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A model of jury decisions where all jurors have the same evidence 
 
Abstract. Under the independence and competence assumptions of Condorcet’s classical jury model, the 
probability of a correct majority decision converges to certainty as the jury size increases, a seemingly 
unrealistic result. Using Bayesian networks, we argue that the model’s independence assumption requires 
that the state of the world (guilty or not guilty) is the latest common cause of all jurors’ votes. But often – 
arguably in all courtroom cases and in many expert panels – the latest such common cause is a shared 
‘body of evidence’ observed by the jurors. In the corresponding Bayesian network, the votes are direct 
descendants not of the state of the world, but of the body of evidence, which in turn is a direct descendant 
of the state of the world. We develop a model of jury decisions based on this Bayesian network. Our model 
permits the possibility of misleading evidence, even for a maximally competent observer, which cannot 
easily be accommodated in the classical model. We prove that (i) the probability of a correct majority 
verdict converges to the probability that the body of evidence is not misleading, a value typically below 1; 
(ii) depending on the required threshold of ‘no reasonable doubt’, it may be impossible, even in an 
arbitrarily large jury, to establish guilt of a defendant ‘beyond any reasonable doubt’. 
 
Key words: Condorcet jury theorem, Bayesian networks, Parental Markov condition, conditional 
independence, interpretation of evidence  

 

1. Introduction 
 

Suppose a jury (committee, expert panel etc.) has to determine whether or not a defendant 

is guilty (whether or not some factual proposition is true). There are two possible states of 

the world: x = 1 (the defendant is guilty) and x = 0 (the defendant is not guilty). Given 

that the state of the world is x, each juror has the same probability (competence) p > 1/2 

of voting for x and the votes of different jurors are independent from each other. Then the 

probability that a majority of jurors votes for x, given the state of the world x, converges 

to 1 as the number of jurors increases. This is the classical Condorcet jury theorem (e.g. 

Grofman, Owen and Feld 1983). The theorem implies that the reliability of majority 

decisions can be made arbitrarily close to certainty by increasing the jury size. 
 

This result may seem puzzling. What if all jurors are tricked by the same evidence, which 

seems ever so compelling? What if, against all odds, the wind blows an innocent person’s 

hair to the crime scene and the jurors believe that it could not have arrived there without 

the person’s presence? What if the evidence is so confusing that, no matter how many 

jurors are consulted, there is not enough evidence to solve a case conclusively?  
 

The classical Condorcet jury theorem suggests that we can rule out such scenarios by 

increasing the jury size sufficiently. Suppose each juror views the crime scene from a 

different perspective and obtains a separate item of evidence about the state of the world. 
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This requires that, for each additional juror, a new independent item of evidence is 

available. So there must exist arbitrarily many items of evidence as the jury size tends to 

infinity, which are confirmationally independent regarding the hypothesis that the 

defendant is guilty (on confirmational independence, see Fitelson 2001). Call this case A. 

Then the jury would be able to reach a correct decision with a probability approaching 1, 

by aggregating arbitrarily many independent items of evidence into a single verdict. But 

often there are not arbitrarily many independent items of evidence. Rather, the jury as a 

whole reviews the same body of evidence, such as that presented in the courtroom, which 

does not increase with the jury size. Each juror has to decide whether he or she believes 

that this evidence supports the hypothesis that the defendant is guilty. Call this case B. 

Arguably, decisions in most real-world juries and many committees and expert panels are 

instances of case B. Moreover, in most legal systems, there are ‘rules of evidence’ 

specifying what evidence is admissible in a court’s decision and what evidence is not. 

Jurors are legally required to use only the evidence presented in the courtroom (typically 

the only evidence about a case jurors come to see) and to ignore any evidence obtained 

through other channels (in those rare cases where they have such evidence).  
 

We argue that, while case A might satisfy the conditions of the classical Condorcet jury 

theorem, case B does not. We represent each case using Bayesian networks (Pearl 2000; 

Bovens and Olsson 2000; Corfield and Williamson 2001). Case A satisfies Condorcet’s 

independence assumption, so long as a demanding condition holds: The state of the world 

is the latest common cause of the jurors’ votes. In the corresponding Bayesian network, 

votes are direct causal descendants of the state of the world. This assumption, although 

implicit in the classical Condorcet jury model, is not usually acknowledged. Case B, by 

contrast, violates the classical independence assumption, as there exists an intermediate 

common cause between the state of the world and the jurors’ votes, namely the body of 

evidence. In the corresponding Bayesian network, the jurors’ votes are direct descendants 

of the body of evidence, which in turn is a direct descendant of the state of the world. 

This dependency structure has radical implications for the Condorcet jury theorem. The 

model developed in this paper is based on the Bayesian network of case B. 
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The main novelty of our model is that different jurors are independent not conditional on 

the state of the world, but conditional on the evidence. This follows from the 

requirement, formulated in terms of the Parental Markov Condition (defined below), that 

independence should be assumed conditional on the latest common cause. While in case 

A the latest common cause of the jurors’ votes is the state of the world, in case B it is the 

shared body of evidence. Our model shows that, irrespective of the jury size and juror 

competence, the overall jury reliability at best approaches the probability that the 

evidence is not misleading, i.e. the probability that the evidence points to the truth from 

the perspective of a maximally competent ‘ideal’ observer, a value typically below one. 

We prove further that, depending on the required threshold of ‘no reasonable doubt’, it 

may be impossible, even in an arbitrarily large jury and even when there is unanimity, to 

establish guilt of a defendant ‘beyond any reasonable doubt’. The results imply that, if 

real-world jury, committee or expert panel decisions are more similar to case B than to 

case A, the classical Condorcet jury theorem fails to apply to such decisions.  
 

Previous work on dependencies between jurors’ votes has focused on, first, opinion 

leaders – jurors who influence other jurors – (Grofman, Owen and Feld 1983; Nitzan and 

Paroush 1984; Owen 1986; Boland 1989; Boland, Proschan and Tong 1989; Estlund 

1994) and, secondly, a lack of free speech that makes votes dependent on a few dominant 

‘schools of thought’ (e.g. Lahda 1992). These sources of dependence differ from the one 

in our model. In the first case, the votes themselves are causally interdependent. In the 

second, some votes have an additional common cause: a common ‘school of thought’ that 

is independent from the state of the world. But in both cases, unlike in our model, votes 

are still direct descendants of the state of the world. As a consequence, existing models 

with dependencies have preserved the result that the probability of a correct majority 

decision converges to 1 as the jury size increases, so long as different jurors’ votes are 

not too highly correlated. Further, these models do not impose an upper bound on the 

total evidence available to the jury, and they usually suggest that the difference between 

Condorcet’s classical model and one with dependencies lies in a different (slower) 

convergence rate, but not in a different limit, as in our model. By contrast, the 

dependency structure of our Bayesian network model has been unexplored so far.  
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2. The model 
 

2.1 The classical jury model 
 

There are n jurors, labelled i = 1, 2, ..., n. The state of the world is represented by a binary 

variable X taking the values 0 (not guilty) or 1 (guilty). The jurors’ votes are represented 

by the binary random variables V1, V2, ..., Vn. Each Vi takes the values 0 (a ‘not guilty’ 

vote) or 1 (a ‘guilty’ vote). A juror i’s judgment is correct if and only if the value of Vi 

coincides with that of X. We use capital letters to denote random variables and small 

letters to denote particular values. Condorcet’s classical model assumes the following.1 
 

Independence Given the State of the World (I|X). The votes V1, V2, ..., Vn are 

independent from each other, conditional on the state of the world X.  
 

This implicitly assumes that each juror’s vote is directly probabilistically caused by the 

state of the world,2 and is therefore independent from the other jurors’ votes once the 

state of the world is given. 
 

Competence Given the State of the World (C|X). For each state of the world x∈{0, 1} 

and all jurors i = 1, 2, ..., n, p = P(Vi=x|X=x) > 1/2. 
 

Each juror’s vote is thus a signal about the state of the world, where the signal is noisy, 

but biased towards the truth, as p > 1/2. The Condorcet jury theorem states that majority 

voting over such independent signals reduces the noise. More precisely, let V = Σi=1,…,nVi 

be the number of votes for ‘guilty’. Then V > n/2 means that there is a majority for 

‘guilty’, and V < n/2 means that there is a majority for ‘not guilty’. 
 

Theorem 1. (Condorcet jury theorem) If (I|X) and (C|X) hold, then P(V>n/2|X=1) and 

P(V<n/2|X=0) converge to 1 as n tends to infinity.3 
 

2.2 Bayesian networks 
 

Bayesian networks can graphically represent the (probabilistic) causal relations between 

the different variables such as X and V1, V2, ..., Vn. A Bayesian network is a directed 
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acyclic graph, consisting of a finite number of nodes and arrows. The nodes represent the 

variables, and arrows (→) between nodes represent direct causal dependencies.4 The 

direction of an arrow represents the direction of causality. For example, a connection of 

the form X → V1 means ‘X (directly) causally affects V1’. Here X is a parent of V1, and V1 

is a child of X. One node is a descendant of another, the ancestor, if there exists a 

sequence of arrows connecting the two nodes, where each arrow points away from the 

ancestor node and towards the descendant node. One node is a non-descendant of another 

if there exists no such sequence. So the descendant relation is the transitive closure of the 

child relation. Acyclicity of the graph means that no node is its own descendant. A 

Bayesian tree is a Bayesian network in which every variable has at most one parent. 

Many joint probability distributions of the variables at the nodes are consistent with a 

given Bayesian network. Here, consistency with the network means that the following 

condition is satisfied (for details on Bayesian networks, see Pearl 2000, ch. 1): 
 

Parental Markov Condition (PM). Any variable is independent from its non-

descendants (except itself), conditional on its parents.5 
 

For example, consider a medical condition (say a flu) that can cause two symptoms in a 

patient (a sore throat and a fever). Consider the Bayesian tree of diagram 1, which 

contains three variables D, S1 and S2, each of which takes the value 0 or 1: D is 1 if the 

patient has the condition and 0 otherwise; S1 is 1 if the patient has the first symptom and 

0 otherwise; and S2 is 1 if the patient has the second symptom and 0 otherwise.  
 

Diagram 1: A simple Bayesian tree 
D 
 

     
 
 

           S1                                                S2 
 

This Bayesian tree, in which the symptoms S1 and S2 are direct descendants of condition 

D, expresses that both symptoms are direct consequences of condition D, rather than 

being commonly caused by some intermediate symptom S of the condition. The two 

symptoms are not independent unconditionally: A sore throat increases the chance of 
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having a flu, which in turn increases the chance of having a fever. The Parental Markov 

Condition says that the two symptoms are independent conditional on their common 

cause: Given that you have a flu (D = 1), having a sore throat and having a fever are 

independent from each other, and given that you have no flu (D = 0) having a sore throat 

and having a fever are also independent from each other.  
 

2.3 The classical jury model revisited 
 

Diagram 2 shows the Bayesian tree corresponding to the classical Condorcet jury model. 
 

Diagram 2: Bayesian tree for the classical Condorcet jury model 
 

X 
 

     
 
 

           V1             V2 V3 ... Vn 
 

The votes V1, V2, ..., Vn are non-descendants of each other and each have X as a parent. So 

the Parental Markov Condition holds if and only if V1, V2, ..., Vn are independent from 

each other, conditional on X, which is exactly the independence condition of the classical 

jury model. So an alternative statement of that model can be given in terms of the 

Bayesian tree in diagram 2 together with conditions (PM) and (C|X). 
 

The Bayesian tree in diagram 2 has the property that the state of the world X is the latest 

common cause of the jurors’ votes. In case B in the introduction, this property is violated. 

So, if real-world jury decisions are more like case B than case A, they are not adequately 

captured by the classical model. 
 

2.4 The new model 
 

The new model gives up the assumption that the state of the world is the latest common 

cause of the jurors’ votes. Instead, we assume that there exists an intermediate common 

cause between the state of the world and the votes. For simplicity, we describe that 

intermediate common cause as the body of evidence. 
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To illustrate why introducing a common body of evidence creates a dependency between 

votes that contradicts Condorcet’s independence assumption, imagine that you, an 

external observer, know that the defendant is truly guilty, and you learn that the first 10 

jurors have wrongly voted for ‘not guilty’. From this, you will infer that the jurors’ 

common evidence is highly misleading, which in turn implies that the 11th juror is also 

likely to vote for ‘not guilty’. This contradicts the classical condition of independence 

given the state of the world, according to which the first 10 votes provide no information 

for predicting the 11th vote once you know what the true state of the world is. 
 

We represent the common body of evidence by a random variable, E, which takes values 

in some set Ε. Diagram 3 shows the Bayesian tree corresponding to the new model. 
 

Diagram 3: Bayesian tree for the new model 
 

X 
 
 

 
 

E 
 

     
 
 

           V1             V2 V3 ... Vn 
 
The value of E can be interpreted as the totality of available information about the state of 

the world the jurors are exposed to, including the testimony of witnesses, jury 

deliberation, the appearance of the defendant in court (relaxed or stressed, smiling or 

serious etc.). In Bayesian tree terms, E is a child of the state of the world and a parent of 

the jurors’ votes. What matters is not the particular nature of E, which will usually be 

complex, but the fact that every juror is exposed to the same body of evidence.6 We do 

not make any particular assumption about the set E of possible bodies of evidence, which 

may be finite, countably infinite, or even uncountably infinite.  
 

The probability distribution of E depends on the state of the world: The distribution of E 

given guilt (X = 1) is different from that given innocence (X = 0). In the case of guilt, it is 
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usually more likely that the body of evidence will point towards guilt than in the case of 

innocence. For instance, the defendant might be more likely to fail a lie detector test in 

the case of guilt than in the case of innocence. We prove that the Parental Markov 

Condition, when applied to the Bayesian tree in diagram 3, has two implications: 
 

Common Signal (S). The joint probability distribution of the votes V1, V2, …,Vn given 

both the evidence E and the state of the world X is the same as that given just the 

evidence E. 
 

So, the votes are only indirectly caused by the state of the world: They depend on the 

state of the world only through the body of evidence. Once the evidence is given, what 

the state of the world is makes no difference to the probabilities of the jurors’ votes.7 
 

Independence Given the Evidence (I|E). The votes V1, V2, ..., Vn are independent from 

each other, conditional on the body of evidence E.  
 

So, the votes are independent from each other not once the state of the world is given, but 

once the evidence is given. Technically, this is described by saying that the consequences 

are screened off by their common cause, which means that the consequences (here the 

votes) become independent when we conditionalize on their common cause. We have: 
 

Proposition 1. (PM) holds if and only if (S) and (I|E) hold. 

Proof. All proofs are given in the appendix. � 
 

The important part of proposition 1 is that (PM) entails (S) and (I|E), which provides a 

justification for using (S) and (I|E) in our jury model. We have also proved the reverse 

entailment to show that all theorems using (S) and (I|E) could equivalently use (PM). 
 

In the new model, each juror’s vote is a signal, not primarily about the state of the world, 

but about the body of evidence, which in turn is a signal about the state of the world.8 

Both signals are noisy: The body of evidence is a noisy signal about the state of the 

world; and a juror’s vote is a noisy signal about the body of evidence. But both signals 

are typically biased towards the truth: The body of evidence is more likely to suggest 
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guilt than innocence in cases of guilt; and an individual juror’s vote is more likely to 

reflect an ‘ideal’ interpretation of the evidence than not. We address these issues below.  
 

In essence, our new jury theorem shows that majority voting reduces the noise in one set 

of signals – in the jurors’ interpretation of the body of evidence – but not in the other – in 

the body of evidence as a signal about the state of the world.9 
 

Let us introduce our assumption about juror competence formally. Recall that, in the 

classical model, competence was modelled by each juror’s probability p > 1/2 of making 

a correct decision, conditional on the state of the world. We here define competence as 

the probability of giving an ‘ideal’ interpretation of the evidence, conditional on that 

evidence. Specifically, we assume that, for any body of evidence e∈Ε, there exists an 

‘ideal’ interpretation, denoted f(e), that a hypothetical ideal observer of e would give. 

This ideal observer does not know the true state of the world, but gives the ideal (best 

possible) interpretation of the available evidence; f(e) = 1 means that the ideal observer 

would vote for ‘guilty’, and f(e) = 0 means that the ideal observer would vote for ‘not 

guilty’. We call f(e) the ideal vote – as opposed to the correct vote, which is the vote 

matching the true state of the world.10 While knowledge of the true state of the world x 

would allow a correct vote, the ideal vote results from the best possible interpretation of 

the evidence e. The ideal vote and the correct vote differ in the case of misleading 

evidence, such as when an innocent person’s hair is blown to the crime scene (and the 

person has no other alibi etc.). Our competence assumption states that the probability that 

juror i’s vote matches the ideal vote f(e) given the evidence e exceeds 1/2. Informally, 

each juror is better than random at arriving at an ‘ideal’ interpretation of the evidence.11  
 

Competence Given the Evidence (C|E). For all jurors i = 1, 2, ..., n and each body of 

evidence e∈Ε, pe:=P(Vi=f(e)|E=e)>1/2. The value of pe may depend on e. 
 

We assume – for simplicity and following the classical model – that the value of pe is the 

same for all jurors i.12 But we allow that pe may depend on e. If the body of evidence e is 

easily interpretable, for instance in the case of overwhelming evidence for innocence, the 

probability that an individual juror’s vote matches the ideal vote – here f(e)=0 – might be 
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high, say pe=0.95. If the body of evidence e is confusing or ambiguous, that probability 

might be only pe=0.55. Thus competence is a family of probabilities, containing one pe 

for each e∈Ε. The term ‘competence’ here corresponds to the ability to interpret the 

different possible bodies of evidence e∈Ε in a way that matches the ideal interpretation. 

For simplicity, one might replace (C|E) with the stronger (and less realistic) assumption 

of homogeneous competence, according to which pe is the same for all possible e∈Ε.  
 

Homogeneous Competence Given the Evidence (HC|E). For all jurors i = 1, 2, ..., n, 

p:=P(Vi=f(e)|E=e)>1/2, for each body of evidence e∈Ε. The value of p does not depend 

on e. 
 

3. The probability distribution of the jury’s vote 
 

We consider the model based on diagram 3 – assuming (PM) and hence (S) and (I|E) – 

and derive the probability distribution of the jury’s vote V = Σi=1,…,nVi given the state of 

the world. This distribution depends crucially on two parameters: p(1) := P(f(E)=1|X=1) 

and p(0) := P(f(E)=0|X=0). The first is the probability that the evidence is not misleading 

(that it points to the truth for an ideal observer) in the case of guilt; the second is the 

probability that the evidence is not misleading in the case of innocence. Our first result 

addresses the case of homogeneous competence (HC|E). 
 

Theorem 2. If we have (S), (I|E) and (HC|E), the probability of obtaining precisely v out 

of n votes for ‘guilty’ given guilt is  
         n               n 
P(V=v|X=1) = p(1)(   )pv(1-p)n-v + (1- p(1))(   )pn-v(1-p)v;                   
            v              v 
 
and the probability of obtaining precisely v out of n votes for ‘guilty’ given innocence is 
 
         n                      n 
P(V=v|X=0) = p(0)(   )pn-v(1-p)v + (1-p(0))(   )pv(1-p)n-v. 
            v                          v 
 

By theorem 2, if there is a non-zero probability of misleading evidence – specifically if 

0<p(1)<1 or 0<p(0)<1 – the jury’s vote V given the state of the world X does not have a 

binomial distribution, in contrast to the classical Condorcet jury model. The reason for 

this is that the votes V1, V2, ..., Vn, while independent given the evidence, are dependent 
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given the state of the world. The sum of dependent Bernoulli variables does not in 

general have a binomial distribution. If, on the other hand, the probability of misleading 

evidence is zero – i.e. p(1)=1 and p(0)=1 – the probabilities in theorem 2 reduce to those in 

the classical Condorcet jury model. Our next result describes the probability P(V=v|X=x) 

for the more general case where we assume (C|E) rather than (HC|E). 
 

Since E is a random variable, E induces a random variable pE which takes as its value the 

competence pe associated with the value e of E. To avoid confusion with the random 

variable E, we write the expected value operator as Exp(.) rather than E(.). 
 

Theorem 3. If we have (S), (I|E) and (C|E), the probability of obtaining precisely v out of 

n votes for ‘guilty’ given guilt is  
         n 
P(V=v|X=1) = p(1)(   )Exp(pE

v(1-pE)n-v |f(E)=1 and X=1)  
         v 

      n 
+ (1- p(1))(    )Exp(pE

n-v(1-pE)v|f(E)=0 and X=1); 
        v 

and the probability of obtaining precisely v out of n votes for ‘guilty’ given innocence is 
        n 

P(V=v|X=0) = p(0)(    )Exp(pE
n-v(1-pE)v|f(E)=0 and X=0) 

         v 
                    n 

+ (1- p(0))(   )Exp(pE
v(1-pE)n-v |f(E)=1 and X=0). 

                    v 
 

Note that, in theorems 2 and 3, by summing P(V=v|X=1) over all v > n/2, we obtain the 

probability of a simple majority for ‘guilty’ given guilt; and, by summing P(V=v|X=0) 

over all v < n/2, we obtain the probability of a simple majority for ‘not guilty’ given 

innocence. The present results allow us to compare the probability of a correct jury 

verdict in our model – specifically in the case of homogeneous competence – with that in 

the classical Condorcet jury model for the same fixed level of juror competence p.  
 

Corollary 1. Suppose we have (S), (I|E) and (HC|E). Let v>n/2. Then the probability of 

obtaining precisely v out of n votes for ‘guilty’ given guilt satisfies 
    n 
P(V=v|X=1) ≤ (     )pv(1-p)n-v, 
    v 
and so the probability of obtaining a majority for ‘guilty’ given guilt satisfies  
     n 
P(V>n/2|X=1) ≤ ∑v>n/2(   )pv(1-p)n-v. 
     v 
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The left-hand sides of the two inequalities correspond to our new model, the right-hand 

sides to the classical model. So corollary 1 implies that the probability of a majority for 

‘guilty’ given guilt in our new model is less than or equal to that in Condorcet’s model. 

Similarly, the probability of a majority for ‘not guilty’ given innocence in our new model 

is less than or equal to that in the classical model. The probability of a correct jury verdict 

is equal in the two models if and only if the probability of misleading evidence is zero. 

Unless the evidence always ‘tells the truth’ – unless p(1)=p(0)=1 – the jury in our new 

model will reach a correct verdict with a lower probability than in the classical model.  
 

4. A modified jury theorem 
 

We now state our modified jury theorem. Its first part is concerned with the probability 

that the majority of jurors matches the ideal vote, and its second part with the more 

important probability that the majority of jurors matches the true state of the world.  
 

Theorem 4. Suppose we have (S), (I|E) and (C|E).  

(i) Let W be the number of jurors i whose vote Vi coincides with the ideal vote f(E). 

For each x∈{0,1}, P(W > n/2|X=x) converges to 1 as n tends to infinity. 

(ii) P(V>n/2|X=1) converges to p(1) as n tends to infinity, and P(V<n/2|X=0) converges 

to p(0) as n tends to infinity. 
 

Part (i) states that, given the state of the world, the probability that the majority verdict 

matches the ideal interpretation of the evidence converges to 1 as n tends to infinity. But 

the ideal interpretation may not be correct. Part (ii) states that the probability that the 

majority verdict matches the true state of the world (given that state) converges to the 

probability that the ideal interpretation of the evidence is correct, i.e. that the evidence is 

not misleading. Reformulating part (i), the probability of no simple majority for the ideal 

interpretation of the evidence converges to 0. Reformulating part (ii), the probability of 

no simple majority matching the true state of the world converges to the probability that 

the evidence is misleading, i.e. that the ideal interpretation of the evidence is incorrect. 
 

This theorem allows the interpretation that, by increasing the jury size, it is possible to 

approximate the ideal interpretation of the evidence, no more and no less. The problem of 
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insufficient or misleading evidence cannot be avoided by adding jurors. Irrespective of 

the jury size, the probability of a correct majority decision at most approaches the 

probability that the evidence ‘tells the truth’, i.e. that its ideal interpretation matches the 

state of the world. Since there is typically a nonzero probability of misleading evidence – 

i.e. a nonzero probability that the evidence, even when ideally interpreted, points to 

‘guilt’ when the defendant is innocent or vice-versa – the probability that the jury will fail 

to track the truth converges to a nonzero value as the jury size increases, regardless of 

how large the competence parameters pe are in condition (C|E).13  
 

5. Reasonable doubt 
 

We now discuss the implications of our findings for the Bayesian question of when a jury 

is capable of establishing guilt of a defendant ‘beyond any reasonable doubt’. So far we 

have been concerned with the ‘classical’ probability of a particular voting outcome – for 

instance, a majority for ‘guilty’ – conditional on the state of the world. But in a jury 

context, we may also be interested in the Bayesian probability of a particular state of the 

world – for instance, the guilt of the defendant – conditional on a particular voting 

outcome. Suppose we initially attach a certain prior probability to the hypothesis that the 

defendant is guilty. We may then ask: Given that the jury has produced a particular 

majority for guilty, what is the posterior probability that the defendant is truly guilty? 

Reformulated in degree of belief terms, the question is this: What degree of belief can we 

attach to the hypothesis that the defendant is truly guilty, given that we have observed a 

particular voting outcome in the jury, such as an overwhelming majority for ‘guilty’?  
 

Formally, the probability we are concerned with here is not P(V=v|X=x), but P(X=x|V=v). 

Note the reversed order of conditionalization. Let r = P(X=1) denote the prior probability 

that the defendant is guilty. We assume that there is prior uncertainty about the guilt of 

the defendant, i.e. 0 < r < 1. Below we also assume nonzero probabilities of misleading 

evidence, i.e. 0 < p(1), p(0) < 1. In the classical model – assuming (I|X) –  we have: 

          rp2v-n 
P(X = 1|V = v) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯ (List 2004a). 

     rp2v-n + (1-r)(1-p)2v-n 
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We can easily see that, for a sufficiently large jury and a sufficiently large majority,  

P(X = 1|V = v) can take a value arbitrarily close to 1. In the limiting case where all jurors 

vote unanimously, the posterior belief converges to the alternative (‘guilty’ or ‘innocent’) 

supported by all jurors: P(X = 1|V = n) converges to 1, and P(X = 1|V = 0) converges to 0, 

as n tends to infinity. It is important to keep this implication of the classical model in 

mind when we see the results for our modified model. To simplify the exposition, we 

only consider the case of homogeneous competence here, i.e. (HC|E). The general case is 

technically more involved, but essentially analogous. 
 

Theorem 5. If we have (S), (I|E) and (HC|E), then the probability that the defendant is 

guilty given that precisely v out of n jurors have voted for ‘guilty’ is  
  1 

P(X = 1|V = v) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ . 
          1-r       (1-p(0))(p/(1-p))2v-n +p(0)  

                  1+ ⎯⎯ × ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  
            r         p(1)(p/(1-p))2v-n +(1- p(1))  
 

How confident in the correctness of a jury verdict can we ever be, given these Bayesian 

considerations? More formally, how close to 1 or 0 can the posterior probability P(X = 

1|V = v) ever get? Possibly never very close, unlike in the classical model. Consider the 

best-case scenario, where all jurors vote unanimously, either for ‘guilty’ or for ‘innocent’. 

These two cases correspond to V = n and V = 0. Using theorem 5 we can determine the 

posterior probability of guilt given V = n and the posterior probability of guilt given V = 0.  
 

Corollary 2. Suppose we have (S), (I|E) and (HC|E). Then: 

(a)  The probability that the defendant is guilty given a unanimous ‘guilty’ vote is 
      1 

P(X = 1|V = n) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,  which converges to 
     1-r       (1-p(0))(p/(1-p))n +p(0)  

             1+ ⎯⎯ × ⎯⎯⎯⎯⎯⎯⎯⎯⎯  
      r         p(1)(p/(1-p))n +(1- p(1))  

 
       1       

    ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ = P(X=1| f(E)=1) (< 1) as n tends to infinity. 
     1+((1-r)/r)((1-p(0))/ p(1))     

 
(b)  The probability that the defendant is guilty given a unanimous ‘not guilty’ vote is 

       1 
P(X = 1|V = 0) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,  which converges to 

     1-r      (1- p(0))((1-p)/p)n +p(0)  
             1+ ⎯⎯ × ⎯⎯⎯⎯⎯⎯⎯⎯⎯  

       r         p(1)((1-p)/p)n +(1-p(1))  
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                                                                  1              
    ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ = P(X=1| f(E)=0) (> 0) as n tends to infinity. 
     1+((1-r)/r) (p(0)/(1- p(1)))      

 

By contrast, in the classical model P(X=1|V=n) converges to 1 and P(X=1|V=0) converges 

to 0, as n tends to infinity.  
 

So, as n increases, [the probability that the defendant is guilty given a unanimous vote for 

‘guilty’] converges to [the probability that the defendant is guilty given that the evidence 

points towards guilt]. Likewise, as n increases, [the probability that the defendant is 

guilty given a unanimous vote for ‘not guilty’] converges to [the probability that the 

defendant is guilty given that the evidence points towards innocence].  
 

Corollary 2 describes the bounds on the posterior probability that X = 1 or X = 0, given 

the verdict of a large jury, by assuming the unrealistic case that V/n tends to 1 or 0. But 

this case occurs with probability 0 (unless p = 1), since with probability 1 the proportion 

of ‘guilty’-votes V/n converges to either p or 1-p. The former is the case if f(E)=1, the 

latter if f(E)=0. However, even in these two realistic cases – V/n converging to p and V/n 

converging to 1-p – the posterior probability of guilt, given the jury verdict, converges to 

exactly the same limits as in corollary 2. 
 

Corollary 3. Suppose we have (S), (I|E) and (HC|E). Let v1, v2, ..., vn ∈ {0,1} and put qn 

:= (v1+v2+...+vn)/n for all n. Then the probability that the defendant is guilty given that a 

proportion of qn of the jurors have voted for ‘guilty’ – where qn converges to either p or 

1-p as n tends to infinity – is as follows: 

(a) If qn converges to p, then P(X = 1|V/n = qn) converges to P(X=1| f(E)=1) (<1), as n 

tends to infinity (as in case (a) of corollary 2). 

(b) If qn converges to 1-p, then P(X = 1|V/n = qn) converges to P(X=1| f(E)=0) (> 0), 

as n tends to infinity (as in case (b) of corollary 2).  
 

The convergence results of corollaries 1 and 2 are identical, showing that in sufficiently 

large juries it is irrelevant whether the jury supports an alternative unanimously or by a 

proportion close to p (the exact meaning of ‘close’ depends on n and on the distance of p 

to 1/2). 
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Now we are in a position to state the key implication of these results: It may be 

impossible, even in an arbitrarily large jury and even when there is unanimity for ‘guilty’, 

to establish guilt of a defendant ‘beyond any reasonable doubt’. More precisely, suppose 

that the jury’s overall decision (or the judge’s decision based on the jury vote) is required 

to satisfy the following decision principle: 
 

Convict the defendant if and only if the posterior probability of guilt, given the 

jury vote, exceeds c, where c is some fixed parameter close to 1 (e.g. c = 0.95). 
 

The parameter c captures the threshold of reasonable doubt: Only a posterior probability 

of guilt above c is interpreted as representing a degree of belief beyond reasonable doubt. 

By corollary 2, we can immediately see that, if P(X=1| f(E)=1) ≤ c, then conviction will 

never be possible according to the decision principle just introduced. No matter how large 

the jury is and no matter how large the majority for ‘guilty’ is, the jury vote will never 

justify a degree of belief greater than c that the defendant is guilty, and hence will never 

establish guilt of the defendant beyond any reasonable doubt. So, if P(X=1| f(E)=1) ≤ c, 

even a unanimous vote for ‘guilty’ in a ten-million-member jury will be insufficient for 

conviction – in sharp contrast to what Condorcet’s classical model implies. 
 

6. Summary 
 

Using Bayesian networks, we have developed a new model of jury decisions. The model 

can represent a jury, committee or expert panel deciding on whether or not some factual 

proposition is true, and where the decision is made on the basis of shared evidence. We 

have suggested that our model is more realistic than the classical Condorcet jury model. 

First, it captures the empirical fact that in real-world jury, committee or expert panel 

decisions the state of the world is typically not the latest common cause of the jurors’ 

votes, but there exists some intermediate common cause: the body of evidence, as 

described here. Secondly, in legal contexts, the model captures the requirement that 

jurors must not use any evidence other than that presented in the courtroom. This means 

that, even if, hypothetically, the jurors could each obtain an independent signal about the 

state of the world (without any intermediate common cause between different such 
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signals), they would be required by law not to use such information. Our model makes 

two key assumptions: 

• The Parental Markov Condition, applied to the Bayesian tree in diagram 3, which has 

two implications:  

o Common Signal: The jurors’ votes depend on the true state of the world only 

through the available body of evidence.  

o Independence Given the Evidence: The votes of different jurors are 

independent from each other given the available body of evidence.  

• Competence Given the Evidence: For each body of evidence, each juror has a 

probability greater than 1/2 of matching the ideal interpretation of that evidence. In 

the ‘homogeneous’ case, juror competence is the same for all possible bodies of 

evidence; in the ‘heterogeneous’ case, it may depend on the evidence. 
 

Then:  

• The probability of correct majority decision (given the state of the world) is typically 

less than, and at most equal to, the corresponding probability in the classical 

Condorcet jury model.  

• As the jury size increases, the probability of a correct majority decision (given the 

state of the world) converges to the probability that the evidence is not misleading. 

Unless the evidence is never misleading, the probability of a correct majority decision 

is strictly less than one.  

• Depending on the required threshold of ‘no reasonable doubt’, it may be impossible, 

even in an arbitrarily large jury and even when the jury unanimously votes for 

‘guilty’, to establish guilt of a defendant ‘beyond any reasonable doubt’. 
 

Our model reduces to the classical Condorcet jury model if and only if we assume both 

that the evidence is never misleading and that juror competence is the same for all 

possible bodies of evidence (homogeneous competence). If these assumptions are 

inadequate in real-world jury, committee or expert panel decisions, then the classical 

Condorcet jury model, as it stands, fails to apply to such decisions. 
 



 18

References 
 

Austen-Smith, D., and J. Banks (1996), Information Aggregation, Rationality, and the 
Condorcet Jury Theorem, American Political Science Review 90: 34-45. 

Boland, P. J. (1989), Majority Systems and the Condorcet Jury Theorem, Statistician 38: 
181-189. 

Boland, P. J., F. Proschan and Y. L. Tong (1989), Modelling dependence in simple and 
indirect majority systems, Journal of Applied Probability 26: 81-88. 

Bovens, L. and E. Olsson (2000), Coherentism, reliability and Bayesian networks, Mind 
109: 685-719. 

Corfield, D. and J. Williamson (eds.) (2001), Foundations of Bayesianism, Dordrecht 
(Kluwer). 

Dietrich, F. (2003), General Representation of Epistemically Optimal Procedures, Social 
Choice and Welfare, forthcoming.  

Estlund, D. (1994), Opinion leaders, independence and Condorcet’s jury theorem, Theory 

and Decision 36: 131-162. 
Fitelson, B. (2001), A Bayesian Account of Independent Evidence with Application, 

Philosophy of Science 68 (Proceedings): S123-S140. 
Grofman, B., G. Owen and S. L. Feld (1983), Thirteen theorems in search of the truth, 

Theory and Decision 15: 261-278. 
Lahda, K. K. (1992), The Condorcet Jury Theorem, Free Speech, and Correlated Votes, 

American Journal of Political Science 36: 617-634. 
List, C., and R. E. Goodin (2001), Epistemic Democracy: Generalizing the Condorcet 

Jury Theorem, Journal of Political Philosophy 9: 277-306. 
List, C. (2004a), On the Significance of the Absolute Margin, British Journal for the 

Philosophy of Science, forthcoming. 
List, C. (2004b), The Epistemology of Special Majority Voting, Social Choice and 

Welfare, forthcoming. 
Nitzan, S., and J. Paroush (1984), The significance of independent decisions in uncertain 

dichotomous choice situations, Theory and Decision 17: 47-60. 
Owen, G. (1986), Fair Indirect Majority Rules, in B. Grofman and G. Owen (eds.), 

Information Pooling and Group Decision Making, Greenwich, CT (Jai Press). 
Pearl, J. (2000), Causality: models, reasoning, and inference, Cambridge (C.U.P.). 



 19

Appendix: Proofs 
 

Proof of proposition 1. 

(i) First assume (PM). Let e∈E be any body of evidence. We show that given E=e the 

variables V1,... , Vn, X (votes and state of the world) are independent, which implies in 

particular that given E=e the votes V1,... , Vn are independent (Independence Given the 

Evidence (I|E)) and that given E=e the vote vector (V1,..., Vn) is independent of X (which 

is equivalent to Common Signal (S)). 

To show that given E=e the variables V1,... , Vn, X are independent, let v1,... , vn, x ∈{0,1} 

be any possible realizations of these variables. First, we apply (PM) on the first juror’s 

vote V1: Since E is the only parent of V1 and all of V2,... , Vn, X are non-descendants of V1, 

by (PM), given E=e, V1 is independent of the vector of variables  

(V2,... , Vn, X), i.e. 

(1) P(V1= v1, ..., Vn= vn,X=x|E=e)=P(V1= v1|E=e)P(V2= v2 , ..., Vn= vn,X=x|E=e).  

Next, we apply (PM) on V2 to decompose the second term of the last product: Since E is 

the only parent of V2 and all of V3,... , Vn, X are non-descendants of V2, by (PM), given 

E=e, V2 is independent of the vector of variables (V3,... , Vn, X), i.e. 

P(V2= v2, ..., Vn= vn,X=x|E=e)= P(V2= v1|E=e)P(V3= v3 , ..., Vn= vn,X=x|E=e). 

Substituting this into (1), we obtain 

P(V1= v1, ..., Vn= vn,X=x|E=e)= P(V1= v1|E=e)P(V2= v2|E=e) 

     × P(V3= v3, ..., Vn= vn, X=x|E=e). 

By continuing to decompose joint probabilities, one finally arrives at 

P(V1= v1, ..., Vn= vn, X=x|E=e)=P(V1= v1|E=e)× ... ×P(Vn= vn|E=e)P(X=x|E=e), 

which establishes the independence of V1,... , Vn, X. 
 

(ii) Now assume (S) and (I|E). Let e∈E be any realization of E. To show (PM) we have to 

go through all nodes of the tree. What (PM) states for the top node X is vacuously true 

since X has no non-descendants (except itself). Regarding E, its only non-descendant 

(except itself) is its parent X, and of course, given X, E is independent of X since X is 

deterministic. Finally, consider vote V1 (the proof for any other vote V2, ...,Vn is 

analogous). We have to show that V1 is independent of its vector of non-descendants  

(V2, ..., Vn, X) given its parent E=e. (We have excluded E from the vector of non-
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descendants because E is deterministic given E=e.) Let v2,... , vn, x∈{0,1} be any 

realizations of V2, ... ,Vn, X. By (S), given E=e, (V2, ...,Vn) is independent of X, and so 

P(V2= v2, ..., Vn= vn,X=x|E=e)= P(V2= v2 , ..., Vn= vn|E=e)P(X=x|E=e). 

Now we can apply (I|E) to decompose the first factor in the last product, which yields 

P(V2= v2, ..., Vn= vn,X=x|E=e)= P(V2= v2 |E=e)×...×P(Vn= vn|E=e)P(X=x|E=e). 

This shows the independence of (V2,... ,Vn, X) given E=e. � 
 

An alternative proof of proposition 1 might be given using the criterion of d-separation or 

the theory of semi-graphoids. 
 

Proof of theorem 2. 

By (HC|E), each body of evidence e∈E is equally easy to interpret ideally, and so we 

assume for simplicity that Ε = {0, 1}, where e = 0 is the evidence ideally interpreted as 

suggesting innocence f(e)=0, and e = 1 is the evidence ideally interpreted as suggesting 

guilt f(e)=1. By (HC|E) and (I|E), if E=1 then the votes V1, V2, …, Vn are independently 

Bernoulli distributed, with a probability p of Vi = 1 and a probability 1-p of Vi = 0 for 

each i. If E=0 then the votes V1, V2, …, Vn are also independently Bernoulli distributed, 

with a probability p of Vi = 0 and a probability 1-p of Vi = 1 for each i. Hence, given E=1, 

the jury’s vote V = Σi=1,…,nVi has a Binomial distribution with parameters n and p. And 

given E=0, V has a Binomial distribution with parameters n and 1-p: 
                           n               n 
(2) P(V=v|E=1) = (   )pv(1-p)n-v,   P(V=v|E=0)=(   )pn-v(1-p)v.                
                           v               v 
 
Now, the probability of obtaining precisely v out of n votes for ‘guilty’ given the state of 

the world x is: 

P(V=v|X=x)=P(V=v|E=1 and X=x)P(E=1|X=x)+P(V=v|E=0 and X=x)P(E=0|X=x). 

By (S), conditionalizing on both E=e and X=x is equivalent to conditionalizing only on 

E=e, so that: 

P(V=v|X=x) = P(V=v|E=1)P(E=1|X=x) + P(V=v|E=0)P(E=0|X=x). 

Explicitly, taking the two cases x=0 and x=1, 

P(V=v|X=1) = P(V=v|E=1)p(1) + P(V=v|E=0)(1- p(1)); 

P(V=v|X=0) = P(V=v|E=0)p(0) + P(V=v|E=1)(1-p(0)). 
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Recall that p(1) := P(f(E)=1|X=1) and p(0) := P(f(E)=0|X=0), and here f(E)=E. Now 

theorem 2 in the case Ε = {0, 1} follows from (2). The general case follows from theorem 

3 below. � 
 

Proof of theorem 3.  

First, we use the law of iterated expectations to write 

P(V=v|X=x) = Exp(P(V=v|E and X=x)|X=x). 

By (S) we have P(V=v|E and X=x) = P(V=v|E), so that we deduce 

(3) P(V=v|X=x) = Exp(P(V=v|E)|X=x). 

By (C|E) and (I|E), conditional on E the votes V1, V2, ..., Vn are independent and Bernoulli 

distributed with parameter pE if f(E)=1 and 1-pE if f(E)=0. Hence the sum V has a 

binomial distribution with first parameter n and second parameter pE if f(E)=1 and 1-pE if 

f(E)=0: 
                            n 

   (    ) pE
v(1-pE)n-v if f(E)=1 

      v  
P(V=v|E) = { 

      n 
   (    ) pE

n-v(1-pE)v if f(E)=0. 
     v 

 

In other words, 
 
                       n          n 
P(V=v|E) =  (    ) pE

v(1-pE)n-v1{f(E)=1} +  (   ) pE
n-v(1-pE)v1{f(E)=0}, 

            v          v 
where 1{f(E)=1} and 1{f(E)=0} are characteristic functions (1A is the random variable defined 

as 1 if the event A holds and as 0 if it does not). 

So, by (3) and the linearity of the (conditional) expectation operator Exp(.|X=x), 
                n 
P(V=v|X=x) = P(f(E)=1|X=x)(   )Exp(pE

v(1-pE) n-v |f(E)=1 and X=x) 
                v 

                  n 
+ P(f(E)=0|X=x)(    )Exp(pE

n-v(1-pE)v|f(E)=0 and X=x). � 
                    v 

Proof of corollary 1. 

Suppose (HC|E) holds. Assume that v>n/2 (a majority for ‘guilty’). Then  

pn-v(1-p)v =pv(1-p)n-v((1-p)/p)2v-n ≤ pv(1-p)n-v, 

since 2v-n>0 and p>1/2. So, by the formula for P(V=v|X=1) in theorem 2, we deduce. 
       n              n            n 

P(V=v|X=1) ≤ p(1)(   )pv(1-p)n-v + (1-p(1))(   )pv(1-p)n-v = (   )pv(1-p)n-v, as required. � 
            v            v               v 
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Proof of theorem 4.  

(i) We conditionalize on E. By (C|E) and (I|E), W is the sum of n independent Bernoulli 

variables with parameter pE. The weak law of large numbers implies that the average W/n 

converges in probability to pE. Since pE>1/2, it follows that 

limn→∞P(W>n/2|E)=1.  

Applying the (conditional) expectation operator on both sides (which corresponds to 

averaging with respect to E), we obtain 

Exp(limn→∞P(W>n/2|E) | X=x))=Exp(1 | X=x)=1. 

By the dominated convergence theorem, we can interchange the expectation operator 

with the limit operator on the left hand side, so that 

limn→∞ Exp(P(W>n/2|E) | X=x) = 1. 

By (S) we can replace P(W>n/2|E) by P(W>n/2|E and X=x). This leads to 

limn→∞ Exp(P(W>n/2|E and X=x) | X=x) = 1,  

and hence by the law of iterated expectations 

limn→∞ P(W>n/2 | X=x) = 1. 

(ii) Using the weak law of large numbers in a similar way as in (i), it is possible to prove 

that the probability P(V>n/2|E)=P(V/n>1/2|E) converges to 1 if f(E)=1 and to 0 if f(E)=0 

(as n tends to infinity). Hence 

(4) limn→∞ P(V>n/2 | E)=1{f(E)=1},  

where 1{f(E)=1} is the random variable defined as 1 if f(E)=1 and as 0 if f(E)=0. 

By the law of iterated expectations, 

P(V>n/2|X=1)=Exp(P(V>n/2|E and X=1)|X=1), which by (S) simplifies to:  

(5) P(V>n/2|X=1)= Exp(P(V>n/2|E)|X=1). 

Further, we have 

P(f(E)=1|X=1)=Exp(1{f(E)=1} |X=1)=Exp(limn→∞ P(V>n/2 | E)|X=1), 

where the last step uses (4). We now interchange the expectation operator with the limit 

(by the dominated convergence theorem) and then use (5) to obtain  

P(f(E)=1|X=1)=limn→∞ Exp(P(V>n/2 | E)|X=1)= limn→∞ P(V>n/2|X=1). 

As for the case X=0, it can be shown similarly that 

P(f(E)=0|X=0)=limn→∞ P(V<n/2|X=0). � 
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The complexity of this proof is due to the fact that the set of possible evidences E is 

arbitrarily large (and endowed with some σ-algebra). For finite or countable E, 

(conditional) expectation operators could be replaced by summations. 
 

Proof of theorem 5. 

By Bayes’s theorem, for any v, 

                     rP(V=v|X=1) 
P(X = 1|V = v) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ . 

     rP(V=v|X=1) + (1-r)P(V=v|X=0)  
 
Dividing numerator and denominator by rP(V=v|X=1), we get 
                          1 
P(X = 1|V = v) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ . 

    1 + (1-r)/r 
P(V=v|X=0)/P(V=v|X=1)  

 
We use theorem 2 for expressing P(V=v|X=1) and P(V=v|X=0), and we then simplify: 
 

                   n             n 
               (1-p(0))(   )pv(1-p)n-v + p(0)(   )pn-v(1-p)v     

P(V=v|X=0)       v                   v 
⎯⎯⎯⎯⎯ = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
P(V=v|X=1)             n                   n 

   p(1)(   )pv(1-p)n-v + (1- p(1))(   )pn-v(1-p)v                   
               v                 v 
  

                 
             (1-p(0))(p/(1-p))2v-n +p(0)  

                     = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ . � 
    p(1)(p/(1-p))2v-n +(1-p(1))  

 
Proof of corollary 2.  

To prove part (a), note that the convergence to  

 1       
⎯⎯⎯⎯⎯⎯⎯  
1+(1-r)/r(1-p(0))/p(1)      

is clear because (p/(1-p))n → ∞, so that the ratio  
 
 (1-p(0))(p/(1-p))n +p(0)  

              ⎯⎯⎯⎯⎯⎯⎯⎯⎯  
 p(1)(p/(1-p))n +(1-p(1))  
 

is asympotically equivalent to 
 

(1-p(0))(p/(1-p))n +0     1-p(0) 
              ⎯⎯⎯⎯⎯⎯⎯⎯ = ⎯⎯ . 

   p(1)(p/(1-p))n +0          p(1) 
 
The rest follows from 
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          1                       1     
⎯⎯⎯⎯⎯⎯ = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1+(1-r)/r(1-p(0))/p(1)     1+[P(X=0)/P(X=1)] × P(f(E)=1|X=0)/P(f(E)=1|X=1) 

 
 

                   P(X=1) P(f(E)=1|X=1) 
= ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ . 
    P(X=1) P(f(E)=1|X=1) + P(X=0) P(f(E)=1|X=0) 

 
Part (b) has an analogous proof. � 
 
Proof of corollary 3. 

In the formula of theorem 5, we replace v by nqn. If qn → p(>1/2), then the term  

[p/(1-p)]2nqn-n = [p/(1-p)]2n(qn-1/2) tends to ∞. So the ratio 

 (1-p(0))(p/(1-p))2nqn-n +p(0)            (1-p(0))(p/(1-p))2nqn-n +0     1-p(0) 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  is asymptotically equivalent to ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ = ⎯⎯ , 
 p(1)(p/(1-p))2nqn-n +(1- p(1))             p(1)(p/(1-p))2nqn-n n +0         p(1) 
 
which proves (a). The proof of (b) is analogous. � 
                                                 
1 All conditions are formulated for a given group size n rather than beginning with ‘For all n’. However, in 
many of our results, the group size is not fixed and tends to infinity. In these results, we implicitly assume 
that all conditions begin with ‘For all n’ (and that the competence parameter in the competence conditions 
is the same for all n). Compare List (2004b). 
2 We hereafter mean ‘probabilistically caused’ when we use the expression ‘caused’. Probabilistic causation 
means that the cause affects the probabilities of consequences, whereas deterministic causation means that 
the cause determines the consequence with certainty. Probabilistic causation can arise for at least two 
reasons. Metaphysical reasons: The process in question may be genuinely indeterministic; causes determine 
consequences only with probabilities strictly between 0 and 1, but not with certainty. Epistemic reasons: 
The process in question may or may not be deterministic at the most fundamental level, but due to its 
complexity we may not be able to include, or fully describe, all relevant causal factors in the network 
representation; thus probabilities come into play. We here remain neutral on which of these two reasons 
apply, though it is obvious that any theoretical representation of jury decisions will be underdescribed and 
thus epistemically limited. (Our definition of probabilistic causation allows the special case where the net 
causal effect on probabilities is zero, because positive and negative causes may cancel each other out.) 
3 Several generalizations of the classical Condorcet jury model have been discussed in the literature. We 
have already referred to existing discussions of dependencies between different jurors’ votes. Cases where 
different jurors have different competence levels are discussed, for instance, in Grofman, Owen and Feld 
(1983), Boland (1989) and Dietrich (2003). Cases where jurors vote strategically rather than sincerely are 
discussed, for instance, in Austen-Smith and Banks (1996). Cases where choices are not binary are 
discussed, for instance, in List and Goodin (2001). Cases where juror competence depends on the jury size 
are discussed, for instance, in List (2004b). 
4 Sometimes Bayesian networks are assumed to contain more information: Each node in the graph is 
endowed with a probability distribution of the variable at this node conditional on the node’s parents (or 
unconditionally if there are no parents). 
5 To specify a joint probability distribution of the variables satisfying the Parental Markov Condition, it is 
sufficient to specify a distribution of each variable conditional on its parents (an unconditional distribution 
if there are no parents). The product of all these conditional probability functions then yields a joint 
distribution of all variables that satisfies the Parental Markov Condition. 
6 So all jurors base their votes solely on the same value e of E. Differences between jurors’ votes are not the 
result of the jurors’ independent – and thus potentially different – access to the state of the world (as in the 
classical model), but the result of different interpretations of the same evidence e. One juror might interpret 
the defendant’s smile as a sign of innocence, whereas another might give the opposite interpretation. 
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7 An equivalent statement of (S) is the following: Given E, the vector of votes (V1, V2, …,Vn) is independent 
of the state of the world X. 
8 One can imagine cases where (part of) the evidence E is not caused by the state of the world X. For 
instance, if X is the fact of whether or not the defendant has committed a given crime, then the information 
that the defendant bought a gun in a nearby shop two days before the crime may be evidence for guilt. But 
this evidence cannot be caused by the crime since the gun purchase happened before the crime. Rather, the 
causal link between the gun purchase and the crime goes in the other direction. To capture such cases, one 
might want to replace our causal relation X→E by some other causal relation between X and E, e.g. by 
X←E, or by a bidirectional causal relation X↔E, or by a common parent of X and E. The theorems and 
corollaries of this paper still apply to such modified Bayesian trees (provided that the state X remains 
related to the votes only through the evidence E). The reason is that the Parental Markov Condition (PM) 
still implies Common Signal (S) and Independence Given the Evidence (I|E), so that (S) and (I|E) remain 
justified assumptions. 
9 This model captures not only the empirical fact that in real world jury decisions the available evidence is 
usually finite and limited, but also the legal norm, mentioned in the introduction, that jurors are not allowed 
to obtain or use any evidence other than that presented in the courtroom, or to discuss the case with any 
persons other than the other jurors.  
10  Different interpretations of the ideal vote f(e) may be given. One is that the ideal vote is 1 if and only if 
the objective probability of guilt given the evidence e exceeds some threshold. Here the ideal interpreter is 
assumed to know the objective likelihoods (of the evidence given guilt and given innocence) and the 
objective prior probability of guilt. Another interpretation, which does not require an objective prior of guilt 
but a shared prior of guilt, is to assume that the ideal interpreter uses the group’s shared (perhaps not 
objective) prior probability of guilt to calculate the posterior probability of guilt given the evidence. We can 
give a Bayesian account of both interpretations. Assume that the set Ε of all possible bodies of evidence is 
countable. Suppose that, by knowing the evidence-generating stochastic process, the ideal observer knows 
the probabilities P(E=e|X=1) and P(E=e|X=0). Suppose, further, that the ideal observer assigns the 
(objective or shared) prior probability r:=P(X=1) to the proposition that the defendant is guilty. Then, using 
Bayes’s theorem, the ideal observer can calculate the posterior probability that the defendant is guilty, 
given the evidence e, i.e. P(X=1|E=e) = rP(E=e|X=1) / (rP(E=e|X=1) + (1-r)P(E=e|X=0)). Furthermore, the 
group (or the ideal observer) might set a (normative) threshold of when to accept, beyond any reasonable 
doubt, that the defendant is guilty, given the evidence e. Now the ideal vote is a ‘guilty’ vote if P(X=1|E=e) 
> 1-ε (for a suitable ε > 0) and a ‘not guilty’ vote otherwise. The prior probability r represents the degree of 
belief the ideal observer assigns to the guilt of the defendant before having seen any evidence. The value of 
ε represents how demanding the criterion of ‘beyond any reasonable doubt’ is. 
11 We also allow that not all jurors have observed the entire evidence e. For instance, some jurors might 
have missed the smile of the defendant. What matters is not that all jurors base their vote on the full 
evidence e, but that they use information contained in e. A juror’s information is thus limited by e, which 
represents the maximally available information for any jury size. 
12 This assumption is a technical simplification, but involves no real loss of generality. As in the classical 
Condorcet jury model (e.g. Boland 1989), our model can be generalized by allowing differently competent 
jurors, so that the competence P(Vi=f(e)|E=e) depends also on i, denoted pe,i. Our asymptotic results then 
remain true if we replace (C|E) (respectively (HC|E)) by the weaker competence assumption that the 
limiting average competence, limn→∞∑all i pe,i/n, exceeds 1/2. In corollary 3 one has to interpret p as the 
limiting average competence across jurors; since corollary 3 requires (HC|E), this limiting average 
competence does not depend on e here. 
13 It is possible to prove a slightly stronger result than theorem 4. Given the state of the world x, the ratio 
V/n converges with probability 1 to the random variable defined by pE (>1/2) if f(E)=1 and 1-pE (<1/2) if 
f(E)=0 (<1/2). Among these two possible limits the one that corresponds to a majority for the correct 
alternative happens with probability p(x) = P(f(E)=x|X=x). Hence, with probability 1, there is convergence to 
a stable majority as the jury size increases, where this majority supports the correct alternative with the 
probability that the evidence ‘tells the truth’. 


