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FRACTAL IMAGES OF FORMAL SYSTEMS

ABSTRACT. Formal systems are standardly envisaged in terms of a grammar specifying
well-formed formulae together with a set of axioms and rules. Derivations are ordered
lists of formulae each of which is either an axiom or is generated from earlier items on
the list by means of the rules of the system; the theorems of a formal system are simply
those formulae for which there are derivations. Here we outline a set of alternative and
explicitly visual ways of envisaging and analyzing at least simple formal systems using
fractal patterns of infinite depth. Progressively deeper dimensions of such a fractal can
be used to map increasingly complex wffs or increasingly complex ‘value spaces’, with
tautologies, contradictions, and various forms of contingency coded in terms of color. This
and related approaches, it turns out, offer not only visually immediate and geometrically
intriguing representations of formal systems as a whole but also promising formal links
(1) between standard systems and classical patterns in fractal geometry, (2) between quite
different kinds of value spaces in classical and infinite-valued logics, and (3) between
cellular automata and logic. It is hoped that pattern analysis of this kind may open
possibilities for a geometrical approach to further questions within logic and metalogic.

1. INTRODUCTION

Familiar formal systems include propositional calculus, predicate calcu-
lus, higher-order logic and systems of number theory and arithmetic. As
standardly envisaged, these consist of a grammar specifying well-formed
formulae together with a set of axioms and rules. Derivations are ordered
lists or series of formulae each of which is either an axiom or is gen-
erated from earlier items by means of the rules of the system, and the
theorems of a formal system are simply those formulae for which there
are derivations.

Given this standard approach to formal systems, however, attempts to
envisage formal systems as a whole seem of necessity remotely abstract
and incomplete. As a psychological matter, if one is asked to envisage
the theorems of predicate calculus as a whole, one seems at best able to
conjure up an image of the axioms and an empty category of ‘all that
follows from them’. The incompleteness of such a psychological picture
accords perfectly with constructivist approaches to formal systems, and
may even seem to confirm them.

In what follows we want to outline some importantly different and
immediately visual ways of envisaging formal systems, including a mod-
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elling of systems in terms of fractals. The progressively deeper dimen-
sions of fractal images can be used to map increasingly complex wffs
or what we will term ‘value spaces’, which correspond quite directly to
columns of traditional truth tables. Within such an image, tautologies,
contradictions, and various forms of contingency can be coded in terms
of color or shading, resulting in a visually immediate and geometrically
suggestive representation of systems as an infinite whole. One promise
of such an approach, it is hoped, is the possibility of asking and answer-
ing questions about formal systems in terms of fractal geometry. As a
psychological matter, it is interesting to note, complete fractal images
of formal systems seem to correspond to a realist and non-constructivist
approach to formal systems.

In what follows we begin with the example of tic-tac-toe, a simple
game rather than a simple formal system, in order to make clear both
the general approach and a number of the tools used at later stages. In
Sections 3 and 4 we offer different geometrical patterns for mapping
aspects of formal systems, starting with ‘rug’ images for fragments of
predicate calculus and moving on to more complex systems and more
complete forms of mapping. An alternative portrayal of formal systems
in terms of ‘value spaces’ and ‘value solids’ offers a number of surprises,
three of which are emphasized in Sections 5 through 7: the appearance
of the Sierpinski gasket, a familiar fractal, as the pattern of tautologies
in standard value spaces; an intriguing correspondence between value
solids for classical logic and rival connectives for infinite-valued logics;
and the possibility of generating the value spaces of standard logics using
elementary cellular automata.

2. THE EXAMPLE OF TIC-TAC-TOE

Although our primary concern is with fractal images for formal theories,
rather than for games, many of the techniques to be used can be made
clear using a fractal image for the simple game of tic-tac-toe.

The first player in tic-tac-toe, conventionally labelled X, has a choice
of one of nine squares in which to place his marker. The opposing player
O then has a choice of one of the remaining eight squares. On X’s next
turn again he has a choice of seven squares, and so forth. There are thus a
total of 9! possible series of moves (9 factorial: 9×8×7×· · ·×1), giving
us 9! possible tic-tac-toe games. Some of these are wins for X, some for
O, and some draws (wins for neither player). The fractal image shown
in Figure 1, sections of which are progressively enlarged in Figure 2,
offers an analytic presentation of all possible tic-tac-toe games.

LOGID392.tex; 21/03/1997; 15:11; v.7; p.2



FRACTAL IMAGES OF FORMAL SYSTEMS 183

Figure 1.

In Figure 1 we’ve emphasized the divisions corresponding to the 9
basic squares of the tic-tac-toe grid. Let us now suppose that X’s first
move is to the upper left hand corner. The progress of possible games
from that point is contained in the contents of the upper left hand square,
enlarged in Figure 2A. The upper left square of the enlarged portion is
now occupied, having already been played by X, but O can choose any
of the remaining eight squares for the second move of the game.

Suppose O chooses the upper right hand corner. This is represented
by a move to the upper right square of the 9 squares in 2A. That square
is enlarged in Figure 2B, showing the two moves by X and O in place
but seven further options for X.

Figure 2 continues by enlarging the squares chosen by particular play-
ers in the series we’ve chosen as an example: in this case the series
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Figure 2.

continues with X to the center on the third move, then O to the lower
right, X to the center right, O to lower left, X to center bottom, O to
center left, and X to center top. The result is a win for X, indicated in
color by a blue shading.

In the largest view of the fractal, shown in Figure 1, patterns of yellow
and blue can be used in a color version to indicate wins for O and X,
respectively, though the yellow wins in particular are small enough –
meaning deep enough in the game – so as to be practically invisible.
Were the resolution of our illustration great enough, however, and our
eyes sharp enough, we would be able to see all such wins embedded in
the image. Winning strategies, as a matter of fact, can be thought of as
spatial movements through the fractal toward those winning games. (An
interactive program of Figure 1, which allows progressive navigation into
deeper levels, is available from the authors on request.)

Tic-tac-toe is convenient as an illustration because we have only two
players, only three final outcomes of concern (a win for X, a win for O,
or a draw), and because the game has a clear terminus after 9 plays. The
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basic idea of a game fractal could in principle be extended to checkers and
even chess, though it’s also clear that these would become explosively
complex in short order.1

In what follows we begin by applying much the same fractal tech-
niques to simple formal systems. In this application wffs or equivalence
classes of wffs will replace moves or series of moves in the example of
tic-tac-toe, colors for wins and draws will be replaced with colors coded
to tautologies, contradictions, and various contingencies, and the fractal
images used will often be infinitely rather than merely finitely deep.

3. ‘RUG’ ENUMERATION IMAGES

We begin with an extremely simple formal system for which we will
construct several different forms of images. The system at issue is propo-
sitional logic, made even simpler by restricting it to a single sentence
letter p. In order to make things simpler still, we use a single connective:
either the Sheffer stroke |, which can be read as NAND, or the dagger
↓, which can be read as NOR. As is well known, either NAND or NOR
suffices as a complete base for all Boolean connectives.

Our goal, then, is to construct an image of truth-values for all formulae
expressible in terms only of p and | or ↓. The values at issue are merely
four, equivalent to p,∼ p (p | p or p ↓ p), tautology > or contradiction
⊥. In Figures 4 through 8 we use the following colors and grey shades
for these values: green (dark grey) for p, blue (light grey) for ∼ p, red
(white) for tautologies and dark blue (black) for contradictions.

Let us start with a simple ‘rug’ pattern with an enumeration of all
formulae expressible in terms of our single sentence-letter and single
connective. For a first enumeration of wffs the plan of the rug is laid out
schematically as in Figure 3.

At the upper left-hand corner of the array, in position 1, we construct
a formula (p | p). To the left of the slash is the formula at the top of the
column for this position in the array – a simple p, in this case. To the
right of the slash is the formula at the left of its row – p again, in this
case. For simplicity we refer to formula (p | p) as formula 1, and position
it as the second formulae on each of our axes. The formula in position
2 is now formed in a similar manner, putting the formula at the head of
its column to the left of a slash and the formula at the left of its row to
the right of the slash. Formula 2 is thus (p | 1) or (p | (p | p)). It is then
added as the third formula on each axis. Following the pattern indicated,
we continue to construct new formulae from old and continue to place
them on the axes as formulae from which later formulae will be formed.
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Figure 3.

Formula 3 is thus ((p | p) | p), formula 4 is (p | (p | (p | p))), formula
5 is ((p | p) | (p | p)), formula 6 is ((p | (p | p)) | p), and so forth. The
pattern generates more complex formulae as it proceeds, constituting in
the abstract an infinite partial plane extending to the bottom and right
and containing all formulae of our simple single-sentence-letter form of
propositional calculus.

In Figure 4 the schema is shown in shades of color. Squares corre-
spond directly to the formulae indicated in the schematic sketch above,
including formulae along the axes, and are colored in terms of their val-
ues: as noted, green (dark grey) = p or equivalent formulae, light blue
(light grey) = p | p or ∼p, red (white) represents tautologies > and dark
blue (black) represents contradictions ⊥. The first graph in Figure 4 is a
smaller fragment of the upper left corner of the rug, with the values of
formulae indicated on axes as well. The second image in Figure 4 shows
a larger section, incorporating the first.

Here a number of systematic features are immediately evident. The
first is that the images in Figure 4 are symmetric, reflecting the fact that
x | y has the same value as y | x for any formulae x and y. The ‘stripes’
in the rug are also obvious, reflecting the fact that both x | ⊥ and ⊥ | x
will be tautologous for any x: once any formula on either axis has the
value ⊥, any formula composed from it with a single stroke will have
the value >. Closer attention shows that rows in which the value of the
formula at the top is > will simply reflect the value of the formulae on
the column axis, with the same true for columns with the value > and
the formulae listed along the top.
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Figure 4.

Figure 5 shows the rug pattern created from the same enumeration of
formulae but in which the Sheffer stroke | is replaced with the NOR con-
nective ↓. Side by side, Figures 4 and 5 also serve to make obvious certain
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relationships between these two connectives: the fact that a contradiction
on either side of the stroke gives us a tautology, for example, whereas
a tautology on either side of the dagger gives us a contradiction. It is
clear that dagger tautologies mirror Sheffer stroke contradictions, with
dagger contradictions corresponding to Sheffer tautologies. For simple
systems with a single sentence letter, moreover, the values of all con-
tingent formulae in each system are the same. In none of these cases
do our images offer genuinely new information regarding the stroke and
dagger, of course – all the facts indicated are well known – though these
patterns do make such features vividly evident.

Figures 7 and 8 show a rug pattern using a different enumeration of
formulae, following the alternative schematic in Figure 6.

Nothing, it should be noted, dictates any particular form for enu-
meration in such a display; nothing dictates the diagonal enumeration
of Figure 3 over the square enumeration of Figure 6, for example, nor
either of these over any of the infinite alternatives. There is therefore an
ineliminable arbitrariness to the choice of any particular rug pattern for a
formal system. It is also clear, however, that certain properties of patterns
– including those noted above – will appear regardless of the pattern of
enumeration chosen. Pattern-properties invariant under enumeration can
be expected to correspond to deep or basic properties of the system.

The rug patterns sketched above are for an extremely simple form
of propositional calculus, explicitly restricted to just one sentence letter.
Can such an approach be extended to include systems with additional
sentence letters as well?

Of course. One way of extending the enumeration schemata above so
as to include two sentence letters rather than one is simply to begin with
the two sentence letters on each axis, as shown in Figure 9. In all other
regards enumeration can proceed as before.

With two sentence letters, of course, four colors will no longer suf-
fice for values of tautologies, contradictions, and all possible shades of
contingency. For a system with both p and q we will require 16 colors in
all, corresponding to the sixteen possible truth tables composed of four
lines, or equivalently the sixteen binaries composed of four digits.

Complete color shade patterns – employing a complete palette of
contingencies – are shown for propositional calculus with p and q in
Figure 10. These represent NAND and NOR with our intial diagonal
enumeration scheme. Corresponding illustrations in terms of our second
mode of enumeration appear as Figure 11. It is interesting to note that
although a number of the characteristics marked with respect to proposi-
tional calculus with a single sentence letter above still hold, one does not:
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Figure 5.
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Figure 6.

Figure 7. NAND using square enumeration.

Figure 8. NOR using square enumeration.

here it is no longer true that contingent values match between NAND and
NOR versions. That property, though provable for propositional calculus
with a single sentence letter, disappears in richer systems.

In both of these illustrations the number of colors at issue becomes
even more bewildering in larger sections of the display. In Figures 12 and
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Figure 9.

NAND NOR
Figure 10.

Figure 11.
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Figure 12.

Figure 13.

Figure 14.

13 we have compensated for this difficulty by eliminating all colors for
various contingencies in a larger array, leaving only black for tautologies
and grey for contradictions.2 Figure 12 shows NAND and NOR for our
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first pattern of enumeration; Figure 13 shows NAND and NOR for the
second.

In theory any finite number of sentence letters can be added at the
beginning of an array in the manner of the enumerations in Figure 9. For
n sentence letters, however, the number of colors required to cover all
contingencies is 2 raised to 2n colors. At three variables, therefore, we
have already hit 28 or 256 contingency colors. At four variables we hit
65,536.

In theory the full countable set of sentence letters required for standard
propositional calculus might also be introduced along the axes, simply
by adding an additional sentence letter at some regular interval (Fig-
ure 14). Because the standard propositional calculus is limited to finite
connectives, we would here require countably many contingency colors
as well.

Similar representations of formal systems are possible, beyond propo-
sitional calculus, for predicate calculus as well. One way of mapping
a form of predicate calculus with multiple quantifiers but limited to
monadic predicates, for example, would be the following. In a first grid
we enumerate all combinations of one-place predicates and variables,
giving us Fx, Fy, Fz, . . ., Gx, Gy, Gz, . . . . These we can think of as a
series of propositional functions P1, P2, P3, . . ., which can be introduced
into a grid for full propositional logic simply by placing them between
our progressively introduced sentence letters – p, P1, q, P2, r, P3, . . .
– in an expansion of an enumeration pattern such as those outlined in
Figure 14. Quantification over formulae in variables x, y, z, . . . might
then be introduced by adding spaced occurrences for ∀x,∀y,∀z along
just one axis. Here the application of a lone quantifier to formulae in
its row could be interpreted as a universal quantification in that variable
over that formula. All other intersections would be interpreted as before,
in terms, for example, of the Sheffer stroke (Figure 15). Since existen-
tial quantification can be expressed in terms of universal quantification
and negation, and the latter can be expressed by the Sheffer stroke in
familiar ways, such a schema will include all wffs of predicate calculus
involving only monadic predicate letters, together with all corresponding
propositional formulae. In assigning values to such a grid, a special ‘for-
mula value’ would have to be reserved for mere propositional formulae,
representing the fact that they fall short of full formal sentences capable
of truth values.

This illustration has been limited to monadic predicates simply be-
cause the scheme becomes so complicated so quickly even in that case. A
representation of the full propositional calculus would demand only the
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Figure 15.

Figure 16.

further complication that we include all n-valued Predicate letters paired
with n-tuplets of our variables. These can be generated in separate grids
first so as to form a single enumeration, then introduced into the main
grid in the position of P1, P2, P3, . . . (Figure 15).
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On seeing a dog walk on two legs, Abraham Lincoln is reputed to
have said, “It’s not that he does it well, but that the thing can be done at
all.” In something of the same spirit, the purpose of outlining the schema
above is simply to shown that the thing can be done at all: that the full
predicate calculus can be envisaged in the form of a grid of logical values
of this kind. In even the simple case of propositional logic with a single
sentence letter, however, we remarked on the artificiality introduced by
arbitrary choices of enumeration for wffs. In the schema outlined for
propositional calculus this artificiality is magnified many times over – by
repeated arbitrary choices regarding forms of enumeration within a grid,
by choices of how to incorporate different infinite classes of formulae
on the axes, and by choices of how to incorporate quantification into
the grid. The end product does succeed in showing that the thing can be
done. But it should not be expected, we think, to give any particularly
perspicuous view of the theorems of the calculus.

If we return for a moment to the simple form of propositional calculus
with which we began, restricted to a single sentence letter, it should be
clear that either of the enumerations offered above will generate progres-
sively longer wffs. It is not true, of course, that the length of wffs within
such an enumeration increases monotonically; formula 10 in our original
enumeration is shorter than formula 9, for example. Along the diagonal
of either schema, however, formulae do increase in size with each step.

How does such an enumeration look if we graph our formulae sequen-
tially in terms of length with colors assigned for value? The beginning
of such a result, using NAND and our first enumeration, is shown in the
progressive panels of Figure 16. Colors used are the same as those in
the rug patterns above except that tautologies are indicated in white with
horizontal cross-hatching so that height will be visible. In the program
used for generating this image, one can continue to flip through progres-
sively longer wffs, with no apparent repeat of color patterns (program
available on request).

4. TAUTOLOGY FRACTALS

The rug enumeration patterns offered above are perhaps the most direct
way to attempt to model a complete formal system in terms of the values
of its wffs. There is one major respect in which these patterns do not
correspond to the fractal outlined for tic-tac-toe in introduction, however.
That fractal is deep: all tic-tac-toe games are contained within the large
initial square, though at decreasing scale. The rug patterns offered above,
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Figure 17.

Figure 18.

on the other hand, are not in principle exhibitable in a finite space: all
occupy an infinite plane extending without limit to the right and bottom.

It is also possible, however, to outline fractals for at least simple
systems of propositional calculus which are deep in the sense of the
tic-tac-toe game. In the case of systems with infinite wffs, of course,
the corresponding fractal must be infinitely deep. For a simple form of
propositional calculus with one sentence letter and a single connective |
such a fractal is shown in Figure 17.

The form of this fractal can most easily be outlined developmentally
(Figure 18). We start from a single triangle occupying the whole space,
representing the formula p and assigned light grey as the contingent
value of p. We then take half of this space and divide it into two smaller
triangles. One of these triangles is to represent Sheffer stroke formulae
(a | b) for the formula a of the divided triangle over all previous formulae
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b. The other small triangle is to represent the symmetrical Sheffer stroke
formulae (b | a) for all previous formulae b over the present formula a.
At the first step both of these amount to simply (p | p), colored dark
grey as a representation of the contingent value ∼p.

At the next step we take each of the new triangles thus created, divide
half of their space into two, and embed in each of these smaller triangles
an appropriately colored image of the whole – representing Sheffer stroke
formulae (a | b) of the present formulae over all previous formulae and
Sheffer stroke formulae (b | a) of all previous formulae over the present.

At each step a new set of more complex formulae are created, and
at each step all Sheffer stroke combinations of elements of this new set
with all previous formulae are embedded in the total image. Tautologies
are colored white, as before, and contradictions black. All formulae of
our simple formal system are thus represented with their value colors
somewhere in the infinite depths of the fractal. Indeed many are repre-
sented redundantly – (p | p) appears twice at the first step, for example
(representing the present formula p over the previous formula p and vice
versa), and later complexes with (p | p) on either side will carry the
redundancy further.

The complete fractal represents propositional calculus formulated in
terms of the Sheffer stroke for a single sentence letter as a whole, infinite-
ly embedded on the model of the tic-tac-toe fractal with which we began.

Modelling in terms of theorem fractals can be extended to more than
a single sentence letter by starting with a larger number of initial areas:
an initial triangle with two major divisions for p and q, for example, with
three for p, q, and r, and so forth. Any of these could then be subdivided
precisely as before, once again embedding the whole image into each
subdivision. If we wish, we can even envisage an initial triangle with
room for infinitely many sentence letters arranged Zeno-style in infinitely
smaller areas. The embedding procedure would proceed as before, though
of course each embedding would involve the mirroring of infinitely many
areas into infinitely many. We haven’t yet tried to extend such a pattern
to quantification.

5. THE SIERPINSKI TAUTOLOGY MAP

In this section we outline another way of visualizing simple formal sys-
tems, which to our surprise turned out to offer intriguing links to classic
patterns in fractal geometry.

In the rug patterns above we graphed an enumeration of formulae
for simple forms of propositional calculi, coloring the grid locations of
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formulae in terms of their values. For forms of propositional calculus with
n sentence letters, we noted, there will be 2 raised to 2n such colors or
values – essentially, a color for each possible truth table of length 2n.
Here we consider a different type of display for such systems, constructed
using those values themselves on the axes rather than enumerated wffs.
This frees us from particular enumerations of formulae because it frees
us from the formulae themselves; the value space is constructed not in
terms of particular formulae but in terms of the values of equivalence
classes of formulae.

Consider two sentence letters p and q in standard truth-table form,
p q p q

T T 1 1

T F 1 0

F T 0 1

F F 0 0
and sentences containing only the sentence letters p and q. Each such
sentence will have a four-line truth-table, one of sixteen possible combi-
nations of T’s and F’s, or 1’s and 0’s. These include solid 0’s, correspond-
ing to a contradiction or necessary falsehood; solid 1’s, corresponding to
a tautology; the pattern 1100, corresponding to the value of p; and the
pattern 1010, corresponding to q. The sixteen values for two sentence
letters can be thought of simply as all four-digit binaries.

These can be arranged in ascending order along the two axes of a two-
dimensional display. Following the approach above we can think of these
values as distinguished by color as well (Figure 19). In the illustrations
that follow we will use only this color code on axes.

Combinatorial values for any chosen binary connective can now be
mapped in the interior value space. If our value map is that of the Sheffer
stroke, for example, the value of (⊥ | ⊥) will appear at the intersection
of 0000 and 0000; the value of (> | p) at the intersection of 1111 and
1100, etc. In terms of the colors on our axes the complete graph for the
Sheffer stroke appears in Figure 20.

It is clear that a Sheffer stroke between ⊥ and 0000 or any other
value amounts to a tautology. In Figure 20, 0000 is represented using
the darkest grey, tautologies are shown in black, and the fact just noted
is represented by black values representing tautology in all cases along
the left column and along the top row – all cases in which a value of
0000 appears on either side of the stroke. A Sheffer stroke between two
tautologies, on the other hand, amounts to a contradiction, indicated by
the dark grey square at the intersection of two black axis values in the
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Figure 19.

Figure 20.
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Figure 21.

lower right corner. As a whole the graph represents the value space for
all Sheffer stroke combinations of our sixteen values.

A particularly intriguing feature of the value space appears more dra-
matically if we emphasize tautologies in particular by whiting out all
other values (Figure 21). The fractal pattern formed here in black is that
of the Sierpinski gasket, which has long been a primary exhibit in fractal
geometry.3

If we expand our value space to that of three variables, with 256 values
corresponding to all eight-digit binaries, an even finer representation of
the Sierpinski gasket appears (Figure 22).

At any number of variables, given a standard listing of binaries cor-
responding to truth-table values, the tautologous Sheffer combinations
will form a Sierpinski gasket. As indicated below, we can in fact think
of diagrams with increasing numbers of sentence letters as increasingly
finer approximations to a full system, with infinitely many sentence let-
ters and infinitely many values. For that diagram, the tautologies of the
system would form an infinitely fine Sierpinski dust.

The main connective of Figures 20 through 22 is NAND or the Sheffer
stroke. A similar display for NOR, or the dagger, appears in Figure 23.
Here there is only one tautology, at the intersection of 0000 and 0000.
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Figure 22.

Figure 23.
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Figure 24.

The Sierpinski gasket does show up again, however, as a graph of con-
tradictions in the lower right-hand corner.

Other connectives generate other patterns in value space. A standard
‘and’ and ‘or’, for example, are shown in Figure 24. In the case of ‘and’
the persistent image of the Sierpinski gasket appears in the upper left
as a value pattern for contradiction; in the case of ‘or’ it appears in the
lower right as a value pattern for tautology. In material implication the
Sierpinski triangle shifts to the lower left as a value pattern for tautology.

In the course of our research the appearance of the Sierpinski gasket
within the value space of propositional logic came as a surprise. But its
appearance can easily be understood after the fact.

As indicated above, we can think of value space displays for forms
of propositional calculus with increasing numbers of sentence letters as
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approximations to a fuller system. As long as we have some finite number
of sentence letters n we will have finitely many value spaces, correspond-
ing to all possible truth tables of length 2n. But the full propositional
calculus has a countably infinite number of sentence letters. Because stan-
dard propositional calculus is limited to wffs of finite length, it turns out,
we can construct a value space for it using something like truth-tables
of infinite length.

This is less difficult than it may at first appear. In constructing finite
truth-tables for n variables the standard procedure is to start with a sen-
tence letter represented as 0101. . . to length 2n, to represent the next sen-
tence letter with 00110011. . . to that length, the third with 00001111. . .,
and so forth. For infinite truth-tables adequate to finite complexes of
countably many sentence letters our first sentence letter p can be thought
of as having an infinite truth-table that starts 01010101. . . . Our second
sentence letter q can be thought of as having the infinite truth-table that
starts 00110011. . . , our third sentence letter r as having the infinite truth-
table 000011111. . . , and so forth. Each of our sentence letters, in other
words, can be thought of as having infinitely periodic truth-tables which
otherwise follow the standard scheme used for constructing truth-tables
of finite length. There will always be room for ‘one more’ sentence letter
because it will always be possible to introduce a larger period of 0’s and
1’s for the next sentence-letter needed. Sentence-letters of a full form
of propositional calculus can thus be thought of as corresponding to a
subset of the periodic binary decimals: those which alternate series of
0’s and 1’s of length 2n for some n.

Any set of values for any finite set of sentence letters will have an
appropriate line in this infinite extension of truth-tables, and in fact will
have a line that will itself reappear an infinite number of times. Because
the infinite truth-tables for our sentence letters are periodic in this way,
complex sentences formed of finitely many connectives between finitely
many sentence letters will be periodic as well. The largest period possible
for a complex sentence of this sort will in fact be the longest period of its
sentence-letter components. All values for the full propositional calculus
will thus be represented by periodic binary decimals. It is important to
note, however, that not all periodic binary decimals will have a corre-
sponding formula; those periodic in multiples of 3, for example, will
not be producible by finite combination from sentence-letters periodic in
powers of 2.4

The important point here is simply that any value space for finite-
ly many sentence letters can be thought of as an approximation to this
richer system, adequate to propositional calculus as a whole. In the rich-
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Figure 25.

er system, of course, the squares of the value spaces illustrated above
shrink to mere points in value space, just as values on the axes shrink
to mere points on the continuum. Although these points do not by any
means exhaust the full [0,1] interval – they constitute merely a subset
of the periodic decimals – they can be envisaged as embedded within it.
The argument below regarding the appearance of the Sierpinski gasket
applies to a full continuum as well as the envisaged subsets, and will
be valid both for the full propositional calculus and for the envisaged
approximations to it.

In terms of NAND or the Sheffer stroke the appearance of the Sier-
pinski gasket can be outlined as follows. Similar explanations will apply
for the other connectives.

Let us emphasize that the binary representations of values on each axis
of our value spaces, whether finite or infinite, correspond to columns of a
truth-table. The value assigned to any value space or point v is a function
of the truth-table values from which it is perpendicular on each axis. In
asking whether a point in the value space represents a tautology in a
graph for NAND, for example, what we’re really asking is whether the
truth-tables of these two axis values share any line in which both show
a ‘1’. If there is such a line, their combination by way of NAND is not
a tautology. The value point v will have the value of a tautology if and
only if its axis values at no point show a ‘1’ on the same line.

Consider now one standard route to the Sierpinski gasket, which gen-
erates the gasket from a triangle in terms of a rule for doubling distance
from the nearest vertex.5 For any given triangle, there is a set of points
which, when distance is doubled from the nearest vertex, will be ‘thrown’
outside of the triangle itself – more precisely, which will map under dou-
bling from the nearest vertex to points outside the triangle itself. These
points in fact form an inverted triangle in the center (Figure 25). There
are a further set of points which, when distance is doubled from the
nearest vertex, will be thrown into this central region – and thus which
will be thrown out of the triangle upon two iterations of the ‘doubling
from nearest vertex’ procedure. The Sierpinski gasket is composed of
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Figure 26.

all those points which will remain within the triangle despite unlimited
iteration of such a procedure.

It turns out that this route to the Sierpinski gasket corresponds quite
neatly to its appearance as a map of theorems in the value space for
NAND.

Consider the diagram of a unit square in Figure 26, and the upper
triangle marked between A (0,1), B (0,0), and C (1,0). This ‘inverted’
form of the unit square corresponds to our axes for value spaces above.
Were we to characterize the rule of doubling the distance from the closest
vertex in terms of x and y values for particular points within this triangle,
our rules might be rendered as follows:

If x 6 1/2, y 6 1/2, (xn, yn) = (2x, 2y)
If x 6 1/2, y > 1/2, (xn, yn) = (2x, 1− 2(1− y))
If x > 1/2, y > 1/2, (xn, yn) = (1− 2(1− x), 2y).

These will give us the Sierpinski gasket by the standard route of doubling
the distance from the nearest vertex.

Here it’s clear that ‘doubling the distance’ is in all cases a matter
of either multiplying an axis value by 2 or substracting 1 from a mul-
tiplication by 2. But now let us envisage the axes of our unit square as
marked in terms of binary decimals. For binary decimals multiplication
by 2 simply involves moving a decimal point one place to the right.
1− 2(1−x) equals 2x− 1, which moves the decimal point one place to

LOGID392.tex; 21/03/1997; 15:11; v.7; p.25



206 P. ST. DENIS AND P. GRIM

the right and ‘lops off’ any ones that thereby migrate to the left of the
decimal point. The crucial point is that for binary decimal expression of
axis values, both forms of transform preserve the order of digits which
remain beyond the decimal point. Iterated application of such transforms
to pairs of values (x, y) thus effectively moves down each series of bina-
ry digits one at a time, checking for whether a 1 occurs in both places. If
it does, our iterated transforms have resulted in two values both of which
are greater than 1/2 as expressed in binary, and the point will therefore
have migrated under iteration outside the region of the dark triangle.

The points of the triangle ABC which will not migrate out under an
iterated procedure of doubling the distance from the nearest vertex – the
points of a Sierpinski triangle in that upper region – are therefore those
points (x, y) such that the binary representation of x and y do not both
have a 1 in the same decimal place. Given our representation of values in
terms of binary decimals, those points which generate tautologies under
NAND will be precisely those same points: points with axis values with
no 1’s in corresponding truth-table lines, or equivalently with no 1’s in
corresponding decimal places of their binary representation. The initially
startling appearance of the Sierpinski gasket as a map of tautologies
under the Sheffer stroke can thus be understood in terms of (i) what a
binary representation of values means and (ii) a corresponding rendering
of a familiar ‘doubling the distance from the nearest vertex’ route to
the Sierpinski in terms of binaries. An outline for the appearance of the
Sierpinski in the value space of other connectives can be drawn along
the same lines.

The standard ‘distance doubling’ route to the Sierpinski does involve
a full-continuum unit square. As indicated above, even the full proposi-
tional calculus has a value space short of that full continuum; although
each sentence letter and each connective corresponds to an infinite dec-
imal, these form a subset of even the merely periodic decimals. None
of that, however, affects the basic mechanism of the argument above,
which turns merely on the question of whether two decimals, finite or
infinite, share a particular value at any place. Multiplication by 2 from
the closest vertex simply ‘checks’ them place by place. Thus the fact that
our value space for the forms of logic at issue constitute mere subsets
of the full unit square gives us simply the result that tautologies in the
case of NAND, for example, will constitute an infinitely fine Sierpinski
dust within that grainy unit square.

One of the promises of a graphic approach to formal systems of this
sort is that there may be results of fractal geometry that can be read off
as facts about the logical systems at issue. Here the appearance of the

LOGID392.tex; 21/03/1997; 15:11; v.7; p.26



FRACTAL IMAGES OF FORMAL SYSTEMS 207

Sierpinski gasket as a map of theorems in value space offers a few minor
but tantalizing examples.

It is well known that the points constitutive of the Sierpinski gasket
within a continuous unit square are uncountably many, but nonetheless
‘very few’ in the sense that points chosen at random within the unit
square have a probability approaching zero of being in the Sierpinski
set. Much the same will be true within the full propositional calculus;
there will be infinitely many complexes with the value of tautology in
such value space, but the probability of hitting a tautology by a Sheffer
combination of random axis values will approach zero.

A similar point can be expressed in terms of area. Within any finite
approximation to an infinitely fine-grained unit square, the Sierpinski
gasket will retain a definite area. Within any value space limited to n
sentence-letters, tautologies will retain a similar area of values space. In
the case of an infinitely-grained unit square, on the other hand – whether
fully continuous or not – the Sierpinski gasket has an area approaching 0.
Within the full propositional calculus the relative area of tautologies will
similarly amount to zero. In terms of the Sheffer stroke, tautologies end
up distributed as unconnected points within value space on the model of
three-dimensional Cantor dust.6

For smooth curves, an approximate length L(r) can be given as the
product of the number N of straight-line segments of length r required
to ‘cover’ the curve from one end to the other. As r goes to zero, L(r)
approaches the length of the curve as a finite limit. For fractal curves,
on the other hand, it is standard for L(r) to go to infinity as r goes to
zero, since what are being ‘covered’ are increasingly fine parts of the
curve. A standard measure d of the intricacy of fractal curves, known as
the Hausdorff dimension, is that exponent d such that the product N∗ rd

stays finite. The Hausdorff dimension of the Sierpinski gasket is known
to be log 3/ log 2 ≈ 1.58. The work above suggests a related value for
tautologies within the value space of the Sheffer stroke.

6. VALUE SOLIDS AND MULTI-VALUED LOGICS

A slight variation in the representation of the value spaces outlined above
offers an intriguing comparison with a way of envisaging connectives in
multi-valued logics, including infinite-valued or fuzzy logics.

Rather than graphing values in our value space in terms of color, the
use of binary decimals makes it easy to graph them in terms of height
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Figure 27.

Figure 28.

in a third dimension. A value of .0000 will graph as 0, a value of .1000
as the decimal equivalent .5, .1100 as .75, and so forth.

A fairly rough graph of this sort for NAND, seen from a particu-
lar angle, appears in Figure 27. This corresponds directly to Figure 20,
though here the origin is in the right rear corner. Smoother forms of the
value solid for NAND, from two angles, appear in Figure 28. Because
the rough solids are often more revealing of basic structure, however, we
will continue with these throughout.

Value solids for conjunction, disjunction, and material implication
appear in Figure 29. In each case the origin is shown in the left figure
at the front left, and in the right figure at the rear right.

LOGID392.tex; 21/03/1997; 15:11; v.7; p.28



FRACTAL IMAGES OF FORMAL SYSTEMS 209

Figure 29.
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These value solids make obvious the relationships between NAND
and OR, the dual character of conjunction and disjunction, and the rota-
tion properties of negation. Of perhaps deeper significance, however,
these value solids for simple classical systems also show a striking resem-
blance to a very different type of solid that can be drawn for connectives
within multi-valued or infinite-valued logics.

In this second type of solid, values on the axes represent not truth-
table columns but degrees of truth. Height at a certain point represents
the degree of truth of a complex of two sentences with the axis values of
that point. In one standard treatment of infinite-valued connectives, for
example, the value of a conjunction of sentences p and q is the minimum
value of the two, represented as:

/p& q/ = min(p, q).

The value solid of this type for conjunction will thus at each point have
a height corresponding to the minimum of its axis values.7

There are, however, rival sets of connectives that have been proposed
for multi-valued and infinite-valued or fuzzy logics. One such set, perhaps
most common within multi-valued and fuzzy logics, is shown in the left
column of Figure 30. Another set, grounded more directly in the original
multi-valued logic of Łukasiewicz,8 is shown in the right column.

It should be emphasized that the value solids appropriate to connec-
tives in infinite-valued logic are radically different from the value-solids
for systems outlined above. In system value solids, for example, .1000
might represent a truth-table in which the first line has a ‘T’ and the
others do not. In that regard it is perfectly symmetrical to .0001, which
simply has a ‘T’ on a different line. Using similar binary decimals for
the values of sentences in an infinite-valued logic, on the other hand, a
statement with the value .1000 would be half true. One with a value of
.0001 would be almost completely false.

Given that radical difference, the value solids outlined here for clas-
sical systems and those sketched in Figure 30 for infinite-valued log-
ics seem much more alike than they have any right to be. Intriguingly,
the system-solid for each connective seems to be embody a compro-
mise between the corresponding infinite-valued connective solids. The
system-solid for ‘or’, for example, amounts neither to ‘max’ nor to the
Łukasiewicz ‘or’. It rather appears to be a compromise, in which some
values correspond to one treatment of the infinite-valued connective and
one to another.

Indeed this is precisely what is happening. How it occurs – and why
there is such a resemblance between these two radically different kinds of
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Figure 30.
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value solid – becomes clear if we return to two dimensions and consider
a simple form of our basic value grid.

In a system grid for ‘or’, in which we are calculating the truth-table
values for an ‘or’ between truth-table values on the axes, the value
assigned to any intersection point is what might be called a ‘bitwise
or’ of the values on the corresponding axes. A ‘1’ occurs in any row in
the value of that intersection point just in case a ‘1’ occurs in that row
in one or the other of the corresponding axis values. In bitwise ‘or’ the
1’s cannot of course add together and carry to another row:

0 0 0
1 1 1
1 0 bitwise or = 1
0 1 1

The values assigned in a system grid for ‘or’, then, correspond to
a bitwise ‘or’. The values assigned to intersection points in an infinite-
valued grid will be more complicated, amounting to either the maximum
of the axis values p and q or, in the case of the Łukasiewicz ‘or’, to
min(1, p+ q). Nonetheless these three values for intersection points will
occasionally overlap.

In the simple case of three-digit binary decimals, in fact, where we
take 111 as the closest approximation to 1 in the Łukasiewicz formula,
every bitwise ‘or’ is equal to either max, the Łukasiewicz ‘or’, or both.
This is reflected in the 8 by 8 grids shown in Figure 31. On the left
are mapped those intersection points in which a bitwise ‘or’ corresponds
to ‘max’. On the right are mapped those intersection points in the grid
in which bitwise ‘or’ corresponds to the Łukasiewicz ‘or’. Here it is
clear (a) that the middle areas, exclusive of the edges, are the negatives
of each other, (b) that together these two graphs will therefore cover
the entire area of the grid, and (c) that each grid is composed of simple
Sierpinski gaskets facing each other and rotated 90 degrees from the other
graph. A value solid for bitwise ‘or’ geared to just three-digit binaries,
then, would at each intersection point correspond precisely to one or the
other of the two infinite-valued connectives outlined above: the 8-valued
system solid constitutes a perfect Sierpinski compromise between the
two infinite-valued solids.

The result does not generalize in this pure form to system- and infinite-
valued solids of more than eight units on a side, however. In more com-
plex cases the Sierpinski patterns persist, but their overlap fails to cover
the entire area. For a grid of 256 values on each side, Figure 32 shows
in black those intersection points in which bitwise ‘or’ will equal one
or the other of our two infinite-valued connectives. The holes left are
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Figure 31.

Figure 32.

the holes formed by facing pairs of Sierpinski gaskets overlying another
pair and rotated at 90 degrees. Even in more complex systems a type of
compromise remains, however. For in all cases the bitwise ‘or’ for an
intersection point will equal either one of the two infinite-valued ‘or’s
above or will have a value between them, less than the Łukasiewicz
but greater than simply ‘max’. Similar compromises hold in the case of
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the other connectives. Thus in an intriguing way value-solids for simple
systems do map a compromise between the quite different value-solids
appropriate to rival connectives within infinite-valued or fuzzy logic.

7. CELLULAR AUTOMATA IN VALUE SPACE

Cellular automata consist of a lattice of discrete sites, each of which may
take on values from a finite set. In classical (synchronous) automata the
values of sites evolve in discrete time steps from an initial configuration
s0 in accordance with deterministic rules that specify the value of each
site in terms of the values of sites in a chosen neighborhood n.

The two-dimensional value graphs outlined for systems above might
also be thought of on the model of two-dimensional automata arrays of
this type. Much to our surprise, we found that the distribution of values
under particular connectives within such arrays can also be generated by
simple automata rules.

Consider, for example, an array corresponding to a system value-space
with 16 units along each axis, such as that shown in Figure 21. Here,
however, we will be concerned only with the lattice of spaces itself.
Each cell in such a lattice, with the exception of those at the edges,
is surrounded by eight neighbors. We will be concerned in particular
with just three of these neighbors, which we will term ‘southeastern’
neighbors and which are marked with x’s in the sketch below.

1 1 1

1 4

1 4 4

Let us start with a ‘seed’ in the lower right-hand corner of our sixteen-
by-sixteen grid, consisting of one darkened square. Consider now the
following cellular automata rule:

A square will be darkened on the next round if and only if exactly one square in its
southeast corner is. (Edge squares will be treated as having non-darkened neighbors at
the edge.)

The series of steps in the evolution of a sixteen-sided array under this
simple rule is shown in Figure 33. The surprising fact is that the squares
occupied by black in each step in this evolution correspond precisely
and in order to the values occupied by 0000, 0001, 0010, . . . in our
original value space for the Sheffer stroke (Figure 20). This simple cel-
lular automaton, in other words, is ‘ticking off’ progressive values for
NAND or the Sheffer stroke, plotted in value space. By the sixteenth

LOGID392.tex; 21/03/1997; 15:11; v.7; p.34



FRACTAL IMAGES OF FORMAL SYSTEMS 215

Figure 33.

step – for the value 1111 – the array evolves into the Sierpinski pattern
for tautologies noted in Section 5.

An exactly similar progression through all values represented appears
if we begin with 256 values on each side instead of 16. This same simple
automata rule, in fact, generates progressive values in the proper places
for a value space corresponding to NAND regardless of the number of
cells in our space: for any finite approximation such an automaton is
in effect constructing a value space for a limited form of propositional
calculus.

Other equally simple automata will generate value spaces for the other
connectives outlined above. With precisely the same rule and starting
point, but thinking of our values in reverse – from 1111 to 0000 in the
case of a 16-sided value space, for example – the value space generated
step by step is that of conjunction. The value space for disjunction is
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generated by beginning in the upper left hand corner with the value
0000 following a second rule, symmetrical to that above:

4 4 1

4 1

1 1 1

A square will be darkened on the next round if and only if exactly one square in its
northwest corner is.

This second rule and starting place, thought of as enumerating values in
order from 1111 through 0000, generates the value space for NOR or
the dagger. A further change in rule and beginning position give us a
cellular automaton adequate to implication.

A bit of thought shows that indeed these rules must generate the
progressive values noted within the lattice of any value space. Consider
as a single example the case of ‘or’, beginning from the upper left corner
with the second rule above. The ‘or’ of the system-value grid, it will be
remembered, is what we have termed a ‘bitwise or’, giving a ‘1’ in any
row just in case at least one of its disjuncts has a 1 in that row. Regardless
of the number of binary digits in our value representation, it should also
be noted, each step along the axis amounts to addition by 1: our values
are listed in binary sequence . . . 000, . . . 001, . . . 010, and so forth. What
we want to show for the general case, therefore, given axes numbered
in binaries of any given number of digits, is that the central cell marked
D below will take a binary value of n + 1 if and only if precisely one
of the cells marked with an × takes a value of n.

4 4 1

4 D 1

1 1 1

We first show, left to right, that if just one of the squares marked x
has a value n, y must have the value n+ 1. Consider to begin with the
case in which it is A that is the square with value n, using x and y to
represent the axis values which combine in a bitwise ‘or’ to give us A.
Axis values for D are then of course x+ 1 and y + 1.

x
.
...

y . . . . A B 1

C D 1

1 1 1
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In this case, since B does not have the value n, the bitwise compound
‘y or x+ 1’ must have a different value from bitwise ‘y or x’. (Unless
specified otherwise, we will use simply ‘or’ for bitwise ‘or’ throughout.)
Since C has a value other than n, ‘x or y + 1’ must similarly differ
from ‘y or x’. If either x or y ends in 0, then, both must end in 0: were
only one to end in 0, addition to that one would not change the value
of their bitwise ‘or’, and thus either B or C would equal A, contrary to
hypothesis. The same argument applies not only to a 0 in the last digit
position but in any first position counting from the right: x has a first 0
in a given position counting from the right if and only if y also has a
first 0 in that position. Otherwise either B or C would equal A, contrary
to hypothesis.

Either x and y will contain no zeros, therefore, or will share a 0 in the
same first position from the right. If neither contains zeros, A occupies
the lower right-hand corner of the lattice and there is no place for D; the
position exhibited does not form a part of our lattice. In all other cases
x and y share a 0 in the same first position from the right. Adding 1 to
each of x and y – moving along the axes from x x + 1 and from y to
y + 1 – will close that 0 with a 1, changing all 1’s to its right to 0’s
in each case. The series of digits represented by x and y will stay the
same in all other regards. A bitwise ‘or’ between x + 1 and y + 1 will
therefore give us an increase of precisely 1 over the value of the bitwise
or between x and y: given a value of n for A, D will take a value of
n+ 1.

Consider secondly the case in which it is B that carries the value n,
once again using x and y to represent A’s axis values:

x
.
...

y . . . . A B 1

C D 1

1 1 1

Since B 6= C, x and y cannot share either a final 0 or a rightmost 0 in
the same place. If they did, addition of 1 to either would produce the
same change from A in a bitwise ‘or’, giving us B = C, contrary to
hypothesis. One of x and y, then, has a rightmost 0 farther to the right
than the other. Since B 6= A, it must be y that has a 0 furthest to the
right: otherwise x’s furthest right 0 would be ‘masked’ by 1’s in y, and
thus the bitwise (x + 1 or y) would equal that of (x or y), contrary to
our hypothesis that B 6= A.
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In this case x and y therefore have the form:

x : . . . 111
y : . . . 011

for some number of 1’s (perhaps none) to the right of y’s 0. It is clear,
therefore, that x+ 1 and y side by side will have the form:

x+ 1 : . . . 000
y : . . . 011

since addition of 1 to x will have changed some zero to the left of y’s to
a 1 with all 1’s to its right changed to 0’s. B’s value is that of a bitwise
‘or’ between these two. But then it is clear that adding 1 to y will result
in an increase of precisely 1 for the bitwise compound (x+ 1 or y + 1).
Thus if B is the cell with a value of n, D must again take a value of
n + 1. A symmetrical argument shows that if it is C that is the single
northwest cell with value n, D must again take a value of n+ 1.

For the case of ‘or’ we have shown that if precisely one of the cells
northwest of any D has a value of n, D must itself take a value of n+ 1.
It suffices for the rest of our justification to show that if a cell D has a
value n+1, one and only one of its northwest cells must have a value n.

x
.
...
A B 1

y . . . . C D 1

1 1 1

We specify that D has a value n+ 1, generated as the bitwise compound
(x or y). Subtraction of 1 from either x or y amounts to changing its
rightmost 1 to a 0 and all 0’s from there to the right to 1’s.

Suppose now that x and y have a rightmost 1 in the same position. In
that case substracting 1 from each will result in a substraction of 1 from
bitwise (x or y), and thus A – representing (x− 1 or y− 1) – will have
the value n. Substraction of 1 from just one of these, however, cannot
result in n. In that case a rightmost 1 in either x or y will change to a 0,
but the other will have a rightmost 1 which masks that change in terms
of the bitwise ‘or’. What will change in the bitwise ‘or’ is that all digits
to the right of that place (if any) will change from 0 to 1. Since this can
only represent a figure equal to or greater than n+ 1, however, it cannot
equal n.
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Suppose secondly that x has the furthest 1 to the right: that y has a 0
in that position and at all places to the right. Substracting 1 from x will
then change its rightmost 1 to 0 and all 0’s to its right to 1’s. Because y
has only 0’s from that position to the right, the change from bitwise (x or
y) to (x− 1 or y) will be precisely the same, representing a substraction
of 1, and thus it will be C that has a value of n.

In this case substracting 1 from only y or from both x and y could
not result in n. Substraction of 1 from n+ 1 demands that the rightmost
1 in n + 1 be changed to a 0, with all 0’s to its right (if any) changed
to 1’s. Given our hypothesis, however, the rightmost 1 in n + 1 must
correspond to x’s rightmost 1. Because y has 0’s from that point to the
right, substraction of 1 from y must result in 1’s from that point to the
right, which will of course also appear in those positions in any bitwise
‘or’ involving y− 1. Thus neither (x or y− 1) nor (x− 1 or y− 1) will
have a 0 in the position of x’s rightmost 1; y − 1 will mask anything in
that position and to the right with 1’s. Since a 0 in that position is what
a value of n would demand, neither A nor B can have a value of n.

A similar argument can be constructed for the case in which it is y
that is assumed to have the furthest 1 to the right.

To sum up: if a single northwest unit has a value of n, a cell will take
a value of n+ 1, and if a cell has a value of n+ 1 one and only one of
its northwest units will have a value of n. Thus a cell will take a value
of n+ 1 if and only if precisely one of its northwest neighbors carries a
value of n.

Similar arguments can clearly be constructed in the case of other
connectives. What they demonstrate is in the inevitability of the cellular
automata rules outlined for value spaces of any chosen dimension. It must
be confessed, however, that despite such an explanation we continue
to find something magical in the fact that such simple automata rules
can generate a value space appropriate to propositional calculus for any
chosen approximation.

In all seriousness we offer this cellular automata generation of value
spaces simply as a phenomenon worthy of further study. In passing and
in a spirit of wild speculation, on the other hand, we might also note a
link to the fictional substance ‘computronium’, introduced in a review of
Margolus and Toffoli’s CAM-8 by Ivan Amato.9 As envisaged by Amato,
computronium would be a ‘computing crystal’ – a natural substance
capable of functioning as a ready-made CPU. The speculation which the
work above invites is that there may be natural processes which follow
something akin to the simple cellular automata rules above and which
thereby ‘grow’ units instantiating value spaces appropriate to forms of
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propositional calculus. If so, there may be natural processes capable of
‘growing’ something like Amato’s computronium. The lattice positions of
computronium might be occuped by particular molecules or by molecules
in particular states, for example, with the directionality of our rules above
corresponding perhaps to magnetic orientation.

8. CONCLUSION

Our attempt here has been to open for consideration some new ways of
envisaging and analyzing simple formal systems. What these approaches
have in common is a clear emphasis on visual and spatial instantiations
of systems, with perhaps an inevitable affinity to fractal images. Our
hope, however, is that in the long run such approaches can offer more
than a visual glimpse of systems as infinite wholes; that new perspec-
tives of this type might suggest genuinely new results. In the manner of
the three simple examples offered in our final sections – the Sierpinski
map of tautologies in value space, formal parallels between value solids
for systems of propositional logic and the quite different value solids
appropriate to infinite-valued connectives, and an approach to the val-
ues of propositional calculus in terms of cellular automata – our hope is
that visual and spatial approaches to formal systems may introduce the
possibility of approaching some logical and meta-logical questions in
terms of geometry. Number-theoretical analysis of logical systems forms
a familiar and powerful part of the work of Gödel and others. Analysis
in terms of geometry and fractal geometry, we want to suggest, may be
a promising further step.
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NOTES

1 The game fractal outlined here can be thought of as a fractally embedded form of the
familiar game tree. See, for example, A. K. Dewdney, The New Turing Omnibus, New
York: Computer Science Press, 1993, esp. Chapter 6, and A. L. Samuel, “Some studies
in machine learning using the game of checkers,” in Computers and Thought, ed. E. A.
Feigenbaum and J. Feldman, New York: McGraw-Hill, 1968, pp. 71–108.
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2 Because of color manipulation, the shades on the axes in these illustrations are no
longer reliable.

3 See, for example, Robert L. Devaney, Chaos, Fractals, and Dynamics, Menlo Park:
Addison-Wesley, 1990; Heinz-Otto Peitgen, Hartman Jürgens, and Dietmar Saupe, Frac-
tals for the Classroom, New York: Springer-Verlag, 1992; and A. J. Crilly, R. A. Earn-
shaw, and H. Jones, eds., Fractals and Chaos, New York: Springer-Verlag, 1991.

4 It is tempting – but would be mistaken – to try to use this schema as a repre-
sentation not only for full propositional calculus, but for a full infinitary propositional
calculus, allowing for infinite formulae involving infinite connectives by way of con-
junction, disjunction, or Sheffer strokes. (Infinitary systems of this type appear in Leon
Henkin, “Some Remarks on Infinitely Long Formulas,” in International Mathematical
Union and Mathematical Institute of the Polish Academy of Sciences, eds., Infinitistic
Methods, New York: Pergamon Press, pp. 167–183 and in Carol Karp, Languages with
Expressions of Infinite Length, Amsterdam: North-Holland, 1964.)

This is tempting for one reason because infinite disjunctions of sentence letters
represented in this way might seem to offer nonperiodic binary decimals. A simple
example would consist of the disjunction of all our atomic sentence letters, giving us
the truth table 01111. . ., with no repetition of its initial zero. For a more interesting
example, consider an infinite disjunction which leaves out some of the set of sentence
letters. Leave out only the second sentence letter, as outlined above, and you would
appear to get the disjunctive value 01011111. . . . Leave out only the third and you
would appear to get the pattern 01110111. . . . In general, leaving out the nth sentence
letter from an infinite disjunction of all sentence letters would appears to introduce a
zero in the (2n−1 + 1)th place. If every even sentence letter of the set were left out, so
the reasoning goes, the result would be a classic non-periodic decimal in which 0’s are
separated by ever-increasing expanses of 1’s.

An interpretation of infinitely-extended truth-tables is also tempting because univer-
sal quantification can be thought of as an infinite conjunction, existential quantification as
an infinite disjunction. Were this scheme interpretable in such a way, then, it would offer
a model not only for propositional but predicate calculus. Restricted to finite connectives
it can at best correspond only to arbitrarily large finite models for propositional calculus.

The difficulty which blocks both of these tempting moves, however, is that the infinite
extension of truth-tables outlined, although adequate for arbitrarily large finite complexes,
cannot be thought of as adequate for genuinely infinite complexes. This becomes evident
if one asks at what point in the table we will find a row which represents a ‘1’ value for
all of our sentence letters; it is clear that such a row can have no (finite) place in the
scheme. A standard diagonal argument gives the same result: that there will be an infinite
complex of our sentence letters which has no corresponding row in the table, and thus
that the table will not be adequate for representation of all values in a genuinely infinitary
system. For that we would require truth-tables somehow not merely of countably infinite
but of uncountable length.

5 See Manfred Schroeder, Fractals, Chaos, and Power Laws, New York: W. H. Free-
man and Co., 1991, esp. pp. 20–25.

6 See Gerald A. Edgar, Measure, Topology, and Fractal Geometry, New York: Springer-
Verlag, 1990.

7 This second type of value solid first appears in Gary Mar and Paul St. Denis, “Chaos
in Cooperation: Continuous-Valued Prisoner’s Dilemmas in Infinite-Valued Logic,” Inter-
national Journal of Bifurcation and Chaos, 4 (1994), 943–958.
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8 Łukasiewicz himself outlined his system in terms of implication and negation. Here
we take as a Łukasiewicz ‘or’ the classical transform from implication: /p ∨ q/ = / ∼
p → q/, with ‘and’ by a similar transformation. See Nicholas Rescher, Many-valued
Logic, New York: McGraw-Hill, 1969.

9 Ivan Amato, “Speculating in Precious Computronium,” Science 253, August 1991,
856–857.
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