
I

SOCIAL EPISTEMOLOGY, 1990, VOL. 4, No.2, 135-154

Open peer commentary

Computationalism

ERIC DIETRICH

1 Introduction

Computationalism is the hypothesis that cognition is the computation off unctions. If
computationalism is correct, then scientific theories of cognition will explain it as the
computation of functions. The job for the computationalist is to determine which
functions cognition is, i.e. which specific functions explain specific cognitive
phenomena.

A particular kind of computationalism - cognitivism - is the backbone of our current
cognitive science (Haugeland 1978; Cummins, 1983). And, though we should, and will,
come to eschew cognitivism as cognitive science advances (or so I claim), we will still
embrace computationalism. In fact, I am inclined to think that even when cognitive
science is broadly construed, computationalism is still its foundational assumption. If
we consider cognitive science to be the attempt to explain phenomena ranging from
recognizing food or a conspecific to proving Fermat's Last Theorem, and concerned
with systems ranging from paramecia to societies of humans, we ·find that
computationalism is still at its foundation. And, though it is not foundational in
disciplines such as developmental neurobiology, and molecular biology, ecology,
economics, and neuropsychology and developmental psychology, computationalism is
part of their methodological repertoire.

Computationalism is only foundational and methodological. By itself, it makes no
claims about which functions are computed, except to say that they are all Turing­
computable (computationalists accept the Church-Turing thesis), nor does it make
any specific claims as to how they got computed, except to say that the functions are
systematic, productive, and interpretable in a certain way (see Section 2).1
Computationalism, therefore, makes no specific predictions about any aspect of
cognition beyond those implied by 'functionhood', nor does it explain any specific
aspect of cognition. In fact, the computationalist thesis is compatible with a variety of
more detailed theories of cognitive behavior which are themselves incompatible.2

Author: Eric Dietrich, Program in Philosophy and Computer & Systems Science, State University of New
York, Binghamton, NY 13901, USA. I would like to thank Robin Hill for reading and commenting on an earlier
draft of this paper. I have benefited from discussing the ideas presented here with the members of a New
Mexico State graduate seminar on the methodologies for AI and the members of the 1988 History &
Philosophy of Science Conference at Boulder, Colorado. Finally, I wish to thank Chris Fields for years of
discussing these topics with me.

0269-1728/90 $3.00 ©1990 Taylor & Francis Ltd.

136 ERIC DIETRICH

Computationalism is an empirical thesis. It could be false - the only way to tell is to
vigorously pursue a computationalist research strategy and see if we make any
theoretical and empirical headway. But before this can happen, computationalism
must be taken seriously. Taking computationalism seriously requires embracing, at
least provisionally, all its consequences, and computationalism has some rather severe
consequences. The purpose of this paper is to discuss two of these consequences.
Specifically, I will argue that computationalism is incompatible with the notion that
humans have any special seman tical properties in virtue of which their thoughts are
about things in their environment, and that the thesis is incompatible with the notion
that humans make decisions. I am not, here, primarily concerned with whether
computationalism is true or false, or explanatorily adequate or inadequate; that can
only be determined by using it, and seeing if our cognitive science is better off with it
than without it.

The two consequences just mentioned should be elaborated slightly. Computatio­
nalism claims that humans have no special semantic properties which attach them to
their environment. Humans do indeed have such semantical properties but so do
computers. More succinctly, if computationalism is correct, both humans and
computers have intentionality. In fact, intentionality will turn out to be almost a
commonplace. The second consequence is that humans have no special ability to make
decisions, at least not when this term is given its ordinary meaning - as the capacity for
willfully selecting among alternatives. Decisions are not made by any special exercise of
the will.

As I formulate them, these two consequences have an interesting asymmetry. It is
widely believed that humans possess intentionality but that computers do not (Searle
1980; Fodor 1981; Dretske 1985; Sayre 1986). It is also widely assumed that both
computers and humans make decisions. If computationalism is correct, this is almost
exactly backwards: both humans and computers possess intentionality, but neither
make decisions. Intentionality is, therefore, not rare, and exercising one's will is so rare
as to be non-existent.

2 The nature of computationalism

In this section I shall describe computationalism in some detail and distinguish it from
two other theses about cognition.

2.1 Properties of computational explanations

Computationalists claim that explanatorily adequate theories of cognition will use
computational explanations. Such an explanation has the following properties. First, it
is an explanation of an ability or capacity ofa system to exhibit certain behavior. Thus,
a computational explanation differs from a causal law which describes the causal state
changes of a system (for more details, see Haugeland (1978) and Cummins (1983)).
Be"cause the observed behavior is regular, the underlying capacity can be described as
the capacity to compute a mathematical function from inputs to outputs. For many
systems, we forego describing the relation between inputs and outputs as a
mathematical function, opting instead for descriptions such as 'the system plays chess'
or 'understands English'. Nevertheless, to be amenable to computational explanation,

COMPUTATIONALISM 137

a system's behavior must be describable as the computation of Turing-computable,
mathematical function. Conversely, attributing a function to a particular system is
seeing that system as doing something regular.

The requirement that the observed behavior be regular and due to a certain ability
may seem too weak because any system which changes states (Le. everything) can be
described as computing a function - the function that describes its behavior. Yet we
clearly do not want computation explanations to apply to everything; computational­
ism cannot replace physics. For example, we could see an object and a volume of water
as a system which computes Archimedes's principle when the object is placed in the
water. Or we could see a bicycle pump, a flat tire, and a pumping cyclist as a system
which computes the ideal-gas law. But this seems wrong. We can explain why the
object displaces the amount of water that it does by using Archimedes's principle, but
we do not see the object-water system as actually computing a function. There are
proposed solutions to this problem, but it is not clear any of them work. This prob­
lem need not concern us, though. There are clear, unproblematical cases where we
explain a system's behavior by saying it computes a function. We will stick to such
cases.3

The first property of computational explanations guarantees that capacities for
exhibiting certain behavior are understood (by the explainers) as capacities for
computing certain functions, and that exhibiting the behavior is seen as computing the
function. The function so attributed to the system is 'system-sized'; it describes the
behavior of the whole system.

The second property of computational explanations begins where the first leaves off.
A computational explanation must by systematic, Le. it must exhibit the system in
question as, indeed, a system. To do this, the explanation must posit interdependent
functions which interact to_ produce the output from the input. In other words, the
explanation must analyze the system-sized function into subfunctions and show how
the different subfunctions interact to produce the output (the behavior) in question (cf.
Haugeland 1978). Moreover, the subfunctions must constitute a rather fixed set of
functions out of which the larger functions are built. Procedures and standard
computer programs are systematic in just this sense. In fact, one way of phrasing the
second property is to say that, in order for an explanation to be computational, it must
allow theorists to see the system's state changes as the execution of a procedure.
(Computer programs, Le. procedures implemented in some computer language, are
also systematic, but they are not explanations in the sense used here; they are not
theoretical explanations of behavior. It is easy to see this. Many different programs can
implement the same procedure. If programs were theoretical explanations, then we
would have an embarrassment of theories for each capacity we wished to theorize
about, and we would have no reason for selecting one of these 'theories' over the other
(see Dietrich (in press b)). Of course, all procedures must be couched in some language
or other. But some languages are more scientifically useful than others. Computatio­
nalism needs a scientifically useful language, not a software engineering language.
(Logics of various sorts and statistical mechanics are the currently preferred languages
of computationalism.)

This is a good place to introduce the notion of control flow. The specific ordering
arrangement off unctions which are computed is called the control flow of the system's
computation. In Section 4, this notion will be quite important. For now, Ijust want to
note that the flow of control is fixed by the functions which the systems can compute
and by the initial state of the system, Le. its initial input. In other words, once a

138 ERIC· DIETRICH

procedure is specified (by a programmer or by evolution) then flow of control is
determined (except for random events) by the initial state of the system.

The first and the second property together mean that the ability of the system to
produce or exhibit some particular kind of behavior on a regular basis is the ability to
execute certain procedures, and whenever the system exhibits the behavior in question
it is executing the relevant procedure.

Third, a computational explanation is interpretive. This property of computational
explanations is logically entailed by the first. The capacity for a certain behavior is
manifested as a characteristic part of the actual behavior. In order to see (or describe) a
part of behavior as the computation of a certain function, F, we, as theorists, must see
the system generate, over time, output equal to F(input). However, in order to see this,
we must be able to interpret the initial state of the system as being the requisite input for
F, and the final state of the system as being the requisite output, F(input). So,
computational explanations are inherently interpretive.

The three properties of computational explanations may be summed up as follows.
Explaining a system's behavior as computing some function requires interpreting the·
initial and final states of the system as inputs and outputs for the proposed function,
and then analyzing the proposed function into a sequence of subfunctions each of which
carries with it its own interpretation ofits initial and final states. Finally, whenever the
system exhibits the behavior in question, it is computing the relevant sequence of
subfunctions, i.e. it is executing a procedure. (All "of the preceding is relatively well­
known thanks to the work ofHaugeland (1978) and Cummins (1983); see also Fodor
(1965).)

The three properties just discussed do not fully capture the notion of a computational
explanation. One other property is required. I call this property productivity: the
functions whose computation is attributed to the system in question must be
productive, a property which can be understood by contrasting it with non-productive
procedures.

Consider two devices which take numbers as input and output their product. The
question is: are both devices multipliers? Suppose the first device uses the well-known
iterative-sum procedure: given 4 X 7, it totals up four sevens. Suppose the second
device stores a two-dimensional, n X n matrix as in Figure 1. When the second device is
given 4 X 7 it merely finds the product which is already present in the matrix.

Only the first device can potentially handle any posed multiplication problem
because only it executes a multiplication procedure, hence only the first device is a
multiplier. The second device is not a multiplier because it does not execute a
multiplication procedure. In order for the second device to be useful, the products must
be built in, and in order to do this they must already be known or computed. Hence, to
build the second device, one requires the first device (or some other device that uses a
productive multiplication procedure).

Of course, the second device is a computer, albeit a simple one, because it does
compute functions: it computes matrix-look-up functions and it does this by executing
matrix-look-up procedures. Hence, we can produce computational explanations of the
second device because the procedure attributed to it is productive: it continues to work
as the size of the matrix, is increased. But it is not a multiplier, and computational
explanations attributing computing the multiplication function to it are wrong.

Some are tempted to say here the second device computes the multiplication
function, but not by executing the iterative-sum procedure. Here is the argument. Both
devices have a finite capacity for multiplying numbers. The first device only has a finite

COMPUTATIONALISM

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

· ..
· ..
· ..

n:

12345678910 ll n

. .. n X n

FIGURE 1. The n X n two-dimensional matrix for the second device.

139

(random-access) memory. Consequently, it can multiply only a finite set of numbers.
The second device only has a finitely large matrix. Suppose that the behavior of the two
devic~s is indistinguishable. That is, suppose that the second device's matrix Is large
enough to accommodate any multiplication problem which the first device can handle.
On this supposition, we can attribute the computation of the multiplication function to
both devices, but only the first device is executing the iterative-sum procedure.

The temptation to argue this way must be resisted because we have little reason to
attribute the computation of the multiplication function to the second device unless we
have some idea of how it is computing it, and this requires determining how the
multiplication function is analyzed into subfunctions. We must see the second device
as executing some multiplication procedure, Le. some procedure which productively
multiplies numbers. Of course, we might use the device to compute the functionjust as
we might use a calculator as a doorstop, but this does not mean calculators are
doorstops. In general, we have little reason to attribute the computation of a function F
to a system unless we can see the computation of F as systematic and productive (the
second and fourth properties), Le. unless we see the system as something which can
compute F. An infinite number of functions can be attributed to a system if we are
simply shown a finite sequence of its input-output behavior. Though this is also true
when we systematically analyze the computation of Finto component functions, we are
nevertheless justified in settling on F as the function the system computes (instead of,
say, G) once an understandable procedure begins to emerge which satisfactorily shows
us that F explains the system's behavior.

The last claim commits me to the view that computational explanations are relative
to what theorists understand and find satisfactory. But all scientific explanations, in
fact, all explanations, are relativized this way. This relativization means that, in certain
circumstances, we might view both devices as computing the multiplication function. If
the devices' behavior really is indistinguishable (Le. if they multiply exactly the same
set of numbers in exactly the same amount of time, giving off exactly the same amount
of heat, and we cannot open them up to run further tests) then we would find it
irresistable to attribute the multiplication function to both, and it seems reasonable to
do so. If this suits our other explanatory goals, then such an attribution is all the more

140 ERIC DIETRICH ",

'"" f]
reasonable. But such a case would be extraordinary, and we should not reject the TI
productivity property because of it. fJ

We now, finally, have all the properties of computational explanations. The four Ij
properties work together to form an explanatory strategy which is scientifically
respectable and robust. And now, we can be a little more rigorous.

The goal of the computationalist is to attribute to a physical system, S, the
computation ofa certain function, F. To do this, it must be determined (or assumed)
that S computes F, and it must be determined how S computes F. Attributing the
computation of Fto Sis successful when it is possible to explain S's computation of Fin
terms ofa sequence offunctions (g), ... ,gn) (n> 1) such that: (1) F = gnogn-)O' . . og);
(2) the sequence (gl> ... , gn) is productive; (3) S passes through a sequence of states
each of which corresponds via an interpretation function I to either the domain or range
of one ofthe gi'S, and each state between the first and final states is the range of some gi
and the domain of some gi+J; and (4) we antecedently understand the gi'S. Succinctly, a
computational explanation has the form described in Figure 2. When F = gno gn_)O ... 0

gi'S and theg/s are non-trivial, it is natural to say that the sequence off unctions (g), ... ,
gn) analyzes the computation of F by S and explains the capacity of S to compute F (cf.
Haugeland (1978) and Cummins (1983: 28-44)).4

Interpreted
virtual
machine S*

gl g2 gn-l
I(sj)

'T~
) •.• "-7 I(sn)

f(~ r(~
System S Sl j S2) ... ~ Sn

FIGURE 2. Interpreting the state transitions rifS as computing the sequence of functions (gl> ... gn).

2.2 Computationalism versus other '-isms'

Computationalism is distinct from both 'computerism' and cognitivism. 'Computer­
ism' is the thesis that explanations of cognition will look like procedures for our current
(late 20th century) computers. Computerism is thus tied to a specific computer
hardware architecture, in particular a serial architecture. Note that the computerist is
interested in more than the functions which get computed; she is interested in how they
are computed. It is not clear that anyone actually believes computerism, but
frequently, when computationalism, artificial intelligence, and computational psychol­
ogy are attacked, it is 'computerist' notions that are attacked instead (see, for example,
Carello, et al. (1984) and Reeke. and Edelman (1988).

Almost all computers today are Von Neumann machines, meaning that they
compute functions serially, executing one program instruction at a time. To claim that
some machine is a Von Neumann machine is to make a claim about its architecture, and,
hence about the kinds of procedures which can be written directly for that architecture
(Le. what kinds of procedures can be written in the assembly language of that
archi tecture) .

Specifically, assembly language procedures must be constructed using combinations
of these three kinds of control: looping, branching, and sequencing (this is true of

COMPUTATIONALISM 141

almost all programming languages, also. 5 These three kinds of control, in turn, limit the
kinds of assembly language instructions which may be used: the instructions must be
simple, deterministic, and discrete. So, the computerist believes that the procedures
relevant to explaining cognition use sequences of simple, deterministic instructions.
Hence, for the computerist, the gi in Figure 2 would be instructions like those we find in
assembly language computer programs which exist today: simple, deterministic in
structions such as REP MOVS DEST, SRCE (move what's in SRCE to location
DEST) and STOS DISPLAY (store what is in a specific register at DISPLAY) which
are instructions for the Intel 8088 microprocessor (Intel 1983).

Computerism is false on empirical grounds: the brain is not a Von Neumann
machine, not even approximately. In fact, when seen as attacks on computerism, the
works by Dreyfus, Carello, etc., are compelling. The mathematical functions which the
computationalist believes explain cognition can only be tortuously described by
simple, deterministic instructions, at best. Put simply, computerism adopts the wrong
kind of description language for the phenomena it is supposed to describe because it
assumes an impoverished explanatory ontology.

Computationalism as depicted in Figure 2 is neutral on the Von Neumann-non-Von
Neumann issue.,Computationalism is not tied to any specific architecture, nor is it
committed to the view that procedures which are composed of simple, deterministic
instructions explain cognition. Computationalism is compatible with massively
parallel architectures such as those studied by the connectionists (see Bechtel (1988)
and Smolensky, (1988)), and those studied by neural modelers such as Grossberg
(1987) (see Dietrich and Fields (1988)).

Cognitivism is the thesis that the functions which explain cognition are rational
functions defined over proposition (or sentences). Rational functions relate proposi­
tions in an epistemologically appropriate way. Thus, for cognitivists, the objects which
are computationally manipulated are propositions (or sentences), and it is propositions
which are the inputs and outputs of such systems (this is why some cognitivists do not
consider early perception part of cognition). Cognition is the production of output
propositions which are rationally related to input propositions. For the cognitivist,
inference is the paradigmatic cognitive function. For example, Cummins (1983) says:
' ... cognitive capacities are inferentially characterized capacities ... : the transition
law specifying a cognitive capacity is a rule ofinference' (p. 53). Cognitivism is far away
the most prevalent, general hypothesis about cognition. (Cognitivism and its prospects
has been discussed in detail by Haugeland, (1978, 1981); see also, Cummins (1983) and
Cummins and Schwarz, (1988).)

Computationalism is not cognitivism. Computationalists are not commited to the
claim that cognition is inferentially processing propositional or sentential structures.
Nor are they committed to the claim that rationality or epistemological adequacy is the
fundamental relationship between inputs and outputs of cognitive systems. Rationality
plays a major role in cognitivism, but it plays only a minor role in computationalism,
and even then, it is a special type of rationality (see Section 4).

Cognitivism will be false ifit turns out that the most important cognitive functions
are not inferences. Yet in such a case, computationalism could still be true. This would
happen if thinking turned out to be, for example, manipulating algebras, vectors, or
automata of various types. In such cases, the functions explaining cognition would be
algebraic morphisms, operation on vectors, or operations on automata, respectively.
This is not mere hand waving, either. It is plausible that at least one kind of creative
thought - the 'a-ha' experience - is not an inference at all, and in fact could not happen

142 ERIC DIETRICH

in a system only capable of inferences (Dietrich and Fields 1986; Fields and Dietrich
1987b). In general, theories of cognition couched in mathematical languages will be
compatible with computationalism, but not compatible with cognitivism. Mathema­
tics is not the science of inferences; I + I = 2 is not a rational inference.

Most philosophers balk at this, utterly. For example, Cummins says

What makes a [cognitive] capacity [cognitive] is surely that its exercises are epistemologically
assessable, and this commits one to the view that such exercises are amenable to sentential
interpretation Talk of cognition in the absence of actual or sentential interpretation ofinputs and
outputs is mere hand waving. (Cummins 1983: 198-199).

The limits ofa philosopher's imagination are frequently where he or she uses the word
'surely'. The view that thinking is basically inferencing is a vestige oflogical positivism
- one of philosophy's dark ages. Computationalism offers ontological and methodologi­
cal riches unimagined by the cognitivist, which we will squander as long as we believe
thinking is inferencing.

Computerism and cognitivism differ from computationalism along two different
dimensions. Computationalism, again, is the claim that cognition is the computation of
certain Turing-computable functions which are to be determined by cognitive science.
Cognitivism is a further claim about which functions are computed. It is the claim that
the functions are inferences of one sort of another, that the objects which the functions
process are sentence-like propositions, and that rationality is a fundamental property of
cognition. Computerism, however, is a claim about how the functions are computed, Le.
it is a claim about what the architecture of the brain (or maybe the mind) is. All three
claims are empirical and are based on various combinations of evidence, theoretical
assumptions, 'what-else-could-it-be' arguments, wishful thinking, and lack ofimagina­
tion, and all three could be false (Le. the three do not exhaust the space of cognitive
theories). Only computationalism manages to keep its claims modest by tying them to
the evidence, and to avoid premature commitments to theories and research strategies.
I t does this by strictly adhering to the notion of computation found in computer science,
and letting evidence determine both which functions are computed and how they are
computed. In spite ofits modesty, however, computationalism has (at least) two strong
consequences which are explained in the following two sections.

3 Intentionality

Intentionality is sometimes defined as the property of mental states to be about things
(Haugeland 1978, 1981: 32; Sayre 1986). The things need not exist (for example, one
can have thoughts about the Grail), nor do the things need to be logically possible (one
can have thoughts about round squares, for example - one can think they do not exist).
When understood in this way, intentionally is a semantic notion: intentionality is the
psychological property of having semantic content.

At other times, intentionality is defined as the property ofa system to understand its
own representations (Searl 1980; Fodor 1981; Dreyfus 1982; Follesdal1982; Cummins
1983; Dretske 1985; Haugeland (1981) aiso discusses this definition of intentionality
under the term 'original intentionality'). This notion ofintentionality is, or is very close
to, the notion of a system consciously understanding .the world around it.

However it is defined, intentionality is regarded as a crucial aspect of cognition (but
see Stich (1983)), and, therefore, it must be explained if we are to understand cognition

COMPUTATIONALISM 143

thoroughly. Since computationalism purports to be a theoretical framework for
cognitive theories, the question naturally arises as to how computationalism should
deal with intentionality. This question is a matter of some importance, since
computationalism is widely regarded as being incapable of supporting any explanations
ofintentionality. Arguments purporting to demonstrate computationalism's deficiency
in this matter have been offered for a variety of intentional psychological phenomena.
Examples include understanding a language (Searl 1980), perceiving an environment
(Sayre 1986), and, finally, thinking itself (Searle 1980; Dretske 1985). In short,
computationalism is considered to be incapable of producing explanations of the
phenomena we intuitively regard as genuinely mental, and is, therefore, rejected.

3.1 Intentionality as a semantic property

In this section I consider how computationalism copes with intentionality defined as a
semantic property of mental states. If computationalism is true, mental states have
semantic content. In fact, providing a computational explanation of a system's
behavior requires attributing semantic contents to the system's states. Recall that
computational explanations require interpreting the inputs, outputs, and states of a
system as elements in the domains and ranges of a series of functions. In fact,
computationalism provides us with a strategy for semantic interpretation. I call this
strategy the computational strategy, and the way in which it works is described briefly
below (for more details, see Dietrich in press a).

Recall Figure 2, when S passes from state Si to Sj' function gi is computed and its
output is then input for succeeding function gj. We (as theorists) understand the state
transition of S from Si to Sj by seeing the transition as the execution of gJi. Doing this is
just interpreting the states of S because it is treating the states of S as symbols which are
transformed. When we do this, we see S not merely as a physical system, but as an
interpreted virtual machine, i.e. as a system S* that computes F by passing through a
sequence of virtual states which are the inputs and outputs ofthegi terms (for the notion
of a virtual machine, see Tanenbaum (1984). The correspondence between the S states
and the gi is made precise by the interpretation function, I, which maps states of S on to
the gi. Once we can view S as an interpreted virtual machine, we can switch between
this view and the physical state transition view (cf. Stabler 1983).6

There are five pertinent consequences of using the computational strategy in order to
attribute semantics to systems. The two most important consequences concern
psychology, computer science, and philosophy of mind. First, if psychology is to
embrace the computational paradigm, it must (contra Stich (1983)) ascribe contents to
mental states and processes because ascribing contents is necessary for understanding
which function is being computed by the psychological processes in question, and
understanding this is necessary for understanding the behavioral and psychological
capacities of the system. Secondly, we cannot view computers as merely formal symbol
manipulators and understand their behavior. That is, we cannot view computers as
merely syntax machines performing their computations on the basis of the syntactic
properties of the symbols they manipulate. In order to understand their behavior we
must interpret their states (this is well-known to computer scientists, see Wulf et al
(1981: chap. 5) and Stoy, (1977)). This is quite contrary to the received dogma. The
view that computers are formal symbol manipulators and that we can understand them
as such is the prevalent view. This view has allowed philosophers to divorce semantics

144 ERIC DIETRICH

from computational explanations. Semantic content, then, becomes something one
adds to computational explanations to get psychological explanations (Searle, 1980).
Other philosophers have claimed that we can get by without semantics at all (Stich
1983). If compu tationalism is correct, both these views are wrong (for more on these
two consequences, see Dietrich (forthcoming, a)).

A third consequence is that there are no arbitrary or extra-theoretical restrictions
placed on the contents that can be attributed to a system. The only general requirement
is that the attributed contents explain observed behavior and hypothesized cognitive
capacities. This renders otiose some well-known relations that are supposed to be
important to semantic contents. For example, the causal connections of referring terms
have no role in the computational strategy. Hence, we can simply avoid issues such as
what the causally correct referent of a referring term is. Which function a system is
computing is the only matter of importance because it is this that determines the
contents of its states.

Causation, in general, is relegated to a supporting role from the computationalist's
view. This is a welcome result because causation cannot do the work some philosophers
think it can. Some philosophers seem to think that computers are not causally
connected to the world, or at least not causally connected in the 'right way'. (This is one
of the things Sayre taxed us with missing in our commentary on his paper. See Sayre,
(1986,1987) and Fields and Dietrich (1987a).) The 'right way' is frequently expressed
in terms of information theory, but this just will'not work. The information computers
get from the world when described by information theory is as real as the information
our perceptual systems obtain. Computers are as 'causally embedded' in the world as
humans are. So, as far as information theory is concerned, humans are not causally
special. Computationalists can accommodate this result easily: the role of causation is
to describe the physical-state changes and properties of the system S (see Figure 2).

A fourth consequence is that attributing a particular content to a particular mental
state (or state of a system) is not paramount, as it is in other strategies for semantic
attribution. The computational strategist wants to understand systems. Semantic
contents are thus viewed in the context of entire systems. On the computational
strategy, no mental state, indeed no symbol whatsoever, is (usefully) interpreted in
isolation. Rather, whole systems of states must be ascribed contents so that a cogent
explanation results.

A fifth consequence is that the attributing semantics via the explanatory strategy is
not a folk art or a matter for causal speculation. One must be intimate with the systems
under study in order to attribute contents that are scientifically useful. This is just
another way of saying that understanding and attribution are achieved concom­
mitantly.

Finally, note that when intentionality is defined as a semantic notion it is nearly
ubiquitous. If a computational explanation explains a system's behavior, then that
system's states have semantic content. All kinds of systems, from humans to the lowly I

and oft-maligned thermostat, will have contentful, computational states.

3.2 Intentionality as a system's understanding of its own representations

I will now consider how computationalism copes with the definition of intentionality as
the capacity of a system to understand its own representations. (In this section I use the
word 'intentionality' to mean only the notion of a system understanding its own

COMPUTATIONALISM 145

symbols.) This is the most well-known notion of intentionality, and it is the notion
discussed by Cummins (1983) and used by Searle (1980) and Dretske (1985) in their
arguments that machines cannot think.

In his famous and important paper on intentionality, Searle says:

. . . the programmed computer does not do "information processing". Rather, what it dOes is
manipulate formal symbols. (Searle 1980: 303).

For the computationalist, the phrase 'formal symbol' is an oxymoron. However, for
Searle and others of his ilk, a formal symbol is something which is a contentful symbol
to us, but a contentless object to a computer or other syntax machine. In his equally
stimulating paper, Dretske (1985) states

To understand what a system is doing when it manipulates symbols, it is necessary to know, not just
what these symbols mean, what interpretation they have been, or can be, assigned, but what they mean
to the system performing the operations. (Dretske's emphasis; Dretske 1985: 27).

Similarly, Cummins says when a system has intentionality

the representations in question are representations for (or to) the system that has them, and not
merely for (or to) a user or theorist ... (Cummins 1983: 76).

Intentionality is thus the unification of meaning and manipulation: the symbols being
manipulated mean something to the system doing the manipulations.

What is intentionality for? What good is it? Nearly everyone writing about
intentionality assumes that intentionality is crucial for cognition. Humans and other
genuine cognitive agents do not have formal symbols. A human's mental symbols have
meaning not only to theorists such as psychologists, but to it, itself, and it is because of
this, apparently, that humans can think. But no one has actually shown that
intentionality is crucial for cognition. Searle certainly has not. At best, he has shown
that the Chinese Room lacks intentionality. But his argument depends on the behavior
of the room being indistinguishable from the behavior of a genuine Chinese speaker.
Searle has succeeded in showing that intentionality is useless. 7

Before proceeding, I want to point out that intentionality is supposed to be different
from consciousness or conscious understanding (see Searle (1980) and Dretske (1985:
esp. p. 30)). This is important for what follows because intentionality is problematic
exactly to the extent it is thought to be different from consciousness. If intentionality
were just another word for consciousness, most of us could at least agree that it exists,
though we still would not know what it is, nor what it is for. I also want to mention again
that computers are supposed to lack intentionality, i.e. their symbols do not mean
anything to them.

We can question the very cogency of the notion ofa system understanding its own
symbols or representations. First, it is a notion that is supposed to apply to me as a
thinking creature. But I can assure you that I do not understand my own symbols. I
understand the symbols I am currently writing now, but these are not mine; they are on
this page and are public symbols. I can introspect, but intentionality is supposed to be
more general and ubiquitous than introspection, and, anyway, computers can
introspect. So, it is not clear that intentionality is a notion that applies to me while not
applying to computers.

Secondly, it seems as ifno system could have intentionality on pain of generating an

146 ERIC DIETRICH

infinite regress. If understanding involves symbols, then if a system understands its
own symbpls it is using symbols. Does it understand these 'second-order' symbols?
not, then the system - the whole system - lacks intentionality because it does not
understand its own symbols, some of them, anyway. Ifit does understand its 'second­
order' symbols, then it must understand its 'third-order' symbols, or, again, it lacks
intentionality. It follows that a system must understand an infinite hierarchy
symbols. However, it is not obvious that any sort of physical system can do this.

An obvious objection to my argument is that a system need not understand all its
symbols; it need only understand a few of them at a time - the ones on which its
attention is currently focused, for example. This objection is rather plausible, but it has
two problems for believers in intentionality. First, computers can generate hierarchies
of symbols as well as processes (Dietrich 1985). So, once again, intentionality applies
equally to humans and computers. The believers in intentionality would counter by
insisting that intentionality is more than the capacity to generate hierarchies of
symbols. It involves the notion of special, internal understanding, and computers lack
such an understanding. However, now it seems as if the notion of consciousness, not a
separate notion ofintentionality is doing the real work in this objection. In fact, it seems
to me as if this latter claim relies on the notion of self Believers in intentionality seem to
be saying that a system must have a concept of itself as an enduring whole in order to
have intentionality. This also seems plausible to me, but is clearly depends on notions
which philosophers such as Searle and Dretske regard as completely independent of
intentionality.

Let us get our bearings. It seems as ifintentionality either does not apply to humans,
or applies equally to computers and humans, or is a hodgepodge of notions such as
consciousness and the self masquerading as a single concept. I think that intentionality
is really a masquerading hodgepodge, and the hodgepodge comprises the concepts we

. should really be interested in. 'Here is my argument. We can dismiss any notion that
intentionality does not apply to humans. This leaves the second and third options.
There is a robust notion of 'understanding your own symbols' which applies to humans
and computers (I will show this shortly). However, believers in intentionality will
reject this as not being what they mean by intentionality. Hence, consciousness, etc.,
must be the real notions. I will now show that there are processes within operating
computers to which internal symbols have meaning. If! am right, then computers are
not merely formal symbol manipulators, but computationalism can easily accommo­
date part of the notion of a system understanding some of its internal symbols.

It seems to me that the ordinary notions of a variable, (variable binding and variable
substitution) suffice to establish the claim that computers are not merely formal symbol
manipulators. In an obvious sense of the term, to manipulate symbols in a purely
formal manner is to manipulate them without regard to what they refer to, mean, or
denote, nor must the manipulations depend on the fact that a symbol has a meaning or
denotation. For example, manipulating a symbol solely by virtue of whether it is a
token of some numeral, letter, or part of speech is one way to treat a symbol purely
formally.

Consider the notion ofa variable in this instance of the Lisp function '+': (+ xl).
Loosely speaking, this function adds 1 to whatever x is bound to. However, for this
argument, it is important that we be more precise about what the entities under
discussion are. A computer running a Lisp interpreter (the Lisp execution program)
defines a virtual machine called the Lisp virtual machine (L VM). The L VM operates
solely in terms of Lisp expressions, the syntax for which can be specified by a grammar;

COMPUTATIONALISM 147

no numbers or other 'external' objects are involved. (I will mention Lisp expressions by
placing single quotes around them. The primary reason for couching the argument in
terms of an LVM is that it will be easier to understand. Nothing turns on this. The same
argument could be made at the bit level, though at this level the argument would be all
but lost in the detail.)

The L VM takes as input expressions such as '(+x 1)', evaluates them, and returns
expressions as outputs. We interpret the inputs, outputs, and intermediate expressions
as, for example, computing (an instance of) the function plus, and producing the
number 7 as its value. We also attribute the semantic content 1 or 'representing the
number l' to Lisp expressions such as '1'. These interpretations are enhanced by
making the syntactic form of the Lisp expressions look like expression in languages we
already know.

Evaluating the expression' (+ x 1)' requires the L VM to determine the value of the
variable 'x', which is some other Lisp expression, say '6' . If the LVM could not do this,
the expression would be syntactically ill-formed: '+' is not defined for expressions we
interpret as non-variable letters. But note that the LVM itself, in treating 'x' as a
variable, regardless of our interpretations (which are, in fact, quite different), is
treating 'x' as denoting the expression '6'. It follows from this that the LVM treats 'x' as
having a meaning. Hence, the operation of the L VM depends on 'x' having a meaning
for the L VM, and not just for us. Of course, the meaning 'x' has for the LVM (viz. '6') is
not the meaning 'x' has for us (we typically interpret 'x' as repres~nting the number 6,
not the Lisp expression '6'), and the LVM is not conscious of the meaning 'x' has.
Nevertheless, the L VM's manipulations depend on the fact that 'x' has a meaning, and,
indeed, on the meaning that it has. This is enough to make false the claim that
computers are formal symbol manipulators, at least on the straightforward interpreta­
tion of this claim I have assumed.

To sum up, I have shown, that: (1) computers are not merely formal symbol
manipulators because they 'look up' the values of variables, and anything capable of
doing this is also not merely a formal symbol manipulator; (2) since computers are not
formal symbol manipulators and since computational explanations explain the
behavior of computers as genuine symbol manipulators, computational explanations
can explain the behavior of systems which are more than mere formal symbol
manipulators; and therefore, (3) computational explanations can explain much more
of human behavior than is commonly believed. If looking up the values of variables
captured the notion ofintentionality satisfactorily, then we could see why intentionality
would be important for cognition. A cognitive system cannot have a function for every
situation which might arise in its environment, so a few functions must have wide
applicability. This is accomplished by having variables and variable binding and look­
up procedures.

I want to close this section by returning to consciousness and related notions. As I
said, I suspect that the notion of intentionality studied by Searle, Dretske, and others is
a hodgepodge of other notions and intuitions, some of which we want to maintain.
Consciousness is certainly one of these notions. Humans, but not computers,· are
conscious; we are aware of some of the states and contents of .our own minds.
Personally, I like Nagel's notion of consciousness (1974); there is something it is like to
be a human, but being a computer seems as ifit would be like being an intelligent rock.
Consciousness, whatever it is, certainly needs explaining. Of course, computational
explanations would be entirely appropriate (see Dietrich (1985)). Another notion is
intelligence. Humans are simply smarter than computers. In fact, computers occupy a

148 ERIC DIETRICH

new class in the intelligence hierarchy; they are a new class of idiot savants. Expert
systems demonstrate this clearly. They are less intelligent than snails on virtually every
dimension we care about, yet are smarter than most humans on a few special
dimensions (for more on this, see Hamad (1989)). Finally, in a fascinating paper,
Haugeland (1979) argued that computers will not succeed in understanding natural
language until they can be given (or otherwise develop) a sense of the world they
inhabit, the creatures they interact with, and, most importantly, a sense of themselves
as enduring wholes. Those that think computers are merely formal symbol
manipulators (and, hence, that computationalism is too weak) may in fact be noticing
that computers are not conscious, not very intelligent, and are not selves.

If intentionality is only a semantic property, it is virtually ubiquitous. If
intentionality is variable binding and look-up, then it is quite common. lfintentionality
is consciousness, etc., then it is quite rare. The literature on intentionality defines it as
one of the first two notions, but reading between the lines, consciousness and related
notions are the real phenomena of interest.

4 Making decisions

Computationalism is incompatible with our ordinary, day-to-day view that humans
make decisions. Hence, for a computationalist, decision .. making is not a cognitive
capacity. In fact, if humans really do make decisions in the way we ordinarily think
decisions are made, then computationalism is false.

On the ordinary view, humans and other intelligent systems frequently decide to
take a certain course of action or to form a certain intention. Of course, not all of our
actions or goals are arrived at by deciding, but some are. A few months ago, I decided to
write this paper; I decided to work on it today. But as I type this paragraph I am not
deciding to breathe or to maintain tonus; these are done automatically.

The computationalist wants to, and should want to, maintain the distinction
between the two kinds of action just mentioned. However, whereas both our. folk
psychology and our current cognitive psychology couch the distinction in terms of
deciding and not deciding, the computationalist couches it terms of the kinds of
procedures executed. This makes all the difference in the word. I will describe this class
of procedures shortly; for now, let us consider ordinary deciding.

Deciding is, I think, most naturally seen as the exercise of the will. Typically, the
system has three or four options before it, and it willfully chooses the one which has the
highest score provided by a process of evaluating the options along some dimension (or
dimensions). Generally speaking, the dimensions measure 'the desirability of the
outcomes produced or their ability to satisfy some previously set goal or established
intention. For example, I can continue to write or I can go to watch football on
television. I ponder over these options. I would rather go to watch football; it is relaxing
and fun. Writing this paper is not relaxing. However, writing this paper is fulfilling in a
way that watching football is not. I continue to ponder. Aesthetics, relaxation, and
enjoyment tum out to be secondary. I have a duty to write this paper: a duty to myself
(for my career and philosophical integrity), to specific others (those I have made
promises to regarding this paper), and unspecified others (the philosophical and
cognitive science communities at large). I sum everything up and 'see' that my duties
outweigh my desires for fun and relaxation, so I choose to work on my paper. My will
enters here in the last step. Once I see which option has the highest score, I am not

COMPUTATIONALISM 149

thereby destined or forced to work on my paper. I must willfully choose to work on my
paper. That this is true can perhaps be seen more readily if we suppose that I am one of
those who generally ranks duties below enjoyment no matter what my duty. In this
case, the fact that I must willfully choose to work on my paper is more apparent.

As Ijust mentioned, will can be exercised with varying intensity. Suppose I see that
my duties are not all that strong. Suppose I already have plenty of research grants and
publications, my promises were 'weak' promises or promises with unspecified dates,
and the philosophical and psychological communities at large already accept the
scientific bankruptcy of the notion of deciding. In such a case, my desire for fun might
get the highest score, so I choose to watch football. Even in this case, I exercise my will.
For example, I might be a workaholic and have to make an effort to relax. But even ifI
am one of those who is disposed to relax and have fun when I have no other pressing
duties, I must still exercise my will in order to watch football on television, though in
this case, I need not exercise my will very much. Ifl do not exercise my will, I willjust
sit here in front of my monitor maintaining tonus and breathing, typing nothing and
doing nothing. What is the will? No one knows (though not from want of trying).
Perhaps one day psychologists will discover what it is. Perhaps one day artificial­
intelligence researchers will be able to program will into a computer. Perhaps we will
never know (cf. Fodor (1983)). But humans clearly have wills, and they exercise them
frequently in the course of their daily lives.

This, I submit, is the ordinary view of human decision-making - and, it is the view
which gets extended to cover all other intelligent systems from ants, to cockroaches, to
dolphins, to chimpanzees, and to computers.

Computationalists have a different view of deciding. Their view is that decisions are
the computation of branching functions. Branching functions map expressions
constructed using computable, boolean functions (which are called conditions) onto
some other computable function. Thus if F is set of computable functions, we have:

B: {conditions} - - -) F .

. The action of B is then

. . { .iJ., if condition is true
B(condltlOn) =);, if condition is false

where both.iJ. and); are elements of F. In computer science, branching functions are
typically rendered as IF statements (which are procedures)8

IF (condition) THEN.iJ.

At this point, we need to recall the notion of controlflow. As mentioned in Section 2, the
specific sequence of functions which get computed is called the control flow of the
system's computation. In sequential control flow, no branching functions are executed:
computing the function/; is always a sufficient condition for computing the function/;+
I' (Here, we must assume that the system is working properly and that it is not a
stochastic system, i.e. that its state changes are not probabilistic relative to our
explanatory goals.) Described at the state level, we can say that being in state Sl is
always sufficient for entering state S2 (again, assuming the system is working correctly
and is not stochastic). However, branching functions can change the flow of control in a
system's procedure execution. Computing a branching function B does not always

, .
'.

150 ERIC DIETRICH

result in next computing a specific function. Depending on the values of the relevant
variables, computing B could result in computingiI next or.h next. However, as also
noted in Section 2, once a procedure is specified, flow of control is determined by the
initial state of the system, and this is true even if the procedure contains branching
statements. In fact, given a branching function B, its condition C, and c's input i, B(c(i))
uniquely determines an output functionfwhich is then simply executed automatically.
Computationalism is incompatible with the notion that cognitive agents such as
humans decide precisely because there is nothing for the will to do. The automatic
nature of control flow and the notion of branching functions capture everything there is
to the notion of deciding.

I now return to my decision to work on this paper instead of watching football on
television. To the computationalist, I computed some branching function which
determined that my duties outweighed my desire for fun and relaxation. That is I
executed this procedure:

IF (duties outweight desire for fun),
THEN work on paper,
ELSE watch football.

Given that my duties do outweigh my desire for fun, I simply compute next the work­
on-paper function or, more precisely, the first function in the sequence of functions
which constitutes my work-on-paper function and which explains my working on my
paper as I do. Notice that there is no need for will. Once the branching function
computes the boolean expression which makes up the condition (duties outweigh
desire for fun) I compute the next function automatically, just as the computer does.

But what about the case where my duties rank lower than my desire for fun, yet I
choose to work on my paper instead? Will seems required to explain this. In the
computationalist view, however, if the procedure mentioned above adequately
explains my behavior and I work on my paper instead of watching football, then I have
not, in fact, ranked my duties lower than my desire for fun. However, does this mean
that computationalism cannot take seriously the distinction underlying the above
question? Some decisions do seem harder to make than others. Computationalism
either ought to account for this or to show that the supposed phenomenon is an illusion.
I believe that computationalists will be able to explain this phenomenon. Of course, the
best way to argue this point would be to produce such an explanation here. But
something less will do, too - I need only show that computationalism can explain this
phenomenon which I can do by producing a plausible explanation.

Some function computations are goal-driven. A goal-driven computation is just like an
ordinary computation (as in Figure 2) except for the way in which the sequence of
functions came into existence. For goal-driven computations, the system itself builds
the sequence (actually some subsystem builds the sequence, but we can be relatively
sloppy about this point). The constraint on building a sequence is that the sequence
should, when executed, result in achieving the goal. (Goal-driven computations are
well-known in artificial intelligence (see Rich (1983: 57 fr.) for an introduction. Goal­
directed computation is also kI:l.Own as top-down processing, expectation-driven
processing, and backward reasoning, etc.)

In general, in a goal-driven computation, whether or not the goal should be achieved
is not open to debate. The goal results in a sequence off unctions, control is passed to the
first function in the sequence, and the goal is achieved (assuming the sequence is in fact
capable of producing the goal). However, sometimes a system has 'dueling goals', i.e.

COMPUTATIONALISM 151

different goals which compete against each other for current resources. Suppose there
are two kinds of dueling goals: candidate goals and interfering goals. In both kinds of
goals, goals compete against each other. The difference is in how genteel the
competition is. Candidate goals are goals which, as it were, agree to abide the decision
of a branching function - rather like polite political candidates, or factions in a legal
dispute. Interfering goals, however, are not 'willing' to abide by the decision of a
branching function. They, as it were, influence the voting. Such goals are like heads of
rival criminal organizations of corrupt political adversaries. Specifically, interfering
goals create looping branching functions.

Returning again to my decision to work on this paper. Suppose that I have dueling
goals: i.e. to work on this paper or to watch football on television. In the case where I
fairly easily decide to work on this paper, my two goals are candidate goals. My goal
adjudication system takes the two goals as input and constructs the following branching
procedure (which is quite similar to the one described above):

IF (duties outweight desire for fun),
THEN Activate: work-on-paper,
ELSE Activate: watch-football.

This branching procedure is executed, and the winning function, 'Activate: work on
paper', say, activates my goal to work on my paper. This." in turn, spawns the
appropriate sequence of functions, and I do indeed work on my paper.

However, suppose that my goals are interfering goals. Their interference causes my
goal adjudication system to create a looping branching procedure:

IF (duties outweigh desire for fun),
THEN decrease the importance of my duties

and re-execute this procedure,
ELSE increase the importance of my duties

and re-execute this procedure.

The watching-football goal is responsible for the THEN clause, and the work-on-paper
goal is responsible for the ELSE clause. The difficulty of the decision depends on the
intensity of the increase/decrease war implicit in the branching procedure. In the worst
case, every decrease could be met by an increase of exactly the same amount, and an
infinite loop could result. Then my emergency looping branching procedure repair system would
have to be called (the calling condition would be something like 'branching function
has looped more than 106 times'), and it would be responsible for taking control away
from the looping branching procedure, and trying to restore order. In the very worst
cases, my emergency looping branching procedure repair system might simply have to
'flip a coin' and pass control to the winner while actively preventing control from being
usurped by the loser. When viewed from my conscious level, I could very plausibly
describe all this as 'agonizing over my decision whether to work on my paper or to
watch football', and as 'exercising my will to work on my paper'.

We can now, perhaps, finally abandon the notion of willful decision-making. With
the demise of willful decision-making goes any robust notion ofa person scanning an
array of options and choosing one. Humans do not choose, they merely compute. The
procedures we execute are extraordinarily complex and quite plastic, but like any
computational mechanism, we decide to do some things and not others entirely on the
basis of our initial state and the branching procedures we execute.9

152 ERIC DIETRICH

5 Conclusion

In this paper, I have defined computationalism, shown that computationalism makes
any distinct notion of intentionality widely applicable, and I have shown that
computationalism is incompatible with our ordinary notion of willful decision-making.
From the computationalist perspective, humans are very different from what we
thought. Thus, computationalism is incompatible with folk psychology. Given the
batting average of folk theories, this a point in the favor of computationalism.

Notes

1. A brief discussion of algorithms, procedures, functions, and the Church-Turing thesis is required.
Computer scientists distinguish between if.fective procedures and algorithms (e.g. see Brainerd and
Landweber (1974). An effective procedure ('procedure' for short) is a finite, unambiguous description of a
finite set of effective operations. An operation is effective if there is a striCtly mechanical method for
executing it. (This is ag precise as the definition can be made, which is why the Church-Turing thesis
cannot be proved). All computer programs are (effective) procedures.

Depending on what input they are given, procedures will halt in a 'yes' or 'no' state in a finite amount of
time or go into an infinite loop. If a procedure always halts no matter what input it is given, then it is called
an algorithm. In other words, an algorithm never enters an infinite loop; instead, it always produces a
definitive answer to an input question, though it need not produce the right answer. Only some computer
programs are algorithms. In this paper, 'procedure' will be usecj, most of the time because we have no
empirical evidence that any cognitive procedure always halts.

The Church-Turing thesis says that Turing machines can compute any function for which an effective
procedure exists. The converse of this statement is known to be true. Computationalists are committed
only to the claim that cognition is the execution of procedures. This is the weakest claim compatible with
computationalism. It is this claim and the Church-Turing thesis that commits them to the further claim
that all cognitive functions are Turing computable. Computationalists need not, and should not, commit
to the stronger claim that cognition is the execution of algorithms because we have no evidence that every
procedure which humans execute always produces a definite answer.

Computer scientists frequently distinguish between computing a function and executing a procedure
because every procedure realizes exactly one function, but each function can be realized in several
different procedures. For example, the function 2*x which doubles any number can be realized as an
procedure which adds x to itself, or as an procedure which multiplies x by 2. Another example, is the

. function sort A which sorts an array of items from the lowest to the highest (e.g. if the items are character
strings, sort A sorts them into alphabetical order). Sort A could be realized using the bubble sort procedure
or the selection sort procedure. However, this distinction is not too important in computationalism
because computationalists must analYze the functions they attribute to systems into subfunctions (see
Section 2). Doing this forces them to view functions as built from certain subfunctions in certain ways,
hence they are forced to view functions as procedures. Therefore, I shall use the words 'function' and
'procedure' more or less interchangeably.

2. For example, there are competing theories of how humans make analogies. One kind of theory claims that
analogies are made by accessing pairs of representations (or data structures) in memory which denote
relations such as causal relations (see, e.g., Schank (1982)). Another kind of theory claims that the
accessing strategy is rather wanton, accessing almost any representation it can regardless of what it
denotes (see, e.g., Dietrich and Fields (1986), Gentner and Landers (1985) and Gick and Holyoak
(1983)). On the former theory, when required to do so, humans should by and large produce only a few
plausible analogies from which a 'best' analogy is selected. On the latter theory, when required to do so,
humans should produce a large number of candidate analogies many of which will be spurious. These
theories make incompatible predictions, yet both are compatible with the computationalist thesis.
Indeed, both kinds of theory are couched in computationalist language.

3. This is not a cop out. All sciences are beset by the problem of how to carve the world in order to get systems
for which good explanations are forthcoming. The current problem is merely computationalism's version
of this. Presumably, computationalism can handle it as well as physics, for example.

4.· Completing steps 1-4 (i.e. determining that S computes F and that F = gn' gn-I' ... 'gh where we
understand the gl terms) is generally quite difficult and typically requires creativity and insight. A theory
of how steps 1-4 are accomplished would, therefore, require a theory of how humans come to see systems
as executing F instead of E, and why F, say,· provides a more satisfYing explanation of the behavior of S
than E does. To date, very little is known about this phenomenon.

5. Looping is executing a sequence of instructions over and over again. Branching is jumping from the

COMPUTATIONALISM 153

current position in the program to some other place in the program; this is typically accomplished by using
a test statement, e.g. 'IF X) 5 GOTO STMT 100'. Sequencing is executing the next in a sequence of
instructions unconditionally. .

6. In computer science, I is typically the composition of two functions (I = 12 0 It). It maps states of S onto
instructions in some programming language. This function is left largely implicit, and is realized by
engineers who design computers, beginning with those who design computer chips and ending with those
who design operating systems and applications software. 12 is provided by, e.g. a denotational semantics
(or some other kind of semantical function) which provides semantic valuation functions mapping
syntactic contructs in the programming language onto the abstract values they denote (see Stoy 1977).12
is also often left implicit.

7. Dretske (1981,1985) has argued that intentionality is crucial to learning. Ifhe is right, then he has shown
why intentionality is crucial to cognition. But computers can learn, and they are supposed to lack
intentionality.

8. An important manifestation of branching functions involves the nesting of conditions. Such nestings have
this form (I shall use the procedure notation since it is more familiar):

IF (condition 1) THEN 1.
ELSEIF (condition 2) THEN 12

ELSEIF (condition n-l) THEN J,.-t
ELSEJ,..

In such nestings, the first condition to be evaluated to be true determines which of the functions1. toJ,.
becomes executed. There are always a finite (and typically small) number of conditions to test for, and one
of the conditions must be chosen: the ELSE clause (the final clause) is executed in case no other clause is;
the ELSE clause is thus the trap clause.

9. Some philosophers have suggested that I have only succeeded in producing another argument for
determinism. The attitude seems to be that my argument can be met by trotting out some argument for
freewill. But this completely misses point. The object of the game is to explain human cognition
scientifically, not to save some cherished notion of human agency. If the notion of will can be made
scientifically respectable and we discover that our theories of cognition are inadequate without this
revised notion, then will the concept of will take its proper place among other scientifically respectable
entities such as mass, energy, the proton, the quark, DNA, etc. In fact, such a scenario is compatible with
adopting computationalism as the foundation of cognitive science. But I suspect that any notion of will
with a scientific foundation will not be considered the real thing. So, if we can explain human cognition
without the will, then we ought to do so.

References

BECHTEL, W., 'Connectionism and the philosophy of mind: an overview'. The Southern Journal of Philosophy
XXVI (Suppl.) 2: 17-41 (1988).

BRAINERD, W. and LANDWEBER, L., Theory of Computation. Wiley, New York (1974).
CARELLO, C., TURVEY, M., KUGLER, P. and SHAW, R., 'Inadequacies of the computer metaphor', in M.

Gazzaniga (ed.), Handbook of Cognitive Neuroscience. Plenum Press, New York, (1984). pp. 231-248.
CUMMINS, R., The Nature of Psychological Explanation. MIT/Bradford, Cambridge, MA (1983).
CUMMINS, R. and SCHWARZ, G., 'Radical Connectionism', in Horgan, T. and Tieson, J. (eds) The Southern

Journal of Philosophy XXVI (Suppl.): 43-61 (1988). .
DIETRICH, E., Computer Thought: Propositional Attitudes and Metaknowledge. Doctoral Dissertation, University of

Arizona, Tucson, Arizona (1985).
DIETRICH, E., 'Semantics and the computational paradigm in cognitive psychology'. Synthese (in press a).
DIETRICH, E., 'Programs in the search for intelligent machines: the mistaken foundation of AI', in D.

Partridge and Y. Wilks (eds). The Foundations of Artificial Intelligence. Cambridge University Press,
Cambridge (in press b).

DIETRICH, E., 'Computers, intentionality, and the new dualism'. Computers and Philosophy Newsletter, Carnegie
Mellon University, Pittsburgh, PA (in press c).

DIETRICH, E. and FIELDS, C., 'Creative problem solving using the wanton inference strategy', in Proceedings of
the first Annual Rocky Mountain Coriference on Artificial Intelligence. University of Colorado/Breit, Boulder, co
(1986), pp. 31-41.

DIETRICH, E. and FIELDS, C., 'Some assumptions underlying Smolensky's treatment of connectionism'.
Behavioral and Brain Sciences II: 29-31 (1988).

DRETSKE, F., Knowledge and Flow of Information. MIT/Bradford, Cambridge, MA (1981).

154 ERIC DIETRICH

DRETSKE, F., Machines and the mental' . Proceedings and Addresses of the American Philosophical Association 59, (1):
23-33 (1 ~85)., .

DREYFUS, H. (ed.), Husserl, Intentionaliry, and Cognitive Science. MIT/Bradford, Cambridge, MA (1982).
FIELDS, C. and DIETRICH, E., 'Intentionality is a red herring'. Behavioral and Brain Sciences 10: 756-757 (1987 a).
FIELDS, C. and DIETRICH, E., 'Multi-domain problem solving: a test case for computational theories of

intelligence', in Proceedings of the Second Annual Rocky Mountain Conference on Artificial Intelligence, University of
Colorado/Colorado Institute for AI, Boulder, co (1987b) pp. 205-223.

FODOR, j., 'Explanation in psychology', in M. Black (ed.) Philosophy in America Cornell University Press,
Ithaca, NY (1965).

FODOR, j., Representations. MIT/Bradford, Cambridge, MA (1981).
FODOR, j., The Modulariry of Mind: an Essay on Faculry Psychology. MIT/Bradford, Cambridge, MA (1983);
FOLLESDAL, D., 'Husserl's notion of no em a' In Dreyfus (ed.), pp. 73-80.
GENTNER, D. and LANDERS, R., 'Analogical reminding: a good match is hard to find', Proceedings of the

International Conference on Systems, Man, and Cybernetics, Tucson, AZ (1985).
GICK, M. and HOLYOAK, K., 'Schema induction and analogical transfer', Cognitive Psychology 12: 306-355

(1983).
GROSSBERG, S., 'Competitive learning: from interactive activation to adaptive resonance'. Cognitive Science.

11: 23-63 (1987).
HARNAD (1989). 'Minds, Machines, and Searle'. Journal of Experimental and theoretical Artificial Intelligence 1: 5-

25 (1989).
HAUGELAND,]., 'Semantic engines: an introduction of mind design', in j. Haugeiand (ed.) Mind Design.

Montgomery, VT, Bradford (1981), pp. 1-34.
HAUGELAND, j., The nature and plausibility of cognitivism'. Behavioral and Brain Sciences 1: 215-226 (1978).
HAUGELAND, j., 'Understanding natural language' . Journal of Philosophy 76: 619-632. (1979).
INTEL, Introduction to iAPX 88. Reston, Reston, VA (1983).
NAGEL, T., 'What is it like to be a bat?' The Philosophical Review, October (1974).
REEKE, G. and EDELMAN, G., 'Real brains and artificial intelligence'. Daedalus 117 (1): 143-173 (1988).
RICH, E., Artificial Intelligence. McGraw-Hill, New York (1983). •
SAYRE, K., 'Intentionality and information processing: an alternative view'. Behavioral and Brain Sciences, 9:

121-166 (1986).
SAYRE, K., 'Various senses of 'intentional systems'. Behavioral and Brain Sciences 10: 760-765 (1987).
SCHANK, R., Dynamic Memory. Cambridge University Press, New York (1982).
SEARLE,]., 'Minds, brains, and programs'. Behavioral and Brain Sciences '3: 417-457 (1980).
SMOLENSKY, P., 'On the proper treatment of connectionism'. Behavioral and Brain Sciences 11: 1-23 (1988).
STABLER, E., 'How are grammars represented?' Behavioral and Brain Sciences 3: 391-402 (1983).
STICH, S., From Folk Psychology to Cognitive Science: the Case Against Belief. MIT/Bradford, Cambridge, MA

(1983).
STOY, j., Denotational Semantics: the Scott-Strachf:)! Approach to Programming Languages. MIT, Cambridge, MA

(1977).
TENENBAUM, A., Structured Computer Organization. Prentice-Hall, Englewood Cliffs, NJ (1984).
WULF, W., SHAW; M., HILFINGER, P. and FLON, L., Fundamental Structures of Computer Science. Addison-Wesley,

Reading, MA (1981).

I

l'
!
1

I
'I

1

