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Abstract

The aim of this paper is to provide a proof-theoretic characterization of
relevant logics including fusion and fission connectives, as well as Ackermann’s
truth constant. We achieve this by employing the well-established method-
ology of labelled sequent calculi. After having introduced several systems,
we will conduct a detailed proof-theoretic analysis, show a cUT-admissibility
theorem, and establish soundness and completeness. The paper ends with a
discussion that contextualizes our current work within the broader landscape
of the proof theory of relevant logics.

1 Introduction and aim

Relevant logics are a recognized family of non-classical logics designed to tackle
paradoxes of material and strict implication. According to relevantists, the symbol
— represents a more refined and philosophically motivated concept of conditional.
Early proponents, like A. R. Anderson and N. D. Belnap, argued that a valid condi-
tional requires a strong connection between the antecedent and consequent, where
both are relevant to each other. These logics have garnered significant attention
among logicians, leading to the application of various formal structures to provide
detailed and systematic characterizations. In this paper, I extend the proof-theoretic
investigation of relevant logics initiated in [I3] (see also [29]). I explore the inclusion
of additional operators in relevant systems, considering the following;:

1. The incorporation of fusion, denoted as o, as a primitive binary operator. This
study is primarily influenced by the work in [61, pp. 365-366] (Section ).

2. The inclusion of fission, i.e., intensional disjunction, following some remarks
expressed in [61, bA|.
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3. The inclusion of connexive fusion, denoted as e, in relevant systems, as pro-
posed by R. Sylvan (né Routley). The motivation behind this addition is
rooted in the idea that “connexive and relevant logics are one and the same”
(69, 393] (Section B).

4. The introduction of Ackermann’s truth constant, denoted as t, within the
framework of relevant logics. Specifically, I study a conservative extension
of Anderson and Belnap’s logic of entailment E, named E!, as discussed in
(61, pp. 407-424, Appendix 1] (Section ).

All logics resulting from the above additions are defined using reduced Routley-
Meyer frames and models, which are structures featuring a ternary relation among
states and a distinguished state interpreted as the real or actual world (see [60, 61,
63, 22]). By employing these semantic structures, I establish corresponding labelled
sequent calculi based on the methodology applied to many other non-classical logics
(e.g., [0, &2, 06, 24]). To achieve this, I convert the semantic clauses and frame
conditions of each logic under consideration into well-constructed schematic rules,
demonstrating that the resulting calculi exhibit various desirable properties (Sec-
tions B and B). The paper ends by offering a comparison with other proof-theoretic
techniques used to characterize relevant logics, as well as by identifying potential
avenues for future research (Section 7).

2 Fusion and fission in relevant logics

The analysis of the connective usually referred to as fusion, denoted o, has played a
central role in the formal and philosophical development of relevant logics. In [61],
p. 366], amongst other, the authors explain that:

“[...] fusion can be added conservatively to L sentential systems, and is

a useful connective to introduce for algebraic and Gentzenisation exer-
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cises.

Let’s start by considering a base system of relevant logic B, including o among
its connectives, denoted B°. As usual, p,q,... and A, B,... denote atomic and
compound formulas, respectively. The set of formulas is defined recursively in the
standard way.

At the level of Hilbert systems, B° contains all instances of the following axioms and
it is closed under the following rules (“=" is employed as a rule-forming operator
distinct from both the sequent arrow “=" and the meta-level symbol “ = 7):

A=A

Al/\A2—>AZ'
(A-=B)ANA—=C)—= (A= (BAQO))
Al—>(A1\/A2)
(A—-C)AN(B—C)— ((AVB)—C)
AN(BVC)—=(ANB)V(ANC)
~~A— A
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(R1) AA—-B=DB

(R2) A, B=AAB

(R3) A—-B= (C—A) — (C— B)
(R4) A—-B=(B—-(C)—(A—C)
(R5) A— B=~B—~A

(Port’) (AoB)—»C &= A— (B—C)

Observation 1. To be precise, within the full system R, fusion can be precisely
defined as Ao B =4 ~(A — ~B). However, it is important to note that this defini-
tion does not hold in weaker relevant logics (as discussed, e.g., in [58, [5]). Hence,
the discussions we will engage with may be particularly valuable for researchers and
practitioners working with weaker relevant logics.

The two-ways rule “portation”, (Port®), encodes the fundamental feature of o. In-
deed, as highlighted in [61, p. 385], “fusion accomplishes ‘conjunction’ of nested
implications”. For the semantic characterization of relevant logics including o, we
will use so-called reduced Routley-Meyer frames and models. Within the context
of such a frame semantics, fusion and implication are interconnected through the
shared ternary relation R. Implication is associated with the universal condition,
while fusion corresponds to the existential condition. Let’s start by introducing the
semantics for the base logic B° [61, Ch. 4 and pp. 365-366].

Definition 2.1. A reduced B° frame % is a quadruple (0, K, R, %), where K is a
set of states (possible worlds, points), 0 € K (the real or actual world), R C K3,
and * : K +— K. We impose the following constraints on R:"

(pl) ROaa.

(p2) a=a*".

(p3) If ROad and Rdbc, then Rabc.
(p3’) If ROad and Rbca, then Rbed.
(p4) If ROab, then ROb*a*.

(p5) If ROab and R0bc, then ROac.

We recall that (p3’) is the frame condition added specifically to deal with the rule
(Port®).

Definition 2.2. A reduced B° model .# is a pair (F,v), where % is a reduced
frame and v is a function, called valuation, such that v : At — §2(K), and subject
to the so-called heredity condition. For p € At and a,b € K:

(AtHer) If ROab and a € v(p), then b € v(p).

Finally, the valuation v is extended to the whole language as follows. For all A, B €
Frm and a € K:

'Relations of the form ROab and ROab A ROba can be shortened by using the notation a < b
and a = b, respectively. However, given that the latter symbols are precisely defined in terms of
the ternary accessibility relation, we can employ only R to characterize relevant logics.



M, alkp iff a € v(p), for p € At

MalF~A ift A 0"l A

MoalFANB it H,alFAand A ,alF B

M,al-AVB it AH,alFAor . #,alt-B

M,alkAoB iff db,ce K, s.t. Rbca and 4 bl A and .#,cl- B
M,alFA— B iff Vb,ce K, if Rabc and .#,bl+ A, then .4 ,cl- B

Finally:
A formula B is satisfied in a model .# = (F v) ift .#,0I- B.
“A entails B in /7 iff, for all a € K, if a IF A, then a IF B.

A formula B is valid in a frame . = (K, 0, x, R) iff, for all valuations v, the formula

B is satisfied in .Z .

Finally, two important, standard lemmas are the following ones (see, among
others, [68, bY, I5]):

Heredity Lemma. If ROab and 4 ,al- A, then 4 ,bl+ A.

Verification Lemma. A entails B in a given model .# iff A — B is satisfied in
that model, i.e., for alla € K, (M ,alt A —= M ,alF B) iff #,01F A — B.

Observation 2. In the preceding definitions, we introduced “reduced” models for
relevant logics (see, for example, [63, 22]). These models differ from those referred
to as “non-reduced” (or “unreduced”) models (see, for example, [60, 61]).? There are
several key differences to consider. Let .#’ and .#" denote non-reduced frames and
models, respectively. %’ is defined as the structure (K, 0,7, %, R), where 0 is taken
to be a subset of K, rather than a singleton, and 7' is a distinct element T € 0 called
the “designated situation”. The members of 0 are referred to as “regular situations”.
A model .#" is defined as the structure (%', v). Finally, satisfaction in a model
is defined with respect to regular situations, i.e., A is satisfied in a model .Z" if
A x - A for all z € 0. Validity on %' is defined as before.

In relevant logics, an additional intensional connective, known as fission or inten-
sional disjunction, denoted by the symbol “+7, can also be examined. Its presence
within the Anderson and Belnap tradition in relevant logic stems from the criticism
directed at the inference ~A, AV B = B, which is regarded as a fallacy of rele-
vance (see [8, 19]). As a solution to preserve the relevance criterion while upholding
disjunctive syllogism, Anderson and Belnap proposed a version of it that incorpo-
rates the connective +, for which addition principles do not hold, rather than its
extensional counterpart V. Taking a slightly different perspective, Stephen Read
[66] argues that the problem lies not with the rule of disjunctive syllogism itself,
but rather with our understanding of disjunction in natural language, and suggests
that we should interpret natural language disjunctions as fissions. In a previous
work [65], Read explores the question of whether the distinction between the two

2The original Routley-Meyer models for relevant logics were the reduced ones, whereas the in-
troduction of unreduced models happened later, driven by the interest in exploring weaker relevant
systems. (Thanks to an anonymous reviewer for contributing to the clarification of this point.)



notions of disjunction, V and +, can be observed in natural reasoning. He puts
forth a positive stance on this matter, contending that his analysis corroborates the
relevantist standpoint that or is ambiguous. Note that Mares raises doubts about
the possibility of considering natural language disjunction as fission. According to
Mares, the formal treatment of disjunction, particularly within the framework of
ternary frame semantics, may have limited similarity to our intuitive understanding
of natural language disjunction (see, [83, 617-619]). Before delving into technical
aspects, let’s consider the following example to gain an informal understanding of
intensional disjunction:

“Intuitively, the intensional variety of or would be one requiring “rel-
evance” between the disjuncts. On the intensional reading, “A or B”
would entail that A and B are so related that we are entitled to say “If
A had not been true, B would have been true” or “If B had not been
true, A would have been true” or the like. A disjunction like FEither
Napoleon was born in Corsica or else the number of the beast is perfect
clearly fails to have this property and therefore is of the truth-functional
kind. Whereas That is either Drosophilia Melanogaster or D. virilis, Im
not sure which appears to entail that if it is not the one then it is the
other, and thus is of the intensional kind.® [2, 17]

Formally, the choice of treating fission as either a primitive or a defined connective
can be made. If one opts for the former and formalizes it as A + B, the following
frame condition and semantic clause may be considered (see, e.g., [33, 618]):

(p3”) If ROda and Rbca, then Rbed.
(+Y) A ,alF A+ B iff Vb,c € K, if Rbca, then either .# b1+ A or 4, cl- B.

More standardly, by following the presentations in [61, 286, 361] and [66, 72|, we
can consider fission defined in terms of negation and implication, that is A + B =4¢
~A — B. The semantic condition for + is precisely derived from its definition, i.e.:

(+2) A ,al- A+ B iff Vb,c € K, if Rabe, then either .#,b* - Aor A ,c - B.

Another notion of fission, which is equivalent to the previous one in R but differs
from it in weaker systems, is defined as A @ B =4 ~(~A o ~B) (see |61, 361], [56,
53]). The corresponding semantic condition can be given as follows:

(®) A ,alF A® B iff Vb,c€ K, if Rbca*, then either .Z,b* I+ A or A ,c* I+ B.

Where, again, the clause is derived from the semantic definitions of o and ~.

3The mentioned example was also discussed in Anderson and Belnap’s [H, 176-177].



2.1 Labelled sequent systems

In this part of the paper, we shall define Gentzen-style calculi for B°, and exten-
sions thereof, by using the methodology of labelled sequent calculi. We extend the
vocabulary of sequents with a bunch of labels (a,b,¢,...,z,y, z...) denoting states
in Routley-Meyer semantics and, intuitively, use the notation a : A to express the
forcing relation a I A via sequents.”

Definition 2.3. Let K be a set of labels, including a distinguished label denoted 0.
For any A € Frm and labels a, b, c € K, the set of well-formed formulas consists of (i)
labelled formulas of the form a : A and (ii) relational atoms of the form Rabc.® Given
two multisets I, A of labelled formulas and relational atoms, a labelled sequent is
an object of the following form: I' = A.

The labelled rules of our sequent systems are subject to the following closure
condition. Consider a rule r of the following form:

A,Bi, ..., Bp, Bny1, Bpi1, I'= A
Bl,...,Bn,FiA

r

Applying the closure condition on r means to substitute the multiple occurrence
By11, Bp+1 with a single one to obtain a rule r* of the following shape:

A7B17”'7B’VLJB’VL+17F:>A
Bl,...,Bn,FjA

The base labelled calculus for B°, termed G3rB°, is built as follows.

Initial sequents: R0ab,a : p,I' = A,b: p (possibly a*,b*).
Logical rules:

F:>A,a*:AL a*: AT = A
a:~AT = A I'=Aa:~A
a:Aa:BT=A I'=Aa:A TI'=>Aa:B
LA RA
a:ANB,I'= A I'=Aa:ANB
a: AT = A a:B,F:ALv I'=Aa:Aa:B
a:AV B, I'=A I'=Aa:AVEB

Rbca,b: A,c: B,I'= A
(b, ¢ fresh) Lo
a:AoB,I'= A

Rbca,I' = A,a: AoB,b: A Rbca,I'=A,a: AoB,c: B
Rbca,I' = Aa: Ao B

Ro

4The relationship between the two forcing expressions will be explicitly presented on pp. B2ff,
where the proof of soundness is provided.

5Tn this section, the development of our desired labelled calculi solely relies on relational atoms
of the form Rabc. However, as we proceed to the subsequent sections, where Routley-Meyer
semantics are extended to accommodate additional relations between states, we will also introduce
new relational symbols in our calculi.



Rabc,a: A— B, I'=A,b: A c¢:B,Rabc,a: A— B, I'= A

L—
Rabc,a: A — B,T'= A
Rabe,b: A,I'= A,c: B
(b, ¢ fresh) R —
I'=Aa:A—>B
Relational rules for R:
ROaa,I' = A R0aa™, ROa**a, " = A
————  R1 R2
r=A I'=A
Rabe, ROad, Rdbe, I’ = A R3 Rbcd, ROad, Rbca, I’ = A RS
ROad, Rdbc, I’ = A R0Oad, Rbca, I’ = A

ROb*a*, ROab,I" = A - ROac, ROab, RObc,I" = A
R0ab, T = A R0ab, RObe, T' = A

Observation 3. Initial sequents are stated in their weakening-absorbing form and
express, at the calculus level, the heredity condition for atomic formulas. As the
heredity rules represent forms of contraction, namely:

b:p,R0ab,a:p, = A R0ab, ' = A,b:p,a:p

ATHER-L ATHER-R
ROab,a : p,I' = A ROab,I'= A,b:p

it is more advantageous to adopt a system where these rules can be shown to be
height-preserving admissible rather than primitive (Proposition 577). This is why
we incorporate heredity into the axioms. Furthermore, given Proposition 52, the
generalized version of ATHER can be derived using (admissible) cUT and contraction
(consider always Prop. 57 below). Rules Ro and L — include copies of the principal
formulas in the premises to prove that contraction is height-preserving admissible
(Lemma 573). Rules Lo and R — are subject to the eigenvariable condition, i.e.,
each application of those rules requires the introduction of fresh (i.e., not previously
used) labels. Finally, all relational rules are obtained by converting the conditions of
B° frames into schematic rules according to the methodology developed and used,
amongst others, in [A1, 6] for modal and intermediate logics.

Furthermore, if one intends to incorporate fission as a primitive connective in a proof
system, the semantic clause (+') and the frame condition (p3”) stated on page B
can be converted into the following labelled rules and relational rule, respectively:
b: A Rbca,a: A+B,I'=A c¢:B,Rbca,a: A+ B,I'=A
Rbca,a: A+ B, I'= A

L+t

Rbea,I'= A)b: A,c: B Rt Rbed, ROda, Rbca, I’ = A
+
I'=>Aa:A+B R0da, Rbca, T’ = A

"

(b, ¢ fresh)

Alternatively, if fission is defined in terms of — and ~, or in terms of o and ~, the
semantic clause (+2), or (¢), can be transformed into the following two sets of left
and right rules, respectively:



b*: A, Rabc,a : A+ B,I'=A c¢: B,Rabc,a: A+ B,I'= A
Rabc,a: A+ B, I'= A

L+?

Rabe,I' = A,b*: A,c: B
(b, ¢ fresh) R+42
I'=Aa:A+B

b*: A, Rbca*,a: A® B, = A ¢*:B,Rbca,a: AdB,T=A
Rbca*,a: Ad B, I' = A

Lo

Rbca*,I' = A b*: A,c*: B
(b, ¢ fresh) R&®
I'=Aa:A®B

It is important to note that we shall not include these two latter sets of rules as
primitive in our intended labelled calculi. As demonstrated in Proposition 577, rules
for the two defined notions of fission are admissible.

Modular extensions. Hilbert systems for some common stronger relevant logics
can be obtained by the addition of axioms to the system for B°. Likewise, frames
for B° can be enriched to capture stronger relevant logics by adding some further
constraints on R. In what follows, we list some axioms and the conditions needed
to validate them.

(Some of these frame conditions appeal to the standard definitions, Rabcd ::=

Jz(Rabx N\ Rxed) and Ra(be)d ::= Jx(Raxd A Rbex))

(A8) (A— B)— (~B— ~A) (p6)  Rabc = Rac*b*
(A9) (A—-B)A(B—C)—=(A—=(C) (p7)  Rabc = Ra(ab)c
(A10) (A= B)—»(B—=C)—(A—C)) (p8) Rabed = Rb(ac)d
(A1ll) (A= B)— ((C —A)— (C = B)) (p9) Rabed = Ra(bc)d
(A12) (A—-(A—B))—>(A— B) (pl0) Rabc = Rabbc
(A13) (AN(A— B))— B (pll) Raaa

(Al4) (A— ~A) —~A (p12) Raa*a

(Al5) (A= (B—C))—=(B—(A—C)) (pl3) Rabed = Racbd
(Al6) A — ((A— B) — B) (pl4) Rabc = Rbac
(A17) AV ~A (p15) R00*0

(A18) ((A— A) — B) = B (p16) Rala

(A19) A— (A— A (pl7) Rabc = (ROac V R0bc)

From the point of view of labelled systems, it is possible to obtain calculi for stronger
relevant logics by converting further frame conditions into relational rules. For
example, to obtain a calculus for DW?®, it suffices to convert condition (p6) into the
schematic rule:

Rac*b*, Rabe, I = A
Rabe,I' = A

R6

and add it to the rules for G3rB° displayed above.



3 Fusion in relevant connexive logics a la Sylvan

A less standard approach to understanding the notion of fusion was proposed by
Sylvan in [59]. To differentiate it from the connectives o and A, Sylvan used the
symbol e to represent fusion, and we will adopt this notation hereafter. In his 1978
article, Sylvan introduced frames and models that allowed him to capture connexive
logics while preserving the relevant implication.® He stated:

“[...] if antecedent and consequent enjoy a meaning connexion then
they are relevant in meaning to one another, and if they are relevant in
meaning to one another then they have through the relevance relation
a connexion in meaning. Thus the general classes of connexive and
relevant logics are one and the same.” [69, 393, Emphasis mine]

Connexivity is typically associated with the presence of specific principles within a
system. Sylvan discussed three such principles, namely:

Aristotle’s thesis ~(A — ~A) (Ar)
Boethius’ thesis (A — B) — ~(A — ~B)7 (Bo)
Strawson’s thesis ~((A — B)e (A — ~B)) (St

The choice of using e instead of o or A is related to a common feature in many formal-
izations of connexive logics: the rejection of “simplification” principles. Specifically,
laws such as A; @ Ay — A; are required to fail. Sylvan’s argument, based on the
“cancellation account of negation”, explains this as follows:

“l..] (Ae~A)— Aand (Ae~A) — ~A fail. For ~A cancels out A, so
that the conjoined content of Ae~A is less than that of A and ~A. But
implication requires content inclusion, so these (degenerate) examples
of Simplification fail. This explains, in a sketchy way, the character of
the connexivist argument against Simplification. The same argument
explains why (A e ~A) does not imply ~(A e ~A), and provides a basis
for an argument for Aristotle’s thesis.” [69, 395]

6To place Sylvan’s work in relation to other important works on connexive logics, refer to
Observation @ provided below.

7On the one hand, it is true that connexive logics are characterized by formulas that reference,
among others, two ancient philosophers, namely Aristotle and Boethius. On the other hand, it
remains unclear whether the origins of connexivity can legitimately be traced back to ancient
times. Aristotle wrote: “[...] when B is not large, the same B must necessarily be large (which is
impossible)” (Prior Analytics, 57b14-16). By formalizing the quote with contemporary methods,
one obtains the formula usually referred to as Aristotle’s Thesis, namely ~(~B — B), and/or
~(B — ~B) (see [73]). A similar strategy occurred with Boethius’ work De Syllogismo Hypothetico,
where he argues that “Si est A, non est B” is the negation of “Si est A, est B”, that is (A — B) —
~(A — ~B) in contemporary notation. The utilization of this formal approach in the examination
of ancient texts has led to the current convention among logicians to view Aristotle and Boethius
as historical points of reference within the domain of connexive logics. However, it’s important
to note that historians of logic often cast various doubts and hold differing perspectives regarding
whether Aristotle and Boethius were conscious advocates of connexivity, both philosophically and
logically. For divergent historical reconstructions, see, e.g., Lukasiewicz [82] and McCall [35], as
well as Lenzen [B0, B8], Weiss [75], and Ruge [62] for more contemporary sources.



After introducing a Hilbert calculus for a basic system of relevant connexive logic
(referred to as B*®), Sylvan proceeds to introduce specific frames and models by
stating:

“Connexive modellings do not differ from relevant modellings as to the
implication connective: thus the pure entailment theories are the same:
It is only when negation and conjunction are introduced that marked
differences begin to emerge.” [59, 398]

In constructing these models, Sylvan introduced two new elements: a ternary rela-
tional symbol S, distinct from the relevance relation R, to define the truth condition
for e, and the co-called “generation relation” denoted by G, which indicates that a
formula A generates a situation b, meaning that everything holding in b is implied
by A. The inclusion of G in the proposed structures validates connexive principles
(69, 398-399].

By turning to the formal details of [59], let’s introduce frames and models for relevant
connexive B® as follows™:

Definition 3.1. A reduced B® frame .F is a sextuple (0, K, R, S, %, G), where K,0, R
and * are as before. S C K? is an additional relational symbol and G is a relation on
formulas and worlds (i.e. the generation relation). Finally, we impose the following
constraints on R and S:

(p1), (p2), (p3), (p4) of Def. £, plus:
(p6) If ROab and Scda, then Scdb.

Definition 3.2. A reduced B® model .# is a pair (F,v), where % is a reduced
frame and v is a function, called valuation, such that v : At — §2(K), and subject
to the so-called heredity condition (see Def. 272). The valuation v is extended to
the whole language as follows. For all A, B € Frm and a € K:

Malp iff a € v(p), for p € At;

MalE~A ift A, a*lf A

Moal-Ae B iff db,ce K, s.t. Sbca and 4 ,bIF A and A, c - B;
M,alFA— B iff Vbce K, if Rabcand .#,blIF A, then 4 ,cI- B.

We include the following clause for G:

(Gen) If AGa, then A, alF A.

Finally, satisfaction in a model .# and validity on a frame .%, as well as the notion
of entailment, are as in Definition 2-2.

In order to validate connexive principles, Sylvan suggested to add further con-
straints on B® frames. Specifically, we consider the following additions:

for Aristotle’s thesis:  Jy(RO*yy* A AGy) (F.Ar)
for Boethius’ thesis:  3s,t, u(Rast A Ra*su A AGs A\ ROtu*) (F.Bo)
for Strawson’s thesis: Sbc0* = 3y, z(Rbyz A Rcyz* N AGy) (F.St)

8Similarly to the previous section, our focus will be on reduced models. However, it should be
noted that Sylvan [59] also explores non-reduced models and other types of semantic structures in
his work.
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Observation 4. Sylvan’s approach to connexivity is relatively uncommon in the
subject. However, C. Mortensen and R. Brady have given serious consideration
to Sylvan’s approach and proposed additional modifications to his original ideas.
Specifically, Mortensen [A0] defines Ar as the condition that for every model .,
the set Cy =4 {w : A ,w EF A and #,w ¥ ~A} is non-empty. He claims that
this characterization aligns with the idea expressed by Ar and emphasizes that for a
self-inconsistent proposition A, if A is denied, the set C'4 must be empty. Brady [I1],
instead, presented another relational semantics for relevant logic B extended with
either Ar or Bo. The semantics introduced a non-empty subset of worlds 0 C K,
including a distinguished element 7. The extended model structures include a func-
tion mapping sets of worlds, including propositions, i.e., interpretations of formulas,
to sets of worlds. However, besides the approaches using ternary relational frames,
the debate on connexivity is wide and it’s challenging to summarize it under a single
definition, as there exist various divergent approaches.

The origins of contemporary connexive logic can be traced back to the works of
Richard Angell and Storrs McCall. Specifically, Angell’s [6] main goal was to create
a formal system that embodies what he termed the principle of subjunctive contra-
riety, which asserts the incompatibility of statements like “If p were true, then q
would be true” and “If p were true, then q would be false”. Building upon Angell’s
work, McCall [B5] introduced the terminology connezive logic and extensively stud-
ied Angell’s formal system. Additionally, McCall [36] explored the potential of using
connexive implication to capture all valid moods of Aristotle’s syllogistic within a
first-order language.

In recent years, however, we have witnessed the emergence of several notable pro-
grams. For instance, C. Pizzi introduced the concept of consequential implication,
which is defined using familiar modal concepts and strongly motivated by historical
and philosophical inquiries into ancient notions of conditionals (see, for example,
[60, 61, 52, 63]). Additionally, H. Wansing developed a constructive connexive logic
called C by working in a bilateral setting and modifying the falsity condition of
implication as given for Nelson’s constructive logic N4 (see, for instance, [72, PG|
as well as [I7]). Similarly, N. Francez proposed poly-connexivity, which alters the
familiar falsity conditions of conjunctions and disjunctions, in addition to the falsity
clause for intuitionistic implication (see, for example, [20, 21]). Interestingly, this
approach also discusses how to modify the base logic to transition from construc-
tive to relevant systems. Drawing inspiration from Wansing’s approach, Francez
combined relevant logic R with connexive principles, devising a system of natural
deduction that combines the relevant conditional with connexive theses (see [[9]).
Other approaches to connexivity are discussed in the following surveys [A7, [73, 21].

3.1 Labelled sequent systems

A labelled calculus based on the models just introduced can be found in Table 1.9 We
remark that both R — and Le are subject to the eigenvariable restriction, and that

9The notion of labelled sequent is as in Definition 223. Also the closure condition applies in this
case.
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Initial sequents:
ROab,a :p,I' = A,b:p

(possibly a*, b*)
Logical rules:
I'=sAa : A a*: ATl = A

~ —_— AV

a:~AT = A I'=Aa:~A

Sbea,b: A,c: B, = A
(b, ¢ fresh) Le
a: Ae B.I'= A

Sbea,I' = A,a: AeB,b: A Sbeca,I' = A,a: AeB,c: B
Sbea,I' = A,a: Ae B

Rabc,a: A— B,I'=A,b: A c¢:B,Rabc,a:A— B,I'= A
Rabc,a: A— B, I' = A

L —

Rabe,b: A,I'= A,c: B
(b, ¢ fresh) R —
I'=Aa:A—B

Relational rules for R and S:
R0aa,T' = A R1 R0aa™, R0Oa**a, T = A

R2
I'=A '=A
Rabe, ROad, Rdbe, I’ = A R3 ROb*a*, R0Oab,T" = A R4
ROad, Rdbe,T' = A ROab, T = A

Scdb, ROab, Scda, I’ = A
R0Oab, Scda, I’ = A

Table 1: G3rB*®

R6 is the result of converting frame condition (p6) into a rule. Finally, notice that
the premises of both rules, Re and L —, are stated in their contraction-absorbing
form. Last but not least, we introduce a rule specific rule for the generation relation
G and show that it is height-preserving admissible:

Proposition 3.1. The following rule:
AGa,a: A I'= A
LG
AGa, ' = A

1s height-preserving admissible.

Proof. As the proof requires other definitions and results to be introduced in Section
8, we spell out the details in Proposition b77. O]

To show that our calculus is adequate to deal with the connexive principles
mentioned above, we prove the next result:

12



Proposition 3.2. G3rB®, extended by the addition of the following rules:

RO*yy*, AGy,I' = A Rast, Ra*su, AGs, ROtu*, T’ = A
(y fresh) AR (s,t,u fresh) BO
I'= A I'=A

Rbyz, Reyz*, AGy, Sbc0*, T = A -

,z fresh
(v:2 Jresh) Sbe0*, T = A

is a connexive system. More precisely:

1. G3rB* + ARF=0:~(A — ~A);
2. G3rB*+BOF=0: (A — B) —» ~(A— ~B);
3. G3rB*+STtF=0:~((A— B)e (A — ~B)).

We remark that AR, BO and ST correspond to the conversion into schematic
rules of (F.Ar), (F.Bo) and (F.St), respectively.

Proof. We proceed by root-first derivation. For ~(A — ~A) and (A — B) —
~(A — ~B) see Table B, and for ~((A — B) ¢ (A — ~B)) consider the derivation
in Table 4. ]

Finally, Sylvan observes that:

“The semantics given suggests two reductions, of S to R or vice versa,
both of which should also be resisted. [Such reductions] would make
connexive logic a, perhaps bizarre, branch of relevant logic.” [69, 410,
Emphasis mine]

The reduction that Sylvan has in mind ca be spelled out by identifying the relevant
relation R and the newly introduced one S. This would make connexive fusion, e,
identical to relevant fusion, o, and would allow one to validate the following rule:

(Port®) (AeB)—-(C &= A— (B—0)

As a result, by reducing R to S and viceversa, one misses Sylvan’s leading idea
to interpret and characterize e as a proper type of connexive fusion connective,
different from both, o and A. However, if the temptation to identify R and S,
cannot be resisted, we introduce the following notion to cope with the resulting
logics:™

Definition 3.3. We say that:

1. A Hilbert-system for B® is Sylvan-bizarre iff it is closed under the two-ways
rule (Port®).

2. A reduced B*® frame is Sylvan-bizarre iff it satisfies the following frame con-
straint: Sabc <= Rabc (biz).

10The terminology is inspired by the words used by Sylvan himself in the previously mentioned
quote.

13



At the calculus level we can cope with the notion of Sylvan-bizarre by con-
verting each direction of (biz) into a relational rule. Indeed, by adding such newly
constructed relational rules to G3rB®, we're allowed to extend the notion of Sylvan-
bizarre to labelled calculi for connexive relevant logics as follows:

Proposition 3.3. G3rB®, extended by the following two rules:
Rabe, Sabe, T’ = A Sabc, Rabe, I’ = A
BIZ1 BlZa

Sabe,I' = A Rabe,T' = A

is Sylvan-bizarre, i.e., the two-ways rule (Port®) is admissible.

Before displaying the proof, we recall that a sequent-style rule:
Py... Py
C

is admissible in a sequent calculus L, if Fy, Py, ..., Py, together imply g, C.
Finally, let’s move to the proof:

r

Proof. (=) We first show that, in G3rB® + B1Z; + B1Zy, if = 0: Ae B — (|, then
=0:A—(B—C0C).

L6y
Sacd, ROdd,0: Ae B — C,Racd,c: B,a: A=d:C,d: AeB
BIZ
R0dd,0: Ae B — C,Racd,c: Bya: A=d:C,d: AeB > ROdd,d:C,A=d:C
L —
ROdd,0: Ae B— C,Racd,c: Bya: A=d:C
R1
=0:AeB—~C 0: Ae B — C,Racd,c: Bja: A=d:C
(Thm. &8) cuT
Racd,c: B,a: A=d:C
(¢, d fresh) R —
a:A=a:B—C
(Prop. B=2) VER2

=0:A— (B—C)

where ¢, is concluded by:

ROaa, Sacd, R0dd,a : A, A" = d:C,d: Ae B,a: A ROcc,Sacd,c: BJA' = d:C,d: AeB,c: B

R1

Sacd, R0dd,a : A, A" =d:C,d: AeB,a: A Sacd,c: BJA'=d:C,d: AeB,c: B

(Thm. EB)

Re
Sacd, ROdd,0: Ae B — C, Racd,c: Bja: A=d:C,d: AeB

where A’ = R0dd,0: Ae B — C,Racd,a: A, and A” =0: Ae B — C, Racd,c: B.

(&) We finish the proof by showing that, if = 0 : A — (B — (), then = 0 :
AeB — (.

L6
RObb,b: A A=a:C,b: A b:B— C,R0bb, Rbca,c: B,A' = a:C
RObb,0: A — (B — C), Rbca, Sbca,b: A,c: B=a:C
=0:A— (B—=C0C) 0:A— (B— C),Rbca,Sbca,b: A;c: B=a:C

L —

R1

Rbca, Sbea,b: A,c: B=a:C ot
Sbca,b:A,c: B=a:C
(b, ¢ fresh) Le
a:AeB=a:C

~0:(AeB) > C

BIZ1

(Prop. B5=7) ER2
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where, A = 0: A — (B — (), Rbca,Sbca,c : Band A/ =0: A - (B —
('), Sbca, b : A, and §; is concluded by:

ROce, Rbca,c: B,A” = a:C,c: B ROaa,a : C,Rbca,c: B,A" = a:C
R1 R1
Rbca,c: BJA" = a:C,c: B a:C,Rbca,c: B,A" = a:C

b: B — C,R0bb, Rbca,c: B,A' = a:C

L —

where A” =0: A — (B — C),Sbca,b: A;b: B — C, RObb. We remark that all

applications of CUT and VER, are admissible, as it will be shown in Section 5. [

Finally, modular extensions of G3rB*® can be constructed by converting other
frame conditions (see list stated in [59, 397-398]) into relational rules. Notice that
the methodology we briefly introduced at the end of last section works also in this
case.

4 Ackermann’s truth constant in relevant logics:
the case of E'

In this section, I'll consider the proof theory for relevant logics including so-called
Ackermann’s truth constant. To be precise, W. Ackermann, in his 1956 paper |,
introduced a so-called falsity (or negative truth) constant (AN), sometimes read as
“the absurd”, in order to define the modal operators of impossibility, necessity and
possibility, as A — A, ~A — A and ~(A — A), respectively. In their 1959 paper
[@], Anderson and Belnap proved that the addition of A is conservative, and that the
aforementioned modal notions can be actually defined without relying on A. These
considerations motivated Anderson and Belnap in preferring the A-free fragment of
their modified, albeit theorem-wise identical, version of Ackermann’s logic, i.e., the
well-known logic of entailment E. More precisely, the Anderson and Belnap tradi-
tion in relevant logics (see [H]) takes A (or its positive counterpart, namely t, that
is, basically, shorthand for ~A) as a constant of convenience. In other words, if it
can be added conservatively to a logic, it simplifies the presentation and/or proofs.
Accordingly, the authors of [61, Ch. 5] considered several semantic structures to
formalize the behaviour of Ackermann’s constant t and, mostly, focused their atten-
tion on the logic E extended by t (see especially, [61, Appendix 1, pp. 407-424]).
The strategy that we will explore, following the work done in [61], consists in the
addition of a unary predicate on states interpreted, roughly, as a possibility predi-
cate. In other words, if we denote such a predicate with the letter P and let a be a
world in K, then Pa tells us that a is a logically possible state:

“P can be construed, without too much distortion as a possibility pred-
icate [...] it shows that t marks out the regular worlds, i.e. those where
the theorems hold”. [61, 351]

“A situation a in K has property P iff each proposition which is neces-
sarily true holds in a, i.e., a is a possible ‘world”” [61], 407]
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So, P selects regular (or, normal) worlds, i.e., those worlds at which all theorems
are true under all interpretations.

Before entering the specific details of such models, let us draw a distinction between
the cases which make t either distinctive or non-distinctive. The characteristic rules,
which make t distinctive, are:

(Rtl) t—> A=A
(Rt2) A=>t— A

At the model-theoretic level, the authors of [61], discuss two possible semantic
clauses that may be formulated for t, depending on whether it is distinctive or
not. After some inspection, the authors notice that the two different clauses for t,
can be always condensed into a single one. Nevertheless, we remark that, in all these
cases, reduced structures face some limitations. Roughly, only a limited amount of,
rather weak, relevant logics can be successfully characterized by reduced modellings.
A notable exclusion is the well-known logic E*, for which another solution was in-
troduced.

From a closer perspective, E' contains all instances of the following axioms and is
closed under the following rules [G1, 408]:

(T) (t—A) —A (T2) — (A= A)

(A2)  Aj AN Ay — A (A3) (A -+ B)ANA—=C)—= (A= (BAC))
(Ad) A, — (A1 VA (A5)) (A—-C)A(B—=C)—=((AvB)—C(C)
(A7) ~~A— A (A6) (AAN(BVC))— ((AANB)V ()

(A14) (A—~A)—>~A (A8) (A— B)— (~B— ~A)

(Rl) A/ A—-B=DRB (A10) (A= B)—=(B—=C)—(A—=0))
(R2) A, B=AAB (A12) (A= (A—B)) = (A— B)

(Rt2) A=>t— A

E! is a conservative extension of Anderson and Belanp’s logic of entailment E, and
to get the axiomatization of E, it suffices to replace (T1) and (T2) by the following
two axioms:

(AxEl) ((A— A)—-B)— B
(AxE2) OAAOB — O(AAB)

where OA =4 (A — A) — A. As it was pointed out by the authors of [B1], “part of
the point of the t-reformulation of E is to dispose of the intially troublesome [modal]
axiom”, that is (AxE2). As the authors of [G1, p. 407] remark:

“The chief innovation in the semantical analysis of E we offer, [...] is the
introduction of a new property P of situations. [...]

P is required to cope with E in view of the way E introduces necessity
as part of the logic of entailment, most obviously through the postulates
OA — A and OAAOB — O(A A B) and through the (derived) rule of
necessitation .” (Notation adapted)

Reduced frames and models for E* were introduced as follows [61, 411]:
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Initial sequents: R0ab,a : p,I' = A,b: p (possibly a*,b*)
Rules for t:

Rt ot Pb, ROba,a : t,T = A it
Pb, ROba,I' = A,a : t (b fresh) a:t,0 = A
Logical rules:
F:>A,a*:AL a*: AT = A
a:~AT = A I=Aa:~A
a:Aa:BT=A I'=Aa:A TI'=>Aa:B
LA RA
a:ANB,I'= A I'=Aa:ANB
a:Al'=A a:BI=A I'=Aa:Aa:B
Lv RV
a:AV B, I'=A I'=Aa:AVEB
Rabc,a: A— B, I'= Ab: A c:B,Rabc,a:A—>B,F:>AL
%
Rabc,a: A — B, I' = A
Rabe,b: A,T'= A,c: B
(b, ¢ fresh) R —
I'=Aa:A—>B
Relational rules for R and P:
R0Oaa, I’ = A R0aa™*, R0Oa**a, T’ = A
——FF R1 R2
'=A '=A
Rac*b*, Rabe, " = A Rbyd, Racy, Rabx, Rxed, I’ = A
R6  (y fresh) R8
Rabe,I' = A Rabx, Rred, I’ = A
Rabx, Rxbe, Rabe, ' = A Raa*a,T' = A
(z fresh) R10 ————F F  R12
Rabe,T' = A r=A
Pz, Raxa,I' = A ROab, Px, Rxab,T" = A
(z fresh) T1 T2
r=A Pz, Rzab,T = A

Rabe, RObx, Raxe, I’ = A T3
RObz, Raxe,I' = A

Table 2: G3rE!
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Definition 4.1. A E* reduced frame is a quintuple (0, K, P, R, %), where 0, K, and
R are as in Definition 271. Finally, P denotes a property on K, called the possibility
predicate. R and P are subject to the following conditions:

(pl)  ROaa.
p2) a=a"™.
p6)  If Rabc, then Rac*b*.
p8)  If Rabcd, then Rb(ac)d.
0) If Rabc, then Rabbc.
2) Raa*a.
tl)  Jz(Pz and Raza).
) If Px and Rxab, then ROab.
t3)  If RObx and Razc, then Rabe.

Definition 4.2. An E* reduced model is a structure (%, v), where .% is an E* frame
and v is as in Definition 2. We add the new condition for t:

A ,al-t iff 3b e K, such that ROba and Pb.

Finally, satisfaction in a model .# and validity on a frame .%, as well as the notion
of entailment, are as in Definition 2-2.

Based on this model, we construct the corresponding labelled proof system,
termed G3rE' (Table 2, p. 7). T1, T2 and T3 are (t1), (t2) and (t3) converted
into rule form, respectively. We remark that other useful relational rules can be
considered as well. For example:

Rabd, RObc, Racd, I’ = A
R0Obc, Racd, I’ = A

R5

can be obtained by an application of T3. The same holds for:

ROac, ROab, R0bc, " = A RS
ROab, RObe, T’ = A

which can be obtained by an application of R5. More generally speaking, all
relational rules, obtained by converting the frame conditions listed on [61, 411],
are derivable by means of the relational rules taken as primitive in Table 2. We
observe that, instead of Rt, it is possible to incorporate another type of initial
sequents, namely structures of the following form: Pb, ROba,I’ = A, a : t. However,
to maintain a certain symmetry in the construction of the calculus, we made the
choice of incorporating the O-premise rule Rt alongside Lt, which represents the rule-
version of the semantic clause for t (Definition A72), instead of introducing additional
initial sequents.™

"Definition 223 and the closure condition always apply.

12Let me also emphasize that in the context of labelled calculi based on Negri’s methodology,
it is quite common to use rules for constants, such as t or |, rather than introducing additional
initial sequents apart from those that include atomic formulas (see, e.g., [45, 46]).
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Observation 5. The section started with an examination of Ackermann’s falsity
constant and its impact on the debate surrounding relevant logics. It was noted that
the standard approach considers truth as a primitive concept, while defining falsity
as the negation of truth, i.e., f =4 ~t.™ I followed this convention and, as a result,
the two following admissible rules for f can be considered:

Pb, ROba*,a* : t,I' = A

(b fresh) = Aaf R 4 FPhROb T = A
By proceeding root-first then we get the following derivations:
— Pb, ROba*,a* : t,I' = A It S T T A Rt
@ tD=A , 120ba”, ;‘* ot it
lizi 7Aj a Iii\‘it df f ?,:,TF’,P,I),’EQZ),Z ,’,F,? ,A, dff
F=Aa:f a:f,Pb,ROba*,T' = A

Additionally, one might consider a Routley-Meyer semantic presentation of Ack-
ermann’s system from [}, known as II”, which includes the original A, and at-
tempt to convert its semantic definition, along with the frame conditions, into well-
constructed sequent-style rules. A semantics of this nature has been developed in
[87]. However, delving into the examination of this approach within our current dis-
cussion would require introducing certain modifications and explanations that would
make this section excessively lengthy. Therefore, a comprehensive investigation of
the proof theory stemming from the semantic frameworks discussed in [37] will be
temporarily set aside.

As remarked above, E' conservatively extends Anderson and Belnap’s logic E.
Accordingly, all E theorems are also E' theorems. However, as the modality O is
difficult to use in proofs™, another, more standard modal notion can be defined by
relying on the truth constant t:

(dfll) HA=t— A

Accordingly, (T1), (T2) and (Rt2) can be reformulated as BA — A, B(A — A) and
A = BA, respectively. As remarked by Meyer:

“[...] “=" [is] primitive and ‘B [is] contextually defined by [dfHl]. ([dfH]
is essentially the definition of ‘B’ of Ackermann’s [0}, modified by the
insights of [Anderson and Belnap’s] [4].) [They| prefer the essentially
equivalent JA = (A — A) — A [...]. My view is that the sentential
constant [t] is well-motivated and ought to be introduced in the name
of elegance; theirs seems to be that it is superfluous and ought to be
thrown out in the name of Ockham.” [BR, 196] (Notation adapted)

13While historically the falsity constant has been denoted as A, one can use the more contem-
porary notation and represent it with the small case letter f.

4Mares and Standefer remark that: “The operator O is extremely difficult to use in proofs. [...].
Written in primitive notation [(AxE2)] is (A — A) = A)A((B = B) = B)) - ((AAB) —
(AAB)) = (AA B)). Using this formula to prove other modal theses can be quite difficult” [84),
pp. 701-702] (Notation adapted).
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In virtue of our observations, we can prove the following result:

Proposition 4.1. If A is a theorem of Anderson and Belnap’s E, then G3rE' =
0:A.

Proof. We proceed by showing that (AxE1l) and (AxE2) can be derived in G3rE".
G3rE'+=0:((A— A) - B)—~ B

ROcd, Rxed,c: A,Px, Raxa,A=b:B,d: A

T2
Rzxed,c: A, Pz, Raxa,A=0b:B,d: A
(c,d fresh) R —
Pz, Raxa, A=b: B,z : A— A a:B,R0ab,A' = b:B

Pz, Raxa, ROab,a : (A — A) - B=0b:B -
(z fresh)
ROab,a: (A—A) - B=5b:B
(a, b fresh) R —
=0:(A—-A) —B)—B

L —

where A = R0Oab,a : (A — A) — B and A’ = Pz, Raza,a: (A — A) — B.
G3rE'F= 0:MAAMB — M(AA D)

Rt :
Pz, ROxc, Racd,c:t,A=d: AANB,c:t ;01

Racd,c:t,A=d: AANB,c:t b d:A,Racd,Rbcd,c:t,ROab,a;t—>A,a:t—>B$d:A/\B
Racd, Rbed, ¢ : t, R0ab,a :t — A,a:t—>B=d: AANB
Rbed, c :t, ROab,a:t— A,a:t— B=d: AANB
ROab,a:t— Aja:t—B=b:t— (AAB)
ROab,a: (t— A)A(t— B)=b:t— (AAB) =
=0:(t=A)A(t—DB))—(t—(AAB))
=0:HAANEB — M(AAB)

L —

R3

(e, d fresh)

(a, b fresh)

and 9, is concluded by:

Rt :
Pz, ROxc, Racd,c:t,A=d: AANB,c:t : 02

Racd,c:t,A'=d: ANB,c:t b d:B,d: A Racd, A" =d: ANB
d: A, Racd, Rbed, c : t, ROab,a :t > A,a:t—>B=d: AANB
and 0, is obtained as follows:
ROdd,d: B,d: A, Racd, A" = d : A ROdd,d: B,d: A, Racd, A" = d : B
d:B,d: A Racd, A" = d: A . d:B,d: A Racd, A" = d: B a
d:B,d: A, Racd, A” =d: ANB

where A = Rbed, ROab,a :t — A,a:t — B,, A’ =d: A, Rbcd, ROab,a : t — A, a :
t — B and A” = Rbed, ¢ : t, ROab,a :t — A,a:t — B. ]

L —

RA
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Extensions. The authors of [61, 422] mention some interesting extensions that
can be obtained by adding axioms and their related conditions to Hilbert systems
and frames for E', respectively. They are given as follows:

(B3) B—(A— A) (93) Rabc = RObc
(B4) A— (B— A (q4) Rabc = ROac
(B5) B — (AV~AP (95) ROa*a

The following extensions can be built:

S4: E* + (B3) Fsa = Fr + (q3)  (Lewis’ modal logic S4)
CL: E'+ (B4) FoL = Fr: + (q4)  (Classical logic)
EDS: E'+ (B5) FEDS = JEt + (q5)

where EDS is a proper subsystem of Lewis’ logic S3 (and hence of S4), and it is
“of importance in the debate on entailment since it includes Disjunctive Syllogism
B5’ without conceding the higher degree of strict implication” [G1, 422]. Finally, let
us remark that by adding the rules obtained by converting the the frame conditions
displayed above to G3rE*, namely:

RObc, Rabe,T' = A ROac, Rabe,I' = A ROa*a,T = A

RQ3 RQ4 ——FF R
Rabe,T' = A Rabe,T' = A I'=A W

one obtains also labelled calculi for the logics just mentioned, i.e., S4, CL and EDS.

5 Proof analysis

The main aim of this section is to prove the cuT-admissibility theorem for our
labelled sequent systems. The general proof presented here is similar to the proof
for labelled systems for other non-classical logics (see, e.g., [0, 06, 24, 29, I3]). A
list of the results proved in this section is as follows:

+ Height-preserving admissibility of substitution of labels (Lem. 51).

+ Derivability of generalized initial sequents (Prop. 532).

+ Height-preserving admissibility of the weakening rules (Lem. 523).

+ Height-preserving invertibility of logical and relational rules (Lem. 54).
+ Height-preserving admissibility of the contraction rules (Lem. 573).

+ cuT-admissibility (Thm. 656).

+ Other useful admissibility results (Prop. b7).

As there are many cases to be analysed in these proofs, we only outline the important
parts here.
Let’s start by fixing some standard notions.

Definition 5.1. Let A be any labelled formula of the form a : A. We denote by
[(A) the label of a formula A, and by p(A) the pure part of the formula, that is,
the unlabelled formula. The weight (or complexity) of a labelled formula is defined
as a lexicographically ordered pair: (w(p(A)),w(I(A))), where:

150r, equivalently, (B5), namely, (A A (~AV B)) — B.
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for all state labels a € W, w(a) = 1;

for all p € At, w(p) = 1;

w(t) = 1;

w(~A) =w(A) + 1,

5. w(AVUB) =w(A) + w(B) + 1, for O € {o,e,+,—}."°

Ll e

Definition 5.2. A rule r is height-preserving admissible just in case: if there is a
derivation of the premise(s) of r, then there is a derivation of the conclusion of r
that contains no application of r (with the height at most n, where n is the maximal
height of the derivation of the premise(s)).

Definition 5.3. Let q be standing for either R or S. We define substitution as
follows:

( qabe, if e £ a, e #b and e # c.
(d/a) = qdbe, if a # b and a # c.
¢ qabc(d/b) = qade, if b# a and b # c.
¢ qabe(d/c) = qabd, if ¢ # a and ¢ # b.
¢ qaac(d/a) = qdde, if a = b and a # c.
¢ qabb(d/b) = qadd, if b= c and b # a.
¢ qcbe(d/c) = qdbd, if ¢ = a and ¢ # b.
¢ qaaa(d/a) = qddd, if a = b and a = c.
¢ AGa(d/e) = AGa, if e # a.
¢ AGa(d/a) = AGd.
¢ Pa(d/e) = Pa, if e # a.
¢+ Pa(d/a) = Pd.
v a:A(d/e)=a:A ife#a.
a:A(d/a)=d: A.

¢ qabc(d/e

)
)

+ qabc

*

We are now in a position that allows us to extend this definition to multisets.

Lemma 5.1. Let the variable e stand for either a, b or c. IfF* T' = A and,
provided d is free for e in I') A, then F" T'(d/e) = A(d/e) (allowing x-variables to
be substituted to variables as well).

Proof. By induction on the height n of the derivation of I' = A.

Let n = 0. If ' = A is an initial sequent and (d/e) is not a vacuous substitution,
then the substitution I'(d/e) = A(d/e) is also an initial sequent. Similarly for
conclusions of the G3rE® rule Rt.

Let n > 0. We consider the last rule applied in the derivation.

16 As consequence of our definition, we obtain (i) w(A+B) = w(~A — B) = w(~A)+w(B)+1 =
w(A)+w(B)+2, (i) wA® B) =w(~(~Ao~B)) =w(~Ao~B)+1=w(~A) +w(~B)+2=
w(A) +w(~B)+3=w(A)+w(B)+4, (iii) w(f) = w(~t) = w(t)+1 =2 and (iv) w(lA) = w(t —
A)=w(t) +w(A) +1=w(A)+2.
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1. Ifitisarule for A, V, or ~, we apply the inductive hypothesis to the premise(s)
of the rule, and then the rule.

2. We proceed similarly if the last rule is either Ro, L+!, Re or L —.

3. If the last rule is either R —, Lo, R+! or Le and the substitution is vacuous
(e # a, b, c), then there’s nothing to do.
Else, if d is not an eigenvariable, and the substitution d/e) is not vacuous, we
apply the inductive hypothesis to the derivation of the premise and, finally,
the rule.
If d is the eigenvariable, we first apply the inductive hypothesis in order to
replace the eigenvariable d with a fresh variable (by the variable condition the
substitution does not affect neither I" nor A). Finally, we apply the inductive
hypothesis to the derivation of the premise(s) and then the rule.

A more detailed case analysis can be found and readapted to the systems of this
paper from [I3]. O
Importantly, the heredity condition can be reflected at the calculus level by

means of formal derivations:

Proposition 5.2. Sequents of the following form: ROab,a : A,I' = Ab: A are
derivable.

Proof. By induction on the structure of A.
If A= Bo(C, then:

ROcc, Redb,c: B,S,I'= A,b: BoC,c: B ROdd, Redb,d : C,S',T = A,b: BoC,d:C
Redb,c: B,S,'= A,b: BoC,c: B ! Redb,d : C,8'\T = A,b: BoC,d:C .
Redb,c: B,d: C, ROab, Reda, T’ = Ab: BoC ) e
c:B,d: C,R0ab, Reda,I' = A,b: Bo(C 0
(e b a: BoCT = Ab:BoC
where S = d : C, ROab, Reda and 8’ = ¢ : B, ROab, Reda.
If A= B+ C, then:
ROce, Reda,c: B,S,T'= A,c: B,d: C R0Odd, Reda,d : C,S,T'= A,c: B,d:C
Reda,c: B,S,'= A,c: B,d:C Rl Reda,d: C.8,1T'= A,c: B,d: C L+1R1
Reda, Redb, ROab,a : B+ C,I'= A,c: B,d: C
Redb, ROab,a : B+ C,I'= A,c: B,d: C e
(e e b e BrCl = Ab. BrC
where S = Redb, ROab,a : B + C.
If A= Be (), then:
ROcc, Sedb,c: B,S,I'= A,b: Be(C,c: B ROdd, Scdb,d : C,S',T = A,b: Be(C,d:C
Scdb,c: B,S,I' = A,b: Be(C,c: B o Sedb,d : C,S8'\T' = A,b: Be(C,d:C Rl
Sedb.c: B.d: C,Rab, Seda,.T = Ab: BeC fie

c:B,d:C,R0ab,Scda,T' = Ab: Be(C
(¢, d fresh) Le
R0ab,a: BeC,I'=Ab: Be(C
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where S is d : C, ROab, Scda, and S" abbreviates ¢ : B, R0ab, Scda.
If A=t, then:
Rt

R5

ROcb, Pc, ROca, ROab,a : t,I' = A,b: t
Pc, ROca, ROab,a : t,I' = A,b: t
ROab,a :t,I' = A,b:t

In all cases the premises are derivable by the inductive hypothesis. Derivations for
A being either ~B or B — C can be found in [I3]. O

Lt

Let ¢ be standing for one of the relational atoms employed in some of the proof
systems mentioned in this paper.

Lemma 5.3. The rules of weakening:

I'=A I'=s A I'=s A
—_— W — = RW — = 1w,
a:A L= A I'=Aa:A o, '= A

are height-preserving admissible.

Proof. By induction on the height n of the derivation of the premise(s).

If n = 0, the cases are trivial.

Let n > 0. For derivations concluding with rules without variable condition, the re-
sult follows straightforwardly by applying the inductive hypothesis to the premise(s)
of the rule.

In case the derivation terminates with one of the rules with the eigenvariable condi-
tion, we first apply the substitution lemma to the premise(s) of the rule in order to
obtain a fresh eigenvariable not clashing with those in the weakening formula (a : A
or ¢). The conclusion is then obtained by applying the inductive hypothesis and,
finally, the rule. As an example, we consider Le:

"Syzx,y: B,z: C,T' = A

'_nSazx, a:B,z:C.I'= A suB(y/a) o i.h.
Le ~ a: A Syzx,y:B,z:C,T = A
T Be O, = A Lem .51 Le

e Az BeC,T = A
where the clash of variables is avoided by substituting the clashing variable a with
a fresh one, namely y.
The same procedure applies if the derivation terminates with an application of a
relational rule, and a : A or ¢ contain some of its eigenvariables. O]

Definition 5.4. A rule r is height-preserving invertible just in case: if there is
a derivation of the conclusion of r, then there is a dedrivation of premise(s) of r
(with the height at most n, where n is the maximal height of the derivation of the
conclusion).

Lemma 5.4. All logical and relational rules introduced in this article are height-
preserving invertible.
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Proof. For each rule r, we have to show that if there is a derivation ¢ of the con-
clusion, then there is a derivation ¢’ of the premise(s), of the same height. For all
rules without eigenvariable condition, we use a standard induction on the height
of the derivation. For rules subject to the eigenvariable condition as well, but we
need to be sure that in the transformed derivation we make use of a fresh label by
applying the substitution lemma inside ¢’, if needed. The same procedures apply to
all relational rules as well.

As an interesting example, we show height-preserving invertibility of Le. It is
proved by induction on the height n of the derivation of a : A e B,I' = A.
We distinguish three main cases. (1) If n = 0, a : Ae B,I' = A is an ini-
tial sequent, and then also Sbca,b : A,c : B,I' = A, is an initial sequent. Let
n >0 (2 Ifr" a: Ae BT = A is concluded by any rule r other than
Le, we apply the inductive hypothesis to the premise(s) a : A e BT = A’
(a: Ae BT = A”) to obtain derivation(s) of height n of Sbca,b: A,c: B,I" = A’
(Sbca,b: A,c: B,T” = A"). By applying r we obtain a derivation of height n+1 of
Sbea,b: A,c: B,T' = A, as desired. (3) IfF""! q¢: AeB, T = A is concluded by Le,
then Sbea,b: A, c: B,I' = A is the requested conclusion of height n, possibly with
different eigenvariables, but the desired ones can be obtained by height-preserving
substitutions (Lemma 671). An analogous reasoning can be applied to all logical and
relational rules with variable condition. O]

Lemma 5.5. The rules of contraction:
a:Aa: AL =A I'=Aa:Aa:A o, 0, = A

LC RC — 1O
a: AT =A I'=Aa:A o, = A

are height-preserving admissible.

Proof. By induction on the height n of the derivation. If n = 0, then the premise
is an initial sequent and, therefore, also the contracted sequent is an initial one.
(Similarly for conclusions of Rt in G3rE?).

Let n > 0. We consider the last rule applied to derive the premise of contraction.
If the contraction formula is not principal, both occurrences are to be found in the
premise(s) of the rule application, which has (have) a decreased derivation height.
By applying the inductive hypothesis, we contract those occurrences and apply the
rule to obtain our desired sequent.

If the contraction formula is principal, we distinguish three cases:

1. ris a rule in which the principal formulas appear also in the premise(s);

2. ris a rule where the premises consist of proper subformulas of the conclusion;

3. ris a rule where both, labels and proper subformulas of the principal formula,
are active formulas.

Ad 1. Contraction is applied by the inductive hypothesis to the premise(s) of the
rule. Let A = B e (' and Re be the last rule applied:
F'Sbca,T' = A,a: BeC,a:BeC,b: B Sbca,T'=A,a:BeC,a:BeC,c:C

"n+1Sbca,F:>A,a:BOC,a:BoC

Re

25



By applying the inductive hypothesis to the premises, we obtain the requested
derivation:

F"Sbca, T = A,a: BeC,b: B "Sbca,T = A,a: BeC,c:C
MHSbca,F = A,a:Be(

Analogously if the last rule applied is L —.
Let A = B o (C and suppose that the last rule applied is Ro:

" Rbca, T = A,a: BoC,a:BoC,b: B "™Rbca,I' = A,a: BoC,a:BoC,c:C
" Rbca,T = A,a: BoC,a: BoC

By applying the inductive hypothesis to the premises, we obtain the requested
derivation:

""Rbca,T'= A,a: BoC,b: B "™Rbca,I' = A,a:BoC,c:C
" Rbea,T = A,a: BoC
Finally, let A = B + C and suppose that the last step is L+

Re

Ro

o

"b:B,Rbca,a: B+C,a:B+C,I'=A "c¢:C,Rbca,a:B+C,a:B+CT'=A

'_n+1Rbca,a:B+C,a:B—|—C,F:>A

By applying the inductive hypothesis to the premises, we obtain the desired deriva-
tion:

L+t

"b: B,Rbca,a: B+C,I' = A "c¢:C,Rbca,a: B+C,T = A
'_nHRbca,a :B+C.I'= A
Ad 2. The procedure is rather straightforward as applications of contraction are
simply reduced to contractions on less complex formulas.
Ad 3. In this case, the inductive hypothesis is used on formulas of smaller complexity,

previously obtained by applications of the inversion lemma. Let A = B e C' and
suppose that the derivation ends with an application of Le:

L+1!

" Sbea,b: B,c: C,Sbea,b: B,c: C,T = A

" Sbca,b: B,c:C,a: BeC,I' = A INV. (x3) i.h.
1 Le F"Sbea,b: B,c: C,' = A
" a:BeC,a:BeC, T = A Lem.6a Le

'_nHa:BoC',F:>A

An identical reasoning can be carried out for R —.
If A= Bo(C, and it is derived by Lo, then:

" Rbca,b: B,c: C,Rbca,b: B,c: C,I' = A

" Rbca,b: B,c:C,a: BoC,T = A INV. (x3) ~ ih.
il Lo ~ ""Rbca,b: B,c: C,T = A
e :BoC,a:BoC, T = A Lem.6a Lo

F Bo(C,I'= A
If A= B+ C, and the derivation ends with an application of R+!, then:
" Rbca, Rbca,T' = A,b: B,c:C,b: B,c: C

" Rbca, T = A,a: B+ C,b: B,c: C . INV. (x3) =
e R+ ~ " Rbca,T' = A,b: B,c: C
" I'=Aa:B+C,a:B+C Lem 54 e R+4!
" T=Aa:B+C
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As a final example, let A =t and consider a derivation ending with Lt:

a :t,Pb, ROba,a : t,T = A i.h. "Pb, ROba,a : t,T = A
-~ Lt ~ -~ Lt
P e tat, T = A e, T = A
Notice that when both contraction formulas are principal, we apply the closure
condition. O

Theorem 5.6. The rule of cuT:
'=Aa:A a:AT = A
LT = A A

cuT

is admissible.

Proof. The proof is carried out by a lexicographic induction on the complexity of
the cur-formula a : A and the sum of the heights h(d,) + h(d2). We perform a
case analysis on the last rule used in the derivation above the cuT, and consider
whether it applies to the cuT-formula or not. We show that each application of
CUT can either be eliminated, or be replaced by one or more applications of cuT
of smaller complexity. The proof proceeds similarly to the cuT-elimination proofs
for several labelled calculi, e.g., [&1, 24, 29, [3]. Intuitively, we eliminate the left-
and topmost CUT first, and proceed by repeating the procedure until we reach a
cuT-free derivation. We start by showing that cUT can be eliminated if one of the
CUT premises is an initial sequent (case 1). Then we show that the cuT-height can
be reduced in all cases in which the cuT-formula is not principal in at least one of
the cuT-premises (case 2). Finally, we show that if the cuT-formula is principal in
both cuT-premises, then the cUT is reduced to one or more CUTs on less complex
formulas or on shorter derivations (case 3). We present some interesting cases where
the cuT-formula A is principal in both premises.

(3.1) We start by considering a derivation where the last rules applied to obtain the
CUT-premises are Ro and Lo, respectively. Let A be Bo C:

Rbca,T' = A,a: BoC,b: B Rbca,I' = A,a:BoC,c:C Rxya,z : B,y : C,T' = A’

Ro (x,y fresh)

Rbca,T'= A,a: BoC(C a:BoC,I"= A/
Rbca, T, TV =, A, A’

It is transformed into the following one:

cuT

Rbca,T' = A,a: BoC,c:C a:BoC,I'= A’ L5
CUT :
Rbca, T, TV = A, A c: C Rbca, Rbca,c: C,I',T' = A, A’
cuT
Rbea, Rbca, Rbca, T, T, TV, TV = A, A, A A
(Lem. B35) LC+ RC+ LCp,

Rbca, T, T = A, A’
where ¢ is concluded by:
Rxya,z : B,y : C,I" = A/

(Lem. &=1) suB(b/x)

Rbca,I'= A,a: BoC,b: B a:BoC,I'= A’ Rbya,b: B,y : C,TV = A’

cuT (Lem. B=1) SuB(c/y)

Rbca, T, T' = A, A", b: B Rbea,b: B,c: C,T' = A’
Rbca, Rbca,c: C,I',T' =, A, A’

CuT
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(b, ¢ fresh)

(3.2) Assume that the premises of CUT are derived by R+! and L+!, respectively.

Let A=B+C:
d: B,Rdea,a: B+ C,I"= A" ¢:C,Rade,a: B+ C,I" = A/

Rbca,I' = A,b: B,c: C )
R+
I'=Aa:B+C Rdea,a: B+ C, TV = A/
cuT

Rdea, I’ T' = A, A/

L+1

It is transformed into the following derivation:

L6 I'=Aa:B+C e:C Rdeaa:B+C,T = A

Rdea,T'\T" = A, A’,e: C e:C,Rdea,I',T' = A, A/
CcuT

Rdea, Rdea, I\, T", TV = A, A, A, A/
Rdea, T’ T" = A, A

cuT

LC+ RC+ LCp

(Lem. B3)

where the conclusion of d; is derived by:

Rbca,I' = A,b: B,c: C
(Lem. B) -------------------- SuB(e/c) , ,
Rbea,I' = A,b: B,e: C I'=s=Aa:B+C d:B,Rdea,a: B+C,1"= A
(Lem. 50) -------------------- suB(d/b)
Rdea,I' = A,d: B,e:C d: B, Rdea,I',T" = A, A’
cuT

Rdea, Rdea,T',\T\T" = A,A,A',e: C

cuT

LC+ RCHLCL

(Lem. B35)
Rade, T, T" = A, A’Je: C

(3.3) Assume that the premises of cUT are derived by Re and Le, respectively. Let

A=BeC(:
Sbca,I'= A,a: BeC,b: B Sbca,I'=A,a:Be(C,c:C Sxzya,r: B,y : C, " = A’
Re (z, y fresh)
’ a:BeC,T = A

Sbea,T'= A,a: Be(C
cur
Sbea, T, TV =, A, A’

Le

The desired transformed derivation is obtained as follows:
L6y

Sbca,I' = A,a: BeC,c:C a:BeC,I"= A’ :
Sbea, Sbea,c: C, T, T = A, A/

Sbea, I, TV = A, A c: C
Sbca, Sbea, Sbea, U, T, I, T" = A, A, A/ A’

cuT

CcuT

LC+ RC+ LCp,

(Lem. B3R)
Sbea, I, T = A, A’

where 47 is concluded by:
Sxzya,z: B,y : C,I" = A/

A suB(b/x)

(Lem. 5=1)
Sbca,I' = A,a: BeC,b: B a:BeC,I'= A’ Sbya,b: B,y : C,T" =
cuT (Lem. B1)
Sbea, I, TV = A, A", b: B Sbea,b: B,c: C, T = A/
CcuT

Sbca, Sbea,c: C, T, TV = A A’

suB(c/y)

(3.4) As a final example, assume that the premises of CUT are derived by Rt and

Lt, respectively. Let A =t:
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Pz, ROza,a : t,I" = A/
Rt (z fresh) Lt
Pb, ROba,I' = A,a : t a:t, IV = A’
Pb, ROba, I, T' = A, A’
It is transformed into the following derivation:
Pz, ROza,a : t,I" = A/

(Lem. B=1) suB(b/x)

Pb, ROba,T' = A,a : t Pb, ROba,a : t,T" = A/
Pb, ROba, Pb, ROba, I, TV = A, A’
(Lem. B3) LC+LCr,
Pb, ROba, T, TV = A, A’

The proofs for A being either ~B or B — C' can be found in [I3]. O

cuT

cuT

Proposition 5.7. The following results can be shown:
1. The heredity rules for atomic formulas are height-preserving admissible:
b:p, ROab,a:p, I = A R0ab,T' = A,b:p,a:p

ATHER-L ATHER-R
R0Oab,a : p,I' = A R0ab,I' = A,b:p

2. The heredity rules for compound formulas are admissible:

b: A, ROab,a: AT = A R0ab, T = Ab: A,a: A
GENHER-L GENHER-R
R0ab,a: AT = A R0ab,T = Ab: A

3. The following rules, relating the concepts of entailment and implication (i.e., the
sequent-style version of the Verification Lemma, p. [}), are admissible:

=0:4A—- B a:A=a:B
< = VERI - T "~ VER2

a:A=a:B =0:4—> B

4. The following rules for the two defined fission connectives (see Section 2, p. 8)
are admissible:

b*: A, Rabc,a: A+ B,I'=A c¢:B,Rabc,a: A+ B, ' = A
Rabc,a: A+ B, T = A

L+2

Rabe,I' = A, b*: A,c: B Re?
b, c fresh
(e Jrest) I'=Aa:A+B

b*: A, Rbca*,a: A®d B, I'=A ¢":B,Rbca,a: Ad B,I'= A
Rbca*,a: Ad B,T' = A

Lo

Rbca*,T' = A)b*: A,c*: B "
b, h ©
(v Jrest) I'=s>Aa:A®B

5. The “generation rule” (see Section 3, p. [12) is height-preserving admissible.

AGa,a: A I'= A
LG
AGa,T' = A

6. The “necessitation rule” (i.e., Rt2, Section [, p. [18) is admissible.
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=0:4
=0:t— A

7. The rules for B (see Section [, pp. 19 and ff.) are admissible.

Pz, Raxb,I' = A,b: A . b:A,a:BA Px, Raxh, ' = A .
'=Aa:HA a: WA Pz, Raxb, T = A

NEC

(z fresh)

Proof. The proofs of 1., 2. and 3. can all be found in [I3].

Ad 4. We proceed by root-first derivation. Let’s start by considering the rules for
A+ B =4 ~A — B. For L+2:
b*: A, Rabc,a : A+ B,I' = A
b*: A, Rabc,a : ~A — B, ' = A - c: B,Rabc,a: A+ B, I'= A

- Rt b df+
Rabc,a: ~A — B, I'= A,b: ~A c¢: B,Rabc,a: ~A — B,I'= A

Rabc,a: ~A — B, T = A o
,,,,,,,,,,,,,,,,,,,,, _l’_
Rabc,a: A+ B, I = A

L —

For R+
Rabe,I'= A b* : A,c: B
Rabe,b: ~A,I'= A,c: B
(b, ¢ fresh) R—
'=Aa:~A— B

7777777777777777 df+
I'=Aa:A+B

Finally, we consider A @ B =4 ~(~A o~B). For L&:

~

b* : A, Rbca*,a: A® B,T = A ¢*: B,Rbca*,a: A® B, = A
************************ df®d e« | {<5)
b* : A, Rbca*,a: ~(~Ao~B),I' = A ¢* : B,Rbca*,a: ~(~Ao~B),I'= A
(Lem. B33) RW (Lem. B3) RW
b* : A, Rbca*,a : ~(~Ao~B),I'= A,a* : ~Ao~B c¢* : B,Rbca*,a : ~(~Ao~B),I'= Aja*: ~Ao~B
R~ R~
Rbca*,a: ~(~Ao~B),I' = Aja*: ~Ao~B,b: ~A Rbca*,a: ~(~Ao~B),I' = Aja*: ~Ao~B,c: ~B

Ro

Rbca*,a: ~(~Ao~B),I'= Aja* : ~Ao~B
L~

Rbca*,a: ~(~Ao~B),a:~(~Ao~B),I'= A

(Lem. B3) LC
Rbca*,a: ~(~Ao~B),I'= A

Rbca*,a: A® B, I' = A

For R®:
Rbca*, ' = A b*: A,c*: B
Rbca*,c: ~B,T'= A b*: A
Rbca*,b: ~A c: ~B,I'= A

(b, ¢ fresh) Lo
a*:~Ao~B,I'= A

~

I'=Aa:A®dB

Ad 5. We consider G3rB* (and extensions thereof) and prove the claim by induction
on the height n of the derivation. If n = 0, then the sequent is an initial one, and
we obtain our desired result as follows:

AGa,a : A, ROab,a : p,I' = Ab:p e AGa, ROab,a : p,I' = A,b:p
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where the rightmost sequent is obtained by applying the induction hypothesis to
the leftmost one.

Let n > 0. If the derivation ends with an application of rules without eigenvariable
condition, then we simply apply the inductive hypothesis to the premises and finally
the rule. We display the cases for derivations ending with Le and R — (subject to
the eigenvariable condition). If the formula A is not principal, we proceed as follows:

F" Sbea,b: B,c: C,AGa,a: A,T' = A ih. F"Sbca,b: B,c: C,AGa,I' = A

Le ~~ Le
Fitla: BeC,AGa,a: A,T = A Frtly: Be C, AGa, I = A
And, finally:
F" Rabe,b: B, AGa,a : A,I' = A,c: C ih. F"Rabe,b: B,AGa,I' = A,c: C
R—  ~» R—
Frtl AGa,a: AT = A,a: B — C Frtl AGa,T' = A,a: B — C

If the last rule applied is a relational rule, the procedure is identical.
Let’s consider a rule application with A principal. Let A= B e C:

F'a: Be(C,Sbca,b: B,c:C,(Be(C)Ga,I' = A

(Lem. B4) INV
" Sbea,b: B,c: C,(Be(C)Ga,I' = A LW F'a:Be(C,a:BeC(C (Be()Ga,I = A
Le ~ (Lem. B3A) LC
Frtla: BeC,(Be(C)Ga, I = A Lem B3 F'a:Be(C,(Be(C)Ga,I = A

-7 (B e C)Ga,T = A
Finally, let A= B — C"
F" Rabc,a : B — C, (B — C)Ga,I' = A,b: B F'c¢:C,Rabc,a: B— C,(B — C)Ga,I' = A
"+t Rabe,a : B — C, (B — C)Ga, I = A

L —

By applying tw (Lem. 623) to the premises we construct the following derivation:

Fra:B — C,Rabc,a: B — C,(B — C)Ga,T = A,b: B F'a:B — C,c: C,Rabe,a: B — C, (B — C)Ga,I’ = A
(Lem. B4)

INV
F"a: B — C,Rabc,a: B — C,(B — C)Ga,I' = A
(Lem. B35) LC
F" Rabc,a : B — C, (B — C)Ga,I' = A

" Rabe, (B — C)Ga,I' = A

Ad 6. Consider the system G3rE'. We show that, if = 0: A, then = 0:t — A.

(Lem. 61) =0:4 suB(b/0)
(Lem. B3) LWHLW7,
ROab,a :t=0b: A
(a,b fresh) R —

=0:t— A

Ad 7. Consider the rules of G3rE!. We proceed by root-first derivation. For RE:

Pz, Raxb,I' = A,b: A
(Lem B3) LW—HLWp,
Pz, Raxb, ROxy, Rayb,y : t,I' = A,b: A

T3
Pz, ROxy, Rayb,y : t,I' = A,b: A
(z fresh) Lt
Rayb,y :t,I' = A,b: A
(y, b fresh) R—
I'=>Aa:t— A
—————————————— dfll
I'=A,a:0A



For LI:

Rt
Pz, ROxx,I' = A,z : t R1
Pz,I'= A,z :t b:A a:MA Pz, Raxb,T = A
(Lem B3) LWAHLW], oo oo m e e e oo dfll
a:t— A Px, Raxb,I' = A,z : t b:Aa:t— A Pz, Raxb,I' = A I
%
a:t— A Px, Raxb, ' = A im
a: WA, Pz, Raxh,T' = A
]

6 Soundness and completeness

We conclude the paper by showing that our labelled calculi are sound and complete.
Roughly, we prove that:

' = A is provable in G3rX <= I' = A is valid in every frame for X

where X is any of the relevant logics discussed in this paper.

Soundness (=>). The proof consists in showing that the rules of each labelled
calculus presented in this article preserve validity over Routley-Meyer frames. Let
Z and . be, respectively, any of the Routley-Meyer frames and models discussed
in this paper. We start by extending semantic notions to sequents as follows:

Definition 6.1. Let s be any labelled sequent of the form I' = A. An s-interpretation
in A is a mapping [-] from the labels in s to the set K of states in .#, such that
(i) 0 = [0] and (ii) if Rabc (or Sbea, or AGa, or Pa) is in I', then R[a][b][c] (or
STbllc][a], or AG[a], or P[a]) holds in .#. Now we can define:

A ] IFs iff if for all @ : A € T, we have ., [a]] IF A, then there exists
b: B € A, such that ., [b] IF B.

Definition 6.2. A sequent s is satisfied in . if for all s-interpretations [-] we have
A, [-] IFs. A sequent s is valid in a frame .%, if for all valuations v, the sequent s

is satisfied in ..
Finally, we can prove the requested soundness result:

Theorem 6.1. If a sequent s is provable in G3rX, then it is valid in every Routley-
Meyer frame for X.

Proof. We proceed by induction on the height of the derivation of s. We show that
for each rule r of the form Py,...,P,/C, if the premises Py, ..., P, are valid in all
Routley-Meyer frames, then so is C. It follows from a case analysis on r:

In. By way of contradiction, assume that ROab,a : p,I' = A,b : p is not valid
in all Routley-Meyer frames. This means that there is a model .Z and an
interpretation [-], such that ., [-] I ROab,a : p,I' = A,b: p,i.e., R[0][a][0]
and A ,a - p, but A ,blf p. However, this is not possible given heredity (see
p. @).

32



R+

L+

Re.

Rt.

Lt.

By way of contradiction, assume that Rbca,I’ = A,b: A,c: B is valid in all
Routley-Meyer frames, but I' = A a : A + B is not, where b,c¢ ¢ I'; A. The
latter means that there is a model .# and an interpretation [-], such that
AW T = Aa: A+ B. In particular, we know that there are worlds
b and ¢ such that RV [a] and #,0 | A, and A4, If B. Now we define
an extension [-]" of [-] such that [b] = ¥, [c¢] = ¢ and [-]' = [-]. Then,
A L[] W Rbea,I' = AJb: A, c: B. Contradiction.

By way of contradiction, assume that b: A, Rbca,I’ = A and ¢ : B, Rbca, I’ =
A are valid in all Routley-Meyer frames, but Rbca,a : A+ B,I' = A is not.
The latter means that there is a model .# and an interpretation [-], such that
M ] I Rbca,a : A+ B,I' = A, ie., R[b][c][a] and A, ,a IF A+ B, but
A x IF D for all x : D € A. However, by the clause for + (p. H) we also
have #,b |- A or A4, c |+ B. Consequently, ., [-] IV b: A, Rbca,I" = A or
A [-] W c: B, Rbca, T = A. Contradiction.

By way of contradiction, assume that Sbca, I’ = A,b: A and Sbeca,I' = A, c:
B are valid in all Routley-Meyer frames, but Sbca,I' = A,a : A e B is not.
The latter means that there is a model .# and an interpretation [-], such that
M [] W Sbea, T = Aja: Ae B, ie., S[b][c][a] but 4, ,alf Ae B. By the
forcing clause for e (Section B), then we have .#Z,b lf A or .#,clf B. As a
consequence, we obtain ., [-] If Sbca,T' = A,b: A or A ,[-] IV Sbca,T =
A, c: B. Contradiction.

. By way of contradiction, assume that Sbca,b : A,c : B,I' = A is valid, but

a: Ae B, ' = A is not, where b,c ¢ I') A. The latter means that there is
a model .# and an interpretation [-], such that .#Z,[-]If a: Ae B,I' = A,
ie., #,alf Ae B, but A, xlf D, for x : D € A. By the forcing clause for
e, then we have that there are worlds ', ¢ such that St/'c[a], .#,b' |+ A and
A, |- B. Let [-]' be an extension of [-] such that [b] =¥, [¢] = ¢ and
[-]' = [-]- As a consequence, we obtain ., [-]' If Sbca,b: A,c: B,T' = A.
Contradiction.

An analogous reasoning can be carried out with rules Ro and Lo of Section 2.
As a final example, we consider the rules for t of G3rE* (Section @):

By way of contradiction, assume that Pb, ROba,I’ = A,a : t is not valid
in all Routley-Meyer frames. This means that there is a model .Z and an
interpretation [-], such that .#,[-] Iff Pb, ROba,I' = A,a : t, i.e., P[b] and
R[O][b][a], but &, a ¥ t. However, by the forcing condition for t, from P[b]
and R[0][b][a], it follows that .#,a I t. Contradiction.

By way of contradiction, assume that Pb, ROba,a : t,I" = A is valid in all
Routley-Meyer frames, but a : t,I' = A is not, where b ¢ I'; A. The latter
means that there is a model .# and an interpretation [-], such that ., [-] I
a : t,I' = A. In particular, we know that there are worlds & such that
PV, R[0]V'[a] and .2,V Ik t, but 4,z |f D, for all z : D € A. Now
we define an extension [-]" of [-] such that [b] = 0’ and [-]" = [-]. Then,
A ] ¥ Pb, ROba,a : t,I' = A. Contradiction.

The remaining cases, especially those concerning the rules for ~ and —, can be
recovered from [I3]. O
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Completeness (<=). In what follows, we prove that, for every sequent s, the
proof search either terminates in a proof or fails, and the failed proof tree is used
to obtain a countermodel for s. Intuitively, to see whether A is derivable, we check
if it is valid at the actual world 0 € W, i.e., 0 IF A. This, indeed, will correspond
to have the sequent = 0 : A in our calculus.™ Again, let X be any of the relevant
logics dealt with in this article.

Theorem 6.2. Let s be a sequent. Then either s is derivable in G3rX or s has a
countermodel with the frame properties peculiar for X.

Proof. We proceed with the construction of a derivation tree for I' = A by applying
the rules of G3rX root-first. (For the complete development of the argument see
[[3, Appendix 1]). If the reduction tree is finite, i.e., all leaves are initial sequents,
we have a proof in G3rX. Assume that the derivation tree is infinite. By Konig’s
lemma, it has an infinite branch that is used to build the needed counterexample.
Suppose that I' = A =Ty = Ay, 'y = Aq,..., [, = A, ... is one of such branches.
Consider the sets T' = [JT'; and A = |JA,, for i > 0. We now construct a coun-
termodel, i.e. a model that makes all labelled formulas and relational atoms in I"
true and all labelled formulas in A false. We show that, A is forced in the model at
0if 0: Aisin I' and A is not forced at 0 if 0 : A is in A. We will end up with a
countermodel to the endsequent. We display some relevant cases:

¢ If p is atomic, the claim holds by definition of the model.

¢ If0: A+ Bisin A, at the successive step of the reduction tree we find that Rab0
and that both a : A, b: B are in A. By the inductive hypothesis we obtain Rab0
and a | A and bl B, that is, 0 If A+ B in the model.

¢ If 0 : A+ B is in I', we consider all the relational atoms Rab0 that occur in
I'. If there’s no relational atom, the accessibility condition is vacuously satisfied
and, therefore, 0 IF A 4+ B is in the model. For any occurrence of Rba0 in I', by
construction of the tree a : Aisin "' or b : A is in I'. By the inductive hypothesis
alF A or blF B, and since Rab0, we obtain 0 I A 4+ B in the model.

¢ If 0 : Ae B isin A, we consider all the relational atoms Sab0 that occur in
I'. If there’s no relational atom, the accessibility condition is vacuously satisfied
and, therefore, 0 I A @ B is in the model. For any occurrence of Sab0 in I, by
construction of the tree a : Aisin A orb: Aisin A. By the inductive hypothesis
alf Aorblf B, and since Sab0, we obtain 0 I} A e B in the model. (The case for
0: Ao B in A is analogous.)

¢ If0: Ae Bisin I', at the successive step of the reduction tree we find that Sab0,
a:Aandb: B arein I'. By the inductive hypothesis we obtain Sab0, a |- A and
bl B, that is, 0 - Ae B in the model. (The case for 0: Ao B in I is analogous.)
As a final example, we consider the rules for t of Section &:

¢« If 0:tisin A and Pb, ROb0 is in I', then by the inductive hypothesis we obtain
Pb, RObO, but 0 Iff t in the model.

17As remarked in [[3], this correspond to reflect, at the calculus level, the actualistic notion of
validity employed in reduced Routley-Meyer models. See also [48, 276].
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¢« If 0 : tisin I', then at the successive step of the reduction tree we find that
Pb, ROb0O and O : t are in I'. By the inductive hypothesis we obtain Pb, R0b0, and
0 IF t in the model.

The remaining cases can be checked in [I3]. O
This proof directly implies our desired result:

Corollary 6.2.1. If a sequent s is valid in every Routley-Meyer frame for X, then
s is derivable in the system G3rX.

7 Alternative proof systems and final remarks

Despite their complexities and subtleties, proof-theoretic studies of relevant logics
have received extensive attention. In this paper, we have introduced labelled se-
quent calculi for a broad range of relevant logics including fusion, fission, and Acker-
mann’s truth constant. Our approach involves incorporating semantic information
from reduced Routley-Meyer models at the syntactic level. We have established
soundness and completeness of these calculi. Additionally, we have demonstrated
height-preserving invertibility of the rules, height-preserving admissibility of struc-
tural rules, and cuT-admissibility. In this final section, we will contextualize our
current work within the broader landscape of proof systems for relevant logics by
exploring various frameworks. Additionally, we will conclude this section by dis-
cussing both the advantages and limitations of the approach taken in this paper,
while also suggesting potential directions for future research.

Firstly, by employing standard Gentzen sequents, as outlined, for instance, in [A9,
50-51], one can start with a sequent calculus for linear propositional logic and in-
corporate the left and right contraction rules to define the distribution-free version
of R. Indeed, in such a sequent system one cannot deduce the distribution axiom
AN(BVC) — (AANB)V(ANC), meaning it lacks the strength required to establish
completeness with respect to the full Hilbert-style presentation of R. Other sys-
tems, such as R™ and E7, which represent the implicational fragments of R and E
respectively, can be characterized using Gentzen’s sequent calculus for intuitionistic
logic LJ as base framework. Specifically, these systems are defined by introducing
specific constraints, particularly on the right rule for —, if E™ is considered. This
additional constraint requires that in each root-first application of the right rule for
—, every formula in the antecedent must take the form of A — B (see [23, 264]). In
addition to the previously mentioned fragments of both R and E, Bimbé [9, 103-122]
also explores ordinary sequent systems for the {~, —}-fragments of R and E, their
reformulation with the truth constant t, as well as systems for some of R’s and E’s
modal expansions. However, the success of these strategies is mostly limited to the
mentioned fragments of R and E, and to capture a broader spectrum of relevant
logics, more finely-grained proof-theoretic techniques are needed.

To begin with, Anderson and Belnap’s early work [5] provides well-known examples
of proof systems, encompassing both sequent and natural deduction calculi for rele-
vant logics. Concerning natural deduction systems, they proposed rules with labels,
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specifically natural numbers, to track the actual uses of assumptions in derivations.
The rules, presented in Jaskowski-Fitch style, for introducing and eliminating im-
plications take the following form:

A— Ba—{k}

Alternatively, these rules can be presented in a Gentzen-Prawitz style as follows:

o Afry
a — B :
Lo 27 (L E) :
BaUB Ba (_> I)
A— Ba—{k}

Importantly, in (I —), we require that k£ € a. Intuitively, these rule represent an
easy way of handling with numerals to express the relevance conditions by ensuring
that for a formula B to follow from a formula A, the assumption A must be actually
used in proving the conclusion B. More precisely, the rules for — displayed above
allow for: (1) the inference of B, from A, and A — By; and (2) the deduction of
A — B, gy from a proof of B, based on the hypothesis Ay, provided that k € a
(with a, b, ... ranging over numerals). The resulting natural deduction systems, ex-
tensively studied in [6], have subsequently been adapted to encompass a wide range
of quantified relevant logics in Brady’s work [I0]. Brady’s research in [I2] also fo-
cuses on normalization procedures, using the Fitch-style natural deduction system
for propositional DW as a case study. Additionally, Standefer in [64] devised Fitch-
style natural deduction systems for propositional E, while Anderson, in his earlier
publication [B], introduced Fitch-style calculi also for quantified E. Interestingly,
Standefer’s work in [B66] also explores translations between linear and tree natural
deduction systems for relevant logics.

As for sequent-style frameworks, it’s worth mentioning that besides the use of or-
dinary sequents, Anderson and Belnap in [8, 57-69] introduced the systems they
labelled merge calculi (see also [d, 135-137]). The idea is that in the formula-
tion of rules, I', A, ... represent sequences of formulas subject to a special oper-
ation called merge, which combines sequences of formulas. Specifically, the ele-
ments of the sequence represented by I' may be distributed in the “interstices” of
A as long as the elements of I' retain their internal ordering, formally denoted as
(T, A).™ For example, if ' = Ay, Ay, A3 and A = By, B, B3, then the sequence
Il = Ay, By, Bs, Ay, As, B3 is one of the merges of I' and A, that is II € u(I', A).
These systems were used to capture relevant logics T7, E7, and R™. The following
rules for — are used:

18«Metaphorically speaking, a merge of two sequences is like closing a zipper with unevenly
spaced juts: the juts on each strip retain their place with respect to each other, but a group of
juts on one strip can jostle between a pair of juts on the other strip” [d, 135].
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A=A ILBX=C A= B
L—>N ’7R_>M
uw(DILA— B),A Y= C I'=A—B

In addition to the single-conclusion restriction on the right-hand side of sequents,
the following restrictions must be imposed on L —,: for T, we impose that A # &;
for E7, it is required that either A # @ or, if A = @, then A must be of the form
B — C, for some B,C. For R7, no restriction on L —, is needed.

To explore more complex languages, including those with conjunction and disjunc-
tion connectives, and hence to reintroduce the distribution axiom at the level of
Hilbert-style systems, it becomes necessary to introduce those frameworks known as
Dunn-Mints (or consecution) calculi. These systems were independently developed
by Mints in his 1972 paper [89] and by Dunn in his 1973 contribution [(4]. In this
framework, there are two distinct operations for composing data on the left-hand
side of sequents. In addition to the standard comma “,”, which is used in Gentzen’s
sequents to represent extensional conjunction at the meta-level, we introduce the
semicolon “;” to denote intensional conjunction (see [29, 127-130], [, pp. 123-129],
[P35, 267-268]). Usually, the elements that in consecution calculi are grouped to-
gether by the separators “,” and “;” are referred to as structures and are denoted by
X, Y, etc. Formally, (X,Y) and (X;Y) represent extensional and intensional struc-
tures, respectively, and the notation X [Y] is used to denote that Y is a substructure
of X. For example, the consecution calculus for the {A,V,—, o t}-fragment of R
comprises the following rules for —, o and t employing “;” rather than “,”:

X=A4 Y[B=C X;A= B
L —; — R
Y[X;A— B]=C X=A—-1B
mmmicL X=A Y=B X[A]=C
———————— Lo ; — Lt
X[AoB]=C X;Y = AoB X[A;t] = C
Furthermore, the precise distinction between “;” and “,” enables one to preserve a

version of the rule of weakening while simultaneously preventing the derivation of
irrelevant formulas. Such a weakening rule takes the following form:

X[Y]=C
X[y, Z]=C

where Y # @, and any root-first application of the rule can be performed only on
extensional structures.

Consecution calculi represent a cornerstone in the development of proof theory for
relevant logics. However, their application becomes more complex when negation is
among the connectives. A successful approach to dealing with negation is provided
by the display calculus, a framework first discussed by Belnap in [§]. In this frame-
work, not only are “;” and “,” introduced, but a variety of structural connectives is
also employed, making the structural reasoning used in derivations visually explicit.
The fundamental feature of display calculi is that given a formula and a sequent
containing it, it is always possible to transform that sequent into an equivalent one
where the given formula is either the entire antecedent or the entire succedent (such
a feature is called display property, hence the name display calculus). Structures
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denoted by X, Y, etc., are used, multiple-conclusion sequents are allowed, and as
a consequence structures are combined not only on the left-hand side but also on
the right-hand side of sequents. Belnap introduced display logic as a proof-theoretic
tool for the investigation of a wide range of logics, not limited to relevant logics
alone. His most significant contribution was the proof of a general cUT-elimination
theorem applicable to all display calculi whose rules adhere to a small number of
easily verified formal conditions (see [8, 389-392], [9, 199-208]). This result demon-
strates that display logic is a powerful framework for the unified treatment of the
proof theory of various logics. For example, we can accommodate ~ by introducing
an additional structural connective denoted by “x” and provide a calculus for the
full language of R. The rules, taken from Restall’s emendation of Belnap’s original
calculus, can be defined as follows (see [57], [29, 130-135]):

X=0 g=X X =%*A xA =X

X=f t= X X=~A ~A=X
X;A=1B X=A B=Y X=A Y=B
ST T R L —; % Ro;
X=A—>B ’ A— B=xX,Y X;Y=Ao0oB

A;B= X X=A;B A=X B=Y

——— Loy o R LA+

AoB=X X=A+B A+B=X;Y

Similar to consecution calculi, the rules governing A and V rely on the use of the ex-
tensional separator “,” instead of “;”. Moreover, just as the comma on the left-(resp.
right-)hand side of sequents denotes extensional conjunction (resp. disjunction),
the semicolon on the left (resp. right) of = denotes intensional conjunction (resp.
disjunction). The empty structure, &, is employed to introduce t (resp. f) on the
left (resp. right) of =. As illustrated by the rule L —;*, different structural con-
nectives can be combined. For further information on display calculi one can refer
to Wansing’s book [[1].

Another approach, aimed at preserving the distinctions between extensional and in-
tensional combinations of premises, was introduced by Read [66]. This approach is
sometimes referred to as the Scottish Plan in relevant logics (see [66, 131-143]). The
calculus consists of sequents of the following form: “X : A”, where X is referred to
as a bunch of premises, and A is a formula. In this setting, a bunch of premises X
can be conjoined both extensionally and intensionally, and the formula A is the con-
clusion inferred based on those premises. Bunches are represented using two pairing
operations symbolized by the comma and the semicolon: the comma denotes ex-
tensional conjunction, while the semicolon denotes intensional conjunction [5G, 58].
Within this framework, Read introduces two general schemas, one for introduction
and one for elimination rules. Based on these schemas, he defines several bunch
proof systems for a variety of relevant logics, with particular attention to DW | E,
and especially R [66, pp. 40-41, 51-77].

All the approaches we have discussed so far modify the sequent calculus in a man-
ner that enhances its expressive power, enabling it to capture more nuanced dis-
tinctions in the intensional and extensional combination of data. These distinctions
are not only important for the study of relevant logics but also extend to several
non-classical systems. Another noteworthy approach involves the introduction of
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hypersequent calculi, as presented in Avron’s work [[@]. In essence, a hypersequent
takes the form I'y = Ay | -+ | T, = A,,, where each I' = A is an ordinary sequent,
with I' and A representing sequences of formulas. The hypersequent is essentially
a sequence of sequents, where the separator “|” is interpreted as a meta-level (ex-
tensional) disjunction. Avron initially introduced the hypersequent formulation for
RM, and, for the sake of simplicity, we present it in a simplified manner, relying on
the hypersequent calculus for linear logic as a foundational framework (see [23, 266]).
The hypersequent structure is used in formulating the additional rules necessary for
transitioning from the linear logic base framework to RM. These additional rules
are presented as follows:

GIIVNI=AX% G|I'=A H|II=X
Split Mingle
GI'=A|ll=X% G|H|III=AX
where, G and H represent side hypersequents. This hypersequent formulation of
RM is deductively equivalent with respect to the axiomatization of RM, i.e.,
R with the mingle axiom, A — (A — A). That is, the hypersequent calcu-
lus allows the derivation of all axioms of RM and, conversely, that each hyper-
sequent, suitably translated into an object language formula, is derivable in the
axiomatic system for RM. The translation, denoted by 7, can be displayed as fol-
lows: 7(T1 = Ay |-+ | T = A,) = (') = +A1) V-V (o', = +A,,), where oI’
and +A denote the intensional conjunction and disjunction of formulas in I and A,
respectively.
On a different, albeit related, note, besides the natural deduction systems labelling
formulas with numerals to express relevance between premises and conclusions in
derivations, a variety of labelling techniques have been used in the development of
the proof theory for relevant logics. For example, important instances of labelled
calculi for relevant logics include the contribution made by E. Orlowska. In [d8], she
introduced a methodology aimed at constructing natural deduction-style systems
for various propositional relevant logics. This method shares some resemblance
with Negri’s approach, as it involves characterizing relevant logics using ternary
relational frames and subsequently formulating deduction rules based on these re-
lational frames. Similarly, Priest [64, pp. 188-220, 535-563] introduced labelled
tableau systems for various propositional and quantified relevant logics, referring to
the unreduced Routley-Meyer relational semantics.
An important aspect of the development of labelled proof theory has encompassed
the study of semilattice relevant logics (referenced in works such as [69, 23, 27, PR,
[74]). The semantics incorporated into the proof-theoretic structure does not involve
three different states a, b, ¢ related by a ternary relation of the form Rabc; instead,
rather than introducing a third state ¢, the approach considers the union of a and
b. Urquhart, intuitively, motivates his semantic choice by arguing that for a piece
of information b to determine a formula A — B is to say that, whenever we can
conclude A based on a piece of information a, we can also conclude B based on both
pieces of information a and b taken together, formally a Ub [69, 160]. The resulting
rules for — can be expressed as follows:
F7Aa:>A;A_>Bb7BbUaR , F,A—)Bb:>A,Aa F,A—)Bb,BbUaiA
I=A A B, ” T A B, = A

L -
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Another important example of labelled deductive systems for relevant logics was pre-
sented by L. Vigano in [70]. As noted in [d2, 125], the main difference between our
approach and Vigano’s lies in the construction of sequent calculi with explicit struc-
tural rules, along with the use of single-conclusion rules for the accessibility relation
(Horn clauses) confined within Harrop theories, i.e., theories lacking disjunctions in
the right-hand side of axioms (see also [[70, 61-70]). In addition to sequent systems,
Vigano also introduced labelled natural deduction calculi. It’s worth noting that the
proof systems presented in this paper can also be represented as natural deduction
systems, with significant differences between Orlowska’s and Vigano’s approaches.
To elaborate, Negri and von Plato [6, 268-277] describe a methodology and its
corresponding philosophical advantages for establishing a set of introduction and
elimination rules, which mirror the left and right rules of a certain labelled sequent
system. This method is based on starting with the semantic clause of the particular
connective (such as ~, —, o, +, e, t) and following the instructions outlined in Ne-
gri and von Plato’s adaptation of the inversion principle, originally formulated by
Gentzen and Prawitz. In essence, Negri and von Plato’s strategy can be summarized
as follows: guided by their inversion principle, which stipulates that whatever can
be deduced from the direct reasons for asserting a proposition must also be deducible
from that proposition, one examines the introduction rule of a given connective and
deduces the corresponding well-formed labelled elimination rule.™

In line with the mentioned labelled techniques, our approach has enabled us to
modularly capture various systems within the same family of logics, alongside the
already formal results, through the incorporation of simple additions to a base sys-
tem. In our case, instead of altering the logical rules of a given labelled system, it
amounts to making adjustments within the group of relational rules. Additionally,
it is essential to emphasize that many of the techniques outlined in this section often
enable us to characterize only small fragments of relatively strong relevant logics.
However, labelled techniques broaden our horizons, enabling the consideration of
more extensive sets of connectives. This expanded expressive power stems from the
incorporation of labels into the syntax. Such an observation is of utmost impor-
tance, as labelled methods facilitate the development of calculi for weaker systems
of relevant logics possibly including a variety of both intensional and extensional
connectives. Achieving such results in non-labelled frameworks would be consid-
erably more challenging. Secondly, as noted on several occasions, labelled calculi
constructed using the methodology we employed enable the straightforward extrap-
olation of a countermodel for a sequent from a failed proof-search procedure (see,
e.g., [&3, A4]). However, in relation to specific limitations of labelled sequents, we
present two important remarks.

Firstly, a common weakness associated with labelled calculi is the absence of a
formula interpretation, i.e., a formal procedure for translating sequents into object-
language formulas. One approach to address this challenge stems from the recog-
nition that the proliferation of non-classical logics has spurred the exploration of
various generalizations of sequent systems, prompting inquiries into their interre-

19For the sake of brevity, I won’t delve into the details of this approach. However, one can find
the details in [#6]. See also [2H, 17-23].
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lationships. Therefore, an avenue to mitigate the necessity for independent proofs
could involve establishing translations between labelled calculi, such as those in-
troduced in this paper, and other characterizations. To obtain alternative versions
of the formula interpretation, one might investigate translations into non-labelled
frameworks, such as the previously mentioned hypersequents (e.g., [@]) and display
sequents (e.g., [B1]).

Secondly, certain concerns arise when investigating the subformula property and its
implications within labelled frameworks. Without delving into the intricacies of
(un)decidability issues, let us outline potential avenues for future research in this
area.” cUT-elimination plays a crucial role, yielding the subformula property in
sequent systems, ensuring that all formulas in a derivation are subformulas of those
in the endsequent. However, labelled sequent calculi lack a full subformula property
due to geometrical rules, wherein relational atoms vanish from premises to conclu-
sions. Nevertheless, they exhibit a weaker version of the property, where all formulas
in a derivation are either subformulas of formulas in the endsequent or relational
atoms such as Rabc (see, e.g., [A1, 06]). Yet, this property alone is insufficient to
prove syntactic decidability. To address this, one needs to avoid non-terminating
proof-search procedures. Roughly, this involves putting bounds on the number of
eigenvariables in derivations, along with additional bounds on the number of appli-
cations of rules with endformulas in the premises.

Lastly, a concluding observation. In our paper, we have extensively explored labelled
rules that encompass various intensional operators. However, it is worth mentioning
that relevant logics might include additional connectives, such as modal operators, or
quantifiers as well.” Despite these possibilities, we have made a deliberate choice to
focus solely on the specific set of connectives we considered, leaving the exploration
of broader sets of connectives for future research. Nevertheless, it is essential to note
that the methodology we have employed thus far can, in principle, be extended to
accommodate the mentioned extensions.

20Tt is important to acknowledge that relevant logics encounter challenges in establishing decid-
ability, with many of them being undecidable.

21Recently, there has been notable progress in the field of quantified and modal relevant logics.
One can explore e.g., [65, BY, IR, 67].
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4%

(Ar) = 0: ~(A — ~A)
ROyy™, ROy**y,y : A, R0*yy*, AGy,0* : A > ~A=y™: A

R2
ROyy,y : A, RO*yy*, AGy,0* : A > ~A=y: A y: A RO*yy*, AGy, 0" : A - ~A, = y™: A
R1 Prop. 674 LG
y: A RO*yy*, AGy,0" : A > ~A,=y: A (Prop- &0 RO*yy*, AGy,0" : A > ~A=y**: A
(Prop. B0) LG L~
RO*yy*, AGy,0* : A > ~A=y: A y*:~A RO*yy*, AGy,0" : A - ~A =
L
RO*yy*, AGy, 0% : A — ~A = -
(y fresh) AR
0": A—~A=>
=0:~(A— ~A)

(Bo) = 0:(A— B) — ~(A— ~B)

R0ss, s : A, Rast, AGs, A’ = u*: B,s: A

R1
s: A, Rast, AGs, A" = u*: B,s: A
(Prop. 627) LG
ROss,s : A, Ra*su, AGs, A= s: A Rast, AGs, A’ = u*: B,s: A t : B, Rast, ROtu*, A” = u* : B
R1 L
s: A Ra*su, AGs, A= s: A Rast, Ra*su, AGs, ROtu*,a* : A - ~B,a: A— B=u":B 7
Prop. 67 LG L~
(Prop- 50 Ra*su, AGs, A= s: A u: ~B, Rast, Ra*su, AGs, ROtu*,a*: A - ~B,a: A— B =
L
Rast, Ra*su, AGs, ROtu*,a* : A - ~B,a: A — B = 7
(s,t,u fresh) BO

a*:A—>~B,a:A— B=

a:A—-B=a:~(A— ~B)
(Prop. B1) VER2
=0:(A— B) > ~(A— ~B)

R~

where A = Rast, ROtu*,a* : A — ~B,a: A— B, A = Ra*su, ROtu*,a* : A — ~B,a : A — B, and A” = Ra*su, AGs,a* : A —
~B,a:A— B.

Table 3: Derivations of Ar and Bo in G3rB® (and extensions thereof)



e

(St) = 0:~((A— B)e (A — ~B))

ROyy,y : A, Rbyz, AGy, A’ = 2** : B,y : A

R1

y: A Rbyz, AGy, A’ = z** : B,y : A R0zz**, R0z**2,z : B, Rbyz, AGy, A’ = z** : B
(Prop. 627) LG
ROyy,y : A, Reyz*, AGy, Sbc0*, A=y : A Rbyz, AGy, A’ = 2** : By : A z: B,Rbyz, AGy, A’ = z** . B
R1 L —
y: A, Reyz*, AGy, Sbc0*, A=y : A Rbyz, Reyz*, AGy, Sbc0*,b: A —- B,c: A—- ~B=y":B
Prop. 671 LG ~
(Prop. &) Reyz*, AGy, Sbc0*, A=y : A y* : ~B, Rbyz, Reyz*, AGy, Sbc0*,b: A — B,c: A - ~B =
L—
Rbyz, Reyz*, AGy, Sbc0*,b: A — B,c: A — ~B =
(y, z fresh) ST
Sbc0*,b: A— B,c: A— ~B =
(b, ¢ fresh) Le

0*: (A— B)e(A— ~B) =
=0:~(A—B)e(A— ~B))

where A = Rbyz,c: A — ~B,b: A — B and A" = Sbc0*, Reyz*,b: A — B,c: A — ~B.

~

Table 4: Derivation of St in G3rB*® (and extensions thereof)

R2
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