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Abstract

Agents are often assumed to have degrees of belief (“credences”) and also binary
beliefs (“beliefs simpliciter”). How are these related to each other? A much-
discussed answer asserts that it is rational to believe a proposition if and only if
one has a high enough degree of belief in it. But this answer runs into the “lottery
paradox”: the set of believed propositions may violate the key rationality conditions
of consistency and deductive closure. In earlier work, we showed that this problem
generalizes: there exists no local function from degrees of belief to binary beliefs
that satisfies some minimal conditions of rationality and non-triviality. “Locality”
means that the binary belief in each proposition depends only on the degree of belief
in that proposition, not on the degrees of belief in others. One might think that the
impossibility can be avoided by dropping the assumption that binary beliefs are a
function of degrees of belief. We prove that, even if we drop the “functionality”
restriction, there still exists no local relation between degrees of belief and binary
beliefs that satisfies some minimal conditions. Thus functionality is not the source
of the impossibility; its source is the condition of locality. If there is any non-trivial
relation between degrees of belief and binary beliefs at all, it must be a “holistic”
one. We explore several concrete forms this “holistic” relation could take.

1 Introduction

We commonly take agents to have two kinds of belief: degrees of belief (also known as

credences) and binary beliefs (also known as beliefs simpliciter). Degrees of belief take

the form of subjective probability assignments to certain propositions, while binary

beliefs take the form of the acceptance of some propositions and the non-acceptance of

others. What is the relationship between these two kinds of belief? Can binary beliefs

be “reduced” to degrees of belief? Or, even if no such reduction is possible, can we

identify some other systematic relationship between the two? In particular, are there

certain rationality constraints telling us what binary beliefs we should hold – or may

permissibly hold – when we hold certain degrees of beliefs?1

1This question has recently received renewed attention. We omit a detailed literature review, but

refer readers to contributions by, e.g., Hawthorne and Bovens (1999), Douven and Williamson (2006),

Lin and Kelly (2012a,b), and Leitgeb (2014). For further references, see Dietrich and List (2018).
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A widely studied answer to this question asserts that it is rational for an agent

to believe a proposition in the binary sense if and only if he or she has a high enough

degree of belief in it. “High enough” is a free parameter that can be specified in di↵erent

ways. For example, we might consider a degree of belief of 0.9 or 0.95 “high enough”

for full belief. Yet, this proposal – called a “threshold rule” – runs into some well-

known di�culties. Suppose, for instance, that you believe of each lottery ticket among

a million tickets that this particular ticket will not win, since your degree of belief in

this proposition is extremely high, namely 0.999999. Your believed propositions will

then entail that none of the tickets will win. But, of course, you know this to be false,

and you have a degree of belief of 1 in the negation of this proposition: some ticket will

win. This example shows that, under a threshold rule, binary beliefs may be neither

deductively closed (some implications of believed propositions are not believed) nor

consistent (some beliefs contradict others), a problem known as the “lottery paradox”.2

In earlier work, we showed that the lottery paradox illustrates a more general im-

possibility theorem: there exists no function from degrees of belief to binary beliefs

that satisfies certain minimal conditions of rationality and non-triviality.3 A central

such condition is propositionwise independence (“locality”): an agent’s binary belief in

each proposition should depend only on the agent’s degree of belief in that proposition,

not on the degrees of belief in others. Threshold rules satisfy propositionwise independ-

ence, but they are just one kind of example of propositionwise independent rules. The

upshot of this theorem is that the lottery paradox is not restricted to threshold rules

alone, but occurs for propositionwise independent belief-binarization rules much more

generally. (We derived this result from an impossibility theorem in the di↵erent area

of judgment-aggregation theory. This derivation was possible due to certain structural

parallels between the lottery paradox and the paradoxes of social choice.)

A crucial presupposition of our earlier impossibility theorem, however, was that the

relationship between degrees of belief and binary beliefs is a functional or determinate

one: degrees of belief fully determine beliefs. Put slightly di↵erently, in a rational agent,

binary beliefs “supervene” on degrees of belief. The theorem leaves open whether the

impossibility might go away if we lift this functionality constraint. Perhaps there are

systematic constraints governing the relationship between degrees of belief and binary

beliefs, but they do not take the form of a function from one to the other. One might

think that the source of the lottery paradox and the more general impossibility result

is the assumption that binary beliefs are fully determined by degrees of belief.

In this paper, we prove a more general impossibility theorem about the relation-

ship between degrees of belief and binary beliefs. It shows that, even if we drop the

constraint of functionality, there still exists no relation between degrees of belief and

binary beliefs that satisfies certain conditions of rationality and non-triviality. Once

again, a “locality” or “propositionwise independence” constraint is a central one of

those conditions. The earlier theorem is a special case of our new theorem, applied

to credence-belief relations that satisfy functionality. Our conclusion is that, contrary

to what one might have expected, functionality is not the source of the impossibility;

2See Kyburg (1961). On the related “preface paradox”, see Makinson (1965).
3See Dietrich and List (2018).
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rather, its source is the condition of locality. If there is any non-trivial relation between

degrees of belief and binary beliefs at all, it must be a “holistic” one.

2 The formalism

We begin with our basic formalism. Let ⌦ be some non-empty set of possible worlds.

A proposition is a subset p ✓ ⌦. As is standard, we assume that p consists of all

those worlds at which the proposition is true. For each proposition p, we write p to

denote its complement ⌦\p (negation). Moreover, for any two propositions p and q,

the intersection p\ q represents their conjunction, and the union p[ q represents their

disjunction. We further call any set S of propositions consistent if there is at least one

world in ⌦ at which all the propositions in S are true, formally \
p2S

p 6= Ø; and we say

that a set S of propositions entails another proposition q if q is true at every world

in ⌦ at which all of the propositions in S are true, formally \
p2S

p ✓ q. Let X be the

set of propositions on which beliefs are held. For the moment, we assume that X is a

non-trivial algebra, i.e., it is closed under both union and complement (i.e., for every

p, q 2 X, p[ q 2 X and p 2 X), and it contains more than one contingent proposition-

negation pair (where a proposition p is contingent if it is distinct from ⌦ and Ø).

Degrees of belief are formally represented by credence functions. A credence func-

tion is a function Cr that assigns to each proposition p 2 X a number Cr(p) in the

interval from 0 to 1, where this assignment is probabilistically coherent. When X

is an algebra, as assumed so far, probabilistic coherence simply means that Cr is a

well-defined probability function on X.4

Binary beliefs are formally represented by belief sets. A belief set is a subset B ✓ X.

It is

• consistent if it is a consistent set of propositions, as defined above;

• deductively closed if it contains every proposition in X that is entailed by B.

In our previous work, we studied belief-binarization rules. A belief-binarization rule is

a function f that maps each credence function Cr on X (within some domain of ad-

missible such functions) to a belief set B = f(Cr). It thus specifies a relation by which

degrees of belief determine binary beliefs. For example, under a threshold rule with

threshold t, each credence function Cr is mapped to the belief set B defined as follows:

B = {p 2 X : Cr(p) exceeds t}.5

The problem with threshold rules, as already noted, is that they do not generally

produce consistent and deductively closed belief sets. Our earlier theorem showed

that similar problems occur for a much broader class of “propositionwise independent”

4Formally, (i) Cr(⌦) = 1, and (ii) for any p, q 2 X with p \ q = Ø, Cr(p [ q) = Cr(p) + Cr(q).

For a general X, which is not necessarily an algebra, probabilistic coherence of Cr means that Cr is

extendable to a function with properties (i) and (ii) on an algebra including X.
5Here, “Cr(p) exceeds t” could mean either Cr(p) > t (in the case of a “strict” threshold) or

Cr(p) � t (in the case of a “weak” threshold).
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belief-binarization rules. “Propositionwise independence” means that the binary belief

in each proposition p depends only on the degree of belief in p, not on the degrees of

belief in others; we give a formal definition later.

What we want to investigate is whether this picture changes if we give up the

assumption of functionality, according to which binary beliefs are determined by degrees

of belief via some function f . We will consider a less demanding relationship between

degrees of belief and binary beliefs. Specifically, we will capture that relationship in

terms of what we call a credence-belief relation. This is a binary relation, denoted ⇠,

between credence functions and belief sets which specifies which credence functions and

belief sets are rationally co-tenable and which are not.

Formally, let us call any pair (Cr,B) consisting of a credence function and a belief

set a credence-belief pair. The relation ⇠ can now be defined as a set of such pairs. We

write Cr ⇠ B whenever (Cr,B) is contained in that set (technically, (Cr,B) 2 ⇠) and

interpret Cr ⇠ B to mean that the pair (Cr,B) is coherent or, equivalently, the belief

set B is co-tenable with the credence function Cr. We can also interpret the pairs

(Cr,B) that are deemed coherent by the relation ⇠ as the “rationally permissible”

credence-belief pairs. We further call a credence function Cr rationally permissible if

it occurs in at least one coherent pair (Cr,B) (with Cr ⇠ B), and similarly, we call a

belief set B rationally permissible if it occurs in at least one coherent pair (Cr,B).

The notion of a credence-belief relation generalizes the notion of a belief-binarization

rule. A belief-binarization rule can be viewed as a special case of a credence-belief

relation, where the following constraint is satisfied:

Functionality: No credence function Cr coheres with more than one belief set B.

Specifically, when this constraint is satisfied, the relation ⇠ induces a belief-binarization

rule f , defined as follows:

for each rationally permissible Cr, f(Cr) is the belief set B such that Cr ⇠ B.

While a functional credence-belief relation is equivalent to belief-binarization rule, a

general credence-belief relation is equivalent to a belief-binarization correspondence,

i.e., a function F that assigns to each permissible credence function Cr the non-empty

set F (Cr) consisting of all belief sets B that cohere with Cr. In the special case of

a functional relation, F (Cr) is always singleton. Now our question is whether there

exists a credence-belief relation that satisfies certain conditions of rationality and non-

triviality.

3 A general impossibility result

We introduce five conditions on a credence-belief relation. The first condition says that

the credence-belief relation should not rule out any possible credence functions from

the outset. To understand this requirement, we should bear in mind that any credence

function is by definition probabilistically coherent.
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Universality: Every credence function is rationally permissible.

The second condition says that binary beliefs should always be consistent and de-

ductively closed. This is a standard rationality requirement on beliefs, albeit a some-

what idealized one.

Belief consistency and deductive closure: Only consistent and deductively closed

belief sets are rationally permissible.

Note that the demandingness of this requirement depends on how rich the algebra X of

propositions is. If X is relatively small, then belief consistency and deductive closure

may be relatively easily attainable. The requirement becomes more demanding as X

gets larger.

To state the third condition, we need one further definition. We say that a cre-

dence function Cr requires accepting proposition p if p belongs to every belief set B

that is coherent with Cr. Our third condition now says that whenever one assigns a

credence of 1 (“certainty”) to a particular proposition, then one is required to accept

that proposition in the binary sense.

Propositionwise certainty preservation: For any rationally permissible credence

function Cr and any proposition p 2 X, if Cr(p) = 1, then Cr requires accepting p.

The fourth condition rules out “trivially loose” credence-belief relations, in which

credences do not impose any non-trivial requirements on beliefs:

Non-looseness: There is at least one rationally permissible credence function Cr that

requires accepting some proposition p 2 X with Cr(p) < 1.

While the first four conditions are relatively undemanding, the fifth is significantly

more demanding. It imposes a “locality” constraint on the credence-belief relation,

which rules out certain “holistic” relationships between degrees of belief and binary

beliefs. Whether this is a plausible requirement is a debatable matter, as is clear from

earlier work on this topic. In fact, we will later recommend relaxing locality.

Acceptance locality: Requirements to accept propositions depend only on the de-

grees of belief in those propositions themselves, not on the degrees of belief in others.

Formally, for any rationally permissible credence functions Cr and Cr0 and any pro-

position p 2 X, if Cr(p) = Cr0(p), then either both of Cr and Cr0 require accepting p,

or neither of them does so.

It is worth noting that this last condition also has a “dual”, which concerns require-

ments to reject rather than to accept propositions. To state this “dual” condition, let

us say that a credence function Cr requires rejecting proposition p if p belongs to no

belief set B that is coherent with Cr.

Rejection locality: Requirements to reject propositions depend only on the degrees of

belief in those propositions themselves, not on the degrees of belief in others. Formally,
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for any rationally permissible credence functions Cr and Cr0 and any proposition p 2 X,

if Cr(p) = Cr0(p), then either both of Cr and Cr0 require rejecting p, or neither of

them does so.

The conjunction of acceptance locality and rejection locality is what we call “full

locality” or “propositionwise independence”. Interestingly, our main impossibility the-

orem requires only the first of these two locality conditions.6 Here is our result, proved

in the appendix.

Theorem 1. Given any non-trivial algebra of propositions X, there exists no credence-

belief relation satisfying universality, belief consistency and deductive closure, propos-

itionwise certainty preservation, non-looseness, and acceptance locality.

In short, our five conditions are mutually inconsistent. Any credence-belief relation

can satisfy at most four of them at once. Before turning to the question of which of

the five conditions should be interpreted as the main “source” of the impossibility, and

what possibilities open up if we relax some of them, we would like to look briefly at

the special case of credence-belief relations satisfying functionality.

4 The special case of functionality

It should be evident that, insofar as Theorem 1 establishes the mutual inconsistency of

its five conditions, the impossibility continues to hold if we add any further conditions,

such as functionality. In particular, if the five existing conditions cannot be met by any

credence-belief relation in general, then a fortiori they cannot be met by any credence-

belief relation satisfying functionality. It is instructive to restate the conditions and our

theorem in the functional case. As already noted, a functional credence-belief relation

⇠ is equivalent to a belief-binarization rule f , defined as follows:

for each rationally permissible Cr, f(Cr) is the belief set B such that Cr ⇠ B.

Given this translation, universality turns into the familiar universal domain condition:

Universal domain: The domain of admissible inputs to the belief-binarization rule

consists of every possible credence function.

6In fact, just as acceptance locality has a dual in the form of rejection locality, so our non-looseness

condition has a dual. As stated, it rules out relations which never require accepting a proposition

except possibly when one’s credence in it is 1. Such relations might be called acceptance-loose. The

dual concept is that of a rejection-loose relation, which never requires rejecting a proposition except

possibly when one’s credence in it is 0. Fully loose relations, which are loose in both senses, are

extremely non-functional: binary belief sets are totally unconstrained by credences (except possibly

for propositions for which one’s credence is 0 or 1). If a relation is just acceptance-loose or rejection-

loose, it can still be functional. For instance, the functional relation under which each Cr coheres only

with B = {p 2 X : Cr(p) = 1} is acceptance-loose (but it is far from rejection-loose, as almost all

propositions must be rejected). Our theorem requires non-looseness only in the form of non-acceptance-

looseness (just as it requires only acceptance locality).
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The next two conditions remain essentially as before:

Belief consistency and deductive closure: The co-domain of admissible outputs

of the belief-binarization rule consists of consistent and deductively closed belief sets.

Propositionwise certainty preservation: For any credence function Cr in the

domin of f and any proposition p 2 X, if Cr(p) = 1, then p 2 B, where B = f(Cr).

Non-looseness reduces to the requirement that belief simpliciter is not always re-

stricted to propositions with credence one.

Non-triviality: There is at least one credence function Cr in the domain of f such

that, for at least one proposition p 2 X, we have Cr(p) < 1 and p 2 B, where

B = f(Cr).

Finally, acceptance locality and rejection locality each become equivalent to the

following “full” locality condition:

Propositionwise independence: The belief in each proposition depends only on the

degree of belief in that proposition itself, not on the degrees of belief in others. Formally,

for any credence functions Cr and Cr0 in the domain of f and any proposition p 2 X,

if Cr(p) = Cr0(p), then either both of B and B0 contain p, or neither of them does so,

where B = f(Cr) and B0 = f(Cr0).

Theorem 1 now immediately implies the mutual incompatibility of these five con-

ditions:

Theorem 2. Given any non-trivial algebra of propositions X, there exists no belief-

binarization rule satisfying universal domain, belief consistency and deductive closure,

propositionwise certainty preservation, non-triviality, and propositionwise independ-

ence.

This theorem is equivalent to the second main theorem in our earlier work.7 Instead

of explicitly demanding non-triviality, we had stated the result as follows:

Theorem 2 (restated). Given any non-trivial algebra of propositions X, the only

belief-binarization rule satisfying universal domain, belief consistency and deductive

closure, propositionwise certainty preservation, and propositionwise independence is

the threshold rule with threshold one, i.e., for every Cr, f(Cr) = B where B = {p 2
X : Cr(p) = 1}.

7See Dietrich and List (2018). Our earlier result uses a slightly di↵erent (namely, global rather than

propositionwise) certainty preservation condition, which says that if the degrees of belief take only

the extremal values 0 or 1 on all propositions in X, then these extremal degrees of belief should be

preserved as the binary beliefs.
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While one might have thought that this impossibility result is due to the restrictive

nature of the belief-binarization framework – specifically, the requirement of functional-

ity – our present analysis shows that the impossibility is much more general and occurs

even when the functionality restriction is lifted.

5 Escape routes from the impossibility

Since our impossibility theorem has five conditions, there are in principle five logically

possible escape routes: we could relax each of the five conditions. We will now briefly

discuss all of these routes. The upshot, however, will be that there is only one genuinely

compelling escape route from the impossibility, which is to relax locality.8 We will illus-

trate that route by reviewing a number of possible credence-belief relations, including

some that, as far as we know, have not previously been considered. Throughout this

section, we assume that the algebra of propositions, X, is finite.

5.1 The first route: Relaxing universality

There seems little reason to rule out certain credence functions as rationally impermiss-

ible from the outset. Yet it is worth noting that if the rationally permissible credence

functions were suitably restricted, then this would open up an escape route from the

impossibility.

Suppose, for instance, we would like the relationship between degrees of belief and

binary beliefs to be captured by a treshold rule with threshold t, i.e.,

B = {p 2 X : Cr(p) exceeds t}.

We can then distinguish between those credence functions Cr for which the associated

belief set B is consistent and deductively closed, and those for which it is not. Call

the former credence functions t-permissible and the latter t-impermissible. Let us in-

troduce the following stipulative (though rather ad hoc) restriction as a replacement

for universality:

t-permissibility: All (and only) t-permissible credence functions are rationally

permissible.

Then we can define a credence-belief relation ⇠ satisfying t-permissibility as well as the

other four conditions. Specifically, the following relation will do the job: for all Cr and

all B,

Cr ⇠ B if and only if [Cr is t-permissible and B = {p 2 X : Cr(p) exceeds t}].

In fact, this particular relation even satisfies functionality. The main point of the

example, however, is to illustrate that the impossibility result ceases to hold if the

8Our discussion of these escape routes partly draws on our parallel discussion in the case of belief

binarization (the case of a functional credence-belief relation). See Dietrich and List (2018), to which

we refer readers for further details.
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universality condition is suitably relaxed, though it is unclear how this relaxation would

be justified.

5.2 The second route: Relaxing belief consistency and deductive

closure

A second logically possible escape route from our impossibility theorem is to relax the

rationality requirements on binary beliefs – consistency and deductive closure – and to

permit their violation. While violations of consistency would seem very problematic

from the perspective of rationality, violations of deductive closure seem less worrisome.

In particular, when the set X of propositions on which beliefs are held is large and

complex, then requiring deductive closure amounts to the implausible requirement of

logical omniscience: knowledge of the logical implications of all of one’s beliefs.

Suppose we weaken the requirement on binary beliefs as follows. Call a belief set

B closed under implication by singletons if it contains every proposition p in X that

is entailed by some individual proposition in B. Formally, this requires that, for any

q 2 X, if p ✓ q for some p 2 B, then q 2 B. Closure under implication by singletons is

much less demanding than full deductive closure.

Belief consistency and closure under implication by singletons: Only belief sets

that are consistent and closed under implication by singletons are rationally permissible.

It can be shown that there exist credence-belief relations satisfying this weaker require-

ment, together with the other four conditions. For example, given that X is finite, the

following relation will always work: for all Cr and all B,

Cr ⇠ B if and only if B = {p 2 X : Cr(p) > k�1
k },

where k is the size of the largest minimal inconsistent subset of X. (A subset Y of X

is minimal inconsistent if it is inconsistent but all its proper subsets are consistent.)

The size of the largest minimal inconsistent subset of X can be interpreted as a

simple measure of the complexity of the logical interconnections in X. Clearly, the more

complex the interconnections in X, the more demanding the acceptance threshold for

any proposition must be, in order to ensure that the resulting binary beliefs are both

consistent and closed under implication by singletons. In principle, one might also

explore the possibility of relaxing not only the requirement of deductive closure but

also that of consistency, but we set this possibility aside here.9

5.3 The third route: Relaxing propositionwise certainty preservation

The idea that a credence of 1 in proposition p should be su�cient to require accepting

p seems very natural and hard to give up. Yet, from a logical perspective, the impossib-

ility result ceases to hold if we drop that requirement. To illustrate this point, let Y be

some fixed consistent subset of X. We can think of Y as the set of those propositions

9For a brief discussion of this route, see Dietrich and List (2018).
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whose acceptance is somehow mandatory, irrespective of one’s degree of belief in them.

Now define a credence-belief relation ⇠ as follows: for all Cr and all B,

Cr ⇠ B if and only if B is a consistent and deductively closed extension of Y .

This relation violates propositionwise certainty preservation, but satisfies our other

four conditions (in case of non-looseness, provided Y contains at least one proposition

distinct from ⌦). Needless to say, the present credence-belief relation, which rigidly

mandates the acceptance of all the propositions in Y , merely illustrates a technical

point and has little independent plausibility.

5.4 The fourth route: Relaxing non-looseness

Recall that non-looseness is a non-triviality requirement on a credence-belief relation.

It says that, at least in some cases, accepting a proposition is required even when one’s

credence in that proposition is less than one. Informally, a belief in some proposition

may sometimes be rationally required even in the absence of complete certainty. If we

are willing to give up this non-triviality requirement, then we can find credence-belief

relations satisfying the other four conditions.

For example, the following relation will work: for all Cr and all B,

Cr ⇠ B if and only if

"
B is consistent and deductively closed

and, for every p 2 X, if Cr(p) = 1, then p 2 B

#
.

Under this relation, any consistent and deductively closed belief set B that contains

at least those propositions with Cr(p) = 1 is co-tenable with Cr. Clearly, this is an

extremely “loose” coherence constraint between degrees of belief and binary beliefs.

We can also give an alternative but logically equivalent definition of the same rela-

tion ⇠ in terms of some concepts that will become useful in our subsequent discussion.

Let us say that a set of propositions Y ✓ X Cr-entails a proposition p 2 X if there

is zero credence in p being false while all the propositions in Y are true, formally

Cr(( \
q2Y

q)\p) = 0. We call a belief set B Cr-closed if it contains every proposition

p 2 X that is Cr-entailed by B.10 We can now define ⇠ in these terms:

Cr ⇠ B if and only if B is consistent and Cr-closed.

Emphatically, this is not meant to be a particularly compelling credence-belief relation,

insofar as it gives up a very plausible non-triviality requirement (namely, non-looseness).

The notion of Cr-closure, however, will come up again at several points in what follows.

5.5 The fifth and most compelling route: Relaxing locality

The relative implausibility of the first four escape routes from our impossibility result

suggests that the only genuinely plausible escape route is the fifth one: the relaxation

10It is easy to see that B is Cr-closed if and only if B is deductively closed and, for every p 2 X, if

Cr(p) = 1, then p 2 B.
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of locality. Unlike the other four conditions, which are all quite undemanding, the

locality condition is arguably too strong. Since beliefs form interconnected webs, it is

reasonable to think that requirements to accept propositions may depend not only on

the degrees of belief in those propositions themselves, but also on the degrees of belief

in other related propositions. In short, the relation between degrees of belief and binary

beliefs may be holistic. Once we give up locality and permit such holism, there are many

plausible credence-belief relations. They fall into two broad categories: functional and

non-functional relations. In our previous work, we considered several examples in the

functional category, in the form of belief-binarization rules giving up propositionwise

independence, including “premise-based”, “sequential”, and “relevance-based” ones.

Here, we focus on non-functional credence-belief relations. We consider four kinds of

such relations. The first two do not seem to have received much attention in the existing

literature; the last two are variants of existing proposals from the literature.

Holistic threshold relations

We can obtain a well-behaved holistic credence-belief relation by introducing a cut-

o↵ threshold for belief that is applied not to individual propositions, as in the case

of standard threshold rules, but to sets of propositions in their entirety. Given any

credence function Cr, we define the credence in a belief set B as the credence in the

conjunction of all the propositions in B, formally

Cr(B) = Cr( \
p2B

p).

Note that this is always well-defined, since we have assumed that X is finite. We can

now fix a threshold � 2 [0, 1) and define the credence-belief relation as follows. For all

Cr and all B,

Cr ⇠ B if and only if Cr(B) > � and B is Cr-closed (*).

(Recall the definition of Cr-closure from the end of Section 5.4.) It is easy to see that,

if � > 0, the present relation satisfies all of our conditions except locality. If � = 0,

the relation can be shown to reduce to that defined in Section 5.4; so it then satisfies

locality, but violates non-looseness.

The smaller the threshold � becomes, the more propositions can be believed in the

binary sense. For instance, if � = 1
10 , the credence in one’s belief set can drop to (just

above) 1
10 . In particular, if � is smaller than Cr(p) for some atom p of X (where, for

each q 2 X, p entails either q or q), then even complete belief sets become rationally

permissible, i.e., belief sets that contain a member of each proposition-negation pair in

X. On the other hand, even for a small threshold �, the relation ⇠ permits credence-

belief pairs (Cr,B) for which Cr(B) is as high as 1 and B is very incomplete, perhaps

containing only propositions p 2 X with Cr(p) = 1. To limit incompleteness in the

belief set B, one might amend the definition of ⇠ by imposing a maximality condition

on B, in the following way:

Cr ⇠ B if and only if B is a maximal belief set such that Cr(B) > � (**),
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where maximality means that no proper superset B0 of B also has the property that

Cr(B0) > �. Again, the relation ⇠ satisfies all of our conditions except locality (unless

� = 0, in which case the relation becomes local but loose).

Note that any maximal belief set B such that Cr(B) > � automatically has the

property of Cr-closure. This is why the belief-credence relation defined in (**) is a

refinement of the relation previously defined in (*). The smaller the threshold � is, the

less incompleteness in B will be permissible, where this can be measured by how rarely

one has no opinion on a proposition-negation pair p, p, in the sense of believing neither

p nor p. If � = 0, the present definition renders only complete belief sets permissible.

So, the relation takes this form:

Cr ⇠ B if and only if B is complete and Cr(B) > 0 (***).

Relations with partially complete binary beliefs

As should be evident, there is a tradeo↵ between the extent to which one’s binary belief

set B is complete and one’s overall credence in that belief set, Cr(B). The credence-

belief relations just defined limit the amount of incompleteness, either by demanding

that B be a maximal belief set for which Cr(B) exceeds a given threshold (in the case

of (**)), or by demanding completeness of B simpliciter (in the case of (***)). We now

consider another way in which one might limit the amount of incompleteness in B.

Suppose there are certain propositions on which we wish to rule out the possibility

of having no opinion. Let Y ✓ X be the set of those “non-abstention” propositions

(where p 2 Y if and only if p 2 Y ); a firm opinion on the propositions in Y is required.

Let us call a belief set B complete within Y if, for all p 2 Y , we have p 2 B or p 2 B.

We can now define the following credence-belief relation: for all Cr and all B,

Cr ⇠ B if and only if B is complete within Y , consistent, and Cr-closed.

This relation violates locality but satisfies our other conditions except non-looseness,

as we will explain in a moment.11 In the special case Y = X, completeness within Y

reduces to completeness simpliciter, and the conjunction of consistency and Cr-closure

can be replaced by the simple clause that Cr(B) > 0. So, the relation ⇠ then reduces

to the one defined in (***) above.

The non-looseness violation of the present credence-belief relation is due to the fact

that the relation never specifies which of two propositions p, p 2 Y is to be believed in

the binary sense, except when Cr(p) is 0 or 1. This is so even if Cr(p) is much greater

than Cr(p) or vice versa. In response, one might refine the relation ⇠ by demanding

that Cr(B) be as high as possible. Formally, for all Cr and all B,

Cr ⇠ B if and only if

"
B is complete within Y and Cr-closed, and

for any such B0, Cr(B0)  Cr(B)

#
.

This relation strikes a balance in the aforementioned tradeo↵ between the completeness

of the belief set B and the overall credence in it. Again, if Y = X, the definition of ⇠
11We set aside the limiting case Y = Ø, where the relation ⇠ reduces to the one defined in Section

5.4. In that case, it no longer violates locality.
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can be simplified. Completeness within Y reduces to completeness simpliciter, and it

is su�cient to require deductive closure rather than Cr-closure. So, the definition of ⇠
becomes the following:

Cr ⇠ B if and only if

"
B is complete and deductively closed, and

for any such B0, Cr(B0)  Cr(B)

#
.

Distance-based relations

Our next example is a variant of a proposal discussed in our earlier work.12 It captures

the idea that binary beliefs should “approximate” degrees of belief as closely as possible,

subject to the constraint of consistency and deductive closure. We need one preliminary

definition. For any belief set B, define a membership function B : X ! {0, 1}, where,
for each p in X,

B(p) =

(
1 if p 2 B

0 if p /2 B
.

Now we stipulate that a belief set B is coherent with a credence function Cr if and only

if B’s membership function best approximates Cr, or, in di↵erent words, it minimizes

the “distance” from Cr. Formally, for any Cr and any B, define

distance(Cr,B) =
P

p2X |B(p)� Cr(p)|.

Then our credence-belief relation is defined as follows: for all Cr and all B,

Cr ⇠ B if and only if

"
B is consistent and deductively closed, and

for any such B0, distance(Cr,B)  distance(Cr,B0)

#
.

In our earlier work, we called this proposal the “Hamming rule”, in light of its structural

similarity to an equally named proposal in judgment-aggregation theory. It satisfies all

of our conditions except locality. The proposal does not satisfy functionality, but dis-

plays violations of functionality only in special cases, namely when several distinct belief

sets equally minimize the distance from a given credence function. Note that, in the

present construction, we could also use other definitions of distance, such as quadratic

rather than absolute ones. We have chosen the current definition of distance(Cr,B)

just for illustrative purposes.

An alternative variant of the present proposal replaces the idea of “optimizing”

the distance between binary beliefs and degrees of belief with the idea of “satisficing”.

Here, a belief set B is deemed coherent with a credence function Cr just in case B is

su�ciently (rather than maximally) close to Cr. Formally, fix a tolerance parameter

� > 1. Then

Cr ⇠ B if and only if

"
B is consistent and deductively closed, and

for any such B0, distance(Cr,B)  � ⇥ distance(Cr,B0)

#
.

12See Dietrich and List (2018).
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Stability-theoretic relations

Our final example of a holistic credence-belief relation builds on Hannes Leitgeb’s

work.13 Leitgeb proposes a way of relating degrees of belief to binary beliefs. First,

he defines a proposition p 2 X to be stable relative to a credence function Cr, for

short Cr-stable, if Cr(p|q) > 1
2 for any proposition q 2 X that is consistent with p and

satisfies Cr(q) > 0.14 It is easy to see that Cr-stable propositions always exist. For

instance, any proposition p 2 X with Cr(p) = 1 is Cr-stable. The term “stable” refers

to the fact that the credence in a non-empty Cr-stable proposition always exceeds 1/2

and continues to exceed 1/2 after Bayesian conditionalization on any other proposition

that is consistent with it. Now, the credence-belief relation can be defined as follows:

for all Cr and all B,

Cr ⇠ B if and only if

"
B = {p 2 X : Cr(p) � t} for some threshold t equal to

the credence in some Cr-stable proposition in X\{Ø}

#
.

As Leitgeb notes, on this proposal, belief does indeed correspond to “high enough”

degree of belief, but what counts as “high enough” may depend on the credence func-

tion in question. The credence-belief relation we have just defined satisfies all of our

conditions, except locality. In that sense, it captures a “holistic” relationship between

degrees of belief and binary beliefs. Leitgeb recognizes this holism, which he describes

as “a strong form of sensitivity of belief to context”.15 That there is such holism is

not accidental at all. As our impossibility result shows, if there is to be any relation

between degrees of belief and binary beliefs which satisfies universality, belief consist-

ency and deductive closure, propositionwise certainty preservation, and non-looseness,

then it must be holistic.

6 A further generalization

Up to this point, we have assumed that the set X of propositions on which beliefs are

held has the structure of an algebra, i.e., it is a non-empty set of propositions that is

closed under both union and complement (and thereby also intersection). We now want

to extend our analysis to more general sets of propositions. The assumption that X

is closed under union and intersection is somewhat restrictive. For instance, we might

assign credences to propositions about the weather, and to propositions about inflation,

without assigning credences to any conjunctions or disjunctions of those propositions.

In such a case, the set X does not satisfy the given closure conditions.

We will show that our impossibility result does not depend on the assumption that

X is an algebra, but applies to any set of propositions that satisfies some less demanding

structural conditions. For a start, let us assume that X is a non-empty (and for present

purposes again finite) set of propositions that is closed under complement (i.e., for every

p 2 X, we also have p 2 X), but not necessarily under conjunction (and disjunction).

Recall that a credence function Cr assigns to each proposition p in X a number Cr(p)

13See Leitgeb (2014).
14Two propositions p and q are consistent with each other if p \ q 6= Ø.
15See Leitgeb (2014, p. 168).
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in the interval from 0 to 1, where this assignment is probabilistically coherent. In

the present case, probabilistic coherence means that Cr is extendable to a probability

function (with the standard properties) on an algebra including X. A belief set, as

before, is a subset B ✓ X. We will now ask what conditions on X are necessary and

su�cient for our impossibility result to arise, and conversely, what conditions on X are

necessary and su�cient for the avoidance of that result.

To state those conditions, we need to begin with some preliminary definitions. Let us

say that a proposition p 2 X conditionally entails another proposition q 2 X if {p}[Y

entails q for some (possibly empty) set of propositions Y ✓ X which is consistent with

p and consistent with q (i.e., where ( \
r2Y

r) \ p 6= Ø and ( \
r2Y

r) \ q 6= Ø). Now, for any

two propositions p, q 2 X, we say that there is a path of conditional entailments from

p to q if there exist propositions p1, p2, ..., pk 2 X with p1 = p and pk = q such that p1
conditionally entails p2, p2 conditionally entails p3, ..., and pk�1 conditionally entails

pk. We call the set X negation-connected if there is a path of conditional entailments

from each contingent proposition p 2 X to its complement p.

The following two results state the weakest conditions on X under which our earlier

impossibility results hold.

Theorem 1*. If X is negation-connected, then there exists no credence-belief rela-

tion satisfying universality, belief consistency and deductive closure, propositionwise

certainty preservation, non-looseness, and acceptance locality. Conversely, if X is not

negation-connected, then there exists such a credence-belief relation.

Theorem 2*. If X is negation-connected, then there exists no belief-binarization rule

satisfying universal domain, belief consistency and deductive closure, propositionwise

certainty preservation, non-triviality, and propositionwise independence. Conversely, if

X is not negation-connected, then there exists such a belief-binarization rule.

These generalized versions of our theorems – proved in the appendix – show two

things. First, they show that the assumption that X is a non-trivial algebra is ines-

sential for our impossibility result. The impossibility arises as soon as X is negation-

connected. While all non-trivial algebras are negation-connected, the converse is not

true. For an example of a negation-connected set of propositions that is not an algebra,

consider the set X consisting of p, q, p\ q, p[ q, r, s, r \ s, r [ s, and the negations of

these propositions, where p, q, r, and s are each contingent and logically independent

from one another.16 This set violates closure under conjunction. For instance, it fails

to include p \ r and q \ s.

Secondly, Theorems 1* and 2* show that if X is not negation-connected, then there

does in fact exist a credence-belief relation (or a belief-binarization rule in the functional

case) satisfying the specified conditions. Whether the possibilities that open up if X is

not negation-connected are substantively interesting or rather degenerate depends on

the set X in question. In general, if there are few or no logical interconnections between

the propositions in X, many plausible credence-belief relations or belief-binarization

16For instance, we might have ⌦ = {0, 1}4 with p = {(1, x, y, z) : x, y, z 2 {0, 1}}, q = {(x, 1, y, z) :
x, y, z 2 {0, 1}}, r = {(x, y, 1, z) : x, y, z 2 {0, 1}}, and s = {(x, y, z, 1) : x, y, z 2 {0, 1}}.
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rules satisfy all of our conditions. For instance, if there are no logical interconnections

at all between di↵erent proposition-negation pairs p, p in X, we can use any threshold

rule which accepts a proposition just in case the credence in it exceeds some threshold

between 1
2 and 1. By contrast, if X exhibits lots of logical interconnections despite not

being negation-connected, then the resulting possibilities tend to be more degenerate.

Let us sketch a solution which works in general.

Suppose that X is not negation-connected. Note that X can be partitioned into

two subsets that are each closed under complement, labelled X` and X 6`: X` contains

all propositions p 2 X for which there are paths of conditional entailments from p to

p and from p to p, and X 6` contains all other propositions, for which there is either

no path from p to p or no path from p to p. We can now define a belief-binarization

rule for X (and by implication, a credence-belief relation). For any credence function

Cr, we specify the corresponding belief set B as follows. For each proposition p 2 X`,

we stipulate that p 2 B if and only if Cr(p) = 1. For all the propositions p 2 X 6`,

we use a di↵erent construction. A technical lemma shows that X 6` has a subset S

containing exactly one member of each proposition-negation pair {p, p} ✓ X 6` such

that no proposition in S conditionally entails any proposition in X\S (intuitively,

propositions in S can be accepted without any risk of creating conflicts with beliefs

about propositions in X\S). We pick such a subset S and make it the “default belief

set” among the propositions in X 6`, in the sense that, for any p 2 S, we stipulate that

p 2 B except when Cr(p) = 0, while for any p 2 X 6`\S, we stipulate that p 2 B if

and only if Cr(p) = 1. In the appendix, we show that the resulting belief set B is

both consistent and deductively closed, and that the resulting belief-binarization rule

(or more generally, credence-belief relation) satisfies the rest of our conditions. While

this is indeed a formal possibility to which our impossibility theorem does not apply,

it is obviously only of limited substantive interest.

7 Concluding remarks

We have seen that if

(i) agents have both degrees of belief and binary beliefs,

(ii) these satisfy standard rationality conditions (as captured by universality and belief

consistency and deductive closure), and

(iii) the two kinds of belief stand in a systematic relationship to each other (as captured

by propositionwise certainty preservation and non-looseness),

then

(iv) the resulting relationship cannot be a “local” or “propositionwise” one.

Rather, whether it is rationally required or permissible to accept a proposition in the

binary sense will often depend not only on the degree of belief in that proposition itself,

but also on the degrees of belief in others. The “unit of belief binarization”, as we put
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it in our earlier work, is not each individual proposition in isolation, but rather a web of

interconnected propositions. Our present results show that this point is not an artifact

of the restrictive nature of functional relations between degrees of belief and binary

beliefs. Rather, the point applies much more generally. Even if the relation between

degrees of belief and binary beliefs is allowed to be many-to-many – meaning that more

than one possible belief set is deemed coherent with each credence function, and vice

versa – the relation still cannot be a local one.

The lesson is that if we insist that an agent’s credal state involves both degrees of

belief and binary beliefs, holism in the relationship between these two kinds of belief

is unavoidable. We have given several examples of holistic credence-belief relations.

Hopefully, future research will explore which of these and other holistic relations o↵er

the best account of the relationship between degrees of belief and binary beliefs.
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A Negation-connected agendas

As shown in Section 6, our impossibility result – in both its relational and its func-

tional form – is not dependent on the assumption that the set X of propositions on

which beliefs are held – which we now call the agenda – is an algebra. Rather, the

result continues to hold if X is not closed under disjunction (union) or conjunction

(intersection), as long as it is negation-connected. Generally, an agenda – a term that

comes from judgment-aggregation theory – is a non-empty set of propositions X that

is closed under negation (i.e., if p 2 X then p 2 X). A negation-connected agenda, in

turn, is one in which there is a path of conditional entailments from each contingent

proposition p 2 X to its complement p (where a path of conditional entailments is as

defined in Section 6).

In our earlier work on this topic, we discussed some structural parallels between

the problem of judgment aggregation and the problem of belief binarization, and we

showed that the same agendas for which certain impossibility results of judgment ag-

gregation arise also lead to impossibility results in the area of belief-binarization. One

of the most important classes of agendas in the area of judgment aggregation is the

class of path-connected agendas. An agenda is path-connected if, for any pair of con-

tingent propositions p, q 2 X, there is a path of conditional entailments from p to

q.17 As is well known, path-connectedness is a necessary agenda condition for the

judgment-aggregation variant of Arrow’s classic impossibility theorem.18 Manifestly,

negation-connetedness, the condition introduced in the present paper, is less demand-

ing than path-connectedness, insofar as it requires the existence of paths of conditional

entailments only between propositions and their negations, not between any two pro-

positions (assuming these propositions are contingent).

We can say more about the relationship between negation-connectedness and path-

connectedness. Let us begin with two preliminary defitions. A subagenda of an agenda

X is a subset X 0 ✓ X that is itself an agenda, i.e., it is non-empty and closed under

complement. Subagendas X1, ..., Xk of X are logically independent if the propositions

they contain are logically independent from each other, i.e., if, for all consistent belief

sets B1 ✓ X1, ..., Bn ✓ Xn, the union B1 [ · · · [Bn is consistent.

Proposition 1 For any finite agenda X, the following are equivalent:

(a) X is negation-connected;

(b) X can be partitioned into (one or more) path-connected subagendas;

(c) X can be partitioned into (one or more) logically independent path-connected

subagendas.

In this case, assuming ⌦,? 62 X, there is a unique partition as in (c) and a coarsest

partition as in (b), both consisting of the maximal path-connected subagendas.

19

17This condition was originally introduced by Nehring and Puppe (2010) under the name “total

blockedness”. See also Dietrich and List (2007) and Dokow and Holzman (2010).
18See Dietrich and List (2007) and Dokow and Holzman (2010).
19If X can be infinite, (a) is still equivalent to (b), in which case (assuming ⌦,? 62 X) there still is

a coarsest partition as in (b) which consists of the maximal path-connected subagendas.
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One might call the maximal path-connected subagendas of an agenda X the path-

connected components of X. The simplest negation-connected agendas are those which

have a single path-connected component, hence are themselves path-connected. The

negation-connected agenda given as an example in Section 6 has two path-connected

components: the subagenda containing p, q, p \ q, p [ q (and their negations), and the

subagenda containing r, s, r \ s, r [ s (and their negations).

B Proofs

The proof architecture is as follows. We first establish that the relational theorem, in the

version of Theorem 1 or 1*, is reducible to its functional counterpart, i.e., to Theorem

2 or 2*, respectively (Section B.1). Meanwhile note that Theorems 1 and 2 follow

from Theorems 1* and 2*, respectively, once we restrict attention to the case of finite

X, the case assumed in Theorems 1* and 2*. This is because any non-trivial algebra

X is negation-connected.20 After proving Proposition 1 on the structure of negation-

connected agendas (Section B.2), we therefore only prove Theorem 2* (Sections B.3

and B.4). While Theorems 1 and 2 hold even for infinite X, we omit the proofs here.

B.1 Reducing the relational theorem to the functional theorem

The key idea behind the reduction is that we can go back and forth between credence-

belief relations and belief-binarization rules, while preserving our conditions. As already

noted, every belief-binarization rule is equivalent to a (very special) credence-belief

relation: a functional one. This first translation by definition preserves our conditions:

Lemma 1 If f is a belief-binarization rule and ⇠ is the functional credence-belief re-

lation equivalent to f , then

(a) if f satisfies universal domain, then ⇠ satisfies universality;

(b) if f satisfies belief consistency and deductive closure, then so does ⇠;

(c) if f satisfies propositionwise independence, then ⇠ satisfies full locality;

(d) if f satisfies propositionwise certainty preservation, then so does ⇠;

(e) if f satisfies non-triviality, then ⇠ satisfies non-looseness.

Conversely, an arbitrary credence-belief relation ⇠, though of course usually not

equivalent to a belief-binarization rule, induces a belief-binarization rule f , defined

as follows: f permits the same credence functions Cr as ⇠ (i.e., the credence func-

tions coherent with some belief set), and for any permissible Cr, f(Cr) consists of the

20Why? Let X be a non-trivial algebra. Take any contingent p 2 X. We need to construct a path of

conditional entailments from p to p. Case 1 : p is not an atom of the algebra. Then p has some strict

subset q 6= ? in the algebra. Here is a path from p to p: p entails q conditional on q [ p; q entails q [ p

conditional on no propositions; and q[p entails p conditional on q. Case 2 : p is an atom of the algebra.

Then p is not an atom of the algebra (as the algebra is non-trivial), and so p has a strict subset q 6= ?
in the algebra. Here is a path from p to p: p entails p [ q conditional on no propositions; p [ q entails

q conditional on p; and q entails p conditional on no propositions. In fact, non-trivial algebras are not

just negation-connected, but even path-connected.
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propositions whose acceptance is required by Cr, i.e., which belong to all belief sets

coherent with Cr:

f(Cr) = {p 2 X : Cr requires acceptance of p} = \{B : Cr ⇠ B}.

This converse translation also preserves our conditions:

Lemma 2 If ⇠ is any credence-belief relation and f is the induced belief-binarization

rule as just defined, then

(a) if ⇠ satisfies universality, then f satisfies universal domain;

(b) if ⇠ satisfies belief consistency and deductive closure, then so does f ;

(c) if ⇠ satisfies acceptance locality, then f satisfies propositionwise independence;

(d) if ⇠ satisfies propositionwise certainty preservation, then so does f ;

(e) if ⇠ satisfies non-looseness, then f satisfies non-triviality.

Proof. Part (b) holds as the intersection of consistent and deductively closed belief sets

is consistent and deductively closed. All other parts hold by definition of f . ⌅

On the basis of the two previous lemmas, we can derive our reduction result:

Lemma 3 Theorem 2 implies Theorem 1, and Theorem 2* implies Theorem 1*.

Proof. We assume that Theorem 2* holds, and prove both directions of Theorem 1*

(analogously, Theorems 2 implies Theorem 1). If some credence-belief relation ⇠ satis-

fies all the conditions of Theorem 1*, then by Lemma 2 the induced belief-binarization

rule satisfies all the conditions of Theorem 2*, so that by Theorem 2* X is not negation-

connected. Conversely, if X is not negation-connected, then by Theorem 2* some

belief-binarization rule f satisfies all the conditions of Theorem 2*, so that by Lemma

1 the functional credence-belief relation equivalent to f satisfies all the conditions of

Theorem 1* (in fact, even with full locality). ⌅

B.2 Proof of Proposition 1

We begin with two lemmas. Let `` be the transitive closure of the conditional entail-

ment relation.

Lemma 4 If X is negation-connected, then the relation `` is symmetric.

Proof. Let X be negation-connected. Assume p `` q. Then

• q `` q, as X is negation-connected (and as q is contingent, since p `` q);

• q `` p, as p `` q, and as conditional entailment (and so ``) satisfies contraposi-
tion;

• p `` p, as X is negation-connected (and as p is contingent, since p `` q).
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So, by transitivity of ``, q `` p. ⌅

Lemma 5 If X is negation-connected, then on X\{⌦,?} the relation `` is an equi-

valence relation whose equivalence classes are path-connected subagendas.

Proof. Let X be negation-connected. The relation `` is transitive and symmetric by

Lemma 4; and it is reflexive on X\{⌦,?}, since each contingent proposition condition-

ally (in fact even unconditionally) entails itself. So `` is an equivalence relation on

X\{⌦,?}. Each equivalence class is a subagenda, as it is non-empty and (by negation-

connectedness of X) closed under complement; path-connectedness is obvious. ⌅

Proof of Proposition 1. Let X be any finite agenda.

Part 1 – equivalence of (a) and (b). Obviously, (b) implies (a). Now assume (a). By

Lemma 5, X\{⌦,?} can be partitioned into path-connected subagendas X1, X2, ..., Xk

(k � 1). Clearly, the subagendas X1 [ {⌦,?}, X2, ..., Xk are still all path-connected,

and they partition X. This establishes (b).

Part 2 – existence and nature of a coarsest partition in (b). Assume (b) and let

⌦,? 62 X. Let ⇧ be the (non-empty) set of partitions of X into path-connected

subagendas. We show that ⇧ has a coarsest element, namely the meet of the partitions

in⇧, denoted ^⇧ and defined as the finest partition ofX that is at least as coarse as each

P 2 ⇧ (it then follows that ^⇧ consists of the maximal path-connected subagendas). So

we must show that ^⇧ belongs to ⇧, i.e., consists itself of path-connected subagendas.

Take any X 0 2 ^⇧. X 0 is a subagenda as it is the union of subagendas (from ⇧). To see

why X 0 is path-connected, take any p, q 2 X 0. As X 0 2 ^⇧, there are X1, ..., Xk 2 ⇧

such that p 2 X1, q 2 Xk, and Xt \ Xt+1 6= ? for all t 2 {1, ..., k � 1}. As each of

X1, ..., Xk is path-connected, there are paths of conditional entailments from p to a

proposition in X1 \ X2, from there to a proposition in X2 \ X3, and so on until we

reach q. Concatenating these paths, we obtain a path from p to q.

Part 3 – equivalence of (b) and (c). Obviously, (c) implies (b). Now we suppose

(b) and show (c). We may assume without loss of generality that ⌦,? 62 X. By

Part 2, it su�ces to show that the subagendas in ^⇧ are logically independent. For a

contradiction, let this be false. Then there is a minimal inconsistent set B ✓ X which

intersects with more than one subagenda in ^X. We can coarsen ^⇧ through replacing

those subagendas which intersect with B by their union, where (as one easily checks)

that union is again a path-connected subagenda – a contradiction.

Part 4 – uniqueness and nature of the partition in (c). Assume (c) and let ⌦,? 62 X.

Let P be some partition ofX of the type in (c). It remains to show that P is the coarsest

of the partitions in (b). As shown in Part 2, there indeed exists a coarsest partition of

type in (b), denoted ^⇧. If P di↵ered from ^⇧, then P would be strictly finer than

^⇧, so that some X 0 2 P would be the union of two or more subagendas from ^⇧.

Hence there would exist paths of conditional entailments between these subagendas (as

X 0 is path-connected), contradicting the logical independence of the subagendas in ^⇧
established under Part 3. ⌅
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B.3 Proof of Theorem 2*: su�ciency

From now on, let the agenda X be finite, as assumed in Theorem 2*. In this subsection,

we show that negation-connectedness of X is su�cient for non-existence of a belief-

binarization rule satisfying Theorem 2*’s conditions. We proceed in several lemmas.

Lemma 6 Given a propositionwise independent belief-binarization rule f ,

(a) f induces for each subagenda X 0
a propositionwise independent belief-binarization

rule fX0
defined by fX0(Cr|X0) = f(Cr) \ X 0

for all credence functions Cr permitted

by f ;

(b) if f satisfies universal domain, then so does fX0
for each subagenda X 0

;

(c) if f satisfies belief consistency and deductive closure, then so does fX0
for each

subagenda X 0
;

(d) if f satisfies propositionwise certainty preservation, then so does fX0
for each

subagenda X 0
;

(e) if f satisfies non-triviality and {X1, ..., Xk} is a partition of X into subagendas,

then at least one of fX1 , ..., fXk satisfies non-triviality.

Proof. Details are left to the reader. We just note two things, relevant for (a) and (b),

respectively. Let X 0 be any subagenda. First, fX0 is well-defined by propositionwise

independence of f . Second, fX0 is defined on the domain {Cr|X0 : Cr is permitted

by f}, which contains all credence functions on X 0 whenever f permits all credence

functions on X. ⌅

Lemma 7 If no belief-binarization rule satisfies the conditions of Theorem 2* for any

path-connected X, then no belief-binarization rule satisfies these conditions for any

negation-connected X.

Proof. Assume no belief-binarization rule satisfies Theorem 2*’s conditions for any

path-connected X. For a contradiction, let X be negation-connected and f a belief-

binarization rule satisfying those conditions. Using Proposition 1, we partition X into

path-connected subagendasX1, ..., Xk (for some k � 1). By Lemma 6, at least one of the

induced belief-binarization rules fX1 , ..., fXk satisfies all the conditions, a contradiction.

⌅

By Lemma 8, we can prove su�ciency in Theorem 2* by assuming that X is path-

connected, not just negation-connected. We can also assume that X 6= {⌦,?}, as

otherwise there clearly is no non-trivial belief-binarization rule.

Assumptions for the rest of the section: X is path-connected and distinct from

{⌦,?}, and f is a belief-binarization rule satisfying Theorem 2*’s conditions except

possibly non-triviality.

We must show that f is trivial. This will take several steps. We will borrow Lemmas

8 and 9 from our own earlier work on belief binarization,21 and Lemmas 10 and 14 from

21See Dietrich and List (2018).
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judgment-aggregation theory.22 For completeness, we shall give proofs even of these

four lemmas.

For any p 2 X, let Wp be the set of acceptance credences for p, i.e., the set of values

w 2 [0, 1] such that p is believed in the binary sense whenever Cr(p) = w (formally,

for all credence functions Cr, Cr(p) = w ) p 2 f(Cr)). As f is propositionwise

independent, it is fully determined by the acceptance credences:

f(Cr) = {p 2 X : Cr(p) 2 Wp} for all credence functions Cr.

For all Y ✓ X and Z ✓ Y , we write Y¬Z for the set arising from Y by negating Z’s

members: Y¬Z = (Y \Z) [ {z : z 2 Z}.

Lemma 8 If a proposition p 2 X conditionally entails another proposition q 2 X,

then Wp ✓ Wq. So (as X is path-connected) all contingent propositions p 2 X have

the same set of acceptance credences Wp, to be denoted W.

Proof. Let p 2 X conditionally entail q 2 X, say {p} [ Y entails q where Y ✓ X

is consistent with p and with q. Then {p, q} [ Y is consistent, and also {p, q} [ Y is

consistent (as {q} [ Y is consistent while {p, q} [ Y is inconsistent). Fix any w 2 Wp.

We show that w 2 Wq. As p\ q \ (\Y ) 6= ? and p\ q \ (\Y ) 6= ?, there is a credence

function Cr such that Cr(p\ q\ (\Y )) = w and Cr(p\ q\ (\Y )) = 1�w. Now f(Cr)

contains p as Cr(p) = w 2 Wp, and contains all y 2 Y as Cr(y) = 1 where 1 2 Wy

by propositionwise certainty preservation. As {p}[ Y ✓ f(Cr), f(Cr) entails q, hence

contains q by deductive closure. So Wq contains Cr(q) = w. ⌅

We must ultimately show that W = {1}, as this means that f is trivial.

Lemma 9 1 2 W, and w 2 W ) 1� w 62 W.

Proof. By propositionwise certainty preservation, 1 2 W . Now let w 2 W . Take any

p 2 X\{⌦,?}, and any credence function Cr such that Cr(p) = w, i.e., Cr(p) = 1�w.

We have 1 � w 62 W , as otherwise Cr(p), Cr(p) 2 W , i.e., p, p 2 f(Cr), violating

consistency. ⌅

A set of propositions Y is minimal inconsistent if it is inconsistent, and all its proper

subsets are consistent. X is non-simple if it has a minimal inconsistent subset Y such

that |Y | � 3. For instance, if X contains two logically independent propositions p and

q and contains p\ q, then X is non-simple as Y = {p, q, p \ q} is minimal inconsistent.

Lemma 10 X is non-simple.

Proof. Pick a contingent p 2 X. Then p is also contingent. As X is path-connected,

there is a path of conditional entailments inX from p to p, say p = p1, p2, ..., pk = p 2 X

where each pt (t < k) conditionally entails pt+1. At least one of these conditional

entailments is not an (ordinary) entailment, as otherwise p would entail p by transitivity

22See Nehring and Puppe (2010) and Dokow and Holzman (2010), respectively.
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of entailment. Say pt does not entail pt+1. By conditional entailment, we may pick a

set Z ✓ X such that {pt} [ Z entails pt+1, where Z [ {pt} and Z [ {pt+1} are each

consistent. As {pt, pt+1} [ Z is inconsistent, it has a minimal inconsistent subset Y .

Now {pt, pt+1} ✓ Y , as otherwise Y would be a subset of one of the consistent sets

Z[{pt} and Z[{pt+1}. Further, {pt, pt+1} 6= Y , as {pt, pt+1} is consistent. So, |Y | � 3.

⌅

Lemma 11 If W \ [0, 12) = ?, then W = {1}.

Proof. For a contradiction, let W \ [0, 12) = ? and W 6= {1}. As infW < 1 we have

infW < 1
2 + inf W

2 . So we can pick a t 2 W such that t < 1
2 + inf W

2 . (If W contains

infW, we could let t = infW.)

Figure 1: Venn diagram for the proof of Lemma 11, assuming Y = {p, q, r}

By Lemma 10, we may pick a minimal inconsistent set Y ✓ X with three distinct

members p, q, r. As Y¬{p}, Y¬{q} and Y¬{r} are each consistent, there is a credence

function Cr such that Cr(\Y¬{p}) = Cr(\Y¬{q}) = 1�t and Cr(\Y¬{r}) = 2t�1. Note

that Cr is probabilistically well-defined, since Cr(\Y¬{p}), Cr(\Y¬{q}) and Cr(\Y¬{r})
are non-negative (as 1

2  t < 1) and of sum 1. Now p, q 2 f(Cr), as Cr(p) = Cr(q) =

t 2 W. Also, for all y 2 Y \{p, q, r}, y 2 f(Cr), as Cr(y) = 1 2 W. In sum,

Y \{r} ✓ f(Cr). So, as Y \{r} entails r and f(Cr) is deductively closed, r 2 f(Cr).

Hence, W contains Cr(r) = 2t�1. Yet 2t�1 < infW (as t < 1
2+

inf W
2 ), a contradiction.

⌅

X is pair-negatable if it has a minimal inconsistent subset Y ✓ X with distinct

elements p, q such that Y¬{p,q} is consistent.

Lemma 12 If X is pair-negatable, then w 2 W ) [w, 1] ✓ W.

Proof. Let X be pair-negatable. Suppose w 2 W. We fix a w0 2 [w, 1] and show

that w0 2 W. Via pair-negatability, pick a minimal inconsistent set Y ✓ X and distinct

p, q 2 Y such that Y¬{p,q} is consistent. As Y¬{p,q} is consistent, and as also Y¬{p} and

Y¬{q} are consistent (by Y ’s minimal inconsistency), the intersections \Y¬{p,q}, \Y¬{p}
and \Y¬{q} are non-empty. So there is a credence function Cr such that Cr(\Y¬{q}) =
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Figure 2: Venn diagrams for the proof of Lemma 12, assuming Y = {p, q, y}.

w, Cr(\Y¬{p,q}) = w0 � w and Cr(\Y¬{p}) = 1 � w0. As Cr(p) = w 2 W, we have

p 2 f(Cr). For all y 2 Y \{p, q}, Cr(y) = 1 2 W , whence y 2 f(Cr). In sum,

Y \{q} ✓ f(Cr). So, as Y \{q} entails q and f(Cr) is deductively closed, q 2 f(Cr). So

W contains Cr(q) = w0. ⌅

Lemma 13 If X is pair-negatable, then W ✓ [12 , 1].

Proof. Let X be pair-negatable. If W contained w < 1
2 , then 1�w 2 W by Lemma 12

while 1� w 62 W by Lemma 5, a contradiction. ⌅

Lemma 14 If X is not pair-negatable, then Y¬Z is consistent for all minimal incon-

sistent sets Y ✓ X and all three-member subsets Z of Y .

Proof. Assume Y ✓ X is a minimal inconsistent with a three-member subset Z such

that the set Y¬Z is inconsistent. We show pair-negatability. Pick a minimal inconsistent

subset Y 0 of Y¬Z . Y 0 shares at least two propositions with {z : z 2 Z}; otherwise

Y 0 ✓ Y¬{z} for some z 2 Z, a contradiction since Y 0 is inconsistent although Y¬{z}
is consistent by Y ’s minimal inconsistency. So we can partition {z : z 2 Z} into a

two-member set Z 0 ✓ Y 0 and a singleton set {z}. Whether or not z belongs to Y 0,

the set Y 0
¬Z0 is a subset of (Y \{z}) [ {z} = Y¬{z}, hence is consistent (by Y ’s minimal

inconsistency). This proves pair-negatability. ⌅

Lemma 15 If X is not pair-negatable, then W ✓ (23 , 1].

Proof. Let X be not pair-negatable. For a contradiction, assume w 2 W and w  2
3 .

By Lemma 10, we can pick a minimal inconsistent set Y ✓ X with a three-member

subset Z ✓ Y . By Lemma 14, Y¬Z is consistent, i.e., \Y¬Z 6= ?. By Y ’s minimal

inconsistency, for each z 2 Z the set Y¬{z} is consistent, i.e., \Y¬{z} 6= ?. So we can

pick a credence function Cr such that

Cr(\Y¬{z}) =
w

2
for all three z 2 Z,

Cr(\Y¬Z) = 1�
⇣w
2
+

w

2
+

w

2

⌘
= 1� 3w

2
.

Here the inequality w  2
3 guarantees that 1 � 3w

2 � 0. For each z 2 Z, we have

Cr(z) = w
2 + w

2 = w 2 W, and hence z 2 f(Cr). Moreover, for each y 2 Y \Z we have

Cr(y) = 1 2 W, and hence y 2 f(Cr). In sum, Y ✓ f(Cr), a consistency violation. ⌅
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Figure 3: Venn diagram for the proof of Lemma 15, assuming Y = Z = {p, q, r}

Completing the proof of su�ciency in Theorem 2*. As noted, it remains to show that

W = {1}. By Lemma 9, 1 2 W . If W contained a w < 1, then W would even contain

a w < 1
2 by Lemma 11, in contradiction with Lemmas 13 and 15. ⌅

B.4 Proof of Theorem 2*: necessity

We finally prove that if X is not negation-connected, then there is a belief-binarization

rule satisfying the conditions of Theorem 2*. We begin with a technical lemma. Con-

sider the set X` := {p 2 X : p `` p and p `` p} of propositions with paths of

conditional entailments to and from their complement, and the set X 6` := X\X` of

all propositions without at least one of the paths. X` and X 6` are each closed under

complement and possibly empty.

Lemma 16 There is a set S ✓ X 6` containing exactly one member of each pair {p, p} ✓
X 6` such that no proposition in S conditionally entails any proposition in X\S (equi-

valently, each minimal inconsistent set Y ✓ X shares with S at most one proposition,

and no proposition if Y \X` 6= ?).

Proof. The result follows from a lemma due to Klaus Nehring and Clemens Puppe (our

sets X, X`, X 6` and S correspond to their sets H, H0, H+
1 [H�

1 [H2 and H�
1 [H�

2 ,

respectively).23 ⌅

Proof of necessity in Theorem 2*. We give a constructive proof. Suppose X is not

negation-connected, i.e., X 6` 6= ?. Choose S as in Lemma 16, and let f be the pro-

positionwise independent belief-binarization rule with universal domain given by the

following acceptance credences:

• any p 2 S has set of acceptance credences Wp = (0, 1],

• any p 2 X\S has set of acceptance credences Wp = {1}.

We show that f satisfies the conditions of Theorem 2* (in case of non-triviality because

X is not negation-connected). Universal domain and propositionwise independence

hold by definition. Propositionwise certainty preservation holds because 1 2 Wp for all

23See Nehring and Puppe (2010), Lemma 3.
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p 2 X. Non-triviality holds because for p 2 S the set Wp contains values other than 1,

and because S 6= ? (as X 6` 6= ? by violation of negation-connectedness). Finally, let

Cr be any credence function, and let us show that f(Cr) is consistent and deductively

closed.

Consistency. For a contradiction, let f(Cr) be inconsistent. Then f(Cr) has a

minimal inconsistent subset Y . By Lemma 16, Y contains at most one proposition

from S. So there is a q 2 Y such that Y \{q} ✓ X\S (q may or not belong to S).

For all p 2 Y \{q}, Cr(p) = 1 as p 2 f(Cr) and Wp = {1}. So, as Y \{q} entails

q, Cr(q) = 1, i.e., Cr(q) = 0. Hence q 62 f(Cr) as 0 62 Wq. This is impossible as

q 2 Y ✓ f(Cr).

Deductive closure. Assume f(Cr) entails q 2 X. We must show that q 2 f(Cr).

Let Z be a minimal subset of f(Cr) that entails q. Note that Z [ {q} is minimal

inconsistent (Z is consistent as f(Cr) is consistent).

• Case 1 : Z \ S = ?. Then for all p 2 Z, Cr(p) = 1, as p 2 f(Cr) and Wp = {1}.
So Cr(q) = 1, as Z entails q. Hence q 2 f(Cr), as 1 2 Wq.

• Case 2 : Z \ S 6= ?. By Lemma 16 and the minimal inconsistency of Z [ {q},
we can infer three things. First, Z \ S is singleton, say Z \ S = {z}. Second,

q 62 S. Third, (Z [ {q}) \ X` = ?, i.e., Z [ {q} ✓ X 6`. As q 2 X 6`\S, we have

q 2 S. For all p 2 Z\{z}, Cr(p) = 1, as p 2 f(Cr) and Wp = {1}. So, as Z

entails q, Cr(q) � Cr(z). Meanwhile, Cr(z) > 0, as z 2 f(Cr) and Wz = (0, 1].

So Cr(q) > 0. Hence, q 2 f(Cr), as Wq = (0, 1]. ⌅

27


