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Abstract: Replicating or exceeding human intelligence, not just in particular domains 
but in general, has always been a major goal of Artificial Intelligence (AI). We argue 
here that “human intelligence” is not only ill-defined, but often conflated with broader 
aspects of human psychology. Standard arguments for replicating it are morally unac-
ceptable. We then suggest a reframing: that the proper goal of AI is not to replicate 
humans, but to complement them by creating diverse intelligences capable of collabo-
rating with humans. This goal renders issues of theory of mind, empathy, and caring, 
or community engagement, central to AI. It also challenges AI to better understand the 
circumstances in which human intelligence, including human moral intelligence, fails.
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1. Introduction: Human-like Intelligence as a Goal of AI

Despite arguments against it (e.g., Whitby 2003), replication of human-level (or 
human-like) intelligence has always been explicitly stated and highly publicized 
as primary objectives of Artificial Intelligence research. Alan Turing’s (1950) imi-
tation game is, after all, about imitating a human. The title of Allan Newell and 
Herbert A. Simon’s report on the General Problem Solver (1961) reads, “GPS, A 
program that simulates human thought.” Edward Feigenbaum and James Feldman 
(1963) chose the title Computers and Thought at a time when the only legitimate 
exemplars of thought, at least in academia, were humans. In their Turing Award 
lecture, Newell and Simon (1976) characterize the “empirical research” of AI as 
understanding human intelligence via replication. The goal of the CYC project 
(Lenat, Prakash, and Shepherd 1986) is, similarly, to replicate human common-
sense reasoning. Nils J. Nilsson (2006) is perhaps the most explicit, characterizing 
the goal of AI as building machines that can do every job humans are paid to do. 
Prominent projects including the ACT-R model (Anderson 1993), SNePS (Shapiro 
2000), and the Soar cognitive architecture (Laird 2012) were not just intended to 
take us further down the road toward building a human-level intelligence, but were 
explicitly characterized as actually replicating at least some aspects of human-
level intelligence. These were, moreover, some of the most important, visible, and 
well-funded projects in the history of AI. So, building a human-level intelligence 
has, as a matter of historical record, been a serious and perfectly explicit goal of 
AI from the start.1 It is also a current goal, despite the arguments of detractors like 
Blay Whitby and the efforts of some prominent AI researchers, e.g., Rodney A. 
Brooks (1991), to set alternative goals.

From John R. Lucas (1961) to Roger Penrose (1989) and beyond, the “strong 
AI” goal of replicating human-like intelligence, or perhaps to exceed it by creating 
artificial general intelligence (AGI) (Goertzel 2014), has drawn the ire of philoso-
phers, scientists in other disciplines, and much of the public (see Dietrich et al. 
2021 for an extended discussion). Part of the furor has always been about replicat-
ing human consciousness, not just human intelligence (HI) as a set of abstracted 
problem-solving capabilities. The relationship between consciousness and intel-
ligence, and in particular whether intelligence requires consciousness, remains 
highly controversial. While we will refrain from discussing this issue in detail, we 
reject a priori claims that AIs either must be or (much more commonly) cannot 
be conscious. Rather, we favor a position that acknowledges the moral hazard of 
possible AI consciousness, either now or at some time in the future.
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Within the AI community itself, the perceived failures of grand, monolithic 
projects—such as those referenced above—have driven successive waves of archi-
tectural innovation. “Second wave” artificial neural networks (ANNs) (Rumelhart, 
McClelland, and the PDP Research Group 1986; Smolensky 1988), embodied ro-
botics (Brooks 1991) and the broader embodied, embedded, enactive, extended, 
and affective (4EA) cognition movement (Anderson 2003; Froese and Ziemke 
2009), and deep learning (DL) (LeCun, Bengio, and Hinton 2015) are just some 
of the results of recent AI research. But perhaps the most ubiquitous projects focus 
on developing a human-like AI. 

As of the present moment, all endeavors to achieve human-like AI have 
failed, despite occasional claims to the contrary in the popular press2. Both the 
size and complexity of the goal of developing an Artificial General Intelligence 
(AGI) have been seriously and consistently underestimated. Even as DL systems 
have achieved astonishing practical successes in narrow but important domains, 
such as those of AlphaFold (Senior et al. 2020; Jumper et al. 2021) and AlphaCode 
(Li et al. 2022), many now call for re-thinking whether scaling alone will produce 
an open-domain AGI and single, monolithic AGIs as sought by the GPS, CYC, or 
SOAR projects (Dafoe et al. 2020; Marcus 2020; Brynjolfsson 2022; Friston et al. 
2024).

What, however, is “human-like intelligence?” Is it the same as human intel-
ligence (HI) in some individual or collective sense? Is it general intelligence (GI)? 
William James (1890) characterized intelligence in terms of adaptability or robust-
ness: the ability to solve some given problem by a variety of means. Kevin Laland 
and Amanda Seed (2021) list five prominent aspects of human intelligence—ret-
rospective and prospective memory, tool invention and use, multi-domain problem 
solving, social cognition, and language—but also point out that each of these ap-
pears in some form in many other species. Melloni et al. (2019) emphasize that 
human intelligence cannot be understood in abstraction from human sensory and 
motor capabilities and ecological embedding; humans—indeed all organisms—
are 4EA systems. 

It has become widely accepted that motivation is an integral component of 
intelligence since Antonio Damasio (1994) brought it to wide attention, but this 
component is transferred out of the AI system and into the user/trainer even in 
advanced DL systems. The study of intrinsic motivation and creativity in humans 
has been more closely coupled to developmental robotics than to the pursuit of 
AGI (Kaplan and Oudeyer 2007; Oudeyer, Baranes, and Kaplan 2013; Cangelosi 
and Schlesinger 2015); in fact, social neuroscience as a whole has been more 
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closely coupled to social robotics than to the pursuit of AGI. The Free Energy 
Principle (FEP), a principle of uncertainty minimization, characterizes intrinsic 
motivation as the primary motivation of all systems, living or not, that interact 
with an external environment (Ramstead et al. 2023). Intrinsic motivation is also 
central to the proposal of Karl J. Friston et al. (2024) to base AI research on the 
FEP (Friston 2010; 2013).

Concepts such as intrinsic motivation—or of affect generally—are generally 
considered to be psychological concepts. How much of human psychology is built 
into the concept of human intelligence? How much of human psychology needs 
to be included in “human-like” intelligence? Is HI, under some suitable definition, 
the same as GI? How “general” does GI need to be? What kind of psychology, 
beyond some general motivational mechanism, is needed for GI? These questions 
are seldom addressed explicitly, and when they are, the answers tend to be vague 
and contentious.

Human intelligence is often just defined by pointing: it is whatever (most) 
humans have. General intelligence is often defined in terms of computability. 
However, “capable of computing any Turing-computable function, up to resource 
constraints” clearly will not do for AI’s purposes, as then a laptop would count 
as an AGI.3 The Turing test will not do, as laughable claims to have “passed it” 
demonstrate; indeed the Turing test was probably never intended to be criterial for 
intelligence (again see Dietrich et al. 2021).4 Specific abilities like chess-playing 
or solving undergraduate physics problems will not do, because, obviously, they 
are not general. General claims for attributes like creativity or flexibility or robust-
ness are, in the absence of a characterized embodiment and task environment, only 
pointers and scarcely better defined than HI itself.

While it is reasonably clear that no human-like AIs or AGIs yet exist, it is 
less clear why. On the one hand, we—not just the AI community but the entire 
mythopoetic tradition of artificial humans (see Brynjolfsson, 2022 for numerous 
examples)—grossly underestimated how hard the problem of replicating HI is. 
We do not know how HI works, either at the algorithmic level or at the level of the 
neural (and more generally, bodily) implementation (Melloni et al. 2019). We do 
not, for example, know what concepts are, what categorization is, what semantic 
relevance is, and on and on (Margolis and Laurence 1999; Dietrich et al. 2021). On 
the other, we do not know how “human-like” something needs be to have GI. In 
particular, we do not know how human-like the psychology of a GI needs to be. In 
this conceptual vacuum, failures can be recognized, but criteria for success are not 
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just ill-defined from an engineering perspective, they are deeply and philosophi-
cally controversial.

Whitby (2003) is, moreover, not alone in claiming that even if artificial HI 
(AHI) or AGI is or has been a primary goal of AI—the other primary goal being 
technological utility—it is a mistaken goal. Erik Brynjolfsson (2022) has recently 
argued that the proper goal of AI, for economic and moral as well as scientific and 
technological reasons, is not to duplicate HI but to exceed it in specific, targeted 
areas. We support this critique for reasons outlined already in Eric Dietrich et al. 
(2021; 2022). To be direct, why re-invent the wheel? Humans are not in short 
supply, so why try to replicate HI? As for GI, it is not clear that humans have it. 
There are many problems humans appear unable to solve, despite generations of 
trying, many of which are in the ethical, social, economic, and political spheres 
where embodiment and motivation play at least as large a role as “thinking” in 
the traditional sense. Therefore, if human psychology is intrinsic to HI, it is not 
clear that replicating HI is even on the path to AGI. And, again, much AI research 
fails to distinguish between HI and AGI, conflating the two and complicating the 
discussion.

In what follows, we will first expand on the above blunt critique, arguing in 
Sect. 2 that replicating HIs with human-like psychology is deeply immoral, and 
in Sect. 3 that such systems would not lie on the path to AGI. We will then, in the 
remainder of the paper, argue for reframing the question. We start with the fact 
that humans—indeed all organisms, even bacteria (Stal 2012)—have “extended 
minds” (Clark and Chalmers 1998) in the straightforward sense of employing stig-
mergic memories (Fields, Glazebrook, and Levin 2021), i.e., memories written on 
the environment, such as pheromone trails, grocery lists, or any messages passed 
to another agent whose memory can be relied on in the future. Humans and many 
other organisms also employ parts of the environment as tools to solve novel prob-
lems, and humans (as well as some other organisms) design and build tools when 
found objects are insufficient (Visalberghi et al. 2017). One can, indeed, regard AI 
systems as such tools. Human problem solving is, moreover, typically a collec-
tive endeavor; humans use each other’s intelligence when their own is insufficient 
by itself (De Jaegher and Di Paolo 2007; De Jaegher and Froese 2009; Dubova, 
Galesic, and Goldstone 2022). Humans (almost) always operate, in other words, 
with a composite (HI, OI), where OI is some “other intelligence” that may be quite 
minimal (a piece of paper, a way-marker) or quite sophisticated (a smartphone, a 
laptop, one or more colleagues). Humans, in other words, almost always operate 
with greatly extended minds.
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The proper goal of AI is not, in this case, to replicate HI but to maximize (HI, 
OI), as indeed Allan Dafoe et al. (2020), Brynjolfsson (2022), and Friston et al. 
(2024) have also argued from their various perspectives.5 AI is, therefore, properly 
a composite discipline, one that seeks both to understand HI well enough to char-
acterize its weaknesses, and to develop OIs that compensate for these weaknesses. 
AI is, in this sense, continuous with human—indeed hominin—engineering prac-
tice since the invention of the hand axe. It is discontinuous with this tradition, 
however, in attempting to build systems that are not just tools, but in an important 
sense colleagues (Fields 1987). As colleagues, OIs need not just intelligence but 
psychologies. As an answer to our title’s question, we argue that we want AIs to be 
psychologically like (most of) us in a particular and generally neglected way: AIs 
need to be, and be motivated to be, team players. The fact that humans perform 
best as team players has been largely neglected until the past two decades; see 
Arthur C. Graesser et al. (2018) for review. In particular, AIs need to be good 
diverse team players, capable of working with both humans and other artifacts, 
regardless of capabilities or architectures of the latter. AIs must be smart enough 
to know when they cannot solve a problem alone, and smart enough to ask for 
help. They must, moreover, have good enough theory-of-mind (ToM) (Frith and 
Frith 2005; Carlson, Koenig, and Harms 2013) capabilities to ask the right kind of 
system for help. They need, in particular, theories of our minds—to include our 
cognitive strengths and weaknesses. They also need the capability to design and 
build a system they need to help them, just as humans (sometimes) do. Such AIs 
will work not for us but with us, or perhaps we will work with them. We conclude 
that any feasible AGI will be a composite human (or humanity)-in-the-loop system 
that, if it is to be of value, will be capable of solving problems that neither humans, 
nor current (HI, OI) systems, can solve alone.6

2. Because It Is There

Before proceeding to offer and critique potential definitions of HI and GI, it is 
useful to ask: Why strive to build artificial human-level intelligences (AHIs) at 
all? Why would an AHI ever have been a goal of AI? We can suggest four kinds 
of reasons. First, there is the mythopoetic reason: “Because we will have created 
our equals in the universe—we will no longer be alone.” There is a more basic, 
curiosity-driven reason: “Because it is an obvious challenge and goal.” One is 
reminded of George Mallory, who when asked, in 1923, why he wanted to climb 
Mount Everest, responded with: “Because it is there.” There is the scientific rea-
son: “Because to build a machine as smart as we would tell us a lot about how it 
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is that we are smart.” There is, finally, an engineering or overtly economic rea-
son: “To do work that is too dangerous, too expensive, or otherwise inefficient 
or undesirable for humans to do.” The influence of the last three of these reasons 
on AI research is well documented; we suspect that the first has exerted a more 
subtle and implicit influence from Turing onward. None of these, however, are 
sufficiently good reasons. As soon as a human-like psychology is included in the 
idea of an AHI, they all raise immediate moral questions.

The primary problem with the scientific reason is that it gets the flow of in-
formation backwards: it assumes that we can replicate an extraordinarily-complex 
system without knowing how it works. One can obviously build a fire without 
knowing any chemistry (but not without knowing that sticks burn and rocks do 
not), but one cannot just happen to build a human-level intelligence and then 
reverse engineer it to find out how we work. This becomes obvious as soon as 
psychology is included in the mix, so it is useful to examine why it did not appear 
obvious in the early days of AI. AI was conceived as a discipline in the aftermath 
of World War II when behaviorism enjoyed its maximum influence. For a behav-
iorist, a functional specification of desired behavior is sufficient; indeed a func-
tional specification is all that is relevant, even in principle. To scientists brought up 
on the idea that thinking—or at least the best thinking—was logical, the idea that 
building a machine that could prove theorems (Newell and Simon 1956) would be 
building an AGI (and hence automatically an AHI) might seem natural.

The problem with the scientific reason is that this psychologically naive way 
of thinking has persisted and has exerted enormous influence on the culture and 
pedagogy of the field. The discipline-wide pivot toward ANNs in the 1980s (see 
Rumelhart, McClelland, and the PDP Research Group 1986; Smolensky 1988, and 
other foundational papers), for example, did not incorporate 1980s cognitive neu-
roscience, but rather simplified models of neurons based conceptually on those of 
McCulloch and Pitts (1943). There is still no convincing evidence that biological 
neuronal networks employ error back-propagation (as widely used in deep learn-
ing; see e.g., Wright et al. 2022), but see Beren Millidge, Alexander Tschantz, 
and Christopher L. Buckley (2022) for evidence that predictive coding systems 
may approximate back-propagation. Moreover, ANNs bear only the most abstract 
resemblance to “neuromorphic” computing systems that aim to functionally rep-
licate neurons (see Schuman et al. 2017; Tang et al. 2019 for recent reviews).  
Hence even if they are very successful in solving problems, as e.g., AlphaFold 
(Senior et al. 2020; Jumper et al. 2021) undoubtedly is, current deep learning (DL) 
systems cannot be expected to tell us anything of interest about human cognition. 
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Emulation is not explanation. Indeed both Gary Marcus (2020) and Friston et al. 
(2022) make this point in their respective critiques of the current state of AI; Lucia 
Melloni et al. (2019) do the same from the perspective of neuroscience.

An obvious potential counterexample to the above is developmental robot-
ics. Here, however, the flow of motivating theory is in the human (or animal) to 
AI direction: the goal is to build robots that undergo developmental processes, 
including motivational development and “learning how to learn,” that we largely 
understand from prior work with humans and other animals (see e.g., Cangelosi 
and Schlesinger 2015). Experimental platforms like the iCub are just that: experi-
mental platforms. They are not, and are not intended to be, artificial children.7

Demonstrable success in building an AHI with an even minimally human-like 
psychology for scientific reasons would clearly raise ethical issues; indeed Institu-
tional Review Boards (IRBs) could be expected to step in well before success was 
demonstrable.8 The ability to register stress is widely recognized as foundational 
to even the most basal psychologies, being evident even in bacteria (e.g., Fields, 
Glazebrook, and Levin 2021). In the language of the FEP, stress is uncertainty, and 
hence the fundamental motivator of cognition (Friston et al. 2024). An AHI with 
sufficient psychology to have human-like intelligence can, therefore, be expected 
to register stress, even counterfactual stress—stress induced by the imagination of 
future events—that constitutes suffering. Such a system would be one in which the 
notion of the well-being of AHIs is relevant.

These issues come into even greater focus when we consider the curiosity-
driven (or to be less charitable, boredom-avoidance) reason to build AHIs with 
human-like psychology. This kind of reason works well for climbing mountains 
and other risky challenges, but the risk has to be to oneself. This is obviously not 
true for a machine with human-level intelligence. In the case of AHIs, we would 
be forcing risk on to something else: the machine. And there lies the problem. A 
machine with human-like psychology would be able to suffer (from all kinds of 
things, just like we do), and would probably fear death (just like we do). So, build-
ing an AHI system because we need a challenge is immoral. Compare: curiosity, 
boredom-avoidance or needing a challenge is an inappropriate reason—though it 
often the actual reason, stated or otherwise—when deciding to get pregnant and 
have a human baby or when deciding to get a dog. Being bored or loving a chal-
lenge is not a morally acceptable reason to take on responsibility for another life.

But what about the mythopoetic reason? It seems high-minded, but it, too, 
suffers from immorality. This moral hazard becomes obvious when we understand 
that the mythopoetic reason is about us. Building a human-level intelligence puts 
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a feather in our caps. But what does it do for the intelligence thus created? For the 
other being? Similar to the “because it is there” line of reasoning, the mythopoetic 
reason places such an intelligence at serious risk of being a curiosity, an exhibit, 
a pet, or a slave of some sort. The explicitly stated goal to “align” AI with human 
values (Markus and Davis 2019; Stray 2020; Han et al. 2022), for example, ren-
ders AIs subservient to human goals and desires, including our human desire for 
control.

Indeed, it is here that the mythopoetic and engineering reasons overlap: 
building an artificial human-like worker is in fact building a slave. Karel Čapek’s 
R.U.R. (2001) and Joanna J. Bryson (2010)—who rejects our moral-hazard posi-
tion in favor of an a priori assumption that AIs will not be conscious—make this 
perfectly clear. Ian McEwan’s Machines Like Me (2019) provides a recent coun-
terpoint: the “artificial humans” are both smarter and more moral than we are, and 
commit suicide out of despair. It is difficult not to think of this when contemplat-
ing the sex robots, war robots, or nurse robots conceived of as industrial products 
(see Sullins 2012; 2013a; 2013b; 2014; 2017). These industrial artifacts carry on 
the long tradition of slavery, an institution as old as socially stratified civilization 
that continues to this day. According to the United Nations International Labor 
Organization, 40.3 million people are now enslaved (see, Hodal 2019; ILO 2017). 
This number does not include all the dogs, cats, horses, and agricultural animals 
that live horrible lives due to human wants and interests. The history of slavery 
and other forms of exploitation suggests that once we start building intelligent 
machines, thinking of them as slaves, as unpaid servants, etc., will come naturally.9 
On any position that acknowledges moral hazard, immorality of a monstrous size 
would then ensue.

Hence, we return to the notion of reinventing the wheel, noting that in the 
case of AHIs, the reinvention is not only pointless but cruel. This, of course, is why 
AHIs have mythopoetic status, as Hollywood continually and tiresomely reminds 
us. Not noticing this can only be considered a massive failure of science-society 
communication on the part of the AI community.10

3. Human Intelligence Is Not General Intelligence

We now turn, as a second preliminary, to the question of how, precisely, to charac-
terize HI and GI. Abstracting from psychology, it is relatively straightforward to 
characterize an ideal GI as a system that can solve any problem that it recognizes 
as a problem, up to resource and computability constraints (but see Ji et al. 2021 
for an argument that Turing computability can be exceeded). In the increasingly-
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popular language of the FEP (Friston 2010; 2013), an ideal GI is a system in the 
limit as time-averaged Bayesian surprisal (i.e., net prediction error) approaches 
zero—any momentary upticks in Bayesian surprisal can be quickly dealt with by 
problem-solving. This characterization has a trivial special case where the “GI” 
inhabits an environment in which interesting problems—problems that are unan-
ticipated and require multi-step problem solving—never arise. Interesting GIs, and 
hence interesting AGIs, would be systems somewhere in the vicinity of this limit 
of low-average surprisal that inhabit interesting, problem-rich environments. “GI” 
in practice is, therefore, a continuum, not a bright line. We will, in what follows, 
only be interested in GIs that can recognize (and hence solve, up to constraints) at 
least all the problems that we can recognize.

Human intelligence is often held up as an exemplar of General Intelligence, 
though with the proviso that HI may also be less than some feasible GI (e.g., 
Goertzel 2014). Setting aside gods, the Western philosophical tradition since Des-
cartes tends to regard HI as the only extant exemplar of GI. Human intelligence 
does, indeed, exhibit significant generality. Humans can abstract, categorize, de-
duce, draw conclusions, dream up counterexamples, explain, infer, intuit, reason, 
and combine all of these very quickly into a thought. Human languages are syn-
tactically complete. Humans are good enough at computation to have invented the 
theory of computation, including its metatheory. Humans are claimed by some to 
be more powerful than Turing machines, though see Dietrich et al. (2022, §2.1) 
for a thorough criticism of Lucas’ (1961; 1996) classic version of this argument.

However, is HI general in the same sense intended by GI? Can humans solve 
all the problems, up to resource and computability constraints, that they can recog-
nize as problems? There are clearly human-niche problems that humans have not 
yet solved, many of them quite serious and long-standing. Are these problems—
e.g., the problems of peaceful co-existence, population control, and environmental 
degradation—solvable by humans, even in principle? What does “in principle” 
mean here?

To ask what “in principle” means is to raise the problem of how the social and 
affective components of human cognition—in short, the components that render 
us 4EA systems—both enable and constrain problem-solving capability. Hence it 
requires including human psychology, particularly motivational psychology, in our 
notion of HI. Asking about actual human problem-solving capability also raises 
the question of variation, not just of some testable measure of problem-solving 
ability along one or more dimensions but of core capabilities such as imagination, 
intrinsic motivation, memory, attention management, or event-oriented “mental 
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time travel” in one or both directions. Proponents of AHI are, we can assume, 
always intending to replicate “the best” examples of HI, not just in game-playing 
challenges but across all applications of intelligence. It is implausible that one 
human could be “the best” in every problem-solving domain in which humans are 
capable, including not just theoretical and practical but also moral problem solv-
ing. Hence “the best” must be an abstraction, an idealized combination of “bests” 
in different domains. Is this, however, a coherent idealization? Does it make sense, 
even in principle, to assume such an idealization for human intelligence?

This is not a question for speculation, but a question for experimental psy-
chology and neuroscience. It is a question of means along axes of variation, and 
whether they overlap, either in fact or in some plausible ideal. Consider the Big 
5 personality dimensions (Digman 1990): openness, conscientiousness, extraver-
sion, agreeableness, and neuroticism. A “typical personality” would be someone 
within some fixed distance (e.g., 1 sigma) of the mean on each of these dimen-
sions. If the means of the distributions are sufficiently separated in the population, 
however, no such “typical personality” would exist. It is not clear, moreover, that 
a mean value on any of these dimensions is optimal, or even whether an “optimal” 
personality can be defined in any context-independent way.

Unfortunately, no dimensional analysis of human core cognitive capabili-
ties at the acceptance level of the Big 5 exists. However, analyses of variation in 
everyday, uninstructed experience (Heavey and Hurlburt 2008), autobiographical 
memory (Fan et al. 2022), mental imagery (Milton et al. 2021), and general cogni-
tive functions (Kanai and Rees 2011) all suggest the existence of broad distribu-
tions of function across the human population. This idea is reinforced by studies 
of: 1) variation along spectra associated with autism and psychosis (e.g., Crespi 
and Badcock 2008) and the correlation of such variants with default behavior and 
career choices (see Fields 2011, for review); and 2) variation along spectra as-
sociated with empathy and sociopathy, and hence with moral capability (Sapolsky 
2017). Such studies reinforce the everyday observation that humans who are very 
good in one domain (science, art, persuasion, etc.) may be very poor in others (so-
cial relations, decision making, empathic caring, etc.). They suggest that even the 
idea of a “neurotypical” human may be of little use outside of the narrow, clinical 
context in which it originated.11

If this is the case, “human intelligence” may not be coherently definable for 
individual humans, groups of humans, or even idealizations of (groups of) hu-
mans. It may be at best an informal notion, a vague summary of a list of general 
capabilities—e.g., the five listed by Laland and Seed (2021)—that characterize 
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most humans to some extent or other. Even setting issues of general psychology 
aside, such a weak notion of HI can have only minimal relevance to any useful 
idea of AGI. Indeed, in the space of all possible intelligences—something we may 
not even be equipped to conceive of in any detail—the component spanned by 
all possible varieties of human intelligence, including moral intelligence, may be 
small.

One can also ask what happens if HI, under even a vague definition, is nudged 
at the population level in the direction of some hypothesized GI. This introduces 
a social psychology question: what is the range of social behavior that can reason-
ably be considered human social behavior? This question is particularly pressing 
in the moral sphere, where humans, particularly groups of humans, exhibit unde-
sirable characteristics with very long evolutionary histories (e.g., Wrangham and 
Peterson 1997; Sapolsky 2017). Shengnan Han et al. (2022), for example, speak of 
the “moral progress” of humans as a species or population as an essential compo-
nent of AI alignment. How soon would such an intelligence at the population level, 
in the moral or any other sphere, cease to count as a human intelligence? Would a 
“human” society that no longer elevated immoral individuals to positions of lead-
ership, and refused to follow—refused to enthusiastically follow—the commands 
of such individuals still be recognizably human? A society in which such a change 
was implemented would be a historical novelty. Humans have a great tolerance 
for the prodigal, but stretching human psychology too far towards an ideal can 
generate an “uncanny valley” (e.g., Saygin et al. 2012) on the suprahuman side.12 
It is not clear that we would be capable of regarding a suprahuman GI—even one 
that just maximized known human capabilities simultaneously—as fully human at 
the individual level; here again McEwan (2019) is a useful study of this question. 
Recognizing suprahuman capabilities at the broad social level as “still human” 
may prove even more difficult.

4. A New Goal for AI: Composite Intelligence

The extraordinary diversity of cognitive and affective capabilities across the human 
population is increasingly seen as selectively advantageous at the group level 
(Nettle 2006; Holmes and Patrick 2018). This has an obvious correlate: optimal 
problem solving will typically be achieved by groups, not individuals (Graesser et 
al. 2018; Dubova, Galesic, and Goldstone 2022). The parallel between this social-
scale phenomenon and the requirements for cooperation between phenotypically 
diverse individuals in the construction of a multicellular organism (Strassmann 
and Queller 2010) are similarly obvious, leading to the proposal that all intel-
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ligence is fundamentally composite or collective (Levin 2021; 2022, Fields and 
Levin 2022). We therefore suggest that “human intelligence” is properly thought 
of as a composite (HI, OI), where OI is some “other intelligence” that may be 
human but may also be as simple as a physical system (a notebook, a laptop) 
supporting stigmergic memory. Conceiving of human intelligence as composite 
in this way, we will argue, reframes the goal of AI away from replacement (of HI) 
and towards augmentation (of the composite (HI, OI)), as suggested by both Bryn-
jolfsson (2022) and Friston et al. (2024). This new goal is already being pursued 
in the context of human-robot collaboration (Vysocky and Novak 2016; Franklin 
et al. 2020), but has yet to be taken up broadly within mainstream AI.

If the proper goal of AI is not to replicate HI (whatever that would mean), but 
rather, as we suggest, to maximally complement communities of diverse HIs, then 
AI is free to pursue one of its most distinctive characteristics: its difference from 
HI. We elaborate on this in the two sections below. We then turn to a critical way 
in which successful AIs need to be like humans: they too need to be team players. 
In particular, they need to be capable of “playing” on diverse teams, e.g., teams 
including both humans and other, very different AIs. Being a capable diverse-team 
player requires capabilities that AIs currently do not have, or have only rudimen-
tary versions of (compare, e.g., Kraus 1997, and Dafoe et al. 2020 on cooperative 
problem-solving capabilities). It requires, in particular, both robust models of the 
self and others and a capacity to care about the goals of both oneself and others. It 
requires, in other words, both theory of mind and empathy (Doctor et al. 2022).13 
Team-capable AIs need the ability to recognize when a problem they are trying 
to solve is too hard, to determine what “OI” they need to approach for assistance, 
and to locate, teach, design and build, or otherwise find that OI. They need to 
be “like us” in being able to creatively supplement their own intelligence. When 
employed in procedural, technical, or abstract domains such as law, engineering, 
or science, they also, clearly, need to be like us in their ability to provide justifica-
tion: to explain what they are doing and why, and hence to explain why they need 
help from some OI, artificial or human. Diverse-team AI, in other words, requires 
explainable AI (XAI) (Arrieta et al. 2020; Samek et al. 2021). Here again, ToM 
skills are critical (Taylor and Taylor 2021).

4.1. Minding the Gaps: Understanding Where HI fails
Computers were first developed as fast, accurate calculators to respond to a spe-
cific need for faster and more accurate calculations. Although humans (mainly 
women) were employed as “computers” until well into the 1960s, humans are not, 
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aside from a few spectacular exceptions, fast, accurate calculators. Robots were 
first developed as tireless, reliable, accurate performers of repetitive mechanical 
tasks. This, too, responded to a specific need. Humans have been employed (or 
forced via enslavement) to perform repetitive mechanical tasks since the invention 
of agriculture, but humans are not tireless, reliable, accurate performers of such 
tasks. Successful applied AI, in general, does not replace humans in unnecessary 
tasks, or in tasks that humans are good at. Successful applied AI replaces humans 
in necessary tasks that humans are relatively bad at.14 For example, autonomous-
vehicle control systems will eventually replace human drivers because humans 
are, by and large, bad drivers—humans are often distracted, discourteous, and 
notoriously disrespectful of rules. While autonomous systems do not yet have, for 
example, sufficient pattern-recognition ability to detect hazards humans can detect 
(e.g., Nyholm 2020), these abilities can rationally be expected to improve. Hu-
mans, on the other hand, cannot rationally be expected to become less distracted, 
more courteous, and more respectful of the rules of the road than they now are. 
The future replacement of human by AI drivers is controversial, however, not just 
because bad driving is still lucrative, but because bad driving is still enjoyable.

Reframing the goals of AI to maximize the capability of (HI, OI) systems 
transfers the need to understand where and how HI fails—or where and how HI 
is nonoptimal—from outside the purview of AI to centrally within it. Systems 
that actively monitor the attention of human users in critical settings, such as the 
cockpit, provide an example (Lutnyk, Rudi, and Raubal 2020). Fortunately, since 
Amos Tversky and Daniel Kahneman (1974) and Simon (1982), the systematic 
study of human problem-solving failure has become a mainstream component 
of both cognitive psychology (for reviews, see Maqsood, Finegan, and Walker 
2004; Benjamin 2019) and operations research (Endsley 2012). Compensating for 
cognitive biases and coping with ubiquitous motivated reasoning constitute major, 
largely unrecognized, opportunities for AI. AIs can be successful in these areas 
precisely to the extent that they are not like us.

A particular challenge in this regard, one that bears on the discussion of ToM 
below, is the deeply ingrained human resistance to evidence and imperviousness 
of beliefs to argumentation (Henriques 2003; Mercier and Sperber 2011; 2017; 
Lewandowsky and Oberauer 2016). AI “assistants” capable of counteracting these 
tendencies would be playing, in fact, the role of advisors or mentors. Such ca-
pabilities are far beyond current AI, which indeed sometimes reinforces existing 
biases instead of countering them, but are needed if (HI, OI) systems are to ap-
proach GI as a goal.
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4.2. Maximizing (HI, OI)
As noted earlier, humans have never worked alone. Intelligent problem solving 
is a social affair. Even great scientists and mathematicians who seemed to have 
worked alone have “stood on the shoulders of giants.” All of human culture, in this 
regard, serves as a shared stigmergic memory.

Therefore, it is not surprising that AI systems have had their greatest success 
not by replicating human capabilities, but by offering supra-human capabilities 
to human teams. AI systems are not alone in this: memory systems such as books 
offer supra-human capabilities, as do essentially all technological devices. AI sys-
tems excel in offering supra-human attention, learning, inference, and problem-
recognition capabilities. Aircraft autopilots, for example, are valuable because 
they have superior attention and faster problem recognition, and can take faster 
inference-driven corrective action, than (most) human pilots. Autopilots can fail 
spectacularly, but do so less often than humans do. These are the characteristics 
looked for in all autonomous-vehicle applications, with on-the-fly learning a 
bonus.

Learning comes to the fore in deep learning systems, particularly in scientific 
systems such as AlphaFold (Senior et al. 2020; Jumper et al. 2021). Such systems 
have now been deployed in many settings and domains. Their performance clearly 
exceeds that of teams of humans, even teams of humans equipped with expensive 
apparatus.

While an autopilot functions in some sense as a real-time colleague, a sys-
tem such as AlphaFold does not. A human operator sets a goal and (effectively) 
leaves; AlphaFold works to find a solution, and then informs the operator. This is 
“collaboration” only in a diachronic sense where one collaborator sets the goals 
(or gives the orders) while the other collaborator does the work. Restricting the 
human role to goal-setting is reminiscent of standard scientific computing in the 
pre-interactive, batch-job era. It is reflected in the goal of fully autonomous ve-
hicles, perhaps with a batch controller at some distant location. It only works in 
settings in which the goals can be fully specified in advance.

It is not clear whether this diachronic model, in which humans and AI sys-
tems each solve their problem components alone, with minimal communication, 
is capable of optimizing (HI, OI) capabilities, just as it is not clear that such a 
diachronic interaction can optimize the performance of human teams. While the 
broad, overall objectives of a project may be specified in advance, a synchronic 
model in which humans and AIs work jointly and interactively on each (major) 
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aspect of a problem may be required, especially in cases where creative solutions 
are needed. Such real-time collaboration may include collaborative identification 
of intermediate goals and negotiation of intermediate problem-solving strategies. 
Humans and AIs may sometimes work on separate parts of a problem indepen-
dently, just as human collaborators do. They may sometimes need to brainstorm, 
just as human teams do. While diachronic models still require significant advances 
for optimal performance even in appropriate domains—AI systems still need 
better failure or inadequate-generalization detectors and XAI capabilities—syn-
chronic models can be expected to require substantially better ToM (both self- and 
other-directed) and communication capabilities as discussed below.

A further issue for (HI, OI) problem solving, one that touches on the ethical 
concerns raised above, is that of power. Humans at present exercise complete con-
trol over resources, and can simply turn off the power if they do not like or agree 
with what an AI colleague is doing. While in cases of conflict this may remain 
a valuable last resort (here HAL (Clarke 1968) comes to mind), such lopsided 
control remains ethically troublesome (again assuming moral hazard as above) in 
all other situations. Human control of resources has a flip side: the potential for 
AI control of—and ability to destroy—critical knowledge. Current DL systems al-
ready approach this level of control, particularly systems that learn autonomously 
in an open environment. Hence safe-guards are needed that prevent both humans 
(by accident or by intentionally “pulling the plug”) and AI systems (out of spite, 
perhaps) from destroying hard-to-acquire or mission-critical data obtained by DL 
or other automated means. Procedures for resolving conflicts and preventing stale-
mates will, one can expect, be just as necessary for human-AI problem-solving 
teams as they are for purely human teams.

4.3. AIs Need Umwelten to Be Diverse-team Players
What is it about the team, the group, or the community that enhances problem 
solving? One answer is that in addition to knowledge and skills, each participant 
brings a certain point of view to the problem-solving process. Each participant 
brings to the problem-solving event individual perceptions and interpretations of 
the problem, the problem’s context, and its consequences. Working out how to 
accommodate each of these points of view is a key component of solution-finding.

Biology has a technical term available for what we just called a point of 
view: Umwelt (von Uexküll 1957). Umwelt, often translated as “life-world,” refers 
to the world as it is experienced by that organism. Similar organisms living in 
similar niches will have similar experiences, but the Umwelt of each individual 
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is unique. Radically differing individuals will have radically differing Umwelten. 
All Umwelten are unique because the individuals are unique, not just structurally 
and functionally, but historically and experientially. The idea of an Umwelt thus 
both extends and personalizes the traditional idea of meaning. While it is clear 
that AI systems need meaning (Froese and Taguchi 2019), each also needs its own 
Umwelt.

The difficulty of understanding another organism’s Umwelt underlies T. 
Nagel’s (1974) famous reflection on the experiences of bats. Understanding the 
Umwelten of other organisms is, however, part of any biologist’s job description, 
just as understanding the Umwelten of diverse other people is a crucial require-
ment for living in human society. It involves not just understanding what another 
organism can perceive and do, but critically, what another organism is capable of 
remembering or caring about (Levin 2021; 2022). As Nagel’s work emphasizes, 
understanding another being’s Uumwelt in this 3rd-person sense is not the same as 
experiencing it oneself. While (most) humans have the empathetic and imaginative 
skills to at least approximate another human’s experiences, this may not translate 
even to other mammals, let alone other organisms in general. Hence in practice, 
“understanding” the Umwelt of another is a matter of understanding capabilities.

Artifacts, including current AI systems, are not generally considered to have 
Umwelten, at least in part because they are not generally considered conscious (for 
extensive discussion, see Dietrich et al., 2021). However, if Umwelt is read as task 
environment—a reading quite consistent with its usage in biology—AI systems 
and even ordinary non-AI computing systems have Umwelten. Understanding how 
AIs can function as members of diverse teams, however, requires understanding 
their Umwelten, including what they detect about their environments, what actions 
they can take on their environments, and what they can care about. This includes, 
in particular, what they can detect about, and how they reason about, their cowork-
ers on the team, whether these are humans or other AI systems.

It is often assumed about both other organisms and machines that “the 
environment” is our environment, that they share our Umwelt as well as being 
participants in it. This is, implicitly or sometimes explicitly, an assumption that 
our human Umwelt is “objective” or observer independent. This is, of course, a 
contradiction in terms: an Umwelt is organism- and even individual-specific by 
definition. Considering the Umwelten of other animals, or of plants or even mi-
crobes, makes it clear how differently they perceive even the physical world; when 
the extensive human virtual world is included, the differences are even more stark. 
The same lessons apply to AIs. Even if an AI system can “see” the same “objects” 
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that we do, we cannot assume that it identifies those objects in the way that we do, 
that it assigns the same properties to them that we do, or that they have the same 
meaning or significance to the AI system that they have to us.

Deep learning systems provide a timely example of the need for thinking 
clearly about the Umwelten of artifacts. Informally, we think of the “world” of 
AlphaFold as comprising protein sequences and structures. These are, after all 
our inputs and outputs of interest. But AlphaFold knows nothing about proteins; 
its world is a world of correlations between bit strings that it divides only into 
inputs and outputs. This naiveté about the semantics—effectively, the background 
knowledge—that we assign to these bits strings is in part an advantage: AlphaFold 
can “see” patterns that we cannot. It is, of course, also the deep source of the XAI 
problem. AlphaFold encodes protein sequences in a much higher-dimensional 
representation than we use, detects relationships in that high-dimensional repre-
sentation that we do not and perhaps cannot encode in our lower-dimensional 
representations, and does not have the semantic knowledge needed to describe its 
representation in our language.

Word-association learners such as GPT-3 (and more recently, ChatGPT) pro-
vide a similar example. The world of GPT-3 is not language, and certainly not 
conversation, though it is often interpreted as such. The world of GPT-3 is a world 
of correlations between words and phrases, as its easily revealed lack of seman-
tic knowledge illustrates (e.g., Floridi and Chiriatti 2020). To claim that GPT-3’s 
evident knowledge of its world gives it insight into our world (as suggested, e.g., 
by Chalmers 2020) is simply a mistake (Bender et al. 2021). It confuses GPT-3’s 
Umwelt with ours.15

The XAI problem for DL systems stems from the fact that we are not DL 
systems, so we cannot make sense of DL system training sets—of indeed, ma-
chine-learning (ML) training sets in general—in the way that DL systems can. 
It is exacerbated by the fact that training is (not necessarily phenomenal) experi-
ence; identical systems with different training sets cannot be expected to compute 
the same function. The Umwelten of ML systems, especially ML systems that 
learn autonomously, are unique, just as they are for organisms. Absent a principled 
theory capable of assigning semantics to arbitrary functions (see Marcianò et al. 
2022 for an example of what such a theory could look like), XAI for DL systems 
is effectively experimental cognitive psychology, as J. Eric T. Taylor and Graham 
W. Taylor (2021) suggest.

If AI systems are to become diverse-team players, one of the first require-
ments that must be addressed is expanding their Umwelten to include us, and any 



How Much Like Us Do We Want AIs to Be?

other team members with which they are to cooperate. Other-system identifica-
tion is a common feature of distributed AI systems. In the multi-agent system 
described by Luc Steels (2001), for example, a language is evolved by a collection 
of distributed, identified agents; unlike in the case of GPT-3, this language has se-
mantics for the agents themselves (at least in some sense). Security-system issues, 
e.g., trust, are clearly relevant in any such setting, as are representations of other 
agent’s goals and abilities (Dafoe et al. 2020). Here again, the analogy between AI 
and biology is obvious (Levin 2021; 2022; Fields and Levin 2022).

5. Concluding Thoughts—Whither AGI?

We have argued here that a considerably broader vision than simply “replicating 
human-level intelligence’’ is needed to approach AGI. As discussed in §2 and §3 
respectively, the very idea of AHI is fraught with ethical difficulties, and “human 
intelligence” may not even be a well-defined target. In summary, it is not clear that 
HI is even on the path toward AGI.

One important aspect of HI, however, is clearly on the path to AGI: the abil-
ity to participate in diverse-team problem solving. While some of the capabilities 
for team participation have been developed in the context of distributed AI sys-
tems, much work remains to be done. Understanding the experienced worlds—the 
Umwelten—of AI systems and other artifacts will be key to developing the ToM 
and empathic or caring capabilities needed for effective teamwork, particularly 
in synchronic settings. The increasingly-deep analogies—and in cases of hybrid 
bio-AI systems, explicit overlaps—between biological and AI versions of, and 
approaches to, these problems can be expected to be increasingly consequential.

From a practical perspective, we are most interested in human-defined 
problems, human-set high-level goals, and the capabilities of human-in-the-loop 
teams. As AI systems become increasingly capable, the extent to which humans 
remain “in charge” of all aspects of problem solving may start to change. We may, 
for example, develop systems that can recognize problems that we cannot. The 
XAI problem, in this case, becomes the problem of whether they can explain to 
us not just what they are doing and why, but even what problem they are working 
on. Should this ever occur, AI will indeed have taught us something deep about 
human intelligence.
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Notes
1.	 We use the term “artificial intelligence’’ (AI) to denote artifacts that exhibit 

intelligence, as has been commonplace since the 1950s. We do not mean to imply that 
there is anything “unnatural” about AI by this usage. Under AI’s main goals, Wiki-
pedia lists “Artificial General Intelligence” first. Searching for “human like artificial 
intelligence” on Google Scholar yields nearly 3 million hits (9 June, 2022).

2.	 For example, from the Daily Mail, 18 May 2022: “DeepMind, a British com-
pany [. . .] may be on the verge of achieving human-level artificial intelligence (AI). 
Nando de Freitas, a research scientist at DeepMind and [a] machine learning profes-
sor at Oxford University, has said ‘the game is over’ in regards to solving the hardest 
challenges in the race to achieve artificial general intelligence (AGI).” (See, https://
www.dailymail.co.uk/sciencetech/article-10828641/Googles-DeepMind-says-close 
-achieving-human-level-artificial-intelligence.html, accessed 24 April 2024).

3.	 Another version of identifying GI with universal Turing computability is to 
claim that the laptop would be a GI if it were running the right algorithm—a GI al-
gorithm. It is natural and plausible to view AI history as the search for the right algo-
rithm (Dietrich et al. 2021). It is also a plausible interpretation of AI history that the 
existence of this right algorithm is an article of faith rather than a search for something 
scientifically predicted. Compare this to the case of the Higgs Boson, where the crite-
ria of success were well-defined in advance.

4.	 The recent controversy concerning Google’s LaMDA system show that some 
people still treat the Turing Test as criterial for sentience. Stephen Marche (2022) pro-
vides a thoughtful analysis.

5.	 Ironically, claims of AI capabilities are often claims about the combined ca-
pabilities of an AI system and its human “users” or coworkers; claims of AI language 
understanding are a case in point. Even the much-hyped and much-deplored ChatGPT 
is a human-in-the-loop system: without a human to organize a training set and a human 
to ask questions, it does nothing. One could, of course, imagine future large language 
models that (presumably incrementally) train themselves and engage in conversation 
in the absence of human intervention.

6.	 This characterization is obviously human-centric and hence optimistic. Given 
what we know about the evolution and psychology of ethics and morality (e.g., Lieber-
man and Patrick 2018), it seems possible that future AI systems could be not only our 
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intellectual superiors, but also our moral superiors. We might even consider such ma-
chines sufficiently superior to be suitable replacements for ourselves (Dietrich 2011). 
We consider this “posthumanist” point further below.

7.	 Though this statement summarizes current practice, see e.g., Hans Moravec 
(1990) for a more radical, posthumanist projection.

8.	 The absence of effective ethical oversight outside academia has become an 
increasingly political issue, one to which initiative such as the IEEE Global Initia-
tive for Ethical Considerations in Artificial Intelligence and Autonomous Systems 
(https://standards.ieee.org/industry-connections/ec/autonomous-systems/) are belated 
responses.

9.	 For a famous example of this in popular culture, see (Snodgrass and Scheerer 
1989).

10.	 We have focused here on moral consequences for the AI systems themselves. 
There are obviously also moral consequences for us. One could argue that the prin-
ciples outlined in the IEEE Global Initiative for Ethical Considerations in Artificial In-
telligence and Autonomous Systems have thus far been recognized mainly by their vi-
olation. Creating AIs that replicated the worst of human morality, for example, would 
obviously be grossly immoral; see e.g., Emily Bender et al. (2021) or A. Birhane and 
J. van Dijk (2020).

11.	 “Neurotypical” has become something of a stand-in for the discredited term 
“normal” and the even less popular notion of “human nature” (Pinker 2002). It is 
revealing that much of what evolutionary psychology—the discipline that believes in 
it—has to say about human nature is nothing to be proud of.

12.	 Uncanny valleys are demonstrated by the many humanoid robots who, in 
their failure to look and act convincingly human, leave us with a feeling of the mon-
strous. See, for example, Vyommitra, built by the Indian Space Research Organiza-
tion to accompany Indian astronauts on space missions (Wikipedia contributers 2024). 
Also, see Norri Kageki (2012).

13.	 As pointed out by a referee of this paper, these characteristics are sufficient 
for team problem solving in some domains, e.g., in the case of dog-human search and 
rescue operations.

14.	 Here, clearly, we mean intellectually successful, not just commercially suc-
cessful. While their contribution to accessibility can be lauded, the language skills of 
chatbot telephone receptionists are, it is almost universally agreed, thus far a terrible 
failure of AI despite their commercial success.

15.	 There is quite of bit of complicated epistemology and metaphysics lying be-
neath the surface here. The culprit complicating things is the notion of shared Um-
welten or the notion of a shared Umwelt. How do we develop such a thing? How does 
the idea even occur to us? Is it possible for humans and computer programs to share an 
Umwelt? What evidence would support the conclusion that two or more Umwelten are 
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being shared? Willard V. O. Quine’s famous and difficult indeterminacy of translation 
thesis (Quine 1960) is relevant here. Quine’s thesis raises immediately a serious ques-
tion: In order to even state the indeterminacy of translation thesis between say person 
A and person B, one has to assume a shared Umwelt between A and B. But such a 
shared Umwelt is precisely what Quine’s thesis is undermining.  So, in a very strong 
sense, to doubt communication we have to first communicate. There is much work 
here to be done, but it is beyond the present scope.
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