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1 Introduction 

Computationalism is the hypothesis that cognition is the computation off unctions. If 
computationalism is correct, then scientific theories of cognition will explain it as the 
computation of functions. The job for the computationalist is to determine which 
functions cognition is, i.e. which specific functions explain specific cognitive 
phenomena. 

A particular kind of computationalism - cognitivism - is the backbone of our current 
cognitive science (Haugeland 1978; Cummins, 1983). And, though we should, and will, 
come to eschew cognitivism as cognitive science advances (or so I claim), we will still 
embrace computationalism. In fact, I am inclined to think that even when cognitive 
science is broadly construed, computationalism is still its foundational assumption. If 
we consider cognitive science to be the attempt to explain phenomena ranging from 
recognizing food or a conspecific to proving Fermat's Last Theorem, and concerned 
with systems ranging from paramecia to societies of humans, we ·find that 
computationalism is still at its foundation. And, though it is not foundational in 
disciplines such as developmental neurobiology, and molecular biology, ecology, 
economics, and neuropsychology and developmental psychology, computationalism is 
part of their methodological repertoire. 

Computationalism is only foundational and methodological. By itself, it makes no 
claims about which functions are computed, except to say that they are all Turing­
computable (computationalists accept the Church-Turing thesis), nor does it make 
any specific claims as to how they got computed, except to say that the functions are 
systematic, productive, and interpretable in a certain way (see Section 2).1 
Computationalism, therefore, makes no specific predictions about any aspect of 
cognition beyond those implied by 'functionhood', nor does it explain any specific 
aspect of cognition. In fact, the computationalist thesis is compatible with a variety of 
more detailed theories of cognitive behavior which are themselves incompatible.2 
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Computationalism is an empirical thesis. It could be false - the only way to tell is to 
vigorously pursue a computationalist research strategy and see if we make any 
theoretical and empirical headway. But before this can happen, computationalism 
must be taken seriously. Taking computationalism seriously requires embracing, at 
least provisionally, all its consequences, and computationalism has some rather severe 
consequences. The purpose of this paper is to discuss two of these consequences. 
Specifically, I will argue that computationalism is incompatible with the notion that 
humans have any special seman tical properties in virtue of which their thoughts are 
about things in their environment, and that the thesis is incompatible with the notion 
that humans make decisions. I am not, here, primarily concerned with whether 
computationalism is true or false, or explanatorily adequate or inadequate; that can 
only be determined by using it, and seeing if our cognitive science is better off with it 
than without it. 

The two consequences just mentioned should be elaborated slightly. Computatio­
nalism claims that humans have no special semantic properties which attach them to 
their environment. Humans do indeed have such semantical properties but so do 
computers. More succinctly, if computationalism is correct, both humans and 
computers have intentionality. In fact, intentionality will turn out to be almost a 
commonplace. The second consequence is that humans have no special ability to make 
decisions, at least not when this term is given its ordinary meaning - as the capacity for 
willfully selecting among alternatives. Decisions are not made by any special exercise of 
the will. 

As I formulate them, these two consequences have an interesting asymmetry. It is 
widely believed that humans possess intentionality but that computers do not (Searle 
1980; Fodor 1981; Dretske 1985; Sayre 1986). It is also widely assumed that both 
computers and humans make decisions. If computationalism is correct, this is almost 
exactly backwards: both humans and computers possess intentionality, but neither 
make decisions. Intentionality is, therefore, not rare, and exercising one's will is so rare 
as to be non-existent. 

2 The nature of computationalism 

In this section I shall describe computationalism in some detail and distinguish it from 
two other theses about cognition. 

2.1 Properties of computational explanations 

Computationalists claim that explanatorily adequate theories of cognition will use 
computational explanations. Such an explanation has the following properties. First, it 
is an explanation of an ability or capacity ofa system to exhibit certain behavior. Thus, 
a computational explanation differs from a causal law which describes the causal state 
changes of a system (for more details, see Haugeland (1978) and Cummins (1983)). 
Be"cause the observed behavior is regular, the underlying capacity can be described as 
the capacity to compute a mathematical function from inputs to outputs. For many 
systems, we forego describing the relation between inputs and outputs as a 
mathematical function, opting instead for descriptions such as 'the system plays chess' 
or 'understands English'. Nevertheless, to be amenable to computational explanation, 
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a system's behavior must be describable as the computation of Turing-computable, 
mathematical function. Conversely, attributing a function to a particular system is 
seeing that system as doing something regular. 

The requirement that the observed behavior be regular and due to a certain ability 
may seem too weak because any system which changes states (Le. everything) can be 
described as computing a function - the function that describes its behavior. Yet we 
clearly do not want computation explanations to apply to everything; computational­
ism cannot replace physics. For example, we could see an object and a volume of water 
as a system which computes Archimedes's principle when the object is placed in the 
water. Or we could see a bicycle pump, a flat tire, and a pumping cyclist as a system 
which computes the ideal-gas law. But this seems wrong. We can explain why the 
object displaces the amount of water that it does by using Archimedes's principle, but 
we do not see the object-water system as actually computing a function. There are 
proposed solutions to this problem, but it is not clear any of them work. This prob­
lem need not concern us, though. There are clear, unproblematical cases where we 
explain a system's behavior by saying it computes a function. We will stick to such 
cases.3 

The first property of computational explanations guarantees that capacities for 
exhibiting certain behavior are understood (by the explainers) as capacities for 
computing certain functions, and that exhibiting the behavior is seen as computing the 
function. The function so attributed to the system is 'system-sized'; it describes the 
behavior of the whole system. 

The second property of computational explanations begins where the first leaves off. 
A computational explanation must by systematic, Le. it must exhibit the system in 
question as, indeed, a system. To do this, the explanation must posit interdependent 
functions which interact to_ produce the output from the input. In other words, the 
explanation must analyze the system-sized function into subfunctions and show how 
the different subfunctions interact to produce the output (the behavior) in question (cf. 
Haugeland 1978). Moreover, the subfunctions must constitute a rather fixed set of 
functions out of which the larger functions are built. Procedures and standard 
computer programs are systematic in just this sense. In fact, one way of phrasing the 
second property is to say that, in order for an explanation to be computational, it must 
allow theorists to see the system's state changes as the execution of a procedure. 
(Computer programs, Le. procedures implemented in some computer language, are 
also systematic, but they are not explanations in the sense used here; they are not 
theoretical explanations of behavior. It is easy to see this. Many different programs can 
implement the same procedure. If programs were theoretical explanations, then we 
would have an embarrassment of theories for each capacity we wished to theorize 
about, and we would have no reason for selecting one of these 'theories' over the other 
(see Dietrich (in press b)). Of course, all procedures must be couched in some language 
or other. But some languages are more scientifically useful than others. Computatio­
nalism needs a scientifically useful language, not a software engineering language. 
(Logics of various sorts and statistical mechanics are the currently preferred languages 
of computationalism.) 

This is a good place to introduce the notion of control flow. The specific ordering 
arrangement off unctions which are computed is called the control flow of the system's 
computation. In Section 4, this notion will be quite important. For now, Ijust want to 
note that the flow of control is fixed by the functions which the systems can compute 
and by the initial state of the system, Le. its initial input. In other words, once a 
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procedure is specified (by a programmer or by evolution) then flow of control is 
determined (except for random events) by the initial state of the system. 

The first and the second property together mean that the ability of the system to 
produce or exhibit some particular kind of behavior on a regular basis is the ability to 
execute certain procedures, and whenever the system exhibits the behavior in question 
it is executing the relevant procedure. 

Third, a computational explanation is interpretive. This property of computational 
explanations is logically entailed by the first. The capacity for a certain behavior is 
manifested as a characteristic part of the actual behavior. In order to see (or describe) a 
part of behavior as the computation of a certain function, F, we, as theorists, must see 
the system generate, over time, output equal to F(input). However, in order to see this, 
we must be able to interpret the initial state of the system as being the requisite input for 
F, and the final state of the system as being the requisite output, F(input). So, 
computational explanations are inherently interpretive. 

The three properties of computational explanations may be summed up as follows. 
Explaining a system's behavior as computing some function requires interpreting the· 
initial and final states of the system as inputs and outputs for the proposed function, 
and then analyzing the proposed function into a sequence of subfunctions each of which 
carries with it its own interpretation ofits initial and final states. Finally, whenever the 
system exhibits the behavior in question, it is computing the relevant sequence of 
subfunctions, i.e. it is executing a procedure. (All "of the preceding is relatively well­
known thanks to the work ofHaugeland (1978) and Cummins (1983); see also Fodor 
(1965).) 

The three properties just discussed do not fully capture the notion of a computational 
explanation. One other property is required. I call this property productivity: the 
functions whose computation is attributed to the system in question must be 
productive, a property which can be understood by contrasting it with non-productive 
procedures. 

Consider two devices which take numbers as input and output their product. The 
question is: are both devices multipliers? Suppose the first device uses the well-known 
iterative-sum procedure: given 4 X 7, it totals up four sevens. Suppose the second 
device stores a two-dimensional, n X n matrix as in Figure 1. When the second device is 
given 4 X 7 it merely finds the product which is already present in the matrix. 

Only the first device can potentially handle any posed multiplication problem 
because only it executes a multiplication procedure, hence only the first device is a 
multiplier. The second device is not a multiplier because it does not execute a 
multiplication procedure. In order for the second device to be useful, the products must 
be built in, and in order to do this they must already be known or computed. Hence, to 
build the second device, one requires the first device (or some other device that uses a 
productive multiplication procedure). 

Of course, the second device is a computer, albeit a simple one, because it does 
compute functions: it computes matrix-look-up functions and it does this by executing 
matrix-look-up procedures. Hence, we can produce computational explanations of the 
second device because the procedure attributed to it is productive: it continues to work 
as the size of the matrix, is increased. But it is not a multiplier, and computational 
explanations attributing computing the multiplication function to it are wrong. 

Some are tempted to say here the second device computes the multiplication 
function, but not by executing the iterative-sum procedure. Here is the argument. Both 
devices have a finite capacity for multiplying numbers. The first device only has a finite 
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FIGURE 1. The n X n two-dimensional matrix for the second device. 
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(random-access) memory. Consequently, it can multiply only a finite set of numbers. 
The second device only has a finitely large matrix. Suppose that the behavior of the two 
devic~s is indistinguishable. That is, suppose that the second device's matrix Is large 
enough to accommodate any multiplication problem which the first device can handle. 
On this supposition, we can attribute the computation of the multiplication function to 
both devices, but only the first device is executing the iterative-sum procedure. 

The temptation to argue this way must be resisted because we have little reason to 
attribute the computation of the multiplication function to the second device unless we 
have some idea of how it is computing it, and this requires determining how the 
multiplication function is analyzed into subfunctions. We must see the second device 
as executing some multiplication procedure, Le. some procedure which productively 
multiplies numbers. Of course, we might use the device to compute the functionjust as 
we might use a calculator as a doorstop, but this does not mean calculators are 
doorstops. In general, we have little reason to attribute the computation of a function F 
to a system unless we can see the computation of F as systematic and productive (the 
second and fourth properties), Le. unless we see the system as something which can 
compute F. An infinite number of functions can be attributed to a system if we are 
simply shown a finite sequence of its input-output behavior. Though this is also true 
when we systematically analyze the computation of Finto component functions, we are 
nevertheless justified in settling on F as the function the system computes (instead of, 
say, G) once an understandable procedure begins to emerge which satisfactorily shows 
us that F explains the system's behavior. 

The last claim commits me to the view that computational explanations are relative 
to what theorists understand and find satisfactory. But all scientific explanations, in 
fact, all explanations, are relativized this way. This relativization means that, in certain 
circumstances, we might view both devices as computing the multiplication function. If 
the devices' behavior really is indistinguishable (Le. if they multiply exactly the same 
set of numbers in exactly the same amount of time, giving off exactly the same amount 
of heat, and we cannot open them up to run further tests) then we would find it 
irresistable to attribute the multiplication function to both, and it seems reasonable to 
do so. If this suits our other explanatory goals, then such an attribution is all the more 
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'"" f] 
reasonable. But such a case would be extraordinary, and we should not reject the TI 
productivity property because of it. fJ 

We now, finally, have all the properties of computational explanations. The four Ij 
properties work together to form an explanatory strategy which is scientifically 
respectable and robust. And now, we can be a little more rigorous. 

The goal of the computationalist is to attribute to a physical system, S, the 
computation ofa certain function, F. To do this, it must be determined (or assumed) 
that S computes F, and it must be determined how S computes F. Attributing the 
computation of Fto Sis successful when it is possible to explain S's computation of Fin 
terms ofa sequence offunctions (g), ... ,gn) (n> 1) such that: (1) F = gnogn-)O' . . og); 
(2) the sequence (gl> ... , gn) is productive; (3) S passes through a sequence of states 
each of which corresponds via an interpretation function I to either the domain or range 
of one ofthe gi'S, and each state between the first and final states is the range of some gi 
and the domain of some gi+J; and (4) we antecedently understand the gi'S. Succinctly, a 
computational explanation has the form described in Figure 2. When F = gno gn_)O ... 0 

gi'S and theg/s are non-trivial, it is natural to say that the sequence off unctions (g), ... , 
gn) analyzes the computation of F by S and explains the capacity of S to compute F (cf. 
Haugeland (1978) and Cummins (1983: 28-44)).4 

Interpreted 
virtual 
machine S* 

gl g2 gn-l 
I(sj) 

'T~ 
) •.• "-7 I(sn) 

f(~ r(~ 
System S Sl j S2 ) ... ~ Sn 

FIGURE 2. Interpreting the state transitions rifS as computing the sequence of functions (gl> ... gn). 

2.2 Computationalism versus other '-isms' 

Computationalism is distinct from both 'computerism' and cognitivism. 'Computer­
ism' is the thesis that explanations of cognition will look like procedures for our current 
(late 20th century) computers. Computerism is thus tied to a specific computer 
hardware architecture, in particular a serial architecture. Note that the computerist is 
interested in more than the functions which get computed; she is interested in how they 
are computed. It is not clear that anyone actually believes computerism, but 
frequently, when computationalism, artificial intelligence, and computational psychol­
ogy are attacked, it is 'computerist' notions that are attacked instead (see, for example, 
Carello, et al. (1984) and Reeke. and Edelman (1988). 

Almost all computers today are Von Neumann machines, meaning that they 
compute functions serially, executing one program instruction at a time. To claim that 
some machine is a Von Neumann machine is to make a claim about its architecture, and, 
hence about the kinds of procedures which can be written directly for that architecture 
(Le. what kinds of procedures can be written in the assembly language of that 
archi tecture ) . 

Specifically, assembly language procedures must be constructed using combinations 
of these three kinds of control: looping, branching, and sequencing (this is true of 
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almost all programming languages, also. 5 These three kinds of control, in turn, limit the 
kinds of assembly language instructions which may be used: the instructions must be 
simple, deterministic, and discrete. So, the computerist believes that the procedures 
relevant to explaining cognition use sequences of simple, deterministic instructions. 
Hence, for the computerist, the gi in Figure 2 would be instructions like those we find in 
assembly language computer programs which exist today: simple, deterministic in 
structions such as REP MOVS DEST, SRCE (move what's in SRCE to location 
DEST) and STOS DISPLAY (store what is in a specific register at DISPLAY) which 
are instructions for the Intel 8088 microprocessor (Intel 1983). 

Computerism is false on empirical grounds: the brain is not a Von Neumann 
machine, not even approximately. In fact, when seen as attacks on computerism, the 
works by Dreyfus, Carello, etc., are compelling. The mathematical functions which the 
computationalist believes explain cognition can only be tortuously described by 
simple, deterministic instructions, at best. Put simply, computerism adopts the wrong 
kind of description language for the phenomena it is supposed to describe because it 
assumes an impoverished explanatory ontology. 

Computationalism as depicted in Figure 2 is neutral on the Von Neumann-non-Von 
Neumann issue.,Computationalism is not tied to any specific architecture, nor is it 
committed to the view that procedures which are composed of simple, deterministic 
instructions explain cognition. Computationalism is compatible with massively 
parallel architectures such as those studied by the connectionists (see Bechtel (1988) 
and Smolensky, (1988)), and those studied by neural modelers such as Grossberg 
(1987) (see Dietrich and Fields (1988)). 

Cognitivism is the thesis that the functions which explain cognition are rational 
functions defined over proposition (or sentences). Rational functions relate proposi­
tions in an epistemologically appropriate way. Thus, for cognitivists, the objects which 
are computationally manipulated are propositions (or sentences), and it is propositions 
which are the inputs and outputs of such systems (this is why some cognitivists do not 
consider early perception part of cognition). Cognition is the production of output 
propositions which are rationally related to input propositions. For the cognitivist, 
inference is the paradigmatic cognitive function. For example, Cummins (1983) says: 
' ... cognitive capacities are inferentially characterized capacities ... : the transition 
law specifying a cognitive capacity is a rule ofinference' (p. 53). Cognitivism is far away 
the most prevalent, general hypothesis about cognition. (Cognitivism and its prospects 
has been discussed in detail by Haugeland, (1978, 1981); see also, Cummins ( 1983) and 
Cummins and Schwarz, (1988).) 

Computationalism is not cognitivism. Computationalists are not commited to the 
claim that cognition is inferentially processing propositional or sentential structures. 
Nor are they committed to the claim that rationality or epistemological adequacy is the 
fundamental relationship between inputs and outputs of cognitive systems. Rationality 
plays a major role in cognitivism, but it plays only a minor role in computationalism, 
and even then, it is a special type of rationality (see Section 4). 

Cognitivism will be false ifit turns out that the most important cognitive functions 
are not inferences. Yet in such a case, computationalism could still be true. This would 
happen if thinking turned out to be, for example, manipulating algebras, vectors, or 
automata of various types. In such cases, the functions explaining cognition would be 
algebraic morphisms, operation on vectors, or operations on automata, respectively. 
This is not mere hand waving, either. It is plausible that at least one kind of creative 
thought - the 'a-ha' experience - is not an inference at all, and in fact could not happen 
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in a system only capable of inferences (Dietrich and Fields 1986; Fields and Dietrich 
1987b). In general, theories of cognition couched in mathematical languages will be 
compatible with computationalism, but not compatible with cognitivism. Mathema­
tics is not the science of inferences; I + I = 2 is not a rational inference. 

Most philosophers balk at this, utterly. For example, Cummins says 

What makes a [cognitive] capacity [cognitive] is surely that its exercises are epistemologically 
assessable, and this commits one to the view that such exercises are amenable to sentential 
interpretation .... Talk of cognition in the absence of actual or sentential interpretation ofinputs and 
outputs is mere hand waving. (Cummins 1983: 198-199). 

The limits ofa philosopher's imagination are frequently where he or she uses the word 
'surely'. The view that thinking is basically inferencing is a vestige oflogical positivism 
- one of philosophy's dark ages. Computationalism offers ontological and methodologi­
cal riches unimagined by the cognitivist, which we will squander as long as we believe 
thinking is inferencing. 

Computerism and cognitivism differ from computationalism along two different 
dimensions. Computationalism, again, is the claim that cognition is the computation of 
certain Turing-computable functions which are to be determined by cognitive science. 
Cognitivism is a further claim about which functions are computed. It is the claim that 
the functions are inferences of one sort of another, that the objects which the functions 
process are sentence-like propositions, and that rationality is a fundamental property of 
cognition. Computerism, however, is a claim about how the functions are computed, Le. 
it is a claim about what the architecture of the brain (or maybe the mind) is. All three 
claims are empirical and are based on various combinations of evidence, theoretical 
assumptions, 'what-else-could-it-be' arguments, wishful thinking, and lack ofimagina­
tion, and all three could be false (Le. the three do not exhaust the space of cognitive 
theories). Only computationalism manages to keep its claims modest by tying them to 
the evidence, and to avoid premature commitments to theories and research strategies. 
I t does this by strictly adhering to the notion of computation found in computer science, 
and letting evidence determine both which functions are computed and how they are 
computed. In spite ofits modesty, however, computationalism has (at least) two strong 
consequences which are explained in the following two sections. 

3 Intentionality 

Intentionality is sometimes defined as the property of mental states to be about things 
(Haugeland 1978, 1981: 32; Sayre 1986). The things need not exist (for example, one 
can have thoughts about the Grail), nor do the things need to be logically possible (one 
can have thoughts about round squares, for example - one can think they do not exist). 
When understood in this way, intentionally is a semantic notion: intentionality is the 
psychological property of having semantic content. 

At other times, intentionality is defined as the property ofa system to understand its 
own representations (Searl 1980; Fodor 1981; Dreyfus 1982; Follesdal1982; Cummins 
1983; Dretske 1985; Haugeland (1981) aiso discusses this definition of intentionality 
under the term 'original intentionality'). This notion ofintentionality is, or is very close 
to, the notion of a system consciously understanding .the world around it. 

However it is defined, intentionality is regarded as a crucial aspect of cognition (but 
see Stich (1983)), and, therefore, it must be explained if we are to understand cognition 
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thoroughly. Since computationalism purports to be a theoretical framework for 
cognitive theories, the question naturally arises as to how computationalism should 
deal with intentionality. This question is a matter of some importance, since 
computationalism is widely regarded as being incapable of supporting any explanations 
ofintentionality. Arguments purporting to demonstrate computationalism's deficiency 
in this matter have been offered for a variety of intentional psychological phenomena. 
Examples include understanding a language (Searl 1980), perceiving an environment 
(Sayre 1986), and, finally, thinking itself (Searle 1980; Dretske 1985). In short, 
computationalism is considered to be incapable of producing explanations of the 
phenomena we intuitively regard as genuinely mental, and is, therefore, rejected. 

3.1 Intentionality as a semantic property 

In this section I consider how computationalism copes with intentionality defined as a 
semantic property of mental states. If computationalism is true, mental states have 
semantic content. In fact, providing a computational explanation of a system's 
behavior requires attributing semantic contents to the system's states. Recall that 
computational explanations require interpreting the inputs, outputs, and states of a 
system as elements in the domains and ranges of a series of functions. In fact, 
computationalism provides us with a strategy for semantic interpretation. I call this 
strategy the computational strategy, and the way in which it works is described briefly 
below (for more details, see Dietrich in press a). 

Recall Figure 2, when S passes from state Si to Sj' function gi is computed and its 
output is then input for succeeding function gj. We (as theorists) understand the state 
transition of S from Si to Sj by seeing the transition as the execution of gJi. Doing this is 
just interpreting the states of S because it is treating the states of S as symbols which are 
transformed. When we do this, we see S not merely as a physical system, but as an 
interpreted virtual machine, i.e. as a system S* that computes F by passing through a 
sequence of virtual states which are the inputs and outputs ofthegi terms (for the notion 
of a virtual machine, see Tanenbaum (1984). The correspondence between the S states 
and the gi is made precise by the interpretation function, I, which maps states of S on to 
the gi. Once we can view S as an interpreted virtual machine, we can switch between 
this view and the physical state transition view (cf. Stabler 1983).6 

There are five pertinent consequences of using the computational strategy in order to 
attribute semantics to systems. The two most important consequences concern 
psychology, computer science, and philosophy of mind. First, if psychology is to 
embrace the computational paradigm, it must (contra Stich (1983)) ascribe contents to 
mental states and processes because ascribing contents is necessary for understanding 
which function is being computed by the psychological processes in question, and 
understanding this is necessary for understanding the behavioral and psychological 
capacities of the system. Secondly, we cannot view computers as merely formal symbol 
manipulators and understand their behavior. That is, we cannot view computers as 
merely syntax machines performing their computations on the basis of the syntactic 
properties of the symbols they manipulate. In order to understand their behavior we 
must interpret their states (this is well-known to computer scientists, see Wulf et al 
(1981: chap. 5) and Stoy, (1977)). This is quite contrary to the received dogma. The 
view that computers are formal symbol manipulators and that we can understand them 
as such is the prevalent view. This view has allowed philosophers to divorce semantics 
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from computational explanations. Semantic content, then, becomes something one 
adds to computational explanations to get psychological explanations (Searle, 1980). 
Other philosophers have claimed that we can get by without semantics at all (Stich 
1983). If compu tationalism is correct, both these views are wrong (for more on these 
two consequences, see Dietrich (forthcoming, a)). 

A third consequence is that there are no arbitrary or extra-theoretical restrictions 
placed on the contents that can be attributed to a system. The only general requirement 
is that the attributed contents explain observed behavior and hypothesized cognitive 
capacities. This renders otiose some well-known relations that are supposed to be 
important to semantic contents. For example, the causal connections of referring terms 
have no role in the computational strategy. Hence, we can simply avoid issues such as 
what the causally correct referent of a referring term is. Which function a system is 
computing is the only matter of importance because it is this that determines the 
contents of its states. 

Causation, in general, is relegated to a supporting role from the computationalist's 
view. This is a welcome result because causation cannot do the work some philosophers 
think it can. Some philosophers seem to think that computers are not causally 
connected to the world, or at least not causally connected in the 'right way'. (This is one 
of the things Sayre taxed us with missing in our commentary on his paper. See Sayre, 
(1986,1987) and Fields and Dietrich (1987a).) The 'right way' is frequently expressed 
in terms of information theory, but this just will'not work. The information computers 
get from the world when described by information theory is as real as the information 
our perceptual systems obtain. Computers are as 'causally embedded' in the world as 
humans are. So, as far as information theory is concerned, humans are not causally 
special. Computationalists can accommodate this result easily: the role of causation is 
to describe the physical-state changes and properties of the system S (see Figure 2). 

A fourth consequence is that attributing a particular content to a particular mental 
state (or state of a system) is not paramount, as it is in other strategies for semantic 
attribution. The computational strategist wants to understand systems. Semantic 
contents are thus viewed in the context of entire systems. On the computational 
strategy, no mental state, indeed no symbol whatsoever, is (usefully) interpreted in 
isolation. Rather, whole systems of states must be ascribed contents so that a cogent 
explanation results. 

A fifth consequence is that the attributing semantics via the explanatory strategy is 
not a folk art or a matter for causal speculation. One must be intimate with the systems 
under study in order to attribute contents that are scientifically useful. This is just 
another way of saying that understanding and attribution are achieved concom­
mitantly. 

Finally, note that when intentionality is defined as a semantic notion it is nearly 
ubiquitous. If a computational explanation explains a system's behavior, then that 
system's states have semantic content. All kinds of systems, from humans to the lowly I 

and oft-maligned thermostat, will have contentful, computational states. 

3.2 Intentionality as a system's understanding of its own representations 

I will now consider how computationalism copes with the definition of intentionality as 
the capacity of a system to understand its own representations. (In this section I use the 
word 'intentionality' to mean only the notion of a system understanding its own 
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symbols.) This is the most well-known notion of intentionality, and it is the notion 
discussed by Cummins (1983) and used by Searle (1980) and Dretske (1985) in their 
arguments that machines cannot think. 

In his famous and important paper on intentionality, Searle says: 

. . . the programmed computer does not do "information processing". Rather, what it dOes is 
manipulate formal symbols. (Searle 1980: 303). 

For the computationalist, the phrase 'formal symbol' is an oxymoron. However, for 
Searle and others of his ilk, a formal symbol is something which is a contentful symbol 
to us, but a contentless object to a computer or other syntax machine. In his equally 
stimulating paper, Dretske (1985) states 

To understand what a system is doing when it manipulates symbols, it is necessary to know, not just 
what these symbols mean, what interpretation they have been, or can be, assigned, but what they mean 
to the system performing the operations. (Dretske's emphasis; Dretske 1985: 27). 

Similarly, Cummins says when a system has intentionality 

the representations in question are representations for (or to) the system that has them, and not 
merely for (or to) a user or theorist ... (Cummins 1983: 76). 

Intentionality is thus the unification of meaning and manipulation: the symbols being 
manipulated mean something to the system doing the manipulations. 

What is intentionality for? What good is it? Nearly everyone writing about 
intentionality assumes that intentionality is crucial for cognition. Humans and other 
genuine cognitive agents do not have formal symbols. A human's mental symbols have 
meaning not only to theorists such as psychologists, but to it, itself, and it is because of 
this, apparently, that humans can think. But no one has actually shown that 
intentionality is crucial for cognition. Searle certainly has not. At best, he has shown 
that the Chinese Room lacks intentionality. But his argument depends on the behavior 
of the room being indistinguishable from the behavior of a genuine Chinese speaker. 
Searle has succeeded in showing that intentionality is useless. 7 

Before proceeding, I want to point out that intentionality is supposed to be different 
from consciousness or conscious understanding (see Searle (1980) and Dretske (1985: 
esp. p. 30)). This is important for what follows because intentionality is problematic 
exactly to the extent it is thought to be different from consciousness. If intentionality 
were just another word for consciousness, most of us could at least agree that it exists, 
though we still would not know what it is, nor what it is for. I also want to mention again 
that computers are supposed to lack intentionality, i.e. their symbols do not mean 
anything to them. 

We can question the very cogency of the notion ofa system understanding its own 
symbols or representations. First, it is a notion that is supposed to apply to me as a 
thinking creature. But I can assure you that I do not understand my own symbols. I 
understand the symbols I am currently writing now, but these are not mine; they are on 
this page and are public symbols. I can introspect, but intentionality is supposed to be 
more general and ubiquitous than introspection, and, anyway, computers can 
introspect. So, it is not clear that intentionality is a notion that applies to me while not 
applying to computers. 

Secondly, it seems as ifno system could have intentionality on pain of generating an 
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infinite regress. If understanding involves symbols, then if a system understands its 
own symbpls it is using symbols. Does it understand these 'second-order' symbols? 
not, then the system - the whole system - lacks intentionality because it does not 
understand its own symbols, some of them, anyway. Ifit does understand its 'second­
order' symbols, then it must understand its 'third-order' symbols, or, again, it lacks 
intentionality. It follows that a system must understand an infinite hierarchy 
symbols. However, it is not obvious that any sort of physical system can do this. 

An obvious objection to my argument is that a system need not understand all its 
symbols; it need only understand a few of them at a time - the ones on which its 
attention is currently focused, for example. This objection is rather plausible, but it has 
two problems for believers in intentionality. First, computers can generate hierarchies 
of symbols as well as processes (Dietrich 1985). So, once again, intentionality applies 
equally to humans and computers. The believers in intentionality would counter by 
insisting that intentionality is more than the capacity to generate hierarchies of 
symbols. It involves the notion of special, internal understanding, and computers lack 
such an understanding. However, now it seems as if the notion of consciousness, not a 
separate notion ofintentionality is doing the real work in this objection. In fact, it seems 
to me as if this latter claim relies on the notion of self Believers in intentionality seem to 
be saying that a system must have a concept of itself as an enduring whole in order to 
have intentionality. This also seems plausible to me, but is clearly depends on notions 
which philosophers such as Searle and Dretske regard as completely independent of 
intentionality. 

Let us get our bearings. It seems as ifintentionality either does not apply to humans, 
or applies equally to computers and humans, or is a hodgepodge of notions such as 
consciousness and the self masquerading as a single concept. I think that intentionality 
is really a masquerading hodgepodge, and the hodgepodge comprises the concepts we 

. should really be interested in. 'Here is my argument. We can dismiss any notion that 
intentionality does not apply to humans. This leaves the second and third options. 
There is a robust notion of 'understanding your own symbols' which applies to humans 
and computers (I will show this shortly). However, believers in intentionality will 
reject this as not being what they mean by intentionality. Hence, consciousness, etc., 
must be the real notions. I will now show that there are processes within operating 
computers to which internal symbols have meaning. If! am right, then computers are 
not merely formal symbol manipulators, but computationalism can easily accommo­
date part of the notion of a system understanding some of its internal symbols. 

It seems to me that the ordinary notions of a variable, (variable binding and variable 
substitution) suffice to establish the claim that computers are not merely formal symbol 
manipulators. In an obvious sense of the term, to manipulate symbols in a purely 
formal manner is to manipulate them without regard to what they refer to, mean, or 
denote, nor must the manipulations depend on the fact that a symbol has a meaning or 
denotation. For example, manipulating a symbol solely by virtue of whether it is a 
token of some numeral, letter, or part of speech is one way to treat a symbol purely 
formally. 

Consider the notion ofa variable in this instance of the Lisp function '+': (+ xl). 
Loosely speaking, this function adds 1 to whatever x is bound to. However, for this 
argument, it is important that we be more precise about what the entities under 
discussion are. A computer running a Lisp interpreter (the Lisp execution program) 
defines a virtual machine called the Lisp virtual machine (L VM). The L VM operates 
solely in terms of Lisp expressions, the syntax for which can be specified by a grammar; 
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no numbers or other 'external' objects are involved. (I will mention Lisp expressions by 
placing single quotes around them. The primary reason for couching the argument in 
terms of an LVM is that it will be easier to understand. Nothing turns on this. The same 
argument could be made at the bit level, though at this level the argument would be all 
but lost in the detail.) 

The L VM takes as input expressions such as '( +x 1)', evaluates them, and returns 
expressions as outputs. We interpret the inputs, outputs, and intermediate expressions 
as, for example, computing (an instance of) the function plus, and producing the 
number 7 as its value. We also attribute the semantic content 1 or 'representing the 
number l' to Lisp expressions such as '1'. These interpretations are enhanced by 
making the syntactic form of the Lisp expressions look like expression in languages we 
already know. 

Evaluating the expression' ( + x 1)' requires the L VM to determine the value of the 
variable 'x', which is some other Lisp expression, say '6' . If the LVM could not do this, 
the expression would be syntactically ill-formed: '+' is not defined for expressions we 
interpret as non-variable letters. But note that the LVM itself, in treating 'x' as a 
variable, regardless of our interpretations (which are, in fact, quite different), is 
treating 'x' as denoting the expression '6'. It follows from this that the LVM treats 'x' as 
having a meaning. Hence, the operation of the L VM depends on 'x' having a meaning 
for the L VM, and not just for us. Of course, the meaning 'x' has for the LVM (viz. '6') is 
not the meaning 'x' has for us (we typically interpret 'x' as repres~nting the number 6, 
not the Lisp expression '6'), and the LVM is not conscious of the meaning 'x' has. 
Nevertheless, the L VM's manipulations depend on the fact that 'x' has a meaning, and, 
indeed, on the meaning that it has. This is enough to make false the claim that 
computers are formal symbol manipulators, at least on the straightforward interpreta­
tion of this claim I have assumed. 

To sum up, I have shown, that: (1) computers are not merely formal symbol 
manipulators because they 'look up' the values of variables, and anything capable of 
doing this is also not merely a formal symbol manipulator; (2) since computers are not 
formal symbol manipulators and since computational explanations explain the 
behavior of computers as genuine symbol manipulators, computational explanations 
can explain the behavior of systems which are more than mere formal symbol 
manipulators; and therefore, (3) computational explanations can explain much more 
of human behavior than is commonly believed. If looking up the values of variables 
captured the notion ofintentionality satisfactorily, then we could see why intentionality 
would be important for cognition. A cognitive system cannot have a function for every 
situation which might arise in its environment, so a few functions must have wide 
applicability. This is accomplished by having variables and variable binding and look­
up procedures. 

I want to close this section by returning to consciousness and related notions. As I 
said, I suspect that the notion of intentionality studied by Searle, Dretske, and others is 
a hodgepodge of other notions and intuitions, some of which we want to maintain. 
Consciousness is certainly one of these notions. Humans, but not computers,· are 
conscious; we are aware of some of the states and contents of .our own minds. 
Personally, I like Nagel's notion of consciousness (1974); there is something it is like to 
be a human, but being a computer seems as ifit would be like being an intelligent rock. 
Consciousness, whatever it is, certainly needs explaining. Of course, computational 
explanations would be entirely appropriate (see Dietrich (1985)). Another notion is 
intelligence. Humans are simply smarter than computers. In fact, computers occupy a 
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new class in the intelligence hierarchy; they are a new class of idiot savants. Expert 
systems demonstrate this clearly. They are less intelligent than snails on virtually every 
dimension we care about, yet are smarter than most humans on a few special 
dimensions (for more on this, see Hamad (1989)). Finally, in a fascinating paper, 
Haugeland (1979) argued that computers will not succeed in understanding natural 
language until they can be given (or otherwise develop) a sense of the world they 
inhabit, the creatures they interact with, and, most importantly, a sense of themselves 
as enduring wholes. Those that think computers are merely formal symbol 
manipulators (and, hence, that computationalism is too weak) may in fact be noticing 
that computers are not conscious, not very intelligent, and are not selves. 

If intentionality is only a semantic property, it is virtually ubiquitous. If 
intentionality is variable binding and look-up, then it is quite common. lfintentionality 
is consciousness, etc., then it is quite rare. The literature on intentionality defines it as 
one of the first two notions, but reading between the lines, consciousness and related 
notions are the real phenomena of interest. 

4 Making decisions 

Computationalism is incompatible with our ordinary, day-to-day view that humans 
make decisions. Hence, for a computationalist, decision .. making is not a cognitive 
capacity. In fact, if humans really do make decisions in the way we ordinarily think 
decisions are made, then computationalism is false. 

On the ordinary view, humans and other intelligent systems frequently decide to 
take a certain course of action or to form a certain intention. Of course, not all of our 
actions or goals are arrived at by deciding, but some are. A few months ago, I decided to 
write this paper; I decided to work on it today. But as I type this paragraph I am not 
deciding to breathe or to maintain tonus; these are done automatically. 

The computationalist wants to, and should want to, maintain the distinction 
between the two kinds of action just mentioned. However, whereas both our. folk 
psychology and our current cognitive psychology couch the distinction in terms of 
deciding and not deciding, the computationalist couches it terms of the kinds of 
procedures executed. This makes all the difference in the word. I will describe this class 
of procedures shortly; for now, let us consider ordinary deciding. 

Deciding is, I think, most naturally seen as the exercise of the will. Typically, the 
system has three or four options before it, and it willfully chooses the one which has the 
highest score provided by a process of evaluating the options along some dimension (or 
dimensions). Generally speaking, the dimensions measure 'the desirability of the 
outcomes produced or their ability to satisfy some previously set goal or established 
intention. For example, I can continue to write or I can go to watch football on 
television. I ponder over these options. I would rather go to watch football; it is relaxing 
and fun. Writing this paper is not relaxing. However, writing this paper is fulfilling in a 
way that watching football is not. I continue to ponder. Aesthetics, relaxation, and 
enjoyment tum out to be secondary. I have a duty to write this paper: a duty to myself 
(for my career and philosophical integrity), to specific others (those I have made 
promises to regarding this paper), and unspecified others (the philosophical and 
cognitive science communities at large). I sum everything up and 'see' that my duties 
outweigh my desires for fun and relaxation, so I choose to work on my paper. My will 
enters here in the last step. Once I see which option has the highest score, I am not 
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thereby destined or forced to work on my paper. I must willfully choose to work on my 
paper. That this is true can perhaps be seen more readily if we suppose that I am one of 
those who generally ranks duties below enjoyment no matter what my duty. In this 
case, the fact that I must willfully choose to work on my paper is more apparent. 

As Ijust mentioned, will can be exercised with varying intensity. Suppose I see that 
my duties are not all that strong. Suppose I already have plenty of research grants and 
publications, my promises were 'weak' promises or promises with unspecified dates, 
and the philosophical and psychological communities at large already accept the 
scientific bankruptcy of the notion of deciding. In such a case, my desire for fun might 
get the highest score, so I choose to watch football. Even in this case, I exercise my will. 
For example, I might be a workaholic and have to make an effort to relax. But even ifI 
am one of those who is disposed to relax and have fun when I have no other pressing 
duties, I must still exercise my will in order to watch football on television, though in 
this case, I need not exercise my will very much. Ifl do not exercise my will, I willjust 
sit here in front of my monitor maintaining tonus and breathing, typing nothing and 
doing nothing. What is the will? No one knows (though not from want of trying). 
Perhaps one day psychologists will discover what it is. Perhaps one day artificial­
intelligence researchers will be able to program will into a computer. Perhaps we will 
never know (cf. Fodor (1983)). But humans clearly have wills, and they exercise them 
frequently in the course of their daily lives. 

This, I submit, is the ordinary view of human decision-making - and, it is the view 
which gets extended to cover all other intelligent systems from ants, to cockroaches, to 
dolphins, to chimpanzees, and to computers. 

Computationalists have a different view of deciding. Their view is that decisions are 
the computation of branching functions. Branching functions map expressions 
constructed using computable, boolean functions (which are called conditions) onto 
some other computable function. Thus if F is set of computable functions, we have: 

B: {conditions} - - - ) F . 

. The action of B is then 

. . { .iJ., if condition is true 
B(condltlOn) = );, if condition is false 

where both.iJ. and); are elements of F. In computer science, branching functions are 
typically rendered as IF statements (which are procedures)8 

IF (condition) THEN.iJ. 

At this point, we need to recall the notion of controlflow. As mentioned in Section 2, the 
specific sequence of functions which get computed is called the control flow of the 
system's computation. In sequential control flow, no branching functions are executed: 
computing the function/; is always a sufficient condition for computing the function/;+ 
I' (Here, we must assume that the system is working properly and that it is not a 
stochastic system, i.e. that its state changes are not probabilistic relative to our 
explanatory goals.) Described at the state level, we can say that being in state Sl is 
always sufficient for entering state S2 (again, assuming the system is working correctly 
and is not stochastic). However, branching functions can change the flow of control in a 
system's procedure execution. Computing a branching function B does not always 
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result in next computing a specific function. Depending on the values of the relevant 
variables, computing B could result in computingiI next or.h next. However, as also 
noted in Section 2, once a procedure is specified, flow of control is determined by the 
initial state of the system, and this is true even if the procedure contains branching 
statements. In fact, given a branching function B, its condition C, and c's input i, B(c( i)) 
uniquely determines an output functionfwhich is then simply executed automatically. 
Computationalism is incompatible with the notion that cognitive agents such as 
humans decide precisely because there is nothing for the will to do. The automatic 
nature of control flow and the notion of branching functions capture everything there is 
to the notion of deciding. 

I now return to my decision to work on this paper instead of watching football on 
television. To the computationalist, I computed some branching function which 
determined that my duties outweighed my desire for fun and relaxation. That is I 
executed this procedure: 

IF (duties outweight desire for fun), 
THEN work on paper, 
ELSE watch football. 

Given that my duties do outweigh my desire for fun, I simply compute next the work­
on-paper function or, more precisely, the first function in the sequence of functions 
which constitutes my work-on-paper function and which explains my working on my 
paper as I do. Notice that there is no need for will. Once the branching function 
computes the boolean expression which makes up the condition (duties outweigh 
desire for fun) I compute the next function automatically, just as the computer does. 

But what about the case where my duties rank lower than my desire for fun, yet I 
choose to work on my paper instead? Will seems required to explain this. In the 
computationalist view, however, if the procedure mentioned above adequately 
explains my behavior and I work on my paper instead of watching football, then I have 
not, in fact, ranked my duties lower than my desire for fun. However, does this mean 
that computationalism cannot take seriously the distinction underlying the above 
question? Some decisions do seem harder to make than others. Computationalism 
either ought to account for this or to show that the supposed phenomenon is an illusion. 
I believe that computationalists will be able to explain this phenomenon. Of course, the 
best way to argue this point would be to produce such an explanation here. But 
something less will do, too - I need only show that computationalism can explain this 
phenomenon which I can do by producing a plausible explanation. 

Some function computations are goal-driven. A goal-driven computation is just like an 
ordinary computation (as in Figure 2) except for the way in which the sequence of 
functions came into existence. For goal-driven computations, the system itself builds 
the sequence (actually some subsystem builds the sequence, but we can be relatively 
sloppy about this point). The constraint on building a sequence is that the sequence 
should, when executed, result in achieving the goal. (Goal-driven computations are 
well-known in artificial intelligence (see Rich (1983: 57 fr.) for an introduction. Goal­
directed computation is also kI:l.Own as top-down processing, expectation-driven 
processing, and backward reasoning, etc.) 

In general, in a goal-driven computation, whether or not the goal should be achieved 
is not open to debate. The goal results in a sequence off unctions, control is passed to the 
first function in the sequence, and the goal is achieved (assuming the sequence is in fact 
capable of producing the goal). However, sometimes a system has 'dueling goals', i.e. 
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different goals which compete against each other for current resources. Suppose there 
are two kinds of dueling goals: candidate goals and interfering goals. In both kinds of 
goals, goals compete against each other. The difference is in how genteel the 
competition is. Candidate goals are goals which, as it were, agree to abide the decision 
of a branching function - rather like polite political candidates, or factions in a legal 
dispute. Interfering goals, however, are not 'willing' to abide by the decision of a 
branching function. They, as it were, influence the voting. Such goals are like heads of 
rival criminal organizations of corrupt political adversaries. Specifically, interfering 
goals create looping branching functions. 

Returning again to my decision to work on this paper. Suppose that I have dueling 
goals: i.e. to work on this paper or to watch football on television. In the case where I 
fairly easily decide to work on this paper, my two goals are candidate goals. My goal 
adjudication system takes the two goals as input and constructs the following branching 
procedure (which is quite similar to the one described above): 

IF (duties outweight desire for fun), 
THEN Activate: work-on-paper, 
ELSE Activate: watch-football. 

This branching procedure is executed, and the winning function, 'Activate: work on 
paper', say, activates my goal to work on my paper. This." in turn, spawns the 
appropriate sequence of functions, and I do indeed work on my paper. 

However, suppose that my goals are interfering goals. Their interference causes my 
goal adjudication system to create a looping branching procedure: 

IF (duties outweigh desire for fun), 
THEN decrease the importance of my duties 

and re-execute this procedure, 
ELSE increase the importance of my duties 

and re-execute this procedure. 

The watching-football goal is responsible for the THEN clause, and the work-on-paper 
goal is responsible for the ELSE clause. The difficulty of the decision depends on the 
intensity of the increase/decrease war implicit in the branching procedure. In the worst 
case, every decrease could be met by an increase of exactly the same amount, and an 
infinite loop could result. Then my emergency looping branching procedure repair system would 
have to be called (the calling condition would be something like 'branching function 
has looped more than 106 times'), and it would be responsible for taking control away 
from the looping branching procedure, and trying to restore order. In the very worst 
cases, my emergency looping branching procedure repair system might simply have to 
'flip a coin' and pass control to the winner while actively preventing control from being 
usurped by the loser. When viewed from my conscious level, I could very plausibly 
describe all this as 'agonizing over my decision whether to work on my paper or to 
watch football', and as 'exercising my will to work on my paper'. 

We can now, perhaps, finally abandon the notion of willful decision-making. With 
the demise of willful decision-making goes any robust notion ofa person scanning an 
array of options and choosing one. Humans do not choose, they merely compute. The 
procedures we execute are extraordinarily complex and quite plastic, but like any 
computational mechanism, we decide to do some things and not others entirely on the 
basis of our initial state and the branching procedures we execute.9 
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5 Conclusion 

In this paper, I have defined computationalism, shown that computationalism makes 
any distinct notion of intentionality widely applicable, and I have shown that 
computationalism is incompatible with our ordinary notion of willful decision-making. 
From the computationalist perspective, humans are very different from what we 
thought. Thus, computationalism is incompatible with folk psychology. Given the 
batting average of folk theories, this a point in the favor of computationalism. 

Notes 

1. A brief discussion of algorithms, procedures, functions, and the Church-Turing thesis is required. 
Computer scientists distinguish between if.fective procedures and algorithms (e.g. see Brainerd and 
Landweber (1974). An effective procedure ('procedure' for short) is a finite, unambiguous description of a 
finite set of effective operations. An operation is effective if there is a striCtly mechanical method for 
executing it. (This is ag precise as the definition can be made, which is why the Church-Turing thesis 
cannot be proved). All computer programs are (effective) procedures. 

Depending on what input they are given, procedures will halt in a 'yes' or 'no' state in a finite amount of 
time or go into an infinite loop. If a procedure always halts no matter what input it is given, then it is called 
an algorithm. In other words, an algorithm never enters an infinite loop; instead, it always produces a 
definitive answer to an input question, though it need not produce the right answer. Only some computer 
programs are algorithms. In this paper, 'procedure' will be usecj, most of the time because we have no 
empirical evidence that any cognitive procedure always halts. 

The Church-Turing thesis says that Turing machines can compute any function for which an effective 
procedure exists. The converse of this statement is known to be true. Computationalists are committed 
only to the claim that cognition is the execution of procedures. This is the weakest claim compatible with 
computationalism. It is this claim and the Church-Turing thesis that commits them to the further claim 
that all cognitive functions are Turing computable. Computationalists need not, and should not, commit 
to the stronger claim that cognition is the execution of algorithms because we have no evidence that every 
procedure which humans execute always produces a definite answer. 

Computer scientists frequently distinguish between computing a function and executing a procedure 
because every procedure realizes exactly one function, but each function can be realized in several 
different procedures. For example, the function 2*x which doubles any number can be realized as an 
procedure which adds x to itself, or as an procedure which multiplies x by 2. Another example, is the 

. function sort A which sorts an array of items from the lowest to the highest (e.g. if the items are character 
strings, sort A sorts them into alphabetical order). Sort A could be realized using the bubble sort procedure 
or the selection sort procedure. However, this distinction is not too important in computationalism 
because computationalists must analYze the functions they attribute to systems into subfunctions (see 
Section 2). Doing this forces them to view functions as built from certain subfunctions in certain ways, 
hence they are forced to view functions as procedures. Therefore, I shall use the words 'function' and 
'procedure' more or less interchangeably. 

2. For example, there are competing theories of how humans make analogies. One kind of theory claims that 
analogies are made by accessing pairs of representations (or data structures) in memory which denote 
relations such as causal relations (see, e.g., Schank (1982)). Another kind of theory claims that the 
accessing strategy is rather wanton, accessing almost any representation it can regardless of what it 
denotes (see, e.g., Dietrich and Fields (1986), Gentner and Landers (1985) and Gick and Holyoak 
(1983)). On the former theory, when required to do so, humans should by and large produce only a few 
plausible analogies from which a 'best' analogy is selected. On the latter theory, when required to do so, 
humans should produce a large number of candidate analogies many of which will be spurious. These 
theories make incompatible predictions, yet both are compatible with the computationalist thesis. 
Indeed, both kinds of theory are couched in computationalist language. 

3. This is not a cop out. All sciences are beset by the problem of how to carve the world in order to get systems 
for which good explanations are forthcoming. The current problem is merely computationalism's version 
of this. Presumably, computationalism can handle it as well as physics, for example. 

4.· Completing steps 1-4 (i.e. determining that S computes F and that F = gn' gn-I' ... 'gh where we 
understand the gl terms) is generally quite difficult and typically requires creativity and insight. A theory 
of how steps 1-4 are accomplished would, therefore, require a theory of how humans come to see systems 
as executing F instead of E, and why F, say,· provides a more satisfYing explanation of the behavior of S 
than E does. To date, very little is known about this phenomenon. 

5. Looping is executing a sequence of instructions over and over again. Branching is jumping from the 
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current position in the program to some other place in the program; this is typically accomplished by using 
a test statement, e.g. 'IF X ) 5 GOTO STMT 100'. Sequencing is executing the next in a sequence of 
instructions unconditionally. . 

6. In computer science, I is typically the composition of two functions (I = 12 0 It). It maps states of S onto 
instructions in some programming language. This function is left largely implicit, and is realized by 
engineers who design computers, beginning with those who design computer chips and ending with those 
who design operating systems and applications software. 12 is provided by, e.g. a denotational semantics 
(or some other kind of semantical function) which provides semantic valuation functions mapping 
syntactic contructs in the programming language onto the abstract values they denote (see Stoy 1977).12 
is also often left implicit. 

7. Dretske (1981,1985) has argued that intentionality is crucial to learning. Ifhe is right, then he has shown 
why intentionality is crucial to cognition. But computers can learn, and they are supposed to lack 
intentionality. 

8. An important manifestation of branching functions involves the nesting of conditions. Such nestings have 
this form (I shall use the procedure notation since it is more familiar): 

IF (condition 1) THEN 1. 
ELSEIF (condition 2) THEN 12 

ELSEIF (condition n-l) THEN J,.-t 
ELSEJ,.. 

In such nestings, the first condition to be evaluated to be true determines which of the functions1. toJ,. 
becomes executed. There are always a finite (and typically small) number of conditions to test for, and one 
of the conditions must be chosen: the ELSE clause (the final clause) is executed in case no other clause is; 
the ELSE clause is thus the trap clause. 

9. Some philosophers have suggested that I have only succeeded in producing another argument for 
determinism. The attitude seems to be that my argument can be met by trotting out some argument for 
freewill. But this completely misses point. The object of the game is to explain human cognition 
scientifically, not to save some cherished notion of human agency. If the notion of will can be made 
scientifically respectable and we discover that our theories of cognition are inadequate without this 
revised notion, then will the concept of will take its proper place among other scientifically respectable 
entities such as mass, energy, the proton, the quark, DNA, etc. In fact, such a scenario is compatible with 
adopting computationalism as the foundation of cognitive science. But I suspect that any notion of will 
with a scientific foundation will not be considered the real thing. So, if we can explain human cognition 
without the will, then we ought to do so. 
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