
Chapter 15
An Inquiry into the Practice of Proving
in Low-Dimensional Topology

Silvia De Toffoli and Valeria Giardino

15.1 Introduction

Philosophy of mathematics has recently become more attentive to the practice of
mathematics and in particular to the everyday work of mathematicians. One reason
behind this “practical turn” is that mathematics should be acknowledged not only
as an abstract science, but also as a human enterprise with its own dynamics that
still need to be investigated in depth. Accordingly, it is common today to refer to the
“philosophy of mathematical practice” (Mancosu 2008).

Setting our research in this context, our starting point is the analysis of some
of the material representations used in the practice of mathematics. In Thurston’s
words, mathematicians

use wide channels of communication that go far beyond formal mathematical language.
They use gestures, they draw pictures and diagrams, and they make sound effects and use
body language. (Thurston 1994, p. 166, emphasis added)

Among the wide variety of externalizations used by experts to convey and
practice mathematics, only some of them are material and therefore easily shared,
inspected and reproduced. Such material representations are introduced in a specific
practice, and once they enter into the set of the available tools, they have in turn
an influence on the very same practice. This process plays a significant role in

S. De Toffoli (�)
Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136,
10623 Berlin, Germany
e-mail: toffoli@math.tu-berlin.de

V. Giardino
Département d’Etudes Cognitives, Ecole Normale Supérieure, Institut Jean Nicod
(CNRS - EHESS - ENS), PSL Research University, Paris, France
e-mail: Valeria.Giardino@ens.fr

© Springer International Publishing Switzerland 2015
G. Lolli et al. (eds.), From Logic to Practice, Boston Studies in the Philosophy
and History of Science 308, DOI 10.1007/978-3-319-10434-8_15

315

mailto:toffoli@math.tu-berlin.de
mailto:Valeria.Giardino@ens.fr


316 S. De Toffoli and V. Giardino

the practice of mathematics. One of the aims of this article is to investigate the
conditions for its manifestation. Moreover, we will analyze what kind of cognitive
abilities are triggered by the use of pictures in low-dimensional topology. In
fact, we claim that a specific kind of imagination comes into play when dealing
with visual representations in this field, which we label manipulative imagination.
This notion will be used to characterize what it means to “see” in topology. We
will propose that reasoning in low-dimensional topology is based on preexisting
cognitive capacities—mathematicians imagine a series of possible manipulations
on the representations they use—and is modulated by expertise: representations
are cognitive tools whose functioning depends in part from preexisting cognitive
abilities and in part from specific training.

Moreover, the actual practice of proving in low-dimensional topology involves
a kind of reasoning that cannot be reduced to formal statements without loss
of intuition. In this sense, visualization plays a specific epistemic role in this
practice. We will show several examples of reasoning which are representationally
heterogeneous, i.e. neither entirely propositional nor entirely visual.1 This form
of reasoning is shared by experts: it is the kind of reasoning that one has to
master to become a practitioner. Moreover, the manipulations allowed on the
representations—what we will define as permissible actions—as well as the rep-
resentations themselves are epistemologically relevant. This is because they are
integral parts both of the reasoning and of the justification provided. Inferences
involving visual representations are permissible only within a specific practice and
in this sense context dependent: this leads to the establishment of local criteria of
validity.

In Sect. 14.2.2, we will introduce simple examples of reasoning in topology
involving pictures and text in order to make the reader acquainted with various
representations. In Sect. 14.4.1, we will focus on a specific proof in low-dimensional
topology: Rolfsen’s demonstration of the equivalence of two presentations of
the Poincaré homology sphere. To do so, we will introduce the mathematical
background only to the extent needed in this context. In Sect. 14.4.2, we will analyze
our case study. We will discuss the form of topological arguments, in particular
the role of pictures in topological reasoning. Moreover, we will consider how
the notion of “seeing” in topology depends on our spatial-motoric intuitions of
three-dimensional space and can be characterized using the notion of manipulative
imagination. Lastly, we will analyze the reliability of this specific practice. In
Sect. 14.4.3, we will sum up our conclusions and present possible lines of further
research.

1Examples of representationally heterogeneous arguments can be found also in other areas. For
example, Shin (2004) describes the project of funding a heterogeneous logic by Barwise and
Etchemendy (1996) as a very fruitful one.
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15.2 Reasoning in Topology

Topology is a branch of geometry that focuses on qualitative properties of objects,
while ignoring quantitative ones. In order to represent a topological object, we have
to choose one of its particular geometric shapes. Low-dimensional topology focuses
on the study of objects of dimension four or less. It is particularly interesting to
investigate the practice of proving in this subfield because, as we will see, it is
deeply influenced by our intuition of space.

Let us start with an example in dimension two. Representations of surfaces can
be “manipulated in space” by exploiting our familiarity in manipulating concrete
objects, as if the objects of topology were made of modeling clay. For example,
in topology the surface of a cup and that of a doughnut are equivalent: they
are both homeomorphic to a torus. (In topology, objects are considered up to
homeomorphism, i.e. continuous transformations whose inverse is also continuous.)
To prove this, we have only to exhibit an appropriate deformation that takes
the surface of a cup into the one of a doughnut. Students are trained to “see”
transformations such as this and to move freely among different geometric shapes
of the same topological object without need to justify these equivalences in other
ways. More sophisticated arguments could be used by introducing the machinery of
algebraic topology, but this is often not requested by the practice.

For example, the torus can be defined as a square with its sides identified. In
order to explain how this is possible, let us first analyze a simpler example. Given
a square with boundary, that is, a surface homeomorphic to a disk D

2, we glue (i.e.
identify) two of its opposite sides in order to obtain another surface. If the two sides
are glued in the same direction, as indicated by the arrows in Fig. 15.1a, we will
obtain a cylinder (Fig. 15.1b). If the two sides are glued in the opposite direction, as
indicated in Fig. 15.2a, we will obtain a Möbius band (Fig. 15.2b).

In order to obtain the torus from a square, we identify all its four sides in pairs.
First, we identify two of them in the same direction, as in the case of the cylinder

Fig. 15.1 Constructing the
cylinder

Fig. 15.2 Constructing the
Möbius band
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Fig. 15.3 Constructing the torus

(Fig. 15.3b), and then the other two again in the same direction (Fig. 15.3c).2 In
Fig. 15.3c, one can see the torus with two marked curves, where the gluings, i.e. the
identifications, were made.

In discussing the role of notation in mathematics, Colyvan takes into considera-
tion these square diagrams with arrows indicating the gluings:

This algebraic topology notation is something of a halfway house between pure algebra and
pure geometry. It is both notation and a kind of blueprint for construction of the objects in
question. The first seems to belong to algebra, while the second is geometric. But whichever
way you look at it, we have a powerful piece of notation here that does some genuine
mathematical work for us. (Colyvan 2012, Ch. 8)

This visual presentation of the torus can be formalized as a quotient of the unit
square D

2= �. We consider the square in a coordinate system such that the edges
are situated in the points .0; 0/, .0; 1/, .1; 0/, and .1; 1/ and the equivalence relation
� identifies points .x; y/ and .x0; y0/ according to the following (see Fig. 15.3a):

.x; y/ � .x0; y0/ ,

8
ˆ̂
<

ˆ̂
:

.x; y/ D .x0; y0/ or

fx; x0g D f0; 1g and y D y0 or

fy; y0g D f0; 1g and x D x0

Without visualizing the transformations from Fig. 15.3a to Fig. 15.3c, which
are simplified by the particular notation, one can hardly topologically understand
what the above formula defining the equivalence relation is about. In this sense,
visualization is essential to the specific kind of understanding proper to topology.
The same holds for more complex examples.

For instance, consider, the decomposition of the 3-sphere (the equivalent of the
sphere in one more dimension) as the union of two solid tori.3 Jones uses this

2If we identify two sides in the same direction and the other two in the opposite direction, we
obtain the Klein bottle.
3A solid torus is a torus that is filled. While a torus is a surface without boundary homeomorphic to
S
1 � S

1 (i.e. the product of two circles), a solid torus is homeomorphic to D
2 � S

1 (i.e. the product
of a disk and a circle), and its boundary is a torus.
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Fig. 15.4 A circle is
homeomorphic to a line plus
a point

example to emphasize the importance of visualization in low-dimensional topology.
He compares a visual presentation with the following formal one: S3 D T1[T2, with

T1 D f.x1; x2; x3; x4/ 2 R
4 W x2

1 C x2
2 C x2

3 C x2
4 D 1; x2

1 C x2
2 � 1=2g

T2 D f.x1; x2; x3; x4/ 2 R
4 W x2

1 C x2
2 C x2

3 C x2
4 D 1; x2

3 C x2
4 � 1=2g

Let us now “see” how the 3-sphere can be filled up by two solid tori beginning
with two preliminary remarks.4

1) The 1-sphere S
1 can be decomposed into a line R and point at infinity:

Fig. 15.4 illustrates that each point in a circle except one (point P ) can be put
in correspondence to a point in a line. Point a goes to the point a0, b to b0, etc.
Then, point P will be sent to infinity. Through this map, we get an homeomorphism
between the circle S

1 and the line R with a point at infinity added to it R [ 1.
Analogously, a sphere S

2 can be obtained from a plane R
2 by adding a point at

infinity; and the 3-sphere S3 can be obtained from R
3 by adding a point at infinity.

2) Given a line, we can rotate it around one of its points, e.g. the origin, and
obtain the plane. We can also take a half-line, the one with the origin as its endpoint,
and still obtain a plane after the same rotation. Similarly, we can start with a plane
or a half-plane and rotate it around a line. For example, the xy plane in the standard
coordinates if rotated around the y axis gives rise to the three-dimensional space R3.

In Fig. 15.5, the 3-sphere is represented as R
3 [ 1 and R

3 is the result of the
rotation of the plane of the paper (the xy plane) along Ry , the y axis. Let D1 be a
disk (with boundary) in the half-plane x < 0; after the rotation of the plane around
Ry , it will form a solid torus, intersecting the xy plane in another disk: D2. In this
way we get a representation of the 3-sphere with a solid torus inside it. Now, in order
to prove that the 3-sphere can be decomposed as the union of two solid tori, we want
to prove that also the complementary space of this solid torus is a solid torus.

Each of the segments depicted in Fig. 15.5 connecting a point of the boundary of
D1 to the corresponding point of the boundary in D2 will give rise to a disk after the
rotation. These disks can be parametrized by the line Ry plus the point at infinity
since each intersects Ry [ 1 in its midpoint (we can choose all these segments
to intersect the circle Ry [ 1 orthogonally). Thus, the complementary space is
homeomorphic to D

2 � S
1, a disk times a circle, which is a solid torus.

4The following argument can be found in Fomenko (1997, pp. 123–124).
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Fig. 15.5 Decomposition of
S
3 in two solid tori

Jones, considering a formal and a visual way of presenting the 3-sphere as the
union of two solid tori, claims that

[the] formal picture [: : :] is complete but inadequate. If one does not ‘see’ the other picture
[: : :] one is not ready to take the next step in low-dimensional topology. Of course this is
just the beginning. There are more complex things to ‘see’ and sequences of such visions
are compounded one upon another in the same way as the elementary logical steps in a
formal argument. If one ‘sees’ the pictures, then one understands, but otherwise one cannot
follow. In principle one could formalize the whole argument, but that would add nothing.
(Jones 1998, p. 213, emphasis added).

In Jones’ view, an argument in this domain can be broken down into units,
no matter if they are elementary logical steps or pictures. As we will later see,
a formalization of an argument whose units are pictures would often not be
relevant for the practice. This is characteristic of topology in general: often such
formalizations would hide the relevant (topological) reasoning that is externalized
by the pictures.

In the following, we will illustrate a proof in topology as an example of an
argument composed of a sequence of pictures plus textual instructions on how to
interpret them.

15.3 Rolfsen’s Proof

We will now present the core of our case study: a proof of the equivalence
of two presentations of the Poincaré homology sphere, taken from a popular
graduate textbook: Knots and Links by Rolfsen (1976). The first presentation of

silviadt
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this 3-manifold5 is a surgery code, while the second one is a Heegaard diagram.
In order to explain this proof, we will briefly define the representations and
techniques used to obtain them.

15.3.1 Dehn Surgery and Heegaard Diagrams

First, let us consider Dehn surgery on the 3-sphere. To do so, we introduce
mathematical knots, which are smooth simple closed curves in the 3-sphere.6 Knots
are considered up to smooth deformations, i.e. we are not interested in their specific
geometric shape, but in the way they are knotted.

In Dehn surgery, first we take a knot in the 3-sphere, then we thicken the knot to
a tube in order to obtain a knotted solid torus. Next, we cut it out from the 3-sphere
and glue it back in a different way to obtain another 3-manifold. The way in which
the tube is glued back in can be coded by a rational number. Any closed compact
3-manifold can be obtained by Dehn surgery on some knot, i.e. it can be coded by a
knot plus a rational number.7 For example, a code for the Poincaré homology sphere
is represented in Fig. 15.6.

To give a hint of the reasons why Dehn surgery is possible at all, consider
an analogous process in lower dimension: in Fig. 15.7 we start with a circle (i.e.
a 1-sphere, which corresponds to the 3-sphere in our example) and two points on
it (i.e. a 0-sphere, which corresponds to the knot, i.e. a 1-sphere); then, we thicken
these two points (this corresponds to thicken the knot) and get two segments (instead
of a tube). After that we cut them out from the circle and glue them in a different
way. We obtain two circles, which is a different topological manifold from one
circle, the manifold we started with.

Let us now consider another way to present manifolds: Heegaard diagrams.
To do so, we introduce handlebodies of genus g, which are balls with g handles
attached. For example, a solid torus is, a handlebody of genus 1. A handlebody of
genus g has g holes.

Fig. 15.6 The surgery code
for the Poincaré homology
sphere

5A 3-manifold is the equivalent of a surface in one more dimension. It is a three-dimensional
topological space which is locally homeomorphic to R

3, the Euclidean space.
6In a previous study, we considered the use of knot diagrams in relation to knot types. We claimed
that the key feature of knot diagrams is their “dynamicity”: experts manipulate them according to
different sets of possible transformations (De Toffoli and Giardino 2014).
7See Fomenko (1997, Ch. 9) for details.
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Fig. 15.7 Surgery in lower dimension

Fig. 15.8 A system of
meridians of a genus 2
handlebody

It is possible to construct closed compact 3-manifold by gluing two handlebodies
H1 and H2 of the same genus along their boundaries @H1 and @H2, which are two
orientable closed surfaces of the same genus.

Let us focus on the case of genus two, which is the one that interests us for the
proof which we will later analyze. To describe the gluing, i.e. a homeomorphism
between the two boundaries, we consider a and b, the meridian loops of the first
handlebody, which are two curves in @H1, and the boundary of the first handlebody,
as in Fig. 15.8. Then, in order to specify the result of the gluing, it is enough to know
f .a/ and f .b/, the images of these curves under the attaching homeomorphism on
@H2, the boundary of the second handlebody. So, all we need to know in order
to construct a 3-manifold from two handlebodies of genus two is a pair of simple
closed curves in the boundary of a handlebody (these curves are interpreted as
coding the gluing, since they are the images of the meridian loops of the first
handlebody on the surface of the second.) This information, however, cannot be
so easily conveyed, since it would require drawing curves on pictures of three-
dimensional objects. To overcome this problem, Heegaard diagrams are introduced,
which are two-dimensional diagrams containing all the relevant information. Their
two dimensionality makes the presentation easier to draw and can be effective in a
sense that we will explore later.

To construct a Heegaard diagram, we imagine cutting open @H2, the boundary of
the second handlebody, so that it lays flat on the plane and then we trace the image
under this transformation of the curves determining the gluing (these curves were
on @H2 and thus will still be represented on this “flat” presentation of @H2). First,
we consider the meridian loops of @H2 (call them A and B); then, we cut the surface
@H2 along them in order to create a surface with four circles as boundary (for genus
g, we will have 2g circles), as in Fig. 15.9a. This is equivalent to a sphere with four
holes, as in Fig. 15.9b: we imagine “inflating” the object represented in Fig. 15.9a
so that it becomes a sphere.
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Fig. 15.9 Constructing a Heegaard diagram

Fig. 15.10 “Flat”
presentation of the boundary
of a genus two handlebody

Fig. 15.11 The Heegard
diagram taken from Rolfsen
representing the Poincaré
homology sphere

Then, from one boundary hole, we stretch the surface onto the plane, obtaining a
disk with three holes. In Fig. 15.10, we stretched from the hole labeled CA.

While applying these transformations, we have to keep track of where the
curves f .a/ and f .b/ defining the gluing are going, i.e. their image under this
transformation. After the modification of the boundary of the second handlebody,
these curves will be lying in the planar disk with holes. Then, a Heegaard diagram of
genus two is a diagram of a disk with three holes endowed with a set of curves; see
Fig. 15.11 for an example. Note that the set of lines in this diagram is actually to be
interpreted as two closed curves, since the boundary circle are pairwise identified:
CA with �A and CB with �B , the signs denoting the opposite orientations which
we need in order to glue them correctly.8 In particular, there is a solid curve and
a dotted one. Let us follow the solid one. We can start from .1;CA/, the point
marked 1 in the external circle CA; then, we reach 2 in �A, but �A is identified

8See Fomenko (1997, Ch. 5) for details.



324 S. De Toffoli and V. Giardino

with CA, so we arrive at 2 in CA; then for similar reasons, we reach in the order
.3;�A/ D .3;CA/; .4;�A/ D .4;CA/; .1;CB/ D .1;�B/; .5;CA/ D
.5;�A/; .2;CB/ D .2;�B/; .1;�A/ D .1;CA/. At the end we have returned
at the starting point: the curve is indeed closed.

The information about these closed curves, so encoded, is enough to uniquely
determine the gluing of the two handlebodies.

15.3.2 Two Presentations of the Poincaré Homology Sphere

In 1900 Poincaré, in the second supplement to his Analysis Situs (Poincaré 1900),
had conjectured that a compact 3-manifold with the same homology groups as the
3-sphere would be homeomorphic to it. Five years later, he gave a counterexample
constructing a manifold now known as the Poincaré homology sphere. This is a com-
pact 3-manifold with the same homology as the 3-sphere but not homoeomorphic to
it, because its fundamental group9 is not trivial.

In Fig. 15.12, we present Rolfsen’s direct proof of the equivalence of a surgery
code and a Heegaard diagram of the Poincaré homology sphere by reporting the
pictures and the accompanying text with the instructions on how to interpret them.10

This proof (Rolfsen 1976, pp. 249–250) is accepted as a valid argument and, to our
knowledge, is the only direct proof of the equivalence of these two presentations.
We will discuss this proof in the next section.

We start with Dehn surgery, considering a trefoil knot with associated rational
number C1; see Fig. 15.6. In the first picture of the proof, we see a thick trefoil
forming a knotted tube with a curve indicating Dehn surgery to which another tube
with a curve has been added.

The main idea of the proof is to continuously deform this object in order to obtain
another known presentation of the same 3-manifold. The transitions between the
first four pictures are topologically interpreted as homeomorphisms. While applying
these transformations, we are going to keep track of the two curves. Training is
normally required to follow these deformations, but we nevertheless hope to convey
an idea of what a proof in topology might look like (it is not necessary to be able to
follow all the transformations in order to get the gist of the proof).

We have to follow the instructions given in the text in order to identify the various
transitions connecting the pictures. For example, to move from the fourth to the last
picture, as the knife suggests, we cut the surface open and lay it flat on the plane.
This is “almost” a Heegaard diagram: we just have to pick one of the holes and
stretch it “outside” in order to obtain one. If we choose the hole labeled CA, we get
the Heegaard diagram in Fig. 15.11.

9The fundamental group is a very important algebraic invariant used to study the shape of
topological spaces. See Massey (1991, Ch. 2) for details.
10We sincerely thank Professor Rolfsen who gave us permission to reuse the material from his
book.
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Fig. 15.12 Rolfsen’s proof (Rolfsen 1976, pp. 249–250)
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15.4 Discussion of the Case Study

What is striking about Rolfsen’s proof is that even if it is clearly very far from a
formal proof, and also far from a non-formal proof written in natural language, it is
nonetheless (accepted as) valid. In this specific example, a formal description of the
topological deformations would be beside the point.11

However, this should not be surprising, since, as Thurston writes,

: : :we should recognize that the humanly understandable and humanly checkable proofs
that we actually do are what is most important to us, and that they are quite different from
formal proofs. For the present, formal proofs are out of reach and mostly irrelevant: we have
good human processes for checking mathematical validity. (Thurston 1994, p. 171)

The question is: which “human processes” would make mathematicians conclude
that this proof is valid? This issue is also crucial to determine what makes low-
dimensional topology so special as a subfield of mathematics.

In the following, we consider some of the features of this proof.

15.4.1 Heterogeneous Arguments

One evident feature of Rolfsen’s proof is that it consists of pictures and text.
The sequence of pictures is accompanied by a set of instructions given in natural
language. Without the pictures, it would be impossible to understand the text;
conversely, without the text, it would be very hard to correctly interpret the pictures:
neither one is complete without the other. The argument requires both for its
cogency.12 Thus, the proof is not purely visual, for the same reason for which it
cannot be considered as purely syntactic: it is representationally heterogeneous. In
order to understand it, one has to be guided by the text on how to imagine the
continuous transformations whose discrete steps are represented by the pictures.

The interdependence of pictures and text is not an exclusive feature of proofs
in low-dimensional topology. Manders (2008) has discussed in depth how dia-
grammatic and propositional content are interacting and are both essential in the
case of Euclidean geometry. Nevertheless, there are some differences between
this proof (and others) in topology and most proofs in Euclidean geometry. For
example, in the case of Rolfsen’s proof, once the context, which is linguistically
defined, is understood and the goals are set, then the text becomes superfluous

11This is not an isolated case. Similar phenomena can be observed also in research articles, for
example, in the subfield connecting low-dimensional topology and hyperbolic geometry. See, for
reference, Adams and Reid (1993).
12In our view, pictures do not always have to be physically drawn: it is sometimes sufficient to
imagine them. Nonetheless, we will also argue that the fact that they can be physically drawn has
cognitive advantages, since it makes inspection and reconfiguration easier and is the condition for
sharing content with other practitioners.
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for our understanding. That is to say that once we know what to do with the
pictures—and this can only come along with expertise—we can concentrate on them
exclusively. As Sullivan (2013) writes about this same proof: “you can’t say you
really understand the proof until you reach the stage where the pictures alone would
suffice.” The only place where we would still need instructions in words would be
to go from the fourth to the fifth picture, but in this case, the instruction “cut” is
substituted by the icon of a knife. This does not happen in Euclidean proofs, where
the text guides us through the interpretation of the diagrams step by step and gives
us necessary information that the picture alone does not provide (the text describes
the articulated construction required to draw and work with Euclidean diagrams).

Let us now return to the argumentative form of Rolfsen’s proof. Recall Jones’
quotation in Sect. 15.2, where he claimed that “sequences of [. . . ] visions are
compounded one upon another in the same way as the elementary logical steps
in a formal argument.” Accordingly, we have seen that the majority of the steps
into which Rolfsen’s proof can be broken down are transformations that lead from
one picture to another, as the text giving the instructions on how to interpret
the pictures clarifies. Therefore, the representations give a material form to the
transformations (and in this sense they “externalize” them) because they allow
experts to perform “epistemic actions” (and in particular to draw inferences) on
them. By epistemic actions, we mean actions that are performed with an epistemic
aim.13 Moreover, these actions are controlled by the shared practice: the set of
legitimate transformations is limited and determined by the context.

As Larvor explained in a recent article by comparing different forms of mathe-
matical arguments:

: : : if an argument includes an inferential action that manifests or manipulates the subject-
matter, or a representation thereof, then formalising this argument in a general logical
language must either misrepresent or fail to include this action. Moreover, we can say
something in the direction of explaining how informal arguments work as arguments: they
are rigorous if they conform to the controls on permissible actions in that domain. (Larvor
2012, p. 724, emphasis added)

Through an inferential action, it is possible to manipulate the representation
itself for epistemic purposes. In Rolfsen’s proof, the inferential actions consist in
manipulating pictures; for this reason, any formalization would fail to capture the
inferential actions performed. Moreover, we can proceed from one representation to
another by applying actions that are permissible, i.e. allowed and controlled by the
shared practice of the subfield. These epistemic actions are inferential actions: they
constitute the units of a mathematical argument.

The commented pictures in Rolfsen’s proof—in sequence—are thus the argu-
mentative form of the proof. The representations constituting the argument are
heterogeneous and yet adequate to its mathematical context: pictures thus play a

13Epistemic actions have been characterized by Kirsh and Maglio (1994) as “actions performed to
uncover information that is hidden or hard to compute mentally” in contrast to pragmatic actions,
which are “actions performed to bring one physically closer to a goal.”
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relevant epistemic role. This is in line with the actual practice of mathematics, as
the first words of the proof makes clear: “The argument is contained in the series of
pictures on the next page. . . ”

15.4.2 Representations Externalizing Reasoning

We propose to consider the pictures in Rolfsen’s proof as externalizing part of the
reasoning: in order to grasp the validity of this proof, it is necessary to imagine the
manipulation that leads from one to the other. Moreover, it is the very use of these
external representations that triggers manipulative imagination, which is, as we will
argue, crucial in topology.

This supports an approach to mathematics, according to which mathematical
representations and symbols are intimately linked to the concepts they represent.
De Cruz and De Smedt (2013, p. 4) claim that “symbols are not merely used to
express mathematical concepts” but are “constitutive of the concepts themselves.
Mathematical symbols enable us to perform mathematical operations that we would
not be able to do in the mind alone, they are epistemic actions.”

In Rolfsen’s proof, the sequence of pictures externalized the reasoning, allowing
us to “see” the transformations involved. These pictures follow some convention, but
their pictorial features are also relevant. For this reason, they cannot be considered
as purely symbolic, but can be recognized as hybrid representations presenting
symbolic as well as visual elements, which are both to be taken into account by
the experts. For example, in the last picture of the proof, the curves are represented
as lines on the diagram that are the images of the lines of the previous pictures under
the applied transformations, but at the same time, they must be interpreted as codes
for gluings.

Not only in topology, but also in different mathematical fields, visual and
symbolic elements come in different and often complementary degrees. A notation
for which a syntax is explicitly defined can reach a higher degree of abstraction
and therefore allow for wider generalization. Nonetheless, most of the times, this
happens at the cost of losing a straightforward intuitive interpretation and in some
cases the very possibility of exploiting intuition.14

A paradigmatic example of this is the use of closed curves to represent syllogistic
reasoning in its development from Euler to Shin. Peirce’s (as well as Shin’s)
introduction of new conventions has increased the diagrams’ expressive power,
but at the expense of the visual clarity and the intuitive interpretation of Euler’s
original diagrammatic system. The new conventions are more arbitrary and the new
representations more confusing (Shin, Lemon and Mumma 2013).

14Of course, as Giaquinto suggests, it could be that we develop more sophisticated forms
of intuition and imagination allowing us to manipulate also arrays of symbols, or syntactic
expressions in general (Giaquinto 2007, Ch. 12). We tend to agree with this claim.
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Let us go back to Rolfsen’s proof, taking into account this balance between visual
and symbolic elements. The topological pictures represent geometric objects that
are straightforwardly interpreted as topological objects. On the contrary, in the case
of Heegaard diagrams, the representation of a topological object is more codified,
so as to allow for a stronger syntactic control. As a notation,15 Heegaard diagrams
have the potential to allow for generalizations: we can code all closed compact 3-
manifolds with them. Nonetheless, the price for this is that the interpretation of the
representations cannot be driven anymore mainly by intuition. We have to be aware
of the conventions introduced in order for the diagram to “make sense”.

Two examples will help to better clarify how these degrees of intuitive and
conventional elements converge in different mathematical diagrams and how alge-
braic and symbolic reasoning can interact. (1) Knot diagrams present clear visual
elements because they “intuitively” represent geometric objects, but at the same
time, they allow for a syntactic control (through local moves specifically defined on
them) (De Toffoli and Giardino 2014). (2) Commutative diagrams of homological
algebra display a more evident syntactic component: these diagrams no longer
describe geometric objects but abstract structures and relations. Nevertheless, their
arrangement in space is essential and thus visual features also characterize them and
allow us to “manipulate” them effectively (De Toffoli, Diagrams in homological
algebra, manuscript).

Furthermore, it is clear that not all representations of the same topological object
would have the same degree of effectiveness in giving a material form to the relevant
reasoning and thus in promoting inference: specific conditions have to be met.
First of all, different presentations are suitable for different purposes. Not only
we do observe different degrees of symbolic and visual elements, but for a given
mathematical object there can be more or less effective representations.

Let us consider a specific example to clarify: diagrams representing the torus. We
can choose among various possibilities. On the one hand, Fig. 15.3c is a classical
diagram of a torus (in this specific picture two curves are added to it), where just
a few lines are easily interpreted as a three-dimensional object. A more detailed
picture, for example, depicting thickness or shadows, would make the representation
more similar to the corresponding material object, but would be less useful since
it would distract the viewer from the essential topological features of the object
by adding “noise.”16 The connection between topological and material objects is
crucial in topology, but only in so far as it stimulates topological imagination that
takes inspiration from the one used to manipulate concrete objects but afterwards
develops independently. The similarity with concrete objects has its limits: we must
be able to detach ourselves from this analogy and perform an abstraction in order
to extract relevant topological features. On the other hand, Fig. 15.3a is definitely

15Two features of mathematical diagrams allow for an interpretation of them as a notational
system: (i) they follow certain conventions and are a codified way to present different mathematical
concepts and (ii) they can be used in sequences and constitute a system through which it can be
possible to “calculate” effectively.
16See Sullivan (2013) for a survey of different mathematical, in particular topological, pictures.
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more complicated for novices (e.g., one must know what the arrow signifies to
correctly interpret the diagram), but nevertheless it can be useful. As Colyvan (2012,
Ch. 8) claims, this notation presents both geometric and algebraic features (which
can be exploited in different ways). A side remark is that the consideration of
such representations leads to a rejection of a sharp distinction between algebraic
and geometric reasoning in mathematics (Giaquinto 2007, Ch. 12). The abstract
character of this hybrid notation opens the way to new discoveries; in fact, it leads to
generalizations: not only does the same notation allow us to present the cylinder, the
Möbius band, the torus, and the Klein bottle, but if we generalize the notation and
instead of a square we take a polygon with n sides, then we can present every closed
compact surface (see, for instance, Massey 1991, Ch. 1). Moreover, Colyvan points
out at the construction of the Klein bottle. The Klein bottle is straightforwardly
presented with the square diagrams (we just have to invert one arrow in the diagram
of the torus) and in a sense it is the very notation that drives us toward the study of
a surprising new object that is two dimensional, but cannot be embedded in three-
dimensional space and does not have an outside or inside.

This example illustrates how for topological diagrams, by adding more syntactic
elements we often get a more powerful notation from an expressive point of view
and at the same time we lose the analogy with material objects.17 This is not to say
that some diagrams are better than others in principle: it depends on the specific
context and on the particular purpose for which they are used. The possibility of
choosing among a wide variety of representations enriches the set of tools available
to the mathematician.

A final remark about representations concerns their materiality. To avoid confu-
sion, we have to keep in mind the distinction between the material pictures and the
imagination process, which, especially in the case of trained practitioners, tends to
vanish. Actual topological pictures trigger imagination and help us see modifications
on them, but experts may not find it necessary to actually draw all the pictures. The
same holds for algebra, where experts skip transitions that non-trained practitioners
cannot avoid writing down explicitly. This does not mean that experts do not need
pictures to grasp the reasoning, but only that, thanks to training and thus to their
familiarity with drawing and manipulating pictures, they are sometimes able to
determine what these pictures would look like even without actually drawing them.
More generally, for each subfield it would be possible to define a set of “background
pictures” that are common to all practitioners. This set of pictures determines what
Thurston calls a “mental model” for a group of mathematicians in a subdiscipline
(Thurston 1994, pp. 174–175). For instance, any knot theorist knows without need
for material pictures what a diagram of the trefoil knot or of the figure-eight knot
looks like. To give a more sophisticated example, the original proof by Alexander
of his famous theorem about the possibility of representing any knot as a braid is a
visual argument that requires the use of this type of imagination but does not contain
a single picture (Alexander 1923).

17Of course, these syntactic elements are not arbitrary introduced, but according to specific aims.
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15.4.3 “Seeing” in Topology Through Manipulative
Imagination

We have just claimed that in order to understand Rolfsen’s proof, we need to “see”
topological transformations. As the text says, “The isotopic transformation (1) – (4)
shows that this outer part is also a handlebody.” To “see” what is “shown” by the
picture is crucial. Even in simpler cases, instructions are useful in making us grasp
the transformations, as for example going from Fig. 15.9a to Fig. 15.9b.

Therefore, in low-dimensional topology, following an argument, let alone be-
ing able to construct one, often requires “seeing” certain transformations. This
method of proving, different from the standard one in other areas of mathematics,
which is entirely propositional, consists in providing pictures plus instructions
for their interpretation. Yet, what does “seeing” actually mean in this context?
We can connect it with intuition. Heinzmann, writing about Poincaré’s Analy-
sis Situs, traces the need for three distinct types of intuition in what is now
topology:

Defining it as the science of classification of closed surfaces, called later manifolds, with
respect to continuous deformations, it requires geometric intuition concerning the quali-
tative property of a n-dimensional manifold, arithmetic intuition insofar as he introduced
computing with the topological object ‘manifold’ and, insofar as the strongest classification-
criterion is the fundamental group, one needs algebraic intuition, too. (Heinzmann 1999,
p. 55, emphasis added)

Even if the term “intuition” is vague, we can specify what it means in the
present context: for low-dimensional topology, it is possible to point at some of
the “intuitive” capacities involved. Our proposal is that topologists use a special
kind of imagination that does not only involve vision but also spatial-motoric
intuition of three-dimensional space. In fact, in Rolfsen’s proof, one finds no difficult
calculations—at least in the standard meaning of the term—and nonetheless the
argument is not easy to follow. In order to understand the proof and check its
validity, practitioners have to use their ability to imagine topological transformations
correctly. For example, they have to interpret the transitions between the pictures
as homeomorphisms. As a result, “seeing” in topology means first to interpret the
representations coherently with the shared practice and then performing epistemic
actions on them. In the case of Rolfsen’s proof, these actions take the form of
continuous deformations. The interaction with the representations is thus pivotal:
mathematicians have to activate this form of imagination in order to use the
representations as inferential tools.

Consequently, “seeing” is here to be intended as much more than simple vision
for at least two reasons. First, because it exploits some of our spontaneous cognitive
abilities such as vision, but has nevertheless to be properly trained inside the practice
in order to be correctly applied. Secondly, because mathematicians do not only see
particular representations, but also the possible actions that could be performed on
them, i.e. the possible transitions between pictures. We chose to label this capacity
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manipulative imagination18 as a sophisticated form of imagination that derives from
our preexisting manipulative capacities with concrete objects and our motor agency
in three-dimensional space: it seems to have a spatial-motoric and not a specifically
visual nature.19 An important feature of this form of imagination is that it is not
exclusively innate or a priori; on the contrary, it needs to be specifically trained
by experimenting with the available representations. This is in line with Poincaré’s
view that “intuition” has to be trained:

The main goal in teaching mathematics is to develop some faculties of the mind, and among
these, intuition is not the least precious.20 (Poincaré 1889, p. 160)

Moreover, it is crucial to highlight that it is the massive use of this form of
imagination that is responsible for the peculiar development of low-dimensional
topology, which has been so different from that of other mathematical fields. As
Jones (1998, p. 212) writes, in low-dimensional topology, we do not need to
formalize every argument for the very reason that we can rely on our intuition.
In other fields, this intuition is unavailable, just as it would be unavailable in low-
dimensional topology if we were two-dimensional creatures without the imagination
of three-dimensional space. In this case, we would have to formalize each argument
and low-dimensional topology would be more similar to more abstract areas of
mathematics.

15.4.4 Justifications and Criteria of Validity

As we have already discussed, the practitioners of low-dimensional topology “see”
the transformations and check whether they are permissible: the representations
embody their reasoning and provide at the same time evidence for their conclusions.

Of course, as in any proof, not everything has to be justified. The background
knowledge, amounting to the mental models shared by the members of the
community to which the proof is addressed, is assumed as already established.
Moreover, particular standards of justification and criteria of validity are provided:
the permissible actions on the representations are already defined, and they are part
of the background material.

In Rolfsen’s proof, we saw that among the permissible actions on the pictures are
continuous transformations. These are part of the background material in the sense
that any topologist knows immediately that these transformations can be interpreted

18We already used the expression “manipulative imagination” when studying knot diagrams
(De Toffoli and Giardino 2014).
19Think of the blind mathematician Morin who contributed to the understanding of one of the first
actual sphere eversions (Morin and Petit 1980).
20We have translated from the original: “Le but principal de l’enseignement mathématique est de
développer certaines facultés de l’esprit, et parmi elles l’intuition n’est pas la moins précieuse.”
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in terms of homeomorphisms. The validity is thus based on the “practice”: it is the
practice itself that integrates a way of controlling the actions on the representations
used, which results in the establishment of local criteria for validity. The responsibil-
ity is shared among experts: since in low-dimensional topology different forms of
reasoning are employed, some of which are specific to it, purely external criteria
of validity cannot exhaust all the criteria actually adopted. As Brown suggests,
we should acknowledge the existence of non-formal reasoning in mathematics:
“first-order logic may be well understood, but what passes for acceptable proof in
mathematics includes much more than that” (Brown 1999, p. 164). If this is true,
then, as Larvor has exhaustively discussed, “the cost is that we have to abandon the
hope of establishing a general test for validity” (Larvor 2012, p. 723).

In our view, what Thurston refers to as “good human processes for checking
mathematical validity” (Thurston 1994, p. 171), are context-dependent processes
that in low-dimensional topology rely on our manipulative imagination and more
generally on our intuition of three-dimensional space, duly trained according to the
specific practice. Furthermore, formal proofs are “out of reach,” because in order
to obtain reliable formalizations, mathematicians would have to spend all of their
time to rewrite already known results and conform them to general standards. As
Thurston notes, on a small scale, this is easy to do, but on a large scale, where results
are interconnected, we would have to check for the coherence of all the arbitrary
local choices of formalization. To do so would require a huge amount of time, and
topologists are not willing to undertake such a project.

This does not mean that in principle any proof in topology could not be translated
so as to assume a propositional and more formal form – even if to do so would be
a “nightmare,” in Jones’ words (Jones 1998, p. 212).21 The point is that it is not
usually done. Nevertheless, as we have mentioned already, part of the confidence of
the practitioners is based on the knowledge of how to convey visual modifications
in more formal expressions. For example, “gluing” in topology is straightforwardly
interpreted in terms of quotient spaces and “deforming continuously” in terms of
homeomorphisms. In Thurston’s words:

When people are doing mathematics, the flow of ideas and the social standard of validity is
much more reliable then formal documents. People are usually not very good in checking
formal correctness of proofs, but they are quite good at detecting potential weaknesses or
flaws in proofs. (Thurston 1994, p. 169)

We would also like to mention that once we accept that the argumentative form
is based on such externalizations of reasoning, given by the specific representations
used and the control of the practice, then the process of discovery and that of
justification seem to occur at the same time.

Let us now turn to the issue we addressed at the end of the previous section,
that is, to the reasons why low-dimensional topology is such a special subfield
of mathematics. We have analyzed Rolfsen’s proof as a paradigmatic example of

21Jones is taking the example of formalizing a proof in knot theory.
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an informal argument that can be given in low-dimensional topology, where the
sequence of pictures embodies and at the same time justifies the reasoning. Any
version of the proof without the pictures, let alone a formal version, would not
be able to externalize the reasoning and trigger manipulative imagination and thus
would completely obscure the topological permissible actions. By this feature, the
case of low-dimensional topology seems to be quite distant from other areas of
mathematics. Moreover, this form of reasoning is epistemologically relevant, as
Jones makes clear:

One of the interesting consequences of the use of three-dimensional intuition is that the field
of low-dimensional topology has advanced in a way that is significantly different from other
branches of mathematics. One is expected to “see” results in this field, and once the result,
or partial result, has been “seen,” it requires no further discussion. (Jones 1998, p. 212)

At this point, we can interpret Jones’ claim in the light of the proposed interpre-
tation. First, manipulative imagination is the cognitive process that modulates our
three-dimensional spatial-motoric intuition in relation to the particular mathematical
context. Second, thanks to manipulative imagination, we have at our disposal
a set of permissible actions.22 Pictures indicating the stages of transformations,
plus instructions explaining how to interpret them, can count as justifications.
Exclusively linguistic proofs, and formal proofs are thus just a small portion of the
proofs accepted as valid. Of course, it is still possible to translate visual arguments
into formal ones. Nevertheless, as Jones and Larvor suggest, the formal version
might be complete, but it remains inadequate. As a consequence, once we accept the
existence of arguments structured in sequences of pictures, we realize that although
there might be good reasons to reduce the reasoning to formal statements, this move
would add nothing to the topological reasoning behind the argument.

A practitioner of low-dimensional topology uses material representations, which
are the condition for sharing content among the experts. These representations must
be adequate to externalize reasoning and to trigger manipulative imagination so as
to allow performing permissible and effective inferential actions. To establish the
validity of an argument, a low-dimensional topologist shares the responsibility with
other practitioners. That is, the community defines criteria of validity specific to
their subfield: this is part of the normative structure of this practice.

15.5 Conclusions

In this article, we aimed to show that attention to how low-dimensional topology is
practiced gives new insight on the use of mathematical representations. In particular,
we unveiled some of the reasons why reasoning with these representations can be
seen as an essential part of doing mathematics.

22It would be misleading to conceive this set as fixed once and for all, since it varies according to
the context of use.
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Mathematicians rely on an astonishing variety of proving practices, beyond
the one analyzed here. As Larvor suggests (Larvor 2012, p. 723), philosophers
should work in the direction of completing the list of all objects involved in
mathematical argumentations that are found in the practice. We have also shown
that in low-dimensional topology, a proof can take the form of a sequence of
pictures accompanied by instructions. The transformations of pictures are the result
of permissible epistemic actions. Moreover, the choice of specific representations
plays a pivotal role, because it triggers different cognitive skills and externalizes
reasoning. In fact, the mathematical practice is characterized by a continuous
feedback between specific forms of reasoning and particular representations.

In further research, we aim at comparing different practices from the point of
view of the relation between the cognitive abilities triggered, the representations
introduced and the argumentative form employed. Another development of the
present project will be compiling a taxonomy of topological pictures, which
would identify the specific features that are responsible for prompting manipulative
imagination through different representational conventions. Moreover, we aim at
developing the present framework in order to appreciate the effectiveness of hybrid
notations and visual representations, with respect to their possible generalizations
and their power to trigger specific kinds of imagination. As Giaquinto claims
(Giaquinto 2007, p. 265): “Visual thinking in mathematics is extensive, diverse,
familiar, and yet little understood. Here is abundant terrain for research.” With the
present study, we hope to have given an initial contribution.
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