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1 Introduction

The monograph Lectures on Curves on an Algebraic Surface, published by Mumford
(1966), occupies a special place among works devoted to algebraic geometry. It is
indeed a small masterpiece (only 200 pages long), containing both an enlightening
presentation of the recent theory of schemes, developed in the 1960s by Alexander
Grothendieck, as well as an astonishing application of that theory to the solution of
one of the deepest and most obscure classical problems in the field. In Mumford’s
words,

The goal of these lectures is a complete clarification of one “theorem” on Alge-
braic surfaces: the so-called completeness of the characteristic linear system
of a good complete algebraic system of curves, on a surface F. If the char-
acteristic is 0, this theorem was first proven by Poincaré in 1910 by analytic
methods. Until 1960, no algebraic proof of this purely algebraic theorem was
known. (Although an endless and depressing controversy obscured this fact.)
(vii, emphasis added)

The protagonists of this “endless and depressing controversy” were Italian mathema-
ticians Federigo Enriques and Francesco Severi. The disagreement, which unfolded
in a series of articles published between 1921 and 1949, was over the correctness of
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a series of putative proofs of the theorem discussed by Mumford, the so-called Fun-
damental Theorem of Algebraic Surfaces.

In this article, we aim to discuss the very possibility of disagreement in mathemat-
ics. To do so, we first develop a theoretical framework in which we identify several
different types of disagreement in mathematics. We then focus on one such type that
we find particularly interesting: recalcitrant disagreement about the correctness of
multiple putative proofs of the same result. Our case study is a prime example of
this type of disagreement. We then reconstruct the protracted controversy between
Enriques and Severi and use it, in the discussion, to shed light on (i) the links between
formalization, rigor, and correctness, (ii) the difference between a general criterion of
rigor and specific working criteria of acceptability for rigorous proofs — which we put
to use to characterize what well-functioning mathematical practices are, and (iii) the
nature and very possibility of disagreement about the correctness of multiple putative
proofs within the Italian school of algebraic geometry. We then discuss Enriques’s
and Severi’s different attitudes to examine the role and status of speculative (non-
rigorous) mathematics.

We proceed as follows. In Sect. 2, we put forward our theoretical framework by
providing a working taxonomy of different types of disagreement in mathematics. We
isolate a specific class on which to focus, recalcitrant disagreement about the cor-
rectness of putative proofs. In Sect. 3, we dive into our case study, the “endless and
depressing controversy” between Enriques and Severi, which is a peculiar example
of'this type of disagreement. In Sect. 4, we discuss the controversy focusing on points
(1), (ii), and (iii) above. In Sect. 5, we assess the proper role of speculative results
within mathematical practice. In the Conclusion, we sum up our results.

2 Different Types of Disagreement in Mathematics

The phenomenon of disagreement has recently attracted the attention of epistemolo-
gists (Kelly 2010; Elga 2007; Christensen 2009). How should we respond to dis-
agreement? Should we be conciliationists and lower our confidence in our beliefs
or outright abandon them when others disagree with us or hold steadfast to them? It
depends. The rational thing to do in the face of disagreement about a specific issue
with an expert is certainly different compared to the rational thing to do in the face
of disagreement about the same issue with a novice. It is to side-step this problem
that the literature has mostly focused on peer disagreement, that is, on disagreement
among epistemic peers, subjects who have comparable cognitive abilities and share
the same evidence. But still, this is not enough to articulate a general reply. Different
classes of beliefs need to be treated differently. For instance, it is reasonable to adopt
divergent attitudes in the face of disagreement about core beliefs involving one’s reli-
gious or political identity compared to beliefs about the result of a mental calculation.

Disagreement is widespread. We disagree about superficial as well as deep propo-
sitions. For example, we might disagree about the very existence of human-caused
climate change or about the specific type of information that we can extract from
climate-change models. Scientists might disagree about certain hypotheses or about
the methodology of an empirical experiment.
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However, in mathematics, disagreement seems rarer. Certainly, we do not disagree
about basic mathematical propositions such as 2+2=4. The degree of consensus that
the mathematical community often manages to achieve (at least in modern times) is
striking and sets mathematics apart from other domains of discourse. Azzouni (20006,
208) called it the “benign fixation of mathematics.” It is common to explain this
“fixation” by appealing to the method used to establish mathematical propositions:
mathematical proofs.

What is called a “proof” of a given mathematical proposition, p, is really just a
deduction (or deduction-sketch) of p from the relevant axioms.! In other words,
a mathematical proof of p shows that if the relevant axioms are true, then so too
is p. (Clarke-Doane 2020, 239)

Though mathematical results have been discovered in the greatest variety of ways,
and never more so than today, with an abundance of computer numerical simulations
and visualizations, it has long been accepted that one is not justified in claiming to
have established a result as a theorem, and not just a conjecture, until one has pro-
duced a proof. It is true that many of what passed as “proofs” in the mid-nineteenth
century or even later would not get past referees and editors of mathematical journals
today. Still, already more than a hundred and thirty years ago, a leading mathemati-
cian as Henri Poincaré could claim that perfect rigor had been obtained:

If we read a book written fifty years ago, the greater part of the reasoning we
find will strike us as devoid of rigor. [...] So we see that we have advanced
towards rigor; and I would add that we have attained it and our reasonings will
not appear ridiculous to our descendants [...] But how have we attained rigor?
It is by restraining the part of intuition in science and increasing the part of
formal logic. [...] Today only one [intuition] remains, that of whole number;
all the others are only combinations, and at this price we have attained perfect
rigor.? (Poincaré 1889)

If proofs are the only legitimate method for establishing a mathematical claim, then
there is no room for disagreement in mathematics. But there is a caveat. A proof
with proposition p as conclusion does not by itself justify proposition p; it justifies
the conditional statement “if the axioms are true, then p is true.” Thus, disagree-
ment can arise with respect to the choice of the starting points. How are the axioms

! Tt is true that, as an anonymous referee pointed out, very few mathematicians would be able to state the

“relevant axioms.” This points to a divergence between this characterization of proof with actual math-
ematical proofs, whose starting points are subject-specific acceptable starting points, rather than (founda-
tional) axioms. Still, mathematicians do generally acknowledge that such “relevant axioms” could be in
principle made explicit — that is why this characterization will do for this context. The more so because,
as it will be clear shortly, we won’t focus on disagreement concerning axioms.

2 It is not entirely clear what “perfect rigor” is, and even less clear whether that has been attained (Burgess
and De Toffoli 2022; Paseau 2016). Remember that, of course, many of the proofs that were deemed
to be rigorous at the time of Poincaré’s writing, would not be acceptable nowadays. Nevertheless, it is
important that still at the time, an ideal of rigorous proof was shared by many mathematical communities.
We will return on this issue later.
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themselves justified? There are multiple options.* Neither of these options, however,
forces us to believe in the axioms in the manner that a proof forces us to believe in its
(conditional) conclusion.* It is for this reason that the (relatively scant) literature on
disagreement in mathematics has mainly focused on foundational disagreement over
the choice of axioms (Clarke-Doane 2020). Well-known examples of AXIOM-DIS-
AGREEMENT concern large cardinal axioms or, more mundanely, the legitimacy of
the law of excluded middle.®> As John L. Bell and Geoffrey Hellman (2006, 64) put it:

Contrary to the popular (mis)conception of mathematics as a cut-and-dried
body of universally agreed-on truths and methods, as soon as one examines
the foundations of mathematics, one encounters divergences of viewpoint and
failures of communication that can easily remind one of religious, schismatic
controversy.

According to Bell and Hellman, disagreement in mathematics can be persistent (and
even impossible to resolve) but is mostly circumscribed to foundational and philo-
sophical issues.

Aside from issues about axioms and logical principles, Bell and Hellman consider
questions such as: ““What is mathematics about?’ ‘What makes mathematical truths
true?’” (ibid., 65). These questions give rise to PHILOSOPHICAL-DISAGREE-
MENT. A prototypical disagreement about the philosophy of mathematics is over
the nature of mathematical objects. According to mathematical platonists, they exist
— and they are abstract, mind-independent, etc. Anti-platonists disagree.

In addition to these types of disagreement, there can be, of course, disputes over
the practice itself. These disagreements target, for example, the hierarchical structure,
the biases, and the power dynamics of a given mathematical practice. We call these
SOCIAL PRACTICE-DISAGREEMENTS. By way of example, consider the case
of category theorist Olivia Caramello. In (Rittberg et al. 2020) the authors classify
her failed attempts to publish proofs of so-called ghost theorems (i.c., theorems that
are largely accepted among the members of a mathematical community but lack a
written published proof) as instances of epistemic injustice. These failed attempts
arise due to the disagreement among the members of Caramello’s mathematical com-
munity over how merit should be attributed and what results should be classified as
novel. Another case of SOCIAL PRACTICE-DISAGREEMENT is concerned with
the regulations of the attribution of Fields medals. According to Barany (2018), the
fact that only young mathematicians are eligible to receive such a high honor has a
negative effect both in terms of the image of mathematics as well as in terms of its
actual practice, namely by perpetuating the misguided idea that a successful math-
ematician has to be a precocious genius (and quite likely male).

Is this all? Bell and Hellman claim that “there is indeed universal agreement on
a substantial body of mathematical results[.]” (ibid., 64). If that is so, then it might

3 See, for example, (Maddy 2011).

# Arguably, however, some of the axioms of set theory “force themselves upon us as true” (Godel 1964,
271).

5 Indeed, foundational disagreement can also concern the choice of a logic.
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seem that disagreement over mathematical results is rare. Of course, there can be
instances of mathematicians who are unreasonable or stubborn and disagree. But
this is hardly of any interest. According to this straightforward picture, there can-
not be rational disagreement over mathematical results conditional on axioms. But
this picture is too good to be true, or, more precisely, it is too good to capture actual
mathematical practice faithfully. There are at least three respects in which it departs
from real mathematical practice: (a) mathematicians use methods other than proofs,
(b) mathematicians disagree on how proofs should be conceived and individuated,
and (c) mathematicians are not infallible in discerning proofs.

Regarding (a), mathematicians at times make use of so-called probabilistic proofs
or other non-deductive methods® — we can call disagreement about what is the proper
place of heuristics in mathematical practice, HEURISTIC-DISAGREEMENT. For
example, according to Alexander Paseau (2015, 791), non-deductive arguments
can generate mathematical knowledge: “we can derive knowledge of mathemati-
cal propositions from knowledge of related physical ones.” To exemplify this claim,
he appeals to simple geometric facts that, according to him, can be known through
“paper and pencil experiments.” But this position is up to dispute.

Regarding (b), mathematicians at times disagree on how proofs should be con-
ceived and individuated. For example, disagreement may arise about what techno-
logical tools should be allowed in proofs. Should computer-assisted proofs be listed
among genuine proofs? The first such proof, proposed in 1976 by Appel and Hacken,
checked an enormous number of cases in order to establish the 4-color Conjecture.
The proof, however, was not universally accepted because of the ineliminable role
of computer computations it involved. Another related reason is the size of proofs.
According to some, proofs should be the kind of things that a single subject with the
relevant capacities and training should be able to grasp.” But this norm is violated
not only by computer-assisted proofs but also by those proofs that involve large-scale
collaborations — such as the proof of the classification of finite simple groups.

Moreover, mathematicians do disagree about how proofs should be individuated.
When we formalize a proof, for example, how can we establish whether the result-
ing proof is the same proof we started with? Similar issues arise when we start with
a proof containing diagrams and convert it into a diagram-free proof. ¥ We can call
these types of disagreement: CONCEPTION OF PROOF-DISAGREEMENT.

In this article, we will zoom in on (¢). These are cases in which reasonable math-
ematicians disagree on whether a given putative proof (from now on, p-proofs)
amounts to a genuine proof or not. We call this type of disagreement PUTATIVE
PROOF-DISAGREEMENT or PP-DISAGREEMENT for short.” To be sure, there

6 See (Paseau 2015). Note that, notwithstanding the (missleading) name, probabilistic proofs are not
genuine (deductive) proofs at all.

7 This is the “surveyability” requirement for proofs (Tymoczko 1979).

8 For instance, De Toffoli (2023) argues that in some cases diagrams are essential to the proof in which
they figure. That is, that there are plausible criteria of identity for proofs such that when eliminating the
diagrams from certain diagrammatic proofs we would inevitably transform such proofs into different
ones.

9 This type of disagreement can also be seen to be linked to CONCEPTION OF PROOF-DISAGREE-
MENT. According to Wagner (2022, 5) the “problem of consensus [over the correctness of putative
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are hybrid disagreements as well. An example will be useful. When Perelman pro-
posed his proof of Poincaré’s Conjecture, some mathematicians (students of Fields
medalist Shing-Tung Yau) claimed that it was too gappy to be correct. They did not
solely disagree with the substance of the proof, but also with the attribution of merit
to Perelman (Nasar and Gruber 2006).!° This case thus counts as a case of SOCIAL
PRACTICE-DISAGREEMENT as well as PP-DISAGREEMENT.

Although PP-DISAGREEMENT has been mostly disregarded by philosophers of
mathematics focusing on an idealized account of mathematics (and working mainly
within a foundationalist framework), philosophers of mathematics more interested in
the history and practice of mathematics have been made aware of it. Topics pertaining
to the Philosophy of Mathematical Practice are gaining increasingly more attention
in the recent literature. A precursor of such trend in the philosophy of mathematics
can be found in Lakatos’s work on the nature of mathematical proof. In Lakatos’s
quasi-empiricist account of mathematics, PP-DISAGREEMENT is a natural phe-
nomenon since it arises from the elastic nature of mathematical concepts. However, it
is hardly generalizable to the mathematics that developed after the process of rigori-
zation at the end of the nineteenth century. In Proofs and Refutations, Lakatos (1976)
offers a rational reconstruction of how an initial conjecture turns into a theorem. The
process, he explains, is not linear but is marked by a series of proofs and refutations.
For instance, counterexamples of different types are used to refine the original con-
jecture and the concepts involved — counterexamples naturally generate instances
of PP-DISAGREEMENT because they show that what was put forward as genuine
proof actually failed to amount to one. Lakatos’ discussion focuses on the analysis of
Euler’s formula for polyhedra: V-E+F=2, where V are the vertices, E the edges, and
F the faces of a given polyhedron. The text is in the form of a dialogue among (quite
brilliant) students, and the ample footnotes supply historical context.

Let’s take stock of the types of disagreements noted so far. This does not pretend
to be an exhaustive taxonomy, but it nonetheless captures the main types of disagree-
ment that arise in the context of mathematics:

1) AXIOMS-DISAGREEMENT

2) PHILOSOPHICAL-DISAGREEMENT

3) SOCIAL PRACTICE-DISAGREEMENT

4) HEURISTIC-DISAGREEMENT

5) CONCEPTION OF PROOF-DISAGREEMENT
6) PP-DISAGREEMENT

The first five types of disagreement are often persistent. Intuitionists reject the law
of the excluded middle, anti-platonists reject the existence of mathematical objects,
etc. As with many philosophical issues, there is no agreement in sight. This is true,
albeit perhaps to a lesser extent, for SOCIAL PRACTICE-DISAGREEMENT, HEU-

proofs] and individuation of proof are intertwined.” However, for the scope of this argument, we prefer
to keep them separate.

10 Thanks to Fenner Tanswell for encouraging us to think of this case as a hybrid type of disagreement.
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RISTIC DISAGREEMENT, and CONCEPTION OF PROOF-DISAGREEMENT as
well.

But what about disagreements over p-proofs? Unlike the other types of disagree-
ment, it tends to last for a shorter time. That is, PP-DISAGREEMENT is often eva-
nescent, at least if we consider mathematics that has, in Poincaré’s words, achieved
“perfect rigor,” that is mathematics from the end of the nineteenth century onwards.

Consider, for example, the famous case of the 4-Color Theorem, the first argument
for which was published by Alfred B. Kempe in 1879."" It was a convincing argu-
ment that was accepted by the mathematical community. Eleven years later, however,
Percy Heawood found a substantial gap in Kempe’s supposed proof. Contra Kempe
and others, Heawood believed that the Conjecture had not been established. But once
the mistake was spotted, it didn’t take long to convince the other party. The gap
was indeed there: there were some configurations that had not been considered by
Kempe’s p-proof. After attention was drawn to it, nobody objected.

This is not an isolated example. More common cases involve new results: if you
think you found a proof, after carefully checking it by yourself, it is a good idea to
submit it to external scrutiny and be ready to work on problems you failed to notice.
In case of disagreement arising from experts scrutinizing your proof, it is widely
accepted that the rational thing to do is to lower your confidence or even suspend
judgement. After all, you are (or, at least, you should be) aware of your own fallibil-
ity. And this holds even in those cases in which you are right (that is, you do have a
genuine proof), and they are wrong.'?

PP-DISAGREEMENT is often evanescent because it is generally generated by
specific mistakes or gaps. Even when a disagreement arises due to other reasons,
say, the presence of a counterexample, a mistake is often spotted. This is possible
because of the presence of what Easwaran (2015) calls the convertibility norm. Tak-
ing inspiration from Lakatos’ (1976) discussion of counterexamples in mathematics,
Easwaran argues that there is a norm governing mathematical practice operating on
defeaters of p-proofs. When a rebutting defeater is found, that is, evidence that a
result is false, such as a counterexample to a claim, then it must be possible to find
an undercutting defeater, that is, evidence that the original evidence was misleading,
such as a specific incorrect passage in the p-proof:

Convertibility is a condition on potentially incorrect proofs — they should be
such that any counterexample can reveal the incorrect step, which can allow us
to replace the claimed theorem with a related theorem[.] (ibid., 156)

This norm contributes to the success of mathematics by underwriting the possibility
of correcting local mistakes present in p-proofs that are seen to be problematic for
global reasons. Convertibility can be satisfied in practice because the arguments that

11" See (De Toffoli 2022, 256) for an analysis of this case from an epistemological perspective.

12 Note that the correctness of this reaction is accepted even from those epistemologists who advocate
that in general one should stick to one’s own original position in face of disagreement (Kelly 2010, 199).
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are accepted as proofs generally contain enough details to allow for step-by-step
checking, as we will discuss later, this is connected to the rigor of p-proofs.'?

Although published proofs are not required to be so detailed that they are inde-
feasible (as the solutions to simple assignments in geometry and logic might
be), they are required to have enough detail to impose some strong conditions
on any potential defeater. (ibid., 148)

The convertibility norm assures us that, in general, all problems with our (rigor-
ous) p-proofs can be localized and consequently swiftly resolved — this means that
disagreement over p-proofs tends to be evanescent. Precisely because of their short-
lived nature, evanescent PP-DISAGREEMENTS are not particularly problematic.

At least in recent times, after the rigorization of mathematics, PP-DISAGREE-
MENTS tend to be rare and to arise within mathematical practices that have the
resources to resolve controversies. These are stable practices in which when prob-
lems arise, mistakes are spotted and progress is made — this is a crucial form of
self-correction that the community exercises on itself.'* These practices are reliable
(albeit not infallible) in producing correct mathematical proofs — that is, not too many
incorrect p-proofs are accepted by the practice. Because of their internal stability
and the satisfaction of the convertibility norm, we call these mathematical practices
well-functioning. Disagreement within well-functioning practices is often promptly
resolved by conciliating and re-evaluating.

PP-DISAGREEMENT is more problematic when it is recalcitrant. As the name
suggests, this type of disagreement tends to last for extended periods of time. Recal-
citrant disagreement can be over a single p-proof or over multiple p-proofs of the
same results. It is characteristic of mathematical communities that are not well-func-
tioning, that is, that lack the resources for resolving disagreements over the results
they produce (Fig. 1).

The type of recalcitrant disagreement that is at issue here is not linked to general
conceptions of what proofs should be (CONCEPTION OF PROOF-DISAGREE-

/v evanescent
PP-DISAGREEMENT \ / over a single p-proof

recalcitrant

over multiple p-proofs

Fig. 1 PP-DISAGREEMENT: evanescent and recalcitrant

13 This is, however, not always the case. Vladimir Voevodsky, long before finding a mistake in his own
results that granted him the Fields medal, was made aware of a counterexample. He wrongly believed that
his results were in good standing and that the putative counterexample came from a fallacious argument
(Voevodsky 2014).

14 In order for this process of self-correction to be possible, mathematical arguments must be shareable
among practitioners, see (De Toffoli 2021a).
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global

PP-DISAGREEMENT from errors

T~

local

from gaps

Fig.2 PP-DISAGREEMENT: global and local

MENT), but to specific technical points, issues that have to do with counterexamples
or the correctness of specific mathematical techniques. PP-DISAGREEMENT gener-
ated by these sorts of reasons can be recalcitrant because it defies quick resolution
— as when the party disagree over the correctness of a specific step without managing
to convince each other for an extended period of time — or, as in the case we will con-
sider, because it is constituted by a series of evanescent PP-DISAGREEMENT over
the correctness of different p-proofs of the same result.

The very existence of recalcitrant PP-DISAGREEMENT in recent mathematics
seems to be controversial — for one, Bell and Hellman do not consider it at all (but
we suspect that they would be happy to accept the existence of disagreement over
general conceptions of proofs). We will argue in favor of its existence by examining a
prominent instance of it from the history of modern mathematics. In our case, recalci-
trant PP-DISAGREEMENT takes the form of a long controversy over the correctness
of several p-proofs of a fundamental result about algebraic surfaces. A key difference
between our case study and the one analyzed by Lakatos (which is also constituted
by a series of evanescent PP-DISAGREEMENTS) is that we consider recalcitrant
PP-DISAGREEMENT occurring after the turn of the twentieth century, that is, after
the rigorization of mathematics. Indeed, recalcitrant PP-DISAGREEMENT is much
more common and certainly less controversial if we look at pre-nineteenth century
mathematics.!> As Wagner explains: “disagreement concerning the validity of [puta-
tive] proofs was more deeply entrenched in that mathematical culture than we would
expect from our acquaintance with contemporary mathematics” (Wagner 2022, 11).

Our case study is particularly interesting because it involves a number of different
p-proofs of the same results and unfolds in multiple decades. For this reason, it can
be set apart from other, even more recent cases of recalcitrant PP-DISAGREEMENT.
Examples of such other cases are the one involving fundamental results in symplectic
geometry (Hartnett 2017) and the one, which lately received much discussion, about
the correctness of Mochizuki’s p-proof of the abc Conjecture, an important number
theoretic conjecture — which, among other things, would imply Fermat’s Last Theo-
rem (more on this later).

It is now time to turn to our case study.

15 See (Goldstein 2013) discussing the ubiquity of PP-DISAGREEMENT in 17th century mathematics.
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3 An Endless and Depressing Controversy
3.1 The Italian School of Algebraic Geometry

What is now commonly referred to as the Italian school of algebraic geometry lasted
for about a century. We can trace its origin to the day when Luigi Cremona obtained
the first Italian chair in Geometria Superiore at the University of Bologna: on July 10,
1860. Its end can be plausibly said to coincide with the death of Francesco Severi: on
December 8, 1961. The apex of its trajectory was reached before the First World War.
This was followed by a declining phase, which started in the Twenties and was at first
nearly imperceptible but then became quite evident from the Thirties on.!'® Castelnu-
ovo (1930, 614) characterizes the school as follows:

The characteristic mark of the school is embodied by the founding father Cre-
mona, who taking up the questions from the beginning, builds a new foundation
for projective geometry and elevates it to a science, perfecting its methods and
meshing geometric intuition in the most skillful way with certain fundamental
algebraic results [fondendo nel modo piu abile la intuizione geometrica con
alcuni risultati fondamentali tolti dall’algebra]. And he was able to use these
procedures with such sagacity as to allow the new geometric algebra to dis-
cover, often effortlessly, hidden properties that classical algebra, weighed down
by the baggage of formulas, was only able to find with difficulty.!” (emphasis
added)

The three foremost exponents of the school — Castelnuovo, Enriques, and Severi —
continued to follow their geometric intuition and search for mathematical simplicity.
This was the primary characteristic feature of the Italian school and was its main
strength.'® But, as we shall see, it was also the weakness that ultimately led to its
decline.

Although its members shared a common outlook on mathematics, the Italian
school was by no means unified. For instance, there were multiple instances of dis-
agreement between Enriques and Severi. The one we are about to present is espe-
cially interesting due to its importance, robustness, and sheer duration.

3.2 The Controversy

In the Introduction, we cited a passage by Mumford (1966, vii):

16 See (Brigaglia and Ciliberto 1998, 300).
17 Our translation from Italian.

18 This is not, according at least to Severi and Enriques, incompatible with mathematical rigor. Indeed,
both mathematicians identified two types of rigor, one connected with the possibility of always adding
more details and another, consisting in describing the mathematical facts faithfully. For a discussion, see
(De Toffoli and Fontanari 2022).
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The goal of these lectures is a complete clarification of one “theorem” on Alge-
braic surfaces [...]. Until 1960, no algebraic proof of this purely algebraic theo-
rem was known. (Although an endless and depressing controversy obscured
this fact). (emphasis added)

In his discussion of the Fundamental Theorem of Algebraic Surfaces, Mumford
adopts the modern mathematical language introduced by Grothendieck — a language
that was not available to the members of the Italian school. Here is a brief (and inevi-
tably very technical) description — this is just to give an idea of the description of the
result under discussion in modern terms.

The Fundamental Theorem of Algebraic Surfaces computes the dimension of the
so-called Picard variety, parameterizing isomorphism classes of line bundles on a
given algebraic surface S which are algebraically equivalent to the trivial line bun-
dle Og. This algebraic variety is naturally a commutative group scheme; hence it is
reduced in characteristic zero, according to a theorem of Cartier. It follows that its
dimension equals the dimension of its Zariski tangent space at the origin, which turns
out to be the first cohomology group H'(S,05) of the trivial line bundle 0g. Accord-
ing to the terminology of classical algebraic geometry, the dimension of H'(S,05) is
called the irregularity of the surface S.

For an attempt at a less technical statement of the Fundamental Theorem of Alge-
braic Surfaces, we refer to (Babbitt and Goodstein 2011, 240).'° This theorem is part
of the general effort of the Italian school towards the study and the classification of
algebraic surfaces over the complex numbers — being surfaces, these have complex
dimension two, but they correspond to real varieties of dimension four, and therefore
they are not easily visualizable.

Very roughly, the Fundamental Theorem is a tool that allows us to analyze (and,
to a certain extent, classify) algebraic surfaces (over the complex numbers) which
are irregular. It is impossible to define irregular surfaces without entering technical
details that will take us too far afield. However, just to give an idea, this is done by
appealing to different notions of genus. Algebraic curves over the complex numbers
correspond to surfaces over the real numbers and can be classified using topological
genus alone. The same does not hold for algebraic surfaces. In this latter case, it is
common to use two different notions: arithmetic and geometric genus. It is precisely
the gap between these two notions that determines their irregularity. The Fundamen-
tal Theorem then tells us that a geometric space naturally associated with a surface of
irregularity q (its so-called Picard variety) has dimension exactly q.

The following quotation from 1935 by Oscar Zariski, Mumford’s dissertation
advisor, still provides a good description of the situation and of the absence of an
algebraic proof of the Fundamental Theorem:

the quantitative specification that an algebraic surface of irregularity q pos-
sesses complete continuous systems consisting of 9 distinct linear systems
[this is the formulation of the Fundamental Theorem)], is a fundamental result of

19 They discuss a related result, the Theorem of Completeness of the Characteristic Series. The Fundamen-
tal Theorem under discussion is one of the main consequences of such Completeness Theorem.
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the theory of surfaces, due to the combined efforts of several geometers (Hum-
bert, Castelnuovo, Enriques, Severi, Picard, Poincar¢). [...] A proof of the above
fundamental result has been first proposed by Enriques (1904). Immediately
after, another proof was proposed by Severi (1905). Severi himself has later
pointed out that neither proof is entirely rigorous (1921). [...] A rigorous proof
of the existence on a surface of irregularity q of continuous systems consisting
of 004 linear systems was given for the first time by Poincaré (1910). Poincaré’s
proof is analytic and has been subsequently simplified by Severi (1921) and by
Lefschetz (1924). (Zariski 1935, 98-102)

Indeed, Zariski’s formulation of the Fundamental Theorem in terms of “the existence
on a surface of irregularity q of continuous systems consisting of co? linear systems”
is just the traditional way to claim that the irregularity q is the number of parameters
on which the Picard variety depends on. Following Zariski, we can trace the main
events that gave rise to this long controversy:

1904: Enriques publishes an incorrect p-proof of the theorem.

1905: Severi publishes another incorrect p-proof of the theorem.

1910: Poincaré proposes an analytic proof.

1921: Severi criticizes both his own and Enriques’s p-proofs of 1904—1905 for
lack of rigor.

The disagreement arose from the fact that both Enriques and Severi thought their own
p-proofs were correct. What was the problem with Enriques’s and Severi’s p-proofs?
After some time, Severi realized that both arguments relied on a crucial assumption,
whose available p-proof did not work in full generality — the p-proof, in other words,
contained a significant gap. More precisely, Zariski explains:

In both proofs we have, at the start, a linear system of curves [...] and then on
the curves of this system a certain number of algebraic non-linear conditions
is imposed [...]. Both proofs make use of the assumption that in the algebraic
system of curves thus obtained [...] the linear system of curves infinitely near
to a generic curve of the system is complete. Severi’s criticism (1921) is to
the effect that the available algebro-geometric proof of this assumption fails if’
the characteristic series of the considered continuous system is special. (ibid.,
emphasis added)

The problematic assumption concerned the completeness of a certain algebraic sys-
tem of curves and disqualified both Enriques’s and Severi’s p-proofs as rigorous.

If Poincaré provided a rigorous proof in 1910, why wasn’t the issue settled then?
The reason is that both Poincaré’s original proof and its subsequent simplifications
applied anaytical tools in order to solve a genuine algebraic problem. This approach
was not considered satisfactory. That is why both Enriques and Severi continued (in
vain) to pursue the discovery of a self-contained proof within the conceptual frame-
work of algebraic geometry. Ultimately, this goal was accomplished by Mumford in
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the 1960s, relying on the highly sophisticated and technically heavy theory of alge-
braic schemes developed by Grothendieck.

When Zariski published his treatise in 1935, the “endless and depressing con-
troversy” mentioned by Mumford was still waiting to explode in the forthcoming
mathematical duel to be fought in 1942 on the pages of the Commentarii Mathematici
Helvetici (Enriques 1942; Severi 1942). Severi’s (1944) reconstruction of the con-
troversy was published shortly after — he begins by considering another fallacious
p-proof, published in 1938 by one of his former students (Segre 1938):

some criticism by F. Enriques accompanied by an attempt to simplify the proof
of the fundamental theorem led me to return to the age-old and very delicate
question, [...]. But then I became aware of a much more serious fact: namely
that the proof of the fundamental theorem on regular systems [the Fundamental
Theorem] given by B. Segre (which I had tried to extend to superabundant sys-
tems) fell (as I wrote) due “to unexpected phenomena [...] which show up under
a closer scrutiny of the question”. Hence, I deduced that the question remained
unmoved at the point where my 1921 contribution had left it [.]*° (Severi 1944)

Enriques’s point of view is expressed in a private letter sent to his colleague Benia-
mino Segre in 1945:2!

Personally, I am especially interested in the problem of a continuous system
on irregular surfaces, and this in view of the publication of my lectures on
surfaces, written in 1942 and now in press. The question is extremely delicate.
I was unable at that time to reconstruct the proof that you had indicated on the
basis of the information that you had given me before my departure for Paris.
Severi, with whom you have had more interaction, believed he had finally suc-
ceeded in giving a proof. His exposition seemed obscure to me and therefore
dubious; I believed (in the Commentarii Helvetici paper) to have overcome the
difficulty. (Enriques 1942, in: Babbitt and Goodstein (2011), emphasis added)

In this private epistolary conversation, Enriques criticizes Severi for lack of rigor.
However, he is also aware of his own inability to solve the issue. His letter continues
thus:

In reality, my proof was erroneous, but this realization also pointed out the error
in Severi’s proof. At that time, I was not allowed to add anything to my paper
in the Commentarii Helvetici although Severi was allowed to write a note in
which he said that he had derived a more general theorem (he referred to the
case of algebroid entities instead of clarifying the matter in the easiest case).
But shortly afterward, Severi himself, who was expounding that theory in his
lectures at the Institute of Higher Mathematics, realized that his proposed proof

20 Our translation from Italian.

2l This letter is stored in the Beniamino Segre Archives at the California Institute of Technology and
reproduced (and partially translated) by Babbitt and Goodstein (2011).
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was flawed due to a radical error. I really wish that this thing could be settled.
(ibid.)

But the issue, unfortunately, remained unsettled:

I have reexamined my earlier proof based on infinitely close curves of various
orders and I believe it is substantially right, even if it is not rigorously complete.
(ibid.)

While Severi’s approach (following Segre) turned out to be irreparably defective,
Enriques’s claim that his argument is “substantially right, even if it is not rigorously
complete” is indeed accurate. As Mumford would later put it, “he certainly had the
correct ideas about infinitesimal geometry, though he had no idea at all how to make
precise definitions” (Mumford 2011, 250).

Here, then, are the further steps of the controversy:

1938: Segre proposes another incorrect p-proof (which is irreparably defective).
1942: Enriques proposes another incorrect p-proof (which lacks rigor but is
based on correct ideas).

1942: Severi (after himself being criticized) criticizes Enriques’s p-proof and
proposes another incorrect p-proof (which contains a radical error).

The controversy continued even after Enriques’s death in 1946 (see Enriques 1949
and Severi 1958).

4 Discussion

While it is common to hear of instances of PP-DISAGREEMENT in mathematics,
this case is particularly significant because it is about a core result. Moreover, it lasted
multiple decades. It is an instance of recalcitrant PP-DISAGREEMENT over a series
of p-proofs of the same theorem.

This long disagreement shows how the lack of rigor of the Italian school of alge-
braic geometry led its members astray. It also exhibits the instability of this math-
ematical community. Arguably, speculative methods have an important place in the
growth of mathematics, but they should be openly labeled as such. We shall see
that, in this respect, Severi’s and Enriques’s attitudes greatly diverge (Sect. 5). But
first, we are going to discuss what are the conditions that make recalcitrant PP-DIS-
AGREEMENTS possible. To do so, we are going to start discussing (i) the links
between formalization, rigor, and correctness (Sect. 4.1), (ii) the difference between
a general criterion of rigor for p-proofs and specific working criteria of acceptability
for rigorous p-proofs — and how these can be used to characterize well-functioning
mathematical communities (Sect. 4.2). Afterward, we turn to (iii) the nature of PP-
DISAGREEMENT within the Italian school of algebraic geometry (Sect. 4.3).
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4.1 Formalization, Rigor, and Correctness
4.1.1 Formalization and Consensus

In order to understand what went wrong in the Italian school of algebraic geometry,
it will be useful to have on the table a picture of why things generally go right. Why
do contemporary mathematicians tend to agree so much about the correctness of their
p-proofs? According to Wagner (2017, 67),

The consensus among mathematicians about the validity of [putative] proofs
has a lot to do with formalization. By formalization I do not mean the transla-
tion of an entire proof into a strictly formal language (which is almost never
done, and is in fact impossible for finite humans to achieve in the context of
typical research mathematics). By formalization I mean a gradual process of
piecemeal approximation of formality that is conducted only as far as required
to resolve a given dispute.

A problem with linking the phenomenon of mathematical consensus over the correct-
ness of p-proofs with formalization is that even the local (and gradual) formalization
is often unavailable in practice.?? Another problem is that it is not at all clear what
formalization means at all: Are we referring to a specific formal system? Do we
intend potential or actual formalization? How are the steps of the informal p-proof
related to the ones of its formal counterparts??3

We do not aim to answer these questions. That would take us too far afield from
our present concern. Let us just briefly mention how Wagner tackles these issues in a
later work (2022). He does so by way of analogy: he suggests thinking about formal-
izations along the lines of Courts of Appeal in the juridical system. This analogy, says
Wagner, can help us make sense of how formalizations can be used to explain the
absence of recalcitrant PP-DISAGREEMENT even if they are seldom appealed to in
the practice of mathematics (and even if the very term formalization is vague). But
what are Courts of Appeal exactly? The U.S. government describes them as follows:

The U.S. Courts of Appeal hear appeals from lower courts of both civil and
criminal trials, but do not investigate the facts of a case. Rather, the Appeals
Courts investigate whether or not the law has been fairly and correctly applied
by the lower courts.?*

In the U.S., a court of appeal is then invoked when there are doubts about the correct-
ness of the juridical proceedings of a lower court. The rough idea is that, in the same

22 Note that the situation might change radically due to technological innovations related to new computer
proof assistants. These tools are making the formalization of mathematics more and more manageable
(Avigad 2018).

23 These and related questions are addressed in (Burgess and De Toffoli 2022).

24 This definition is taken from the governmental website: https:/www.usa.gov/federal-agencies/u-s-
courts-of-appeal.
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vein, a certain level of formalization is invoked when there are doubts arising about
the correctness of a less formal p-proof.

In order to better appreciate Wagner’s analogy, here are the main five features he
focuses on.? (a) Appeals Courts are only seldom involved; similarly, formalizations
are not a common resort to resolve disagreements (they are just appealed to in special
cases). (b) There is a variety of both formalizations and Appeals Courts (which are
usually arranged hierarchically). (¢) The issues to be resolved with the aid of Appeals
Courts and formalization are local rather than global (we do not generally formalize
the whole proof; likewise, the court of appeal will only be dealing with specific issues
of a juridical case). (d) There is a hierarchy of authority: proofs that are more formal
are (generally) more authoritative over less formal ones. Likewise higher courts of
appeal (e.g., the Supreme Court) will be more authoritative over lower courts of
appeal. (e¢) The Supreme Court does not have the final word — the law can change,
etc. Similarly, complete formalization will have to be accepted by a community that
can decide, in some instances, to reject it.

To be sure, this analogy has its limits, and it is rather impressionistic — it is meant
to be this way. However, we agree that it is still helpful to provide a schema of how
formalization can play a role in generating consensus, especially in light of the fact
that formalization remains a rare practice among mainstream mathematicians. In our
view, the key observation is that the focus should be on the very possibility of appeal-
ing to a higher court, or a greater formality, rather than actually appealing to it. That
is, what matters most to mathematicians is potential rather than actual formalization.

4.1.2 Rigor and Formalization

The conceptual innovations that made formalizations possible were not available
much before the turn of the twentieth century — and in fact, before that time, recalci-
trant PP-DISAGREEMENT was a matter of routine:

If we date a qualitative increase in consensus concerning the validity of math-
ematical proofs to somewhere around the turn of the twentieth century (give or
take three or four decades), we should find what it is that changed in mathemati-
cal practice, which could account for the emergence of consensus. The obvious
suspect is clear: mathematical formalization. (Wagner 2022, 11-12)

According to Wagner, formalization is what changed. However, what changed is
also often called the rigorization of mathematics — a broad phenomenon that started
well before and gradually invested all areas of mathematics. Rigor and (partial and
piecemeal) formalization are indeed linked. According to a widely held view in the
philosophy of mathematics, the very possibility of formalization of a p-proof is tied
to its rigor.”® More precisely, a rigorous p-proof can be formalized (if it is correct)
because it has a certain level of precision that makes it possible (for the relevant prac-
titioners) to gradually add more and more details. Although there are many variants

25 We report them here briefly, but the interested reader should consult (Wagner 2022).
26 See (Avigad 2021).
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of the definition of rigor to choose from in the literature, many invoke some sort of
formalization.?’

Rather than proposing an original view on the matter, we only need here a working
conception of rigor that can help us in the analysis of our case study. Note that the
question of mathematical rigor is a hard and controversial one, especially if we want
to analyze the history of mathematics. For our limited scope, however, it will do to
work with a somewhat simplified story — one that aims to model only mathematics
from the turn of the twentieth century. In this limited context, it is tenable to associate
formalization with rigor. The basic idea is that a genuine proof is rigorous if it can
be in principle formalized in an acceptable formal system or another.?® In the quote
above, Wagner writes: “[b]y formalization I mean a gradual process of piecemeal
approximation of formality that is conducted only as far as required to resolve a given
dispute” — our working assumption is that it is because proofs are rigorous that such
process can take off at all.

Taking inspiration from (Burgess 2015), we can elucidate this in principle formal-
ization as follows: a p-proof is rigorous if it would convince an idealized mathemati-
cian with the right background of the existence of a formal proof. A couple of remarks
are in order. The idealization at play should neither abstract away from our human
limitations in terms of computational and memory thresholds nor from our human
fallibility. It should, however, disregard individual differences. Our idealized math-
ematician would have to possess the right background knowledge because proofs
are generally intended for a trained audience. Moreover, proofs should convince by
virtue of the correctness of their inferential steps (and not, say, because they are
published by a famous mathematician). This implies that rigor is a good indicator of
formalizability — it is not a perfect indicator of formalizability because the idealiza-
tion at play does not abstract away from our fallibility.?’

In the view on offer, a rigorous p-proof is one that can reliably be formalized. That
is, most rigorous p-proofs can be formalized. According to some authors, all rigorous
p-proofs can be formalized. We prefer, however, to adopt a looser notion according to
which rigor is formalizability-conducive rather than formalizability-entailing.

It is noteworthy that the very two protagonists of our dispute have themselves writ-
ten about mathematical rigor. They distinguish between two types of rigor. Severi’s
writes of substantial and formal rigor, while Enriques writes about large-scale logic
[logica in grande] and small-scale logic [logica in piccolo].’® In short, substantial
rigor (and large-scale logic) has to do with a faithful description of the mathemati-
cal facts — that is, with the truth of the results. Formal rigor (small-scale logic) has
instead to do with formalization, that is, with the thoroughness of the p-proof sup-
porting a result and the correctness of its inferential steps. It is this last type of rigor

%7 For a pluralist conception of rigor, see (Tanswell forthcoming).

28 There are important critiques to this view. Here are two objections that we find most relevant: (i) not all
formal systems will do (a silly example of what won’t do is an inconsistent system), (ii) the overgeneration
problem discussed in (Tanswell 2015): to a single p-proof, many formal proofs can be associated.

2 Note that this view is inspired by Burgess’s, but departs from his view in this respect.

30 For a discussion of these two types of rigor and their connection with different notions of objectivity in
mathematics, see (De Toffoli and Fontanari 2022).
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that is at issue here. Enriques and Severi’s explicit discussion on the topic shows that
(formal) rigor was a norm they were aware of, one that was not universally imple-
mented but one that governed many mathematical practices of the time.

4.1.3 Correctness and Formalization

But why does this all matter? That is, why does it matter to link rigor with formaliza-
tion? Well, it matters because, in our contemporary conception (as opposed to earlier
historical conceptions), the correctness of a deductive argument is cashed out pre-
cisely in terms of formalization: “It has been common since the turn of the twentieth
century to take correctness to be underwritten by the existence of formal derivations
in a suitable axiomatic foundation” (Avigad 2021, 2377) — we will use the term cor-
rectness in this technical way from now on.

Correctness is then a criterion external to single mathematical communities but
internal to the broad mathematical community after the turn of the century. After that
time, correctness was equated with formalizability in an appropriate formal system.
Here is Avigad again:

According to the standard view, a mathematical statement is a theorem if and
only if there is a formal derivation of that statement, or, more precisely, a suit-
able formal rendering thereof. When a mathematical referee certifies a math-
ematical result, then, whether or not the referee recognizes it, the correctness
of the judgement stands or falls with the existence of such a formal derivation.
(Avigad 2021, 7381)

Let us take stock. We started by discussing Wagner’s appeal to formalization to
explain the extreme rarity of recalcitrant PP-DISAGREEMENT in recent mathemat-
ics (from about the turn of the century). We then characterized rigor as a formaliz-
ability-conducive property of p-proofs. Lastly, we explained how the correctness of
p-proofs can be fleshed out in terms of formalizability. Putting two and two together,
we get that rigor, if it does not entail correctness, at least it is correctness-conducive.
And this is one of the reasons why rigor is a desirable quality of p-proofs — another
being that rigorous p-proofs can be shared among appropriately trained practitio-
ners. This, in turn, implies that rigorous p-proofs can undergo a stricter verification
process compared to idiosyncratic arguments that only a single mathematician can
understand.

4.2 Acceptability Criteria and Well-Functioning Mathematical Practices
So far, so good. But the story is not so simple. As pointed out in (De Toffoli 2021b),

the criterion of rigor (which, as we saw, is a general criterion) is different from the
criteria of acceptability for rigorous proofs (i.e., the criteria at play in a specific con-
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text that determine which p-proofs are accepted as rigorous and which aren’t). The
problem is that while the former is correctness-conducive, the latter might not be.>!

Acceptability criteria for rigorous proofs are the criteria that determine in practice
what a community accepts as rigorous proof. These have to do with the specifics of
a particular mathematical context. For instance, a good indication for such criteria
is given by what is actually published in specialistic journals in a specific context.
These criteria change considerably not only across time but also across sub-fields.
For example, in topology, it is an acceptable practice to appeal to geometric intuition.
This is not the case in other fields.

We can use these two notions to characterize well-functioning mathematical prac-
tices. These are practices in which the criterion of acceptability is aligned with the
criterion for rigor. That is, acceptable proofs are reliably rigorous — in other words,
acceptability is rigor-conducive. And since rigor is correctness-conducive, so is
acceptability. It is for this reason that these are well-functioning mathematical prac-
tices -- because the p-proofs they accept tend to be correct (or formalizable).

Unfortunately, however, this alignment is not always in place. There are indeed
mathematical practices in which the criteria of acceptability come apart from the
criterion of rigor:

The criteria of acceptability for (rigorous) proofs are supposed to track correct-
ness; however, unlike rigor, they are not a guarantee. There are clear historical
cases in which the criteria of acceptability for proofs, even in professional con-
texts, were shown to be inadequate and required revision. (De Toffoli 2021b,
1788)

Our controversy is one case of such a historical example.*

Well-functioning mathematical practices are mathematical practices in which the
criterion of rigor and that of acceptability are aligned. They are stable, successful
practices, linked to other mathematical practices. Moreover, they are generally not
judged to be faulty by other publicly recognized social practices. Undoubtedly, this
characterization does not allow us to draw sharp boundaries. For one, a temporal
dimension is implicit. How should we temporarily delimit mathematical practices? A
practice could transition from a period in which the criteria of rigor and acceptability
are aligned to one in which they are not. Moreover, it might not always be possible
to claim with certainty whether a mathematical practice is well-functioning or not.

By way of example, consider Shinichi Mochizuki’s Japanese community of math-
ematicians. In 2012 Mochizuki proposed a p-proof of a famous number-theoretic
conjecture: the abc Conjecture. His methods were new and relied on a vast amount

31 The distinction between rigor and acceptability for p-proofs parallels Miranda Fricker’s (1998) dis-
tinction between indicator properties and working indicator properties for good informants, which she
develops in her investigation of the phenomenon of epistemic injustice. According to Fricker, a good
informant is both competent and trustworthy — this is what constitutes rational authority. The indicator
properties are properties that reliably indicate rational authority. Instead, working indicator properties “are
those properties actually used in a given practice to indicate rational authority, and which may or may not
be so reliable” (ibid. 168).

32 For a contemporary case, one might point to symplectic geometry (Hartnett 2017).
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of material he developed. The p-proof was accepted by other mathematicians, mostly
Japanese, but with notable exceptions. It was clear that checking the material was
no easy task — especially for people not already acquainted with Mochizuki’s previ-
ous work. In 2018, German mathematicians Peter Scholze and Jacob Stix proposed
a simplification of Mochizuki’s approach and challenged a particular Lemma. They
were not given any satisfactory answer, and the disagreement reached an impasse.
Mochizuki claimed that Scholze and Stix’s failure to understand the Lemma derived
from their lack of background knowledge and from the fact that their simplification
was not faithful to his work. The German mathematicians disagreed.>*

This is a clear case in which, although a specific problem was identified, there is
no agreement on how to get over it. Although, at this time, there is evidence that a
certain mathematical practice is problematic, the possibility of the disagreement per-
sisting due to a lack of shared background knowledge is still open. Note that in this
case, like in other cases of recalcitrant PP-DISAGREEMENT over a single p-proof,
actual formalizations are of no help because they are out of reach since a lot of pre-
liminary work would have to be done to even start the process of formalizing. What is
more, as Aberdein (2023) observes, such preliminary work would presuppose rather
than lead to a solution to the disagreement. This is because the said disagreement is
about whether Scholze and Stix’s simplification of Mochizuki’s approach is faithful
to his original techniques in the relevant respects.>> More generally, formalization
might also not resolve debates about the validity of p-proofs because there might still
be disagreement about whether the validity of any given purported formalization also
substantiates the validity of the proof it is supposed to formalize.

This example points to the fact that formalization raises delicate issues concerning
the individuation of proofs (i.e., whether one proof is the same as one of its formal
counterparts). Another upshot is that we might not be able, at a time, to determine
whether a mathematical practice is well-functioning or not. However, it might be
possible to do that with hindsight. Let us then go back to our case and evaluate what
the problem was with Enriques’s and Severi’s mathematical community.

4.3 Recalcitrant PP-disagreement in the Italian School

We suggested that the very possibility of recalcitrant PP-DISAGREEMENT over
p-proofs of the same theorem is rare or even absent in well-functioning mathematical
practices. This is because these are stable practices in which acceptable p-proofs tend
to be rigorous and thus only very seldom fail to be correct.

Recalcitrant pp-disagreement is characteristic of unstable mathematical practices.
They can be compared to Kuhnian revolutionary phases, in which the accepted meth-
ods and the concepts deployed by scholars are fluid. Precisely because of their insta-

33 One such exception being Fesenko (2019).
3% See (Klarreich 2018) for a description of the case and (Aberdein 2023) for an insightful philosophical
analysis.

35 This is related to the problem of how we should identify proofs, which is related to CONCEPTION OF
PROOF-DISAGREEMENT. See Footnote 8. Thanks to one of the anonymous referees for this clarifica-
tion.
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bility, mathematical communities going through such phases are not well-functioning
(to use Kuhn’s terminology, they are not part of “normal science”). This analogy has
its limits. By mentioning Kuhn, we do not want to imply that different mathematical
paradigms are incommensurable. Remember that we are focusing on relatively recent
mathematics, and that we suggested that the standard of correctness cashed out in
terms of formalizability is generally accepted. For example, Mochizuki’s claim that
his p-proof is correct does in indeed imply that it is formalizable — the same holds
for Enriques’s or Severi’s p-proofs. This indicates that although there might not be an
external standard of correctness for all mathematics (from ancient to contemporary
times),3® there is such a standard for recent mainstream mathematics — one that is
external to single mathematical practices.

The problem with the Italian school of algebraic geometry is that, in at least some
of its phases, the criteria of acceptability and of rigor were not aligned. Our case
study shows clearly that different incorrect p-proofs were accepted as rigorous. Some
of the accepted results were false. Others were true but not properly justified by
rigorous p-proofs. As a matter of fact, the PP-DISAGREEMENT over the various
p-proofs proposed was due either to the falsity of their results or to their incorrectness
and lack of rigor, in particular to the presence of unjustified assumptions. This leads
us to another distinction.

Besides distinguishing between evanescent and recalcitrant PP-DISAGREE-
MENT over one or multiple p-proofs, we can also differentiate between global and
local PP-DISAGREEMENT over a single p-proof: that is, arising from a general
problem with the result (such as the presence of a counterexample) or a specific prob-
lem with the p-proof (such as an incorrect step). In turn, we can differentiate among
the latter between local PP-DISAGREEMENT over a p-proof that derives from
errors and local PP-DISAGREEMENT that derives from gaps — errors and gaps are
thus different ways in which a p-proof can be found to be incorrect. Schematically:

Global PP-DISAGREEMENT mostly arises from the presence of counterex-
amples. If the convertibility norm is in place, it should be possible to convert it to
local disagreement. Local PP-DISAGREEMENT that arises from errors tends to be
evanescent since, when an error is spotted, it is generally easy to convince everyone
of its presence. It is not so simple with gaps. This is because they constitute more
elusive deficiencies of p-proofs. When is a gap acceptable? It is not an easy question
to answer.>” Moreover, any answer will vary with the context. One thought is that dis-
agreement over the presence of large gaps can become a global type of disagreement,
violating the convertibility norm. This is an indication that the mathematical practice
at issue is not well-functioning.

Let us return to our case study. We can identify three different phases of the Italian
school of algebraic geometry. The first phase started when the Italian school began,
around 1860. It lasted until the end of the 1920s. This phase was characterized by
heavy use of geometric intuition and methods that only later were shown to be unrig-
orous. It is well epitomized by the words pronounced by Castelnuovo (1928, 201) in
1928:

3¢ We do not want to imply there is not but simply that our view does not entail there is one.
37 See (Fallis 2003).
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renouncing geometric intuition, the only thing that has allowed us to orient
ourselves in this intricate territory so far, would mean extinguishing the tenu-
ous flame that can guide us in the dark forest [vorrebbe dire spegnere la tenue
fiammella che puo guidarci nell’oscura foresta].3

The second phase spanned the 1930s and the 1940s. It is here that disagreement
started to arise. This was a period in which disagreement about both gaps and actual
errors was common. Doubts over the rigor of the methods used by the members of
the Italian school were emerging. The members themselves began to realize that their
results were wanting. It was in this phase that the Italian school lost its apparent status
as a well-functioning mathematical practice since the working criterion of acceptabil-
ity started to diverge from the one of rigor. By way of example, consider again the
words that Enriques addressed to Segre in 1945:

I have reexamined my earlier proof based on infinitely close curves of various
orders and I believe it is substantially right, even if it is not rigorously complete.
(Babbitt and Goodstein 2011)

The third phase is the one in which the methods of the Italian school were rejected.
The rigorization of algebraic geometry exploded in the 1950s with the explicit, sharp
criticism raised towards the foundations and methods of the Italian school by the bold
younger exponents of the French school. Just to mention one well-known episode at
the International Congress of Mathematicians held in Amsterdam in 1954, Severi was
not even able to conclude his talk due to the repeated argumentative interruptions by
Pierre Samuel and André Weil.* It was during this phase that Mumford’s Lectures on
Curves on an Algebraic Surface were published.

Our case of recalcitrant PP-DISAGREEMENT spans all three phases of the
school. The first p-proofs proposed by Enriques and Severi from the first years of
the twentieth century are ultimately incorrect because they make use of an unjusti-
fied assumption. However, they were accepted for about fifteen years before Severi
unveiled such an unjustified assumption in 1921. Afterward, in the 1940s, Severi
proposed a p-proof that contained an irreparable error, while Enriques’s final attempt
at proving the Fundamental Theorem was on the right track but lacked precision and
thus contained a significant gap.

5 Rigorous and Speculative Mathematics

We now turn to the analysis of Severi’s and Enriques’s different attitudes concerning
the role of speculative, non-rigorous mathematics. We connect our discussion to the
so-called “theoretical mathematics” debate initiated by Arthur Jaffe and Frank Quinn
(1993) with an article in the Bulletin of the American Mathematical Society and pro-
tracted by a series of replies by various mathematicians (Atiyah et al. 1994).

33 Our translation from Italian.
39 See (Ciliberto and Sallent Del Colombo 2018, 15).
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5.1 Severi’s Loss of Rigor

Ciro Ciliberto and Emma Sallent Del Colombo (2018, 2) point out that Severi’s intel-
lectual outlook changed radically with the great war. While in the pre-Bellum period
Severi’s mathematical texts were careful and rigorous, in the postwar years, he devel-
oped an “autoreferential trust” that led him to endorse a speculative style:

His scientific production, compared to the pre-war period, suffers from an
excessive self-referential trust that leads him to less attention to rigor and there-
fore to sometimes erroneous results.*’

The problem is that what Severi kept calling proofs failed to be rigorous:

In fact, in the post-war period, Severi, while not losing his great inspiration, his
originality of views, and producing real pearls here and there, has more conjec-
tured (to use a euphemism that hides various statements of dubious exactness)
than demonstrated. [...] These works are characterized by a growing “self-
confidence,” which often led Severi to formulate unjustified assertions, taking
them as established facts, and theories developed on them collapsed as houses
of cards in the face of harsh criticism.*!

It is because of his high position in Italian mathematics, first as the only mathema-
tician member of the Accademia d’Italia, and then after 1939, as the founder and
lifetime president of the Istituto Nazionale di Alta Matematica, that he could impose
his results over the community. After having gained a reputation as a brilliant and
rigorous mathematician, he managed to publish and teach his dubious (and often
outright wrong) results based on incorrect p-proofs. This is a dangerous case of abuse
of epistemic authority because it can hinder or even block the process of self-check
that mathematical practices tend to implement on themselves and that is essential for
their stability and success.

A typical example of Severi’s autoreferential trust is provided by the lithographed
notes of Severi’s (1948) lecture course on algebraic geometry held at the Scuola Nor-
male Superiore in Pisa in February 1947. After recalling the unlucky history of the
theorem of completeness of the characteristic series in a footnote to § 49 (ibid., 122:
“many attempts were made in Italy and abroad [...], but they did not have a happy
outcome”), it is triumphantly asserted (ibid., 123):

We will add that in April 1947, when these lessons were over, Severi was able,
43 years after he had first enunciated the theorem, to prove it with only alge-
braic-geometric means for semiregular curves.*?

40 Our translation from Italian.
41 Our translation from Italian.

42 Our translation from Italian.
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It is reasonable to suspect that this claimed algebraic-geometric p-proof was the one
to be later reproduced in the last treatise by Severi (1958). Unfortunately, such a
p-proof is far from being unconditional, as Severi himself admitted (Severi 1958,
197), and turns out to be essentially just a plausible argument:

[W]e established in n. 23 the remarkable ‘breaking principle’ by B. Segre
contained in the Memory of the Annals of Mathematics, 1938, but under the
hypothesis, added here, that a component of the limit of the curve that tends to
break is an ordinary irreducible curve [...]. As this principle only considers the
geometric kind of the surface and not the irregularity, [...] it seems natural to
suppose that the principle itself is always true.*’

It is plausible to think that it was Severi’s own attitude that made the controversy
possible. As we saw, still in 1945, Enriques wrote: “His [Severi’s] exposition seemed
obscure to me and therefore dubious.” The main problem is that Severi failed to sepa-
rate rigorous mathematics from speculative mathematics.

In their much-discussed, polemical paper on what they called “theoretical math-
ematics” (meaning non-rigorous or speculative mathematics), Jaffe and Quinn (1993,
10) argued that speculative mathematics plays a vital role in mathematical practice
but should always leave space for a more rigorous counterpart:

Theoretical work should be explicitly acknowledged as theoretical and incom-
plete; in particular, a major share of credit for the final result must be reserved
for the rigorous work that validates it.

Their critique was leveled at those who were practicing speculative mathematics but
presented it as though it were rigorous mathematics:

the failure to distinguish carefully between the two can cause damage both to
the community of mathematics and to the mathematics literature. (ibid., 12)

Jaffe and Quinn incited replies from many mathematicians who, more or less explic-
itly, fell within the paper’s target. It is relevant for us to note that the case of the Ital-
ian school was mentioned by the authors as one of their “cautionary tales.”

5.2 Enriques the Visionary

Enriques’s attitude was very different from Severi’s. Castelnuovo, who published
Enriques’s (1949) posthumous monograph after his sudden death in 1946, identified
a prudential quality in Enriques’s approach:

The Author himself takes care to warn right from the preface that the treatise,
rather than expounding an already static and crystallized doctrine, aspires to
arouse in the reader the desire to bring additions and improvements to various

4 Our translation from Italian.
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theories. And where the ground is less solid, the Author warns the scholar. [...]
A brilliant intuition led Enriques in 1904 to enunciate and establish this charac-
teristic property of irregular surfaces; subsequent fundamental research relied
on it. However, careful criticism has shown, several years later, that Enriques’s
demonstration was not satisfactory. The property is true, at least under some
restrictions, as shown by Henri Poincaré’s transcendent research. But all the
attempts made later by Enriques and others to demonstrate it through alge-
braic-geometric considerations have run into difficulties hitherto unsurpassed.
This is explicitly stated in the aforementioned Chapter IX, in which the Author
also gives suggestions on the way to try to reach the goal.** (Castelnuovo, in:
Enriques 1949, vi)

As pointed out in (Fontanari 2023), this was precisely the intellectual habit of Castel-
nuovo: a mixture of free open-mindedness and strict moral rigor,* typical of his
personal attitude towards both mathematical research and teaching. For instance, in a
footnote to his paper, he claimed:

On the other hand, we are going to apply a still unproven principle in order to
solve a difficult problem since we believe that such attempts may be useful to
the progress of science, provided one explicitly declares what is admitted and
what is proven.*® (Castelnuovo 1889, 130)

Certainly, Enriques was bolder than Castelnuovo but remained able to avoid Severi’s
worse missteps. The difference between Enriques’s and Severi’s style of mathemati-
cal speculation is clear in the already quoted letter to Segre, where Enriques observes
that Severi “referred to the case of algebroid entities instead of clarifying the mat-
ter in the easiest case.” Indeed, Enriques’s taste for concrete examples rather than
abstract generalizations guided his intuition to safer paths. For a complete rescue of
his reasons, however, Enriques had to wait for an unexpected recantation, dictated to
Mumford (2011, 260) by his intellectual honesty and published in 2011:

In my own education, I had assumed they were irrevocably stuck, and it was
not until I learned of Grothendieck’s theory of schemes and his strong existence
theorems for the Picard scheme that I saw that a purely algebraic-geometric
proof was indeed possible. [...] As I see it now, Enriques must be credited with
a nearly complete geometric proof using, as did Grothendieck, higher-order
infinitesimal deformations. In other words, he anticipated Grothendieck in
understanding that the key to unlocking the Fundamental Theorem was under-
standing and manipulating geometrically higher order deformations. Let’s be
careful: he certainly had the correct ideas about infinitesimal geometry, though
he had no idea at all how to make precise definitions. If you compare his ideas
here with, for example, the way Leibniz described his calculus, the level of

4 Qur translation from Italian.
45 These can be numbered among “mathematical virtues” (Aberdein et al. 2021)

46 Our translation from Italian.
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rigor is about the same. To use a fashionable word, his “yoga” of infinitesimal
neighborhoods was correct, but basic parts of it needed some nontrivial alge-
bra before they could ever be made into a proper mathematical theory. (...) In
short, Enriques was a visionary. And, remarkably, his intuitions never seemed
to fail him (unlike those of Severi, whose extrapolations of known theories were
sometimes quite wrong). Mathematics needs such people[.] (emphasis added)

6 Conclusion

In this paper, we have shown that controversies in mathematics are not limited to
the choice of axioms. Indeed, we distinguished six species falling under the genus of
mathematical disagreement:

1) AXIOMS-DISAGREEMENTS

2) PHILOSOPHICAL-DISAGREEMENT

3) SOCIAL PRACTICE-DISAGREEMENTS

4) HEURISTIC-DISAGREEMENTS

5) CONCEPTION OF PROOF-DISAGREEMENT
6) PP-DISAGREEMENT

We then focused on PP-DISAGREEMENT, namely, on disagreement over the cor-
rectness of putative proofs. When they arise in well-functioning mathematical com-
munities, these disputes are quickly resolved. For instance, an error was spotted and
recognized as such by all parties in the case of Kempe’s p-proof of the 4-color Con-
jecture or Wiles’s initial p-proof of Fermat’s Last Theorem.*’ There are, however,
also cases of recalcitrant PP-DISAGREEMENTS that resist swift resolutions. They
can arise from persistent disagreement over a single p-proof (as in the contempo-
rary case involving Japanese mathematician Mochizuki) or over the correctness of a
series of p-proofs (as in our case study and in Lakatos’s historical case). Recalcitrant
PP-DISAGREEMENTS tend to arise within mathematical communities lacking the
resources for solving controversies arising from their inferential practices. One such
community was the Italian school of algebraic geometry that straddled the nineteenth
and twentieth centuries. We appealed to the gap between an abstract criterion of rigor
and local criteria of acceptability to distinguish communities of this kind from well-
functioning mathematical communities.

The Italian school of algebraic geometry is a prime example of a mathematical
community lacking the resources to satisfactorily solve PP-DISAGREEMENTS.
Although the disputes over single erroneous p-proofs did not themselves give origin
to long disagreements, several incorrect p-proof of the same result were at different
times accepted by the community. This reveals that the local criteria of acceptability
of the Italian school did not align with an abstract criterion for rigor.

47 1t was then fixed by Andrew Wiles in about one year with the help of his former student Richard Taylor.
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The decades-long controversy between Enriques and Severi, two of the most
prominent members of the Italian school of algebraic geometry, is especially signifi-
cant because it did not develop in far times but in the twentieth century and was not
over some marginal result but over a central theorem. Some of the methods accepted
among the members of the Italian school were speculative. This, we suggested, is not
bad per se, but it can lead to negative results if those speculative methods are pre-
sented as rigorous, as in Severi’s case. Serious predicaments arise when non-rigorous
mathematics is disguised as rigorous mathematics and accepted as such.
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