
Technical Notes

We here state some basic results used in the main body of “Abstraction and Grounding”,
forthcoming in Philosophy and Public Affairs. We will assume that each of the pluralities we
discuss is indexed to an ordinal. For the purposes of constructing explanatory arguments, we
will also assume that we have a first-order language L with identity, names for every element
of each of the pluralities of individuals under discussion, names for every natural number, and
a relational predicate symbol for each of the relations-in-extenson among the pluralities that
we will discuss. We write aa and bb for non-empty pluralities, and ∅∅ for the empty plurality
(if there is one). Let

T+(aa) = {pc = c′q | c = c′ ∧ (c, c′ ∈ aa)} T−(aa) = {pc 6= c′q | c 6= c′ ∧ (c, c′ ∈ aa}

and T (aa) = T+(aa) ∪ T−(aa).

Intuitively, T (aa) is the set of truths concerning identities and distinctnesses among aa.
In what follows, we will refer to an indexed collection using standard notation, writing

(xi)i<α for {xi|i < α}. To avoid clutter, we will write (xi), omitting the subscripted restriction
‘i < α’ entirely. We indicate co-indexed sets by using the same subscripts. Where there are
two subscripts, the first subscript may sometimes depend on the second subscript, and these
abbreviations may be embedded. Some examples:
Abbreviation Expansion
(xi) x0, x1, . . .
(∆i ⇒ φi) ∆0 ⇒ φ0; ∆1 ⇒ φ1, . . .
(xij) x00, x10, . . . x01, x11, . . . , x0j , x1j , . . . , xij , . . . , , . . .

The notions of a relevant derivation of the formula φ from the set of formulas ∆ and of⇒
are defined as in Appendix A. We will be sloppy about use-mention distinctions when more
care will not improve clarity.

Where f ∈ aa ⊗ bb, let the domain of f be the plurality D(f), such that a ∈ D(f) iff
f(a, b), for some b; and let the range of f be the plurality R(f) such that b ∈ R(f) iff f(a, b),
for some a.

Proposition 1 Let f ∈ aa⊗bb, f 6= ∅, and ¬f(a, b). Let D(f)\{a} = (ai) and R(f)\b = (bj).
Then (a 6= ai), (b 6= bj)⇒ ¬f(a, b).

Proof We may suppose (wlog) that a ∈ D(f), b ∈ R(f), f(a, b1), and f(a1, b), so that
¬f(x, y) if grounded in the same way as ¬((x = a∧y = b1)∨(x = a1∧y = b∨(x = ai∧y = bi),
for i ≥ 2. Then, since ¬f(a, b),

¬(a = a ∧ b = b1),¬(a = a1 ∧ b = b), (¬(a = ai ∧ b = bi))⇒ ¬f(a, b).

The result follows by cut, since

b 6= b1 ⇒ ¬(a = a∧b = b1) a 6= a1 ⇒ ¬(a = a1∧b = b) (a 6= ai, b 6= b1 ⇒ ¬(a = ai∧b = bi)).

�

Proposition 2 Let f ∈ aa⊗ bb, and f(a, b). Then a = a, b = b⇒ f(a, b).

Proposition 3 Suppose f ∈ aa⊗ bb, and f : aa
1−1−→
onto

bb. Then,
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1. For some S ⊆ T (aa), S, T (bb)⇒ f is 1-1; and

2. For some S ⊆ T (bb), S, T (aa)⇒ f is functional.

Proof For each ai, aj ∈ aa, bk ∈ bb, let φijk = (f(ai, bk) ∧ f(aj , bk) → ai = aj). If ai 6= aj ,
then, since f is 1-1, either f(ai) 6= bk or f(aj) 6= bk. Suppose (wlog) f(ai) 6= bk. By P1, for
some S ⊆ T (aa), S, (bk 6= b′m) ⇒ f(ai 6= bk) ⇒ φijk, for bb \ {b} = b′1, b

′
2, . . . . If ai = aj ,

then, by P2, ai = ai, bk = bk ⇒ φijk. Now, for each bk ∈ bb, there are ai, aj ∈ aa such
that ai = aj and f(ai, b), and so ai = ai, bk = bk ⇒ φijk. And, for each bk, b

′
k ∈ bb such

that bk 6= b′k, there are ai, aj ∈ aa such that ai 6= aj , and thus S, (bk 6= b′k) ⇒ φijk. So,
S, T (bb)⇒ (∀ai, aj ∈ aa)(∀bk ∈ bb)φijk = f is 1-1, for some T ⊆ T (aa). This proves (1). An
exactly similar argument yields (2).

�

Proposition 4 Suppose f : aa
1−1−→
onto

bb, and let aa = (ai) and bb = (bi). Then

1. (ai = ai)(bj = bj)⇒ f is onto; and

2. (ai = ai)(bj = bj)⇒ f is total.

Proof Let bj ∈ bb. Then, for some akj ∈ aa, akj = akj , bj = bj ⇒ (∃a ∈ aa)f(a) = b. So,
(akj = akj ), (bj = bj)⇒ (∀b ∈ bb)(∃a ∈ aa)f(a) = b. Since f is total, (akj = akj ) = (ai = ai).
This proves (1). A similar argument proves (2).

�

Proposition 5 Suppose f(aa
1−1−→
onto

bb). Then:

1. T (aa), T (bb)⇒ f : aa
1−1−→
onto

bb;

2. T (aa)⇒ f : aa
1−1−→
onto

aa; and

3. T (aa)⇒ aa ≈ aa.

Proof (1) follows by P3 and P4. (2) follows immediately from (1), and (3) from (2).

�

Proposition 6

1. Suppose f ∈ aa⊗ bb, ai, aj ∈ aa, bk ∈ bb, f(ai, bk)), f(ai, bk)), and ai 6= aj . Then

(a) ai = ai, aj = aj , bk = bk, ai 6= aj ⇒ ¬(f(ai, bk) ∧ f(aj , bk)→ ai = aj); and

(b) ai = ai, aj = aj , bk = bk, ai 6= aj ⇒ ¬(f is 1-1).

2. Suppose f ∈ aa⊗ bb, bi, bj ∈ bb, ak ∈ aa, f(ak, bi)), f(ak, bj)), and bi 6= bj . Then

(a) bi = bi, bj = bj , ak = ak, bi 6= bj ⇒ ¬(f(ak, bi) ∧ f(ak, bj)→ bi = bj); and

(b) bi = bi, bj = bj , ak = ak, bi 6= bj ⇒ ¬(f is functional).
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Proof By P2, we have ai = ai, bk = bk ⇒ f(ai, bk) and

aj = aj , bk = bk ⇒ f(aj , bk).

(1a) follows by an application of cut. (1b) follows immediately from (1a). The proof of (2)
is similar.

�

Proposition 7

1. Suppose f ∈ aa⊗ bb, f is nonempty, b ∈ bb, and, for all a ∈ aa, ¬f(a, b). Then, letting
bb \ {b} = (b′j), T

−(aa), (b 6= b′j)⇒ ¬(f is onto bb).

2. Suppose f ∈ aa⊗ bb, f is nonempty, a ∈ aa, and, for all b ∈ bb, ¬f(a, b). Then, letting
aa \ {a} = (a′i), T

−(bb), (a 6= a′i)⇒ ¬(f is total on aa).

Proof For each ai ∈ aa, P1 implies (ai 6= a′i), (b 6= b′j) ⇒ ¬f(ai, b), where aa \ {ai} = (a′i).
So,

T−(aa), (b 6= b′j)⇒ ¬(∃a ∈ aa)f(a, b)⇒ ¬(∀b ∈ bb)(∃a ∈ aa)f(a, b)⇒ ¬(f is onto bb).

This proves (1). The proof of (2) is similar.

�
Let B be any individual not in N+. Inductively define aan for n ∈ N+ so that aa1 = B,B

and aan+1 = aan ∪ n, n.

Proposition 8

1. Suppose m,n ∈ N, m > n, and aan 6≈ aam. Then T (aam)⇒ aan 6≈ aam.

2. Suppose m,n ∈ N, m > n, and aam 6≈ aan. Then T (aam)⇒ aam 6≈ aan.

Proof To prove (1), note that, since ¬f : aan
1−1−→
onto

aam for every non-empty f ∈ aan ⊗ aam,

P6 and P7 imply that S ⇒ ¬f : aan
1−1−→
onto

aam, for some S ⊆ T (aam). For the empty function

∅, B = B ⇒ ¬∅(B,B) ⇒ ¬(∅ : aan
1−1−→
onto

aam). So, we have S ⇒ aan 6≈ aam, for some

S ⊆ T (aam). Now, there is a g ∈ aan ⊗ aam such that g(B, b) for each b ∈ aam. Moreover, g
is not functional, since m > n. So, by P6, for each ai, aj ∈ aam, where ai 6= aj ai = ai, aj =
aj , B = B, ai 6= aj ⇒ ¬(g is functional). By amalgamation, T (aam) ⇒ aan 6≈ aam. (2) is
proved similarly, using a g ∈ aam ⊗ aan that is a constant, non-injective function.

�
Let S1 = {pB = Bq}, and, for n ∈ N+, let

Sn+1 = {pB = Bq , pB 6= 1q , p1 6= Bq , . . . , pB 6= nq , pn 6= Bq}.

Proposition 9 For all m,n ∈ N+, m < n:

1. Sm ⇒ m = m;
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2. Sn ⇒ n 6= m; and

3. Sn ⇒ m 6= n.

Proof We prove the result by induction. The basis case for (1) follows immediately from P5,
since T (aa1) = pB = Bq, and so B = B ⇒ aa1 ≈ aa1 ⇒ 1 = 1.. The result in the basis cases
for (2) and (3) follows from P8 and the basis case of (1). For the induction step, assume that
each of (1)-(3) are true for each k < m, j < n. To see that (1) is true for n, notice that P5
implies T (aan) ⇒ n = n, and every member φ of T (aan) \ Sn has one of the forms pj = jq,
pj 6= j′q, or pj′ 6= jq for some j, j′ < n, j > j′. By IH, Sj ⇒ k = k, Sj ⇒ j 6= j′, and
Sj ⇒ j′ 6= j. Also, Sj ⊆ Sn. So, cut yields (1). The arguments for (2) and (3) are similar,
using P8 in place of P5.

�
Since the specification of explanatory inferences and the grounding principles in (deRosset

and Linnebo, ming, §5) are exactly parallel, and strict ground, like ⇒ is closed under CUT,
Proposition 1 in (deRosset and Linnebo, ming, §5) can be proved by substituting ‘<’ for ‘⇒’
in the proof of P9.

Proposition 10 Suppose that ∅∅ is an empty plurality, i.e., (∀x)x 6∈ ∅∅. For all n ∈ N+:

1. ∅ ⇒ 0 = 0;

2. ∅ ⇒ 0 6= n; and

3. ∅ ⇒ n 6= 0.

Proof ∅∅ ⊗ ∅∅ has exactly one member, the empty function f , and we have ∅ ⇒ (∀x ∈ ∅∅)φ,

for any φ. So, ∅ ⇒ f : ∅∅ 1−1−→
onto
∅∅ ⇒ 0 = 0, yielding (1). Let bbn+1 = 0, 1, . . . , n, for n ∈ N. To

show (2), note that ∅∅ ⊗ bbn has exactly one member, the empty relation f . Also, we have
∅ ⇒ ¬(∃a ∈ ∅∅)φ, for all φ. So,

∅ ⇒ ¬(∃a ∈ ∅∅)f(a, 0) ⇒ ¬(∀b ∈ bbn)(∃a ∈ ∅∅)f(a, b) ⇒ ¬(f is onto bbn)

⇒ ¬(f : ∅∅ 1−1−→
onto

bbn) ⇒ ¬(∃g ∈ ∅∅⊗bbn)(g : ∅∅ 1−1−→
onto

bbn) ⇒ ∅∅ 6≈ bbn ⇒ 0 6= n.

The proof of (3) is similar, using the failure of the empty relation in bbn ⊗ ∅∅ to be total on
bbn in place of the failure of the empty relation in ∅∅ ⊗ bbn to be onto bbn.

�

Proposition 11 Suppose that ∅∅ is an empty plurality, i.e., (∀x)x 6∈ ∅∅. For all n,m ∈ N,
where n 6= m, ∅ ⇒ n = n and ∅ ⇒ n 6= m.

Let bbn+1 be defined as in the proof of Prop 10, and recall that Prec(xx, yy) abbreviates

(∃yy′ ⊆ yy)(∃y ∈ yy)( (∀z ∈ yy)(z ∈ yy′ ↔ z 6= y) ∧ xx ≈ yy ).

Given an empty plurality ∅∅ and the explanatory inferences for quantifications restricted
to a plurality, it is easy to see that there will be explanatory arguments witnessing ∆ ⇒
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Prec(bbk, bbk+1)⇒ P (k, k+1) for all k ∈ N+, where all members of ∆ have one of the forms:
n = n, n 6= m, or bbn+1 ≈ bbn+1, for some n,m ∈ N. Similarly, it is easy to see that there will
be explanatory arguments witnessing ∆⇒ Prec(∅∅, bb1)⇒ P (0, 1), where ∆’s members are
all either 0 = 0 or ∅∅ ≈ ∅∅. So, the application of Prop 11 yields:

Proposition 12 Suppose that ∅∅ is an empty plurality, i.e., (∀x)x 6∈ ∅∅. For all n,m ∈ N,
where n+ 1 6= m, ∅ ⇒ P (n, n+ 1) and ∅ ⇒ ¬P (n,m).

Now we can sketch how all of the facts expressible in second-order Peano arithmetic are
grounded, assuming the existence of an empty plurality ∅∅. Second-order Peano arithmetic
can be formulated in a language, LPA2, whose only primitive predicates are ‘=’ and ‘P ’ (Boo-
los, 1995). We wish to proceed to show, by induction on syntactic complexity, that, so long as
there is an empty plurality ∅∅, for every formula ϕ of LPA2 (relative to a variable assignment),
either ϕ or ¬ϕ is derivable in an explanatory argument from the empty set of premises and
so zero-grounded. (To simplify the exposition, we elide the variable assignments and talk
directly about natural numbers and relations-in-extension based on these.) Propositions 11
and 12 ensure that the claim holds for atomic formulas involving ‘=’ and ‘P ’. The same goes
for atomic formulas involving plural membership or predication of a relation-in-extension (cf.
Appendix A). The induction step for disjunction, conjunction, and negation is straightfor-
ward. As for the quantifiers, the key is first to define the plurality nn of all natural numbers
as the least plurality containing 0 and closed under the successor relation. (This plural-
ity exists according to our Critical Plural Logic by its axiom of Infinity; see Appendix B.)
We can now use plurality-restricted quantifiers of the form ‘(∃x ∈ nn)’ and ‘(∀x ∈ nn)’ to
interpret the first-order quantifiers of LPA2, and analogously for quantification over plural-
ities and relations-in-extension. The induction step for true existential generalizations and
negated universal generalizations involving these quantifiers is straightforward, while that
of true universal generalizations (or negated existential generalizations) requires that true
plurality-restricted generalizations of these forms can be derived in explanatory arguments
from the collection of their instances (or negated instances).
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