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Diagrams are common tools of communication and reasoning.  Although they are used in 
many different contexts, perhaps the most interesting and philosophically puzzling uses of 
diagrams are in science and mathematics.  Focusing on how diagrams are used in these fields, 
many questions arise: Can diagrams function as representational models in science?  Can 
diagrams be used to prove mathematical propositions?  Can there be formal diagrammatic 
systems in logic?  Why are diagrams at times such effective cognitive tools? 
 
Properly epistemological questions on diagrams have mostly to do with their role in 
justification and knowledge.  One vexed issue is whether mathematical diagrams can be part 
of proofs or are better seen as devices used for discovery exclusively—i.e., whether they can 
play a genuine justificatory role or not.  The same issue has not attracted similar attention in 
science since it is generally assumed that scientific diagrams play pragmatic rather than 
justificatory roles (Bueno 2006).  For this reason, in this entry, I will focus on the 
epistemology of mathematical diagrams.  
 
While it is well-known that mathematicians use (and have been using since antiquity) a wide 
range of visual representations, what epistemic role these visual representations play remains 
controversial.  Until recently, mathematical diagrams were thought to play an important 
heuristic role but not to be the kind of thing that could contribute to the justification of 
mathematical propositions.  But skepticism towards the use of diagrams to justify 
mathematical claims is waning, and recent works highlight the possibility of using diagrams 
to prove in mathematics. 
 
1. The Background: How Diagrams Became Irrelevant 
 
But what are mathematical diagrams?  The most popular (and most discussed) mathematical 
diagrams are the ones that feature in ancient Greek geometry, like the ones that accompany 
the Propositions of Euclid’s Elements (c.a. 300 BCE).  Let us consider a simple example. 
 
The first Proposition of Euclid’s Elements tells us how to construct an equilateral triangle on 
a given segment AB.  To do so, we construct a diagram as follows (see Figure 1): we first 
draw a circle with center A and radius AB, then we draw another circle with radius AB, this 
time centered in B.  The circles cut one another at C, which we join to A and B.  It is then 
easy to check that all segments AB, AC, and BC are equal to each other and, therefore, that 
the triangle ABC is equilateral. 
 
 



 
Figure 1.   A Euclidean diagram 

 
In order for Euclid’s first proof to go through, we need to use the fact that the two circles 
intersect.  How do we know that?  Well, we can look at the diagram!  
 
Diagrams, written or imagined, seem to be necessary for some of Euclid’s proofs.  This came 
to be seen as a problem towards the end of the nineteenth century.  After having been 
considered to be the gold standard of rigorous mathematics for about two millennia, Euclid’s 
geometry was considered to be defective.  Pasch (1926, 43) expresses this critical attitude: 

 
For the appeal to a figure is, in general, not at all necessary.  It does facilitate 
essentially the grasp of the relations stated in the theorem and the constructions 
applied in the proof.  Moreover, it is a fruitful tool to discover such relationships and 
constructions.  However, if one is not afraid of the sacrifice of time and effort 
involved, then one can omit the figure in the proof of any theorem; indeed, the 
theorem is only truly demonstrated if the proof is completely independent of the 
figure. 

 
And if Euclid’s arguments do indeed appeal to figures, then they are not genuine proofs, at 
least according to Pasch.  This is why he came up with an alternative system for Euclidean 
geometry – in particular, he introduced an axiom that takes his name.  Pasch’s Axiom 
basically says that if a line enters a triangle from a side without going through a vertex, then 
it must exit the triangle from another side.  It does seem obvious, but it is also obvious that 
the two circles in Figure 1 cut each other!  The problem is that mathematics is not about 
feelings of obviousness but rather about logical relations between propositions. 
 
Pasch was not alone in his attack on the use of diagrams in proofs.  As it is clear from his 
Geometry and the Imagination (Hilbert and Cohn-Vossen 1932), Hilbert was well aware of 
the importance of diagrams in mathematics, but, like Pasch, he did not think they could play a 
genuine justificatory role. 
 
The ban of diagrams and intuition from proofs is tied to a complex phenomenon that is 
usually referred to as the rigorization of mathematics.  It started at the end of the nineteenth 
century and led to the modern articulation of analysis.  Additionally, the discovery of non-
Euclidean geometries further challenged the reliability of geometric intuition, which was 
associated with the use of diagrams.  Diagrams started to be regarded as, at best, helpful 
heuristic devices and, at worse, pernicious representations.   
 
It is therefore not surprising that in the late nineteenth century and early twentieth century, 
philosophers of mathematics did not pay attention to diagrams at all.  The main topic on the 
agenda was to investigate the foundations of mathematics – that is, to find a way to justify 
mathematical theories. 
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Moreover, for most of the twentieth century, other epistemological questions that occupied 
philosophers of mathematics were framed at a high level of generality and mainly had to do 
with Benacerraf’s problem, that is, the problem of access to abstract objects.  If mathematical 
objects are abstract and thus are causally inert, how can we know anything about them?  This 
problem affects mathematics at all levels, and actual mathematical thinking (mediated or not 
by diagrams) did not seem to matter at all to solve it. 
 
2. The Philosophy of Mathematical Practice: Diagrams Are Back in the Game 
 
However, towards the end of the twentieth century, a new approach to the study of 
mathematics gained ground, namely, the Philosophy of Mathematical Practice – for a 
representative sample of contributions belonging to this approach, see (Mancosu 2008). This 
is a turn to the inner working of mathematicians, which puts into focus questions that have to 
do with individual justification and knowledge.  There are at least four consequences of 
taking the practice seriously that are relevant to the study of diagrams.  
 
The first has to do with appreciating that the epistemology of mathematics should not be 
reduced to the study of proofs.  Philosophers of mathematical practice, following the steps 
traced by Lakatos in Proofs and Refutations (1976), started to take into consideration not only 
how mathematical propositions are established but also how they are discovered.  This gave 
rise to a series of studies highlighting the role of diagrams in mathematical discovery and 
understanding (Giaquinto 2007; Carter 2019; Giardino 2018). 
 
The second consequence is to endorse the non-skeptical position according to which 
mathematicians before the rigorization of the end of the nineteenth century possessed 
mathematical knowledge.  Understanding the history of mathematics requires coming to 
terms with the role played by diagrams in various practices—Euclidean geometry is a prime 
example.   
 
The third is to realize that mathematical practice is heterogeneous and different areas of 
mathematics should be investigated.  For instance, by looking at representations used in 
category theory or homological algebra, it is clear that diagrams are not only geometric but 
can also be algebraic.  Commutative diagrams used in these areas are akin to algebraic 
notations extending in two dimensions and therefore do not pose the problems typical of 
geometric diagrams. 
 
The fourth consequence is to analyze the impact of new technology on mathematics.  
Towards the end of the twentieth century, diagrams regained importance in mainstream 
mathematics.  Mancosu (2005) talks of a ‘renaissance’ of visualization.  This is partially due 
to the novel technological possibilities that allow mathematicians to create digital models of 
complicated geometric structures. 
 
3. Euclidean Diagrams, Knot Diagrams, and Commutative Diagrams 
 
The literature on diagrams has grown considerably in the last decade.  It now includes a vast 
amount of detailed case studies aimed at capturing fine features of the use of diagrams in 
various mathematical contexts – the most systematic study on the topic being (Giaquinto 
2007).  To survey some of the main results that have been produced, I will briefly mention 
three case studies: Euclidean diagrams, knot diagrams, and commutative diagrams. 
 



Manders (2008) explained the success of Euclidean geometry by assigning an inferential role 
to diagrams.  He articulated how Greek mathematics consists of an interaction between 
diagrams and text.  His crucial insight was that for diagrams to be used rigorously, only those 
diagrammatic features that are invariant under slight perturbations could carry relevant 
information.  When a diagram is reproduced, slight variations are inevitably introduced and 
should be disregarded.  Manders distinguished between exact and co-exact diagrammatic 
features.  Only the latter can be read off a diagram.  Co-exact features roughly track 
topological relations.  A prototypical co-exact feature is the existence of an intersection point 
as required by Proposition (I,1): if we change the exact metric properties of the two circles, 
the intersection point will change position, but its existence would not be threatened.  Other 
co-exact features are part/whole relationships between regions (such as enclosures), line 
segments, and angles.  Exact features are precise metric properties such as lengths of 
segments, their straightness, and the equality of angles or segments.  Manders’s analysis is 
also at the base of a formal diagrammatic system for Euclidean geometry (Mumma 2012).    
Other important accounts of diagrams in the context of Euclidean geometry that emphasize 
the idea that diagrams play a crucial role in proofs are (Netz 1998) and (Macbeth 2010).  
 
Independently of its historical accuracy, Manders’s account is important because it gives 
specific conditions that must be satisfied for diagrams to be used rigorously.  Building on the 
basic idea behind the distinction between exact and co-exact properties, Larvor (2019)  and 
De Toffoli (2022) have proposed new general criteria for diagrams to be used in proofs.  
 
But diagrams are not only a trace of the past; they are also used in contemporary 
mathematics.  For example, knot diagrams (see Figure 2) are used in contemporary 
mathematics – often within proofs as well.  A mathematical knot can be characterized as a 
closed simple curve in space.  A knot diagram is a regular projection of a knot in the plane.   
 
 

 
 

Figure 2. Two equivalent knot diagrams 

 
According to Brown (2008), knot diagrams are particularly interesting because they support 
calculations.  This shows that diagrams should be seen as special kinds of mathematical 
notation. 
 
De Toffoli and Giardino (2014) point out the fact that knot diagrams are particularly effective 
because they trigger enhanced manipulative imagination.  This is a kind of imagination that 
is enhanced with mathematical training and aids practitioners to mentally imagine 
manipulating knots in space – for instance, it is through this imagination that we can 
recognize that the two diagrams in Figure 2 represent the same knot.  By supporting specific 
types of reasoning that have a precise mathematical interpretation, knot diagrams are thus 
seen to play a justificatory role. 
 



Although most prototypical diagrams are geometric (like Euclidean diagrams) or topological 
(like knot diagrams), diagrams can also be algebraic.  Commutative diagrams were 
introduced in the second half of the twentieth century and are akin to algebraic notations in 
two dimensions.  For this reason, they do not threaten the reliability of the proofs in which 
they figure. For example, in Figure 3 is a simple diagram composed of three nodes and three 
arrows – the fact that the diagram is commutative means that the composition of arrows f and 
g is equal to arrow h. Commutative diagrams clearly show that diagrams do not have to be 
associated with visual intuition.  Nevertheless, their two-dimensional layout makes them 
particularly effective mathematical notations  (Corfield 2003). 
 

 
Figure 3.   A commutative diagram 

 
The case of commutative diagrams makes it clear that diagrams can enter the inferential 
structure of proofs.  However, it remains to establish whether diagrams can be essential to the 
proofs in which they figure.  Analyzing two diagrammatic proofs, involving topological and 
algebraic diagrams, De Toffoli (2023) argues that they can.  This is not to say that diagram-
free proofs of the same result could not be found.  Rather, this implies that there are plausible 
criteria of identity for proofs such that any such diagram-free proof would not be a different 
presentation of the same proof but a different proof altogether. 
 
4. Conclusion 
 
We saw that although diagrams were used in ancient Greek geometry, from the rigorization of 
mathematics until recently, they were banned from the context of proofs and neglected by 
philosophers.  The renewed interest in mathematical practice is what contributed to bringing 
diagrams to the center of philosophical discussions about mathematics.  
 
From an epistemological perspective, it is significant that many types of diagrams, such as 
diagrams used in topology and algebra, not only play a role in discovery, but a justificatory 
role as well.  These diagrams can even be essential to the proofs in which they figure, 
depending on our criteria for individuating proofs. 
 
The question of whether mathematical diagrams can play a justificatory role has significant 
ramifications.  For one, it is related to the nature of mathematical rigor and to how deductive 
proofs should be characterized.  Diagrams have been used as counterexamples to the 
Standard View according to which mathematical rigor should be cashed out in terms of 
formalizability in an appropriate formal system (Tanswell 2015; Rav 2007).  Some scholars, 
however, emphasize the compatibility between the Standard View and the use of diagrams in 
proofs (De Toffoli 2021). 
 
A further ramification has to do with the debate on the a priori.  If it is indeed possible to 
acquire mathematical justification (and knowledge) by visually inspecting a diagram, does 
this show that mathematical knowledge is not a priori after all?  And if it does not, does this 
force us to endorse a particular position on the a priori debate?  According to Giaquinto 
(2015), the use of diagrams shows that many mathematical propositions can be justified a 



posteriori.  But crucially, this holds also when we use non-diagrammatic mathematical 
notations.  It is therefore not clear whether diagrams themselves threaten the a priori nature of 
mathematics or the use of notations in general. 
 
To conclude, mathematical diagrams pose significant questions about mathematical 
justification and knowledge and their analysis forces us to think about general issues such as 
how mathematical understanding is promoted, the nature of rigorous mathematical proofs, 
and the a priori status of mathematics. 
 
See also: A PRIORI KNOWLEDGE; GEOMETRY; MATHEMATICAL KNOWLEDGE. 
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