T 8))

3. Ve(Top(x) = Tx13s(Top(x1) A Sit(s) Nz < x1 Axq: C 8))

4. Vxt(oce(x,t) — Subst(x) A Top(t)) A Ve (Subst(x) — Jt(oce(z,t)))
(g) Axioms about situations

D1. Cont (s) =45 {m | m: > s}

D2. s Ct =4 Cont(s) C Cont(t).

. Ve(Mom(z) — 3s(Sit(s) A z: > s)) AVx(Subst(z) — Is(Sit(s) A z: > s))
. Vz(Sit(x) — Jy(Subst(y) A y: > x))

. Vay(Sit(x) A Sit(y) = Fz(Sit(z) Az C 2z Ay C 2))

. =3z (Sit(x) AVy(Sit(y) = y C z))

. Vz(Sit(z) = Jy(Univ(y) A ass(z,y))

T W N =

Furthermore, we add the following axioms which are related to X. Univ(u) for every
u € U, Set(R) for every R € S, Ind(c) for every ¢ € K. A knowledge base about a specific
domain w.r.t. the signature X is determined by a set of formulas from GOL(X) which are
not basic axioms.

3.2 Semantics of GOL

Let X be an ontological signature. An abstract X-interpretation is a first-order structure
wW = (W, Basé,E‘s), where W is a set, £% U Bas’ are interpretations of the symbols from
Y U Bas in the set W, and W satisfies the axioms Az(GOL). W can be understood as a
set-theoretical reflection of R (which is not a set). Truthmakers 7 are parts of the world R
within which formulas from L(GOL) may be satisfied. Then, T |= ¢ means that the sentence
¢ € L(GOL) is true in 7.

Here we consider truthmakers as situoids. Let T be a situoid and let Cont(T) = {m |
m D> T} (this is a class). Let ass(7T)={Ux,...,Up} be the set of universals associated with 7.
Let C(T) = (Cont(T),Us,...,Uy,,Bas | Cont(T)); where Bas | Cont(T)) is the restriction
of the relations from Bas to the class Cont(T).

Let ¢ € GOL be an arbitrary formula and 7 be a situoid. A function v is an anchor for
¢ in T if v associates to every symbol in sign(¢) an element from Cont(T). Here, sign(¢)
is the set of all free variables in ¢ and all symbols denoting contants, universals or sets. The
function v has to preserve the type of the symbol to which it is applied. We may then define,
using Tarski’s definition of truth, the notion “The anchor v satisfies the sentence ¢ in C(7)”,
which is symbolized by T |, ¢. This yields a semantics for GOL which can be used to give
meanings also to many varieties of natural language sentences. Firstly, we will translate a
natural language sentence ¢ into an expression tr(¢) of L(GOL) and then we will interpret
the formula tr(¢) using the semantics for L(GOL) just sketched. We demonstrate this idea
by an example.

Let us consider the sentence ¢ = “John is kissing Mary”. The words “John” and “Mary”
denote individuals (persons, human beings). The word “kissing” denotes a certain moment,



an instance of the universal ugg (for “kissing-event”). A suitable translation tr(¢) of ¢ to
GOL gives the following sentence: 3z(z :: uxpg A = :> (j, m)), where the words “John” and
“Mary” are replaced by the individual constants “j” and “m”. Then, tr(¢) is satisfiable in a
certain situoid 7 iff there is an anchor v for tr(¢) in 7 such that T |=, tr(¢). The ontological
meaning of a natural sentence ¢ of this simple form could be defined as the class of all situoids,
denoted by Ont(¢), in which ¢r(¢) is satisfiable.

4 Examples

The following remarks show the usefulness of our ternary part-of-relation and of the category
of situoids.

4.1 The relation v(z,y, 2)

The ternary part-whole relation :u(z,y,2) is domain specific and depends on the universal
z. We demonstrate the usefulness of the relation :u(z,y,z) by means of an example. Let
Ur be a biological universal whose instances are trees (as plants); then v(z,y, Ur) describes
the part-whole relation which imposes upon the parts it recognizes a certain granularity, the
granularity of whole trees. A biologist is interested in describing the structure of trees only in
relation to parts of a certain minimal size. Thus she is not interested in atoms of molecules.
The description of the part-of relation related to the macroscopic biological structure of trees
requires that we introduce a formal system of axioms Az, (Ur; U, ... Uy) of the following kind.
The universals Uy, ..., U describe those entities which are admissible parts of the instances
of Ur. The following axioms then capture the intention of “being a part of a tree in the sense
of Ur”.

1. Vey(u(z,y,Ur) > z2(z:Ur Az <z Ay<z A z<y))
2. Vay(u(z,y,Ur) = (Vicpz 2 Uiva :Ur) A (Viqry 2 Uivy = U))
3. Vo(Vigpz 2 Ui = J2(z: Ur Az <2)).

Axiom 1 says that only such individuals a,b stand in the relation :u(a, b, Ur) which are
parts of a tree. Axiom 2 states that only such parts of a tree are considered which are described
by the universals Uy, ..., Uy, Ur. Among the universals Uy, ..., U are those describing the
notions “branch of a tree”, “leaf of a tree”, “trunk of a tree”, “root of a tree”, etc.

4.2 Situoids.

Situoids can be used to analyse, to classify and to define dynamic phenomena and entities as
change, processes, events and states. In the sequel we make some of the ideas in [16] more
explicit and formal.

The elements of {a | al>c} are called constituents of the situoid o. chron(o) is the chronoid
belonging to the situoid o. Let o be a situoid and ¢t < chron(o) then ¢ | ¢ is a situoid wich is
defined by the projection of ¢ to the subinterval ¢. Obviously, the projection of situoid is itself
a situoid. Subst(o) ist the class of all substances occuring in o. Let X C Subst(c) a class of
substances being constituents of o. A configuration of X is defined by taking the substances
of X and adding some moments from o gluing them together. Every configuration in ¢ has a
history determined by the changes of this configuration during the chronoid of ¢ (or during
some of its subintervals).

A process can be understood as a history of a configuration within a situoid. Then, also
a situoid itself can be interpreted as a process, but not every process is a sitoid. A typical



example of a process is a football match. We may consider the universal “football match”
denoted by U(fbm). Every instance of U(fbm) is a history of a configuration of a number
of players and a ball within a suitable situoid and during a time interval of about 120 min
(including the break). Another example is a disease, say malaria. An instance of the universal
Malaria is is a concrete process realized by a history of a person within a suitable situoid and
taking into account certain changing moments associated to the disease malaria.

During the whole process there are intervals free of symptoms, and events within the life
of the person which have nothing to do with the disease.

An event is an instantaneous change of a configuration z into a new configuration x;
within a situoid o which is such that in z; something new (a new moment, a new substance)
appears which was not present in z. Examples are a plane crash, the becoming of red of a
cube of glass, the arriving of a train at a station, the death of a person.

Among the processes are some which exhibit only very small changes during the time of a
situoid. Examples are processes intrinsic to concrete things as a stone. The histories of such
configurations could be called invariant states.

An important open problem is how to define suitable equivalence relations between situoids.
Such equivalence relations would allow us to understand, for example, what it means to say
that an experiment can be repeated arbitrarily often.

5 Comparison to other Languages

In this section we compare our approach to that of KIF, [13] F-logic, [17], and the family of
description logics. It turns out that these languages are rather weak because they are based
on set theory, which is crippled by its extensionalism.

5.1 Knowledge Interchange Format.

Knowledge Interchange Format (KIF) is a formal language designed to serve as a single
common framework for the interchange of knowledge between computer programs written by
different programmers at different times and in different languages. KIF can be considered as
a lower-level knowledge modelling language; when a program reads a knowledge base in KIF,
it converts the data into its own internal form; when the program needs to communicate with
another program, it maps its internal data structures into KIF.

The ontological basis of KIF can be extracted from [13]; we summarize here only the main
points. The most general ontological entity in KIF'is an object. The notion of an object used in
KIF is quite broad: objects can be concrete (e.g. a specific lump carbon, Nietzsche, the moon)
or abstract (the concept of justice, the number two); objects can be primitive or composite,
and even fictional (e.g. a unicorn). In KIF, as in GOL, a fundamental distinction is drawn
between individuals and sets. A set is a collection of objects; an individual is any object that
is not a set. This distinction corresponds in GOL to the difference between urelements and
sets. KIF adopts a version of the Neumann-Bernays-Gddel set theory, GOL assumes ZF set
theory; but this difference is not essential. The functions and relations in KIF are introduced
as sets of finite lists; here the term “set” corresponds to our term ”class”. Obviously, the
relations and functions in KIF correspond in GOL to the ontology of sets. KIF does not
provide ontologically basic relations like our inherence, part-whole and the like. Hence, the
ontological basis of KIF'is much weaker than that of GOL. GOL can be considered as a proper
extension of KIF; KIF is the set-theoretic part of GOL.



5.2 Frame-Logic.

The term “object-oriented approach” is only a loosely defined, and involves giving prominence
to a number of notions, including those of complex objects, object identity, encapsulation,
typing and inheritance. One of the main problems with the object-oriented approach is the
lack of a logical semantics. Frame-logic is a language that accounts in a declarative fashion
for most of the structural aspects of object-oriented and frame-based languages [17]. Further-
more, it is suitable for defining, querying, and manipulating database schemata. F-logic has a
model-theoretic semantics and a sound and complete proof theory. F-logic stands in the same
relationship to the object-oriented paradigm as classical predicate calculus stands to rela-
tional programming. The ontological basis of the language of F-logic is purely set-theoretical.
The instantiation relation (for example between Tibbles and the universal cat) is modeled
by the set-theoretic membership relation, the is-a-relation is explicitly defined in terms of
instantiation. The ontological basis of this language seems to be even weaker than that of
KIF, not least because full ZF or GB-systems are not available. Thus F-logic, too, captures
only some extensional aspects of GOL.

5.3 Description Logic.

Description logics are specialized languages related to the KL-ONE system of Brachman and
Schmolze [5]. They are designed for representing knowledge, and the general aim is to provide
a small set of operations to describe pieces of information, together with efficient methods to
make inferences. Description logics are generally considered to be variations of first-order logic
involving some restrictions and perhaps some added operators. These variations are motivated
by the undecidability of the inference problem for first-order logic and by the intention to
preserve the structure of the knowledge to be represented.

The ontological basis of description logics is again set theory, in particular the semantics
of the first-order predicate calculus. But in addition, as formulated in [18], the language has
to be restricted to formulas of a certain form. The philosophy behind this is called in [11] the
restricted language thesis. One argument is that general-purpose knowledge representation
systems should restrict their languages by omitting constructs which lead to the undecid-
ability of the classification problem. In [11] the position is taken that the restricted language
assumptions are flawed. In wider practice the terminological facilities of such systems are so
impoverished that the very purpose of general-purpose representational utilities is defeated.

5.4 CycL.

CycL was developed by Lenat and Guha [10] for the specification of common-sense ontologies.
The semantics of the formal language CycL, too, is based exclusively on set theory, as KIF and
F-logic. The language involves some additional notions for example four existential quantifiers
(though these may be superflous since they can be reduced by explicite definitions to just one
existential quantifier). The second-order quantification over predicates and functions captures
only a restricted part of ZF or GB-class theory (which is used in KIF). Hence, the system
CycL is weaker than KIF and the set-theoretic part of GOL.

6 Conclusions

The development of an axiomatized and well-established upper-level ontology is an important
step towards a foundation for the science of Formal Ontology in Information Systems. Every



domain-specific ontology must use as a framework some upper-level ontology which describes
the most general, domain-independent categories of reality. We presented and discussed part
of an ongoing project aimed at the construction of an ontological language GOL containing an
upper-level ontology powerful enough to serve as a framework for modelling complex domain-
specific ontologies. The development of a well-founded upper-level ontology is a difficult task
that requires a cooperative effort to make significant progress.
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