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ABSTRACT: There are two ways to characterize symmetric relations. One is inten-
sional: necessarily, Rxy iff Ryx. In some discussions of relations, however, what is
important is whether or not a relation gives rise to the same completion of a given
type (fact, state of affairs, or proposition) for each of its possible applications to some
fixed relata. Kit Fine calls relations that do ‘strictly symmetric’. Is there is a differ-
ence between the notions of necessary and strict symmetry that would prevent them
from being used interchangeably in such discussions? I show that there is. While the
notions coincide assuming an intensional account of relations and their completions,
according to which relations/completions are identical if they are necessarily coin-
stantiated/equivalent, they come apart assuming a hyperintensional account, which
individuates relations and completions more finely on the basis of relations’ real defini-
tions. I establish this by identifying two definable relations, each of which is necessarily
symmetric but nonetheless results in distinct facts when it applies to the same objects
in opposite orders. In each case, I argue that these facts are distinct because they have
different grounds.

1. Introduction

One of Kit Fine’s (2000) arguments against positionalism — the view that the application of

a relation to its relata consists in each relatum being assigned to an argument position in the

relation — is that it cannot properly handle symmetric relations (2000: 17-18). Following

Fine (2000: 4-5), I characterize a completion of a relation as a result of that relation apply-

ing to (or being saturated by) an appropriate number of objects. Completions potentially

include facts, states of affairs, and propositions. Under the assumption that each n-ary re-

lation has n argument positions, each taking at most one argument in a given completion,

positionalism yields the wrong number of completions of any symmetric relation by some

fixed relata. Consider the binary symmetric relation being adjacent to. (A binary relation

is a relation which can be completed by at most two objects.) According to positionalism,

as just characterized, this relation, as a binary relation, has two argument positions, α and

β. Now consider a completion of it by two objects, like Goethe and Charlotte Buff. Given
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that there are two possible assignments of Goethe and Buff to α and β, there are two ways

for them to complete this relation. But, intuitively, there is only one. In Fine’s words,

It seems clear that there are . . . relations that are strictly symmetric. For example,
the state a’s being adjacent to b is surely the same as the state of b’s being adjacent
to a; and so the . . . relation of adjacency is strictly symmetric. (2000: 17)1

The notion of symmetry that is operative in Fine’s argument is not the typical notion.

That notion is intensional, ultimately characterized in terms of relations’ extensions across

possible worlds.

Necessary Symmetry. A relation R is necessarily symmetric =df necessarily,
for any x and y, Rxy iff Ryx.2

Fine’s notion of strict symmetry is different. A binary relation is strictly symmetric “if its

completion by the objects a and b is always the same regardless of the argument- places to

which they are assigned” (Fine 2000: 17). Strict symmetry can be defined without reference

to argument positions, which are features peculiar to only some views about relations, as

follows.

Strict Symmetry. A relation R is strictly symmetric =df necessarily, for any
completions c and c′ of a given sort (fact, state of affairs, or proposition) of R by
the same objects, c = c′.

As Fine puts it, “strict symmetry requires identity of content and not merely identity of

extension” (Fine 2000: 17).3

1Strictly speaking, Fine’s argument applies only to absolute positionalist views, according to which whether
an object is assigned to any position of a relation in a given completion is something which concerns only that
object and that position. Such views are defended by Orilia (2011 and 2014), Gilmore (2013 and 2014), and
Dixon (2018). It does not apply to Donnelly’s (2016) relative positionalism, according to which the argument
positions of a relation are construed as unary properties that the relation’s relata instantiate relative to one
another. Donnelly’s view results in the correct number of completions of symmetric relations. Absolute
positionalist views which allow more than one relatum to be assigned to certain argument positions of certain
relations, like those defended by Orilia (2011 and 2014) and Dixon (2018), cannot avoid a generalization of
Fine’s argument that applies to n-ary relations for any n ≥ 2, since implementing this strategy does not
allow the absolute positionalist to accommodate n-ary relations for n > 2 with certain cyclic symmetries
(see Fine 2000: 17–18, fn. 10 and Donnelly 2016: sec. 3).

2I focus my attention for the time being on binary relations, since the relations that constitute the heart of
my case are binary. Henceforth, I will not explicitly qualify binary relations as such until I take the first
steps towards generalizing my main claims and arguments to n-ary relations for all n ≥ 2 in section 4.

3I presuppose a structured Russellian view of propositions, according to which each singular proposition has
a property or relation and its relatum or relata as constituents, arranged in a certain way. On Fregean views,
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Are these two notions of symmetry interchangeable? Could Fine have relied, in his argu-

ment against positionalism, on the notion of necessary symmetry instead of that of strict sym-

metry? The answer depends, I will show, on how finely one individuates relations and their

completions. If one adopts an intensional account, according to which relations/completions

are identical if they are necessarily coinstantiated/equivalent, the two notions of symmetry

are coextensional. But if one adopts a hyperintensional account, according to which rela-

tions are identical just in case they have the same real definitions (as in Rosen 2015), then

strict symmetry is a more discerning notion than necessary symmetry. And given the recent

hyperintensional turn from modal to post-modal metaphysics (see Nolan 2014 and Sider

2020: 1–3), the importance of distinguishing between these notions of symmetry has grown

considerably. Metaphysicians today are much more likely to individuate entities of various

sorts, including properties and relations, hyperintensionally. The various properties these

entities may or may not have need to be sensitive to their fine-grained natures. Given the

results below, it becomes clear that today’s metaphysician will not want to conclude, merely

on the basis of a relation’s being extensionally symmetric, that all completions of it by the

same objects are identical.

I don’t expect these results to astound to the reader. I expect many already to take

these things to be the case. Fine’s use of strict symmetry instead of necessary symmetry

in his argument against positionalism is evidence that he does. The name he chose for it is

further evidence. Francesco Orilia (2011: 3) and Fraser MacBride (2014: 7) also characterize

symmetry strictly rather than in terms of necessity only, suggesting they too recognize a

difference between the two notions. But neither Fine nor anyone else, to my knowledge,

has provided a specific reason for thinking that strict symmetry is a more discerning notion

than necessary symmetry in the context of a hyperintensional account of relations and their

certain propositions which are completions of the same relation by the same objects in opposite orders will
be distinct for reasons that appear to have nothing to do with the symmetry of that relation. For example,
on such views, the proposition that Hesperus is Hesperus is distinct from the proposition that Hesperus is
Phosphorus, not because identity is not strictly symmetric (it presumably is), but instead because these
propositions have different constituents (senses) on such accounts.
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completions. I provide such a reason in what follows, by identifying two relations, each of

which is necessarily symmetric but nonetheless results in distinct facts when it applies to the

same objects in opposite orders. In each case, I argue that these facts are distinct because

they have different grounds.

To show that strict symmetry is a more discerning notion than necessary symmetry, it is

enough to establish the following two claims.

(C1) Every strictly symmetric relation is necessarily symmetric.

(C2) There are necessarily symmetric relations that are not strictly symmetric.4

It is a relatively straightforward matter to show that (C1) is true. In doing so I rely only

on the following plausible existence condition for relational propositions and the following

(schematic) identity condition for propositions in general.

Proposition Existence. Necessarily, for any relation R and any x and y, the
proposition that Rxy exists.

Proposition Identity. If the proposition that p = the proposition that q, then
necessarily, p iff q.

Proof. Suppose that an arbitrary relation R is strictly symmetric and consider arbitrary
compossible a and b. By Proposition Existence, the proposition that Rab and the proposition
that Rba exist. And since R is strictly symmetric, these propositions are identical. By
Proposition Identity, necessarily, Rab iff Rba. And since a and b are arbitrary, R is necessarily
symmetric.

Note that this result does not depend on any assumptions about how finely relations and

their completions are individuated.

Whether or not (C2) is true, on the other hand, depends on how fine-grained an account of

relations and their completions one adopts. It is false if one adopts an intensional account,

according to which relations/completions of them are identical when they are necessarily

coinstantiated/equivalent.

4In his explication of Fine’s symmetry-based argument against positionalism, MacBride says, “we arrive at
a principle that plausibly governs a significant range of binary [necessarily] symmetric relations: for any
such relation, there is only one completion that arises from its saturation by two objects a and b (aRb =
bRa). Call this principle Identitysym.” (2007: 36–37) Establishing (C2), then, would suffice to confirm that
Identitysym governs only a proper subclass of necessarily symmetric binary relations.
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Intensional Relation Identity. For any relations R and R′, R = R′ iff, neces-
sarily, for any x and y, Rxy iff R′xy.

Intensional Completion Identity. For any facts/states of affairs/propositions
c and c′, c = c′ iff, necessarily, c exists/obtains/is true iff c′ exists/obtains/is true.

Such a view would, for example, identify the relations being triangular and larger than and

being trilateral and larger than, and would identify the following completions of them.

• Alice’s being triangular and larger than Bob
• Alice’s being trilateral and larger than Bob

According to such a conception of relations, the two notions of symmetry coincide, since,

though (C1) is true, (C2) is false. To show that every necessarily symmetric relation is

strictly symmetric for each sort of completion, I appeal to the following plausible existence

conditions for relational states of affairs and facts in addition to the one for propositions

that I stated above.

State of Affairs Existence. Necessarily, for any relation R and any x and y,
the state of affairs of x’s R-ing y exists.

Fact Existence. Necessarily, for any relation R and any x and y, the fact that
Rxy exists iff Rxy.

I also appeal to the following (again, plausible) truth and obtaining conditions for relational

propositions and states of affairs, respectively.

Propositional Truth. Necessarily, for any relation R and any x and y, the
proposition that Rxy is true iff Rxy.

State of Affairs Obtaining. Necessarily, for any relation R and any x and y,
the state of affairs of x’s R-ing y obtains iff Rxy.

I take all of these conditions to be acceptable both to those who individuate relations and

their completions intensionally and to those who do so in a more fine-grained way.

Proof. Consider an arbitrary relation R, suppose that R is necessarily symmetric, and con-
sider arbitrary compossible a and b.

Propositions: By Proposition Existence, the proposition that Rab exists, as does the propo-
sition that Rba. By Propositional Truth, necessarily, each of these propositions is true iff
Rab and Rba, respectively. But since R is necessarily symmetric, necessarily, Rab iff Rba.
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So, necessarily, the proposition that Rab is true iff the proposition that Rba is true, and so,
by Intensional Completion Identity, these propositions are identical.

States of affairs: Mutatis mutandis by State of Affairs Existence and State of Affairs Ob-
taining.

Facts: Suppose that Rab. By Fact Existence, the fact that Rab exists. Since R is necessarily
symmetric, Rba. So, again by Fact Existence, the fact that Rba exists. Mutatis mutandis
when Rba. So, necessarily, the fact that Rab exists iff the fact that Rba exists, and so, by
Intensional Completion Identity, the fact that Rab = the fact that Rba.

When one individuates relations and their completions more finely than this, however,

(C2) turns out to be true, and so the notions of necessary and strict symmetry come apart.

In particular, there exist necessarily symmetric relations that are not strictly symmetric. I

establish this in the next section by identifying a particular such relation. In the section that

follows, I consider a potential concern one might have about the first relation, and show that

there are other relations available to which the worry does not apply. Afterwards, I discuss a

few odds and ends related to my results, including another objection and a discussion about

how my results generalize to n-ary relations for any n ≥ 2.

2. An Extensionally Symmetric Relation that Is Not Strictly Symmetric

In this section, I show that the notions of necessary and strict symmetry come apart when one

individuates relations and their completions hyperintensionally. I establish this by identifying

a relation that is necessarily symmetric but not strictly symmetric. Completions of it by the

same two objects in opposite orders are plausibly distinct.

The hyperintensional account of relations I have in mind is a plausible one, individuating

relations according to whether or not they have the same real definitions, and requiring of

completions that they be no less fine-grained than what that would allow. (I’ll make the

latter idea more precise soon.) The relational component is a straightforward generalization

of Gideon Rosen’s real definition-based hyperintensional account of properties.

Hyperintensional Property Identity. F and G are the same property iff

(a) F and G are definable and for all Φ, Def (F,Φ) iff Def (G,Φ); or
(b) F and G are indefinable and �∀x (Fx↔ Gx). (Rosen 2015: 202)
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A real definition, in contrast to a conceptual or lexical definition, provides an analysis of

the thing itself (i.e., object, kind, property, relation, etc.) (Ibid.). In this schema, ‘F ’ and

‘G’ range over one-place predicates expressing properties. ‘Φ’ ranges over n-place complex

predicates, each expressing a structured complex composed of properties and relations, pos-

sibly some objects, but typically featuring some unfilled argument places corresponding to

the unfilled argument places in F or G. (As Rosen notes (2015: 190), Φ can be understood

as a composite structured Russellian propositional function.) When one of ‘F ’, ‘G’, or ‘Φ’

occurs in name position, it abbreviates the corresponding lambda abstraction denoting the

property or relation it expresses, e.g., ‘ΛxFx’, which denotes the property being an x1 such

that Fx, and ‘Λx1, x2, . . . Φ (x1, x2, . . .)’, which denotes the property being x1, x2, . . . such

that Φ (x1, x2, . . .). ‘Def (F,Φ)’ says that being F is defined by (or consists in, or reduces to)

being Φ (or to be F is to be Φ).

Generalizing Rosen’s account of properties to relations yields the following.

Hyperintensional Relation Identity. R and R′ are the same relation iff

(a) R and R′ are definable and for all Φ, Def (R,Φ) iff Def (R′,Φ); or
(b) R and R′ are indefinable and �∀x∀y (Rxy ↔ R′xy).

‘R’ and ‘R′’ range over two-place predicates expressing binary relations. This account of

relations distinguishes between being triangular and larger than and being trilateral and

larger than, since, presumably, they have different real definitions. The former is presumably

defined in terms of the property being a side, while the latter is presumably defined in terms

of being an angle, viz.,

x is triangular and larger than y =df (i) x is triangular and (ii) x is larger than y
x is trilateral and larger than y =df (i) x is trilateral and (ii) x is larger than y,

where

x is triangular =df (i) x is polygonal and (ii) x has exactly three angles
x is trilateral =df (i) x is polygonal and (ii) x has exactly three sides.

Recall that the intensional account identifies these relations, since they are necessarily coin-

stantiated.
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The hyperintensional account of completions I have in mind is one according to which,

roughly speaking, completions are no less fine-grained than are the relations of which they

are completions. A first pass at capturing this idea more precisely is as the claim that

completions of distinct relations are always distinct.5 But this formulation ignores certain

views about the nature of relations. According to directionalism, for example, every relation

applies to its relata in an order, and every (binary) relation has a converse, which (necessarily)

applies to some objects in the opposite order that it applies to them whenever it applies to

them.6 Some directionalists might be inclined to distinguish between a completion of a

relation, like loving by, say, Goethe and Buff in that order (the state of affairs of Goethe’s

loving Buff) and a completion of its distinct converse, being loved by, by them in the opposite

order (the state of affairs of Buff’s loving Goethe), regarding the former as having Goethe,

Buff, and loving as constituents but the latter as having Goethe, Buff, and being loved by as

constituents instead. Such a directionalist can endorse the idea that completions of distinct

relations are always distinct. But other directionalists may prefer to identify completions

like these, in this case taking each to have Goethe, Buff, and both of loving and being loved

by as constituents. If possible, we should not adopt identity conditions of completions that

would rule out views like the latter form of directionalism by fiat.

The following identity condition for completions does not do so.

Hyperintensional Completion Identity. For any completions c and c′ of a
given sort of relations R and R′, respectively, c = c′ only if either (a) R = R′ or
(b) R′ and R are converses of one another.

Those who distinguish a completion of a relation from every completion of its converse need

only ever invoke the falsity of clause (a) to show that completions c and c′ are distinct, since,

5This amounts to Fine’s (2000: 5) principle Uniqueness: no completion is a completion of more than one
relation.

6For statements and endorsements of directionalism, see Russell 1903: secs 94–95 and secs 218–19 and Dixon
forthcoming. Directionalism is to be contrasted with neutral views of relations, according to which relations
are not inherently directional, and that the manner in which a relation applies to its relata is not to be
ultimately understood in terms of the order in which it applies to them, but in some other way. (Absolute
positionalists, for example, believe that each manner in which a relation R can apply consists in a possible
assignment of its relata to its argument positions.) Neutral view theorists believe either that every relation
is its own (only) converse (as in Williamson 1985), or that there is no meaningful notion of a converse of a
relation (as in Fine 2000).
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on each of their views, completions of distinct relations will presumably always be distinct.

But clause (b) enables one to allow for completion identities even when R 6= R′ if they wish,

as long as R and R′ are converses.

It may come as no surprise to the reader that the necessarily but not strictly symmetric

relations I have in mind are definable. The hyperintensional account of relations I operate

with, after all (see above), still individuates indefinable relations intensionally, and the proof

I gave at the end of section 1 can easily be modified to show that every necessarily symmetric

indefinable relation is strictly symmetric on the account. One of the relations I have in mind

is defined as follows.

R1xy =df (i) x is the same diameter as y, (ii) y is the same diameter as x, and
(iii) either y is more massive than x or y isn’t more massive than x.

or, symbolically, where pDxyq abbreviates px is the same diameter as yq and pMxyq ab-

breviates px is more massive than yq,

R1xy =df (i)Dxy& (ii)Dyx& (iii)Myx ∨ ¬Myx.

I first establish that R1 is necessarily symmetric.

Proof. Consider arbitrary compossible a and b and suppose that R1ab. It follows by the
definition of R1 that (i) a is the same diameter as b, (ii) b is the same diameter as a, and
(iii) either b is more massive than a or b isn’t more massive than a. So (i) b is the same
diameter as a, and (ii) a is the same diameter as b. And, of course, it is logically true that
either a is more massive than b or a is not more massive than b, and so it is true whenever
R1ab. So (i) b is the same diameter as a, (ii) a is the same diameter as b, and either a is
more massive than b or a is not more massive than b. Hence R1ba. And since a and b are
arbitrary, necessarily, for any x and y, R1xy iff R1yx.

R1 is not, however, strictly symmetric. There are distinct facts which are completions of it

by the same objects. This can be seen by noting that certain completions of a single type

(facts, states of affairs, or propositions) of R1 by two objects in opposite orders have different

grounds. Narvi and Tarqeq (two moons of Saturn) are both 7 km in diameter, and so we

get the following two facts involving R1. (Let n be Narvi, t be Tarqeq, and [p] be the fact

that p.)
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f1: [R1nt]

f2: [R1tn]

(i) Narvi is the same diameter as Tarqeq, and (ii) Tarqeq is the same diameter as Narvi.

Also, it is a logical truth that (iii) either Tarqeq is more massive than Narvi or Tarqeq isn’t

more massive than Narvi. And (i) Tarqeq is the same diameter as Narvi, and (ii) Narvi

is the same diameter as Tarqeq. And again, it is a logical truth that (iii) either Narvi is

more massive than Tarqeq or Narvi isn’t more massive than Tarqeq. So R1nt and R1tn, and

therefore facts f1 and f2 exist.7

Due to the conjunctive nature of R1, each of the facts f1 and f2 is naturally treated as a

conjunctive fact of the form [p& q& r], viz.,

f1: [Dnt&Dtn& (Mtn ∨ ¬Mtn)]

f2: [Dtn&Dnt& (Mnt ∨ ¬Mtn)].8

It is typically supposed that a conjunctive fact is fully grounded in its conjuncts taken

together, where, roughly, a fact (or some facts) fully ground a fact x when it provides (or

they provide) a complete metaphysical explanation of x.

(&I) If p and q, then [p& q] is fully grounded in [p], [q].9

Given (&I), each of f1 and f2 is fully grounded by the following facts.10

full grounds of f1 full grounds of f2

f3: [Dnt] f4: [Dtn]
f4: [Dtn] f3: [Dnt]
f5: [Mtn ∨ ¬Mtn] f6: [Mnt ∨ ¬Mnt]

7Here and elsewhere in the following discussion, I rely on Fact Existence.
8Alternatively, one might take [R1nt] and [R1tn] to be grounded by these conjunctive facts, as in Rosen 2010:
sec. 10 and 2015: sec. 6, rather than being identical to them. [R1nt] and [R1tn] have different grounds in
either case. Indeed, each has the same grounds in either case, save for the relevant conjunctive fact itself.

9See Correia 2010: 267-68, Schnieder 2011: 449, and Fine 2012a: 58. The conditions that p 6= [p& q] and
q 6= [p& q] are sometimes added. But these conditions are met in the case under consideration.

10Though (&I) and (∨I) (see below) specify the full grounds of conjunctive and disjunctive facts, respectively,
it suffices to show that f1 and f2 are distinct that they have different partial grounds, where something
partially grounds x exactly when it is among some things that fully ground x. Henceforth I will drop any
explicit qualification when the grounds I am discussing are partial. For more discussion of the distinction
between full and partial grounding, including the definition of the latter in terms of the former that I have
invoked, see Rosen 2010: 115 and Fine 2012a: 50. It has been questioned whether every partial ground
must be among some full grounds (see, for example, Leuenberger 2020 and Trodgdon and Witmer 2021).
Fortunately, I need rely only on the less controversial assumption that if some things fully ground x then
every individual thing among those things partially grounds x.
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It is true that f1 and f2 have some grounds in common, viz., f3 and f4. But all that I must

show to establish that f1 and f2 are distinct is that they have some different grounds. And

to show this, it suffices to establish just that one has a ground that the other doesn’t. And

each has a ground the other doesn’t, since f5 and f6 are presumably distinct facts.

The distinctness of f5 and f6 can be corroborated by attending to their grounds. While

these facts are facts concerning only logical truths, there is nevertheless a fact of the matter

about the relative masses of Narvi and Tarqeq. Currently we don’t have precise measure-

ments of their masses. And if they turn out to be exactly equal in mass, then the example

may need to be traded with another. But it is at least possible for two things with the same

diameter to have different masses, and so there are possible worlds where one of Narvi and

Tarqeq is more massive than the other, even if this world is not one of them. For simplicity,

let’s pretend that this world is one in which Narvi is more massive than Tarqeq. Then f5

and f6 have different grounds, and so must be distinct.

To see why f5 and f6 have different grounds, note that it is typically supposed that a

disjunction is fully grounded in each of its true disjuncts.

(∨I) If p, then [p ∨ q] is fully grounded in [p].

If q, then [p ∨ q] is fully grounded in [q].11

Given (∨I), f5 is fully grounded in [¬Mtn], while f6 is fully grounded in [Mnt]. And these

facts are clearly distinct. [¬Mtn], after all, can exist whether or not [Mnt] exists. (Narvi

might be greater in mass than Tarqeq, making ‘Mnt’ true; or they might have the same

mass, making ‘Mnt’ false.) This is so even if these two facts have the same grounds, which

they might; it is plausible that each is fully grounded in [m(n) = mn], [m(t) = mt], and

[mn > mt], taken together, where pm(x)q abbreviates pthe mass of xq. Figure 1 depicts the

facts and grounding connections I have identified so far.

f5 and f6, then, are distinct facts, and so each of f1 and f2 has a ground that the other

11See Correia 2010: 267-68, Schnieder 2011: 449, and Fine 2012a: 58. As in the case of (&I), the conditions
that p 6= [p ∨ q] in the first case and that q 6= [p ∨ q] in the second are sometimes added. But as before,
these conditions are met in the case under consideration. It should also be acknowledged that (∨I), as stated
above, has been called into question by Jon Litland (2015).
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f1: [R1nt] f2: [R1tn]

f3: [Dnt] f4: [Dtn]

f5: [Mtn ∨ ¬Mtn] f6: [Mnt ∨ ¬Mnt]

f7: [¬Mtn] f8: [Mnt]

f9: [m(n) = mn] f11: [mn > mt] f10: [m(t) = mt]

Figure 1: The grounds of f1 and f2. A solid line running in a downward direction from a
node x to another node y, which may run through one or more other nodes, indicates that
x is fully grounded in y. A solid line connecting a node x to a solid box enclosing nodes
y1, y2, . . . indicates that x is fully grounded in y1, y2, . . .

lacks. As a result, f1 and f2 have different grounds, and therefore must be distinct. This

shows that R1 is not strictly symmetric; there are distinct facts which are completions of it

by the same objects, Narvi and Tarqeq. And because R1 is necessarily symmetric, there are

necessarily symmetric relations that are not strictly symmetric. The notions of necessary

symmetry and strict symmetry are, therefore, not coextensive on a plausible hyperintensional

account of relations and their completions.

3. Are Logical Truths Too Cheap?

One might be concerned that R1, as defined in the previous section, is not a genuine relation.

The definition of R1 includes a logical truth, and, one might worry, it is “tacked onto” a

substantive relational claim (that involving the relation having the same diameter as) in the

definition of R1 in an unsatisfying kind of way. One might think that plausible existence

conditions for definable relations would not include provisions to allow for logical truths (and

falsities) to play a role in defining up genuine relations. Readers who are not concerned with

this matter can skip ahead to section 4. For those who are, I’ll begin by noting that it is easy

to voice this concern, but it is much more difficult to motivate plausible existence conditions

that do not allow such conditions to define up genuine relations. Moreover, it’s not obvious
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that we’ll never want to allow logical truths and falsities from making appearances in the

definitions of definable relations.12 Still it would be nice if my argument did not hang on

this technicality. And fortunately, it does not. Other necessarily symmetric but not strictly

symmetric relations can be defined that avoid appealing to logical truths in this potentially

unsatisfying way.

One such relation is defined disjunctively, but includes a different sort of condition in the

second clause of its disjunctive definition that non-trivially follows from the truth of the first

conjunct of the clause.

R2xy =df (i) x is an element of y or (ii) y is an element of x and the cardinality
of the union of the elements of x is greater than or equal to the cardinality of y.

Formally,

R2xy =df x ∈ y ∨ (y ∈ x& |
⋃
z∈x

z| ≥ |y|).

(|x| is the cardinality, i.e., the number of elements, of x.) The domain of R2 can be any col-

lection of at least one non-set (such as a material object) and the sets that can be constructed

from it or them.13 Like R1, R2 is necessarily symmetric.

Proof. Consider arbitrary compossible a and b and suppose that R2ab. It follows by the
definition of R2 that either (i) a ∈ b or (ii) b ∈ a and the cardinality of the union of the
elements of a is greater than or equal to the cardinality of b. Suppose first that a ∈ b. For
it to be the case that R2ba, it must be the case that either (i) b ∈ a or (ii) a ∈ b and the
cardinality of the union of the elements of b is greater than or equal to the cardinality of a.
We have supposed that a ∈ b. And the cardinality of the union of the elements of any set x
can’t be less than the cardinality of any set y ∈ x, since the union of the elements of x must
contain everything that y contains.14 Since, by our supposition, b has an element, we know
it is a set, and so the cardinality of the union of the elements of b is greater than or equal
to the cardinality of a. It now follows by clause (ii) of the definition of R2 that R2ba. Now
suppose that b ∈ a and the cardinality of the union of the elements of a is greater than or
equal to the cardinality of b. Since b ∈ a, it follows by clause (i) of the definition of R2 that
R2ba. Either way, then, R2ba. And since a and b are arbitrary, necessarily, for any x and y,
R2xy iff R2yx.

12Thanks to Eileen Nutting for a helpful discussion about these points.
13One can stipulate the domain to be the von Neumann set-theoretic hierarchy, and let ∅ replace any non-set

in the originally envisaged domain. But I expect most readers to be committed to at least one material
object, and my case is a bit easier to appreciate when it is stated in terms of a material object rather than
∅.

14I assume that the cardinality of any non-set is defined but is 0, since it has no elements.
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But, again like R1, R2 is not strictly symmetric. The following facts are distinct yet are

completions of R2 by the same objects.

f1: [{Socrates} R2s {{Socrates}, {{Socrates}}}]
f2: [{{Socrates}, {{Socrates}}} R2s {Socrates}]15

{Socrates} ∈ {{Socrates}, {{Socrates}}}, and so, via clause (i) of the definition of R2,

{Socrates}R2s {{Socrates}, {{Socrates}}}. And sinceR2 is necessarily symmetric, {{Socrates},

{{Socrates}}} R2s {Socrates}. So facts f1 and f2 exist.

R2 is defined disjunctively, and so each of f1 and f2 is naturally treated as a disjunctive

fact. Let s be Socrates.

f1: [{s} ∈ {{s}, {{s}}} or ({{s}, {{s}}} ∈ {s} and the cardinality of the union
of the elements of {s} ≥ the cardinality of {{s}, {{s}}})]

f2: [{{s}, {{s}}} ∈ {s} or ({s} ∈ {{s}, {{s}}} and the cardinality of the union
of the elements of {{s}, {{s}}} ≥ the cardinality of {s})]

Solving for the unions yields:

f1: [{s} ∈ {{s}, {{s}}} or ({{s}, {{s}}} ∈ {s} and the cardinality of ∅ ≥ the
cardinality of {{s}, {{s}}})]

f2: [{{s}, {{s}}} ∈ {s} or ({s} ∈ {{s}, {{s}}} and the cardinality of {s, {s}}
≥ the cardinality of {s})]

(∨I), together with certain other plausible assumptions, implies that f1 and f2 have different

grounds.

Consider first the grounds of f1. {s} ∈ {{s}, {{s}}}, and so, by (∨I), f1 is grounded in

f3: [{s} ∈ {{s}, {{s}}}]

But {{s}, {{s}}} /∈ {s}, and so the right disjunct of f1 is false. Thus there is no fact

corresponding to its truth. Hence no such fact grounds f1. Now consider the grounds of f2.

{{s}, {{s}}} /∈ {s}, so f2 is not grounded in [{{s}, {{s}}} ∈ {s}]. As I just pointed out,

this fact does not exist. However, the cardinality of {s, {s}} is greater than or equal to the

cardinality of {s}. And since {s} ∈ {{s}, {{s}}}, the following conjunctive fact exists.

15By choosing these facts, I have endeavored to maximize the strength of my case while keeping it as simple as
possible. Simpler completions of R2 by the same objects, such as [Socrates R2s {Socrates}] and [{Socrates}
R2s Socrates], don’t as obviously have different grounds as do f1 and f2.
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f4: [{s} ∈ {{s}, {{s}}} and the cardinality of {s, {s}} ≥ the cardinality of {s}]

(Replace ‘y’ in R2’s definition with {s} and ‘x’ with {{s}, {{s}}}.) By (∨I), f4 grounds f2.

f4, however, does not ground f1. By (&I), f4 is grounded in f3 together with

f5: [the cardinality of {s, {s}} ≥ the cardinality of {s}].

Figure 1 depicts the facts and grounding connections I have identified so far. But f5, while

f1 = [{s} R2s {{s}, {{s}}}] f2 = [{{s}, {{s}}} R2s {s}]

f4 = [{s} ∈ {s, {s}}& |{s, {s}}| ≥ |{s}|]

f3 = [{s} ∈ {{s}, {{s}}}] f5 = [|{s, {s}}| ≥ |{s}|]

Figure 2: The grounds of f1 and f2 (for R2)

a ground of f2, does not plausibly ground f1. f3 is presumably f1’s sole immediate ground.

(∨I) and (&I) plausibly specify the immediate grounds of disjunctive facts and conjunctive

facts, respectively. While it is not straightforward to define immediate grounding in terms

of grounding (which is neutral with respect to the immediate/mediate distinction), it can

be taken as primitive and grounding can be defined as its transitive closure (cf. Fine 2012a:

50–51).16 f3 is a full ground of f1, and so suffices to explain it. And the only other potential

immediate ground of f1 specified by (∨I), viz., [{{s}, {{s}}} ∈ {s} and the cardinality of

the union of elements of {s} is ≥ the cardinality of {{s}, {{s}}} ∈ {s}], does not exist. So if

any other fact grounds f1, it must presumably do so by transitivity via f3. Now for a fact x

to ground a fact y, x must be relevant to y (see, for example, Fine 2012a: 56). And f5 is not

altogether irrelevant to f3, as they do concern some of the same objects, viz., {s}. But f5

16It is typically supposed that grounding is transitive. See, for example, Correia 2010: 262 and 2011: 3–4,
Schnieder 2011: 451, and Raven 2012: 689 and 2013: 193. The transitivity of partial grounding is entailed
by the systems of Rosen (2010: 115–16) and Fine (2012a: 55–56 and 2012b: 5–6). While this supposition
has been challenged (see, for example, Schaffer 2012, Tahko 2013, and Rodriguez-Pereyra 2015), this debate
is not settled. For replies to these arguments, see, for example, Litland 2013, Raven 2013: sec. 5, and Makin
2019.
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concerns an object, viz., {s, {s}}, that f3 does not. Granted, the sets f3 and f5 concern can

be constructed by the set-building operation with the same raw materials. (More on this in

the appendix.) But it just does not seem like the relationship between the cardinalities of

{s, {s}} and {s} is relevant to, and so has any role to play in a metaphysical explanation of,

why {s} ∈ {{s}, {{s}}}. So f5 does not ground f1.

Some might remain unconvinced that f5 does not ground f3. I don’t see these individuals

as actively doubting this claim. Rather, I see them as wanting to hear more in defense of

it. In the appendix, I trace down the grounds of f5 and identify a fact that more obviously

does not ground f3, whose irrelevance to why {s} ∈ {{s}, {{s}}} is more obvious.

4. Odds and Ends

In this section I discuss a few odds and ends related to my results. First, I will consider and

reply to an objection one might have to both of the cases I developed in the previous two

sections. Second, I will explain how one can make sense of the notion of strict symmetry, and

of the distinction between it and necessary symmetry, even when one eschews completions

as elements of one’s ontology. Third, I will take the first steps towards generalizing my main

theses and arguments to n-ary relations for all n ≥ 2.

Concerning the first odd or end, one might be tempted to point out, in reply to the second

of the two examples I laid out in the previous two sections (which is the one that avoided

the concern about the potential cheapness of logical truths), that it is relatively common in

certain subliteratures, such as those on truthmakers and truthmaker semantics, to eschew

disjunctive facts (see, for example, Russell 1919: 39, Wittgenstein 1922, Mulligan, Simons,

and Smith 1984, Armstrong 1997, and Fine 2017: 562). One might, on this basis, argue that

we should simply do away with disjunctively defined relations and/or completions of them.

This would preclude R2 from being a genuine relation, since it is disjunctively defined.

The first thing that should be noted is that the first example I discussed, R1, shows that

there are potentially necessarily symmetric but not strictly symmetric relations that are not

disjunctively defined. Of course R1 has its drawbacks as well. And at the moment, I have not
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found a non-disjunctive relation that avoids the drawbacks of R1. I take it, however, that a

theory of relations and their completions that is neutral with respect to whether disjunctively

defined relations, and completions of them, exist has a pro tanto theoretical advantage over

one that takes a stand on the matter either way. My argument, therefore, admittedly applies

most forcefully only to those theories that are preferable in this respect. But such theories

will presumably be contenders for an adequate theory of relations. They certainly shouldn’t

be ignored. As a result, their mere possible truth, along with the fact that they (or, at least,

hyperintensional versions of them) entail that there are necessarily symmetric relations that

are not strictly symmetric, is enough to show that these two notions of symmetry cannot be

used interchangeably in discussions about relations, especially in today’s hyperintensional

post-modal environment.

Concerning the second odd or end, one can still make sense of the notion of strict sym-

metry, and of the distinction between it and necessary symmetry, even if one is unhappy

admitting completions into one’s ontology, by making use of Fabrice Correia’s notion of

factual equivalence (2010: 256 ff. and 2016). This notion is canonically expressed by the

sentential operator ‘≈’. In Correia’s words, p ≈ q if p and q “say the same thing” (2010: 258)

in the sense that they “describe the same facts or situations, understood as worldly items,

i.e., as bits of reality rather than representations of reality” (2016: 103). Importantly, these

“bits of reality” needn’t be understood as facts or situations, which can be cleanly individ-

uated. Factual equivalence claims can be taken as primitive. It could be that reality is just

one big undifferentiated whole from an ontological point of view. Sense could nonetheless be

made of certain hyperintensional nuances in the world with the help of the notion of factual

equivalence. In the case of strict symmetry, one can accommodate the relevant nuances with

the following definition of the notion.

Strict Symmetry≈. A relation R is strictly symmetric =df necessarily, for any
x and y, Rxy ≈ Ryx.

The difference between a necessarily symmetric relation and a strictly symmetric≈ one is

that, for the former, Rxy and Ryx are merely necessarily equivalent, whereas for the latter,
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Rxy and Ryx are factually equivalent. This characterization of strict symmetry allows one

effectively to capture hyperintensional differences associated with what would be distinctions

amongst certain completions of relations, without presupposing a background ontology of

those completions.

Concerning the third odd or end, there presumably exist n-ary relations for n > 2. An

example is being between, a ternary relation. Moreover, these relations can exhibit necessary

and strict symmetry as well. And they can, like being between, be necessarily or strictly

symmetric with respect to some, but not all, permutations of their relata.17 Concerning this

form of strict symmetry, Fine says,

[T]he state of b’s being between a and c is surely the same as the state of b’s being
between c and a; and so the . . . relation of betweenness is strictly symmetric in its last
two positions. (2000: 17)

To capture the ideas of permutation-relative necessary and strict symmetry for n-ary rela-

tions for all n ≥ 2 (in a way that, as above, does not make reference to argument positions),

let [i1 i2 . . . in] be the permutation that maps 1 to i1, 2 to i2, . . . , and n to in, where

i1, i2, . . . , in are pairwise distinct members of {1, . . . , n}.
Permutation-Relative Necessary Symmetry. An n-ary relation R is neces-
sarily symmetric with respect to a permutation p of {1, . . . , n} =df necessarily,
for any x1, . . . , xn, Rx1 . . . xn iff Rxp(1) . . . xp(n).

18

Permutation-Relative Strict Symmetry. An n-ary relation R is strictly
symmetric with respect to a permutation p of {1, . . . , n} =df necessarily, for
any x1, . . . , xn, if 〈Rx1 . . . xn〉 exists, then 〈Rx1 . . . xn〉 = 〈Rxp(1) . . . xp(n)〉 (or
Rx1 . . . xn ≈ Rxp(1) . . . xp(n)).

In these definitions, p(x) is the result of applying the permutation p to x (so, for example,

[2 1](1) = 2. In the last one, 〈ϕ〉 is the appropriate completion of a single sort (fact, state

17Such relations are merely partially symmetric. Relations that are symmetric with respect to every premuta-
tion are completely symmetric. A completely non-symmetric relation is symmetric only with respect to the
identity permutation (the permutation that leaves the arguments where they are). For further discussion of
complete and partial (necessary) symmetry and of (necessary) non-symmetry, see Donnelly 2016: 84 ff.

18A conditional will not suffice for n-ary relations for n > 2, as it does in the case of binary relations. This is
because there is an n-ary relation R for n > 2 (actually, there are multiple such relations) for which some
permutation p of {1, . . . , n} is not such that Rx1 . . . xn’s implying Rxp(1) . . . xp(n) implies that Rxp(1) . . . xp(n)

implies that Rx1 . . . xn. This is because a permutation’s inverse for permutations of sets {1, 2, 3}, {1, 2, 3, 4},
. . . is sometimes distinct from it. [2 3 1]’s inverse, for example, is [3 1 2] and vice versa. (Thanks to Udayan
Darji for a helpful discussion about this point.)
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of affairs, or proposition) for a given instance. Being between, for example, is necessarily

symmetric with respect to the permutation [1 3 2] because corresponding instances of

• x1 is between x2 and x3
• x1 is between x3 and x2, equivalently, x[1 3 2](1) is between x[1 3 2](2) and x[1 3 2](3)

are necessarily equivalent. It is strictly symmetric with respect to that permutation be-

cause they presumably correspond to a single fact, state of affairs, and proposition. But

it is not necessarily symmetric with respect to, for example, the permutation [2 1 3], since

corresponding instances of

• x1 is between x2 and x3
• x2 is between x1 and x3, equivalently, x[2 1 3](1) is between x[2 1 3](2) and x[2 1 3](3)

are not necessarily equivalent. Nor is it strictly symmetric with respect to that permutation,

since they presumably correspond to distinct facts, states of affairs, or propositions. To

answer the question of whether strict symmetry is a more discerning notion than necessary

symmetry in its full generality, then, one should establish the following two permutation-

relative versions of (C1) and (C2).

(C1′) Every relation that is strictly symmetric with respect to a permutation p
of {1, . . . , n} is necessarily symmetric with respect to p.

(C2′) There are relations that are necessarily symmetric with respect to a per-
mutation p of {1, . . . , n} that are not strictly symmetric with respect to
p.

It is a straightforward matter to generalize the proof of I gave of (C1) in section 1 and

relativize it to an arbitrary permutation. And the examples I gave of necessarily symmetric

relations that are not strictly symmetric in sections 2 and 3, R1 and R2, suffice to establish

(C2′) as well, since there is a single permutation with respect to which each of R1 and R2 is

necessarily symmetric but not strictly symmetric, viz., [2 1].

5. Concluding Remarks

The notions of necessary symmetry and strict symmetry come apart, at least in the context of

hyperintensional accounts which individuate relations and their completions on the basis of

19



relations’ real definitions, rather than on the basis of whether they are necessarily coinstan-

tiated/equivalent. I showed that, irrespective of how finely one individuates relations and

their completions, every strictly symmetric relation is necessarily symmetric. But I argued

that, on such hyperintensional accounts, there are necessarily symmetric definable relations

that are not strictly symmetric. I did so by identifying specific examples of such relations

and showing that completions of each by the same relata in opposite orders have different

grounds, and therefore must be distinct. To the extent that my arguments have been con-

vincing, they show that it is important to take heed of the distinction between necessary and

strict symmetry when theorizing about relations, especially given that today’s post-modal

metaphysician is much more likely to countenance hyperintensionally individuated relations

than yesterday’s modal metaphysician was.19

Appendix

As I noted at the end of section 3, some might remain unconvinced that f5 ([the cardinality

of {s, {s}} ≥ the cardinality of {s}]) does not ground f3 ([{s} ∈ {{s}, {{s}}}]). Again, I

don’t see these individuals as actively doubting this claim. Rather, I see them as wanting to

hear more in defense of it. In what follows, I trace down the grounds of f5 and identify a

fact that more obviously does not ground f3, whose irrelevance to why {s} ∈ {{s}, {{s}}}

is more obvious. This supports my claim that f5 does not ground f3. This irrelevance of

the fact I identify to why {s} ∈ {{s}, {{s}}} sheds light on why f5 itself is irrelevant to

why {s} ∈ {{s}, {{s}}}. In addition, however, it constitutes a further fact, distinct from

f5, which grounds f2 but not f1, thus providing independent support for my ultimate claim

that f1 and f2 have different grounds, and are therefore distinct.

f5 is a ‘greater than or equal to’ fact. That is, it is a fact about something’s being

greater than or equal to something. More specifically, it is about the cardinality of a set

19Thanks are due to Cody Gilmore who helped inspire this paper, and to Martin Glazier and Eileen Nutting,
for providing helpful comments on early drafts. Thanks are also due to audience members at the 2021
APA Central Division Meeting, including Ben Caplan, Joop Leo, Jon Litland, Eileen Nutting, and Erica
Shumener. I also wish to thank two anonymous referess for valuable comments which helped me improve
the paper greatly.
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being greater than or equal to the cardinality of a(nother) set. But what are the grounds of

such facts? This question can be answered by looking at the definition of ≥. In this context,

≥ is straightforwardly defined disjunctively in terms of = and >.

|x| ≥ |y| =df |x| = |y| or |x| > |y|.

And since the cardinality of {s, {s}} > the cardinality of {s}, (∨I) implies that f5 is fully

grounded in

f6: [the cardinality of {s, {s}} > the cardinality of {s}]

(It is not the case that the cardinality of {s, {s}} = the cardinality of {s}, and so this fact

does not exist.) But what grounds f6? What, in general, grounds the fact that a set has

more members than a(nother) set?

One plausible answer to this question comes from looking at the grounds of equinu-

merosity facts between sets. Such equinumerosities can be defined in terms of one-to-one

correspondences. In particular, |x| = |y| can be defined as the claim that there is a one-to-one

correspondence from set x to set y (and so one from y to x as well). This can be understood

as a set-theoretic analog of Hume’s Principle.

Hume’s Principle. The number of F s = the number of Gs =df the F s are
equinumerous to the Gs.

The equinumerosity relation is understood to hold between the F s and Gs iff there is a

one-to-one correspondence that holds between the F s and the Gs, where a one-to-one cor-

respondence is a total function from the F s to the Gs that is both injective, and surjective.

The same would hold of two sets x and y.

One-to-One Correspondences. A total function g from x to y is a one-to-one

correspondence (g : x
1−1−−→
onto

y) =df both g : x
1−1−−→ y and g : x

onto−−→ y,

where

Functions. A relation R is a function from a set x to a set y =df for any z ∈ x
and any w ∈ y and v ∈ y, if Rzw and Rzv, then w = v (i.e., R pairs no element
of x with more than one element of y).

Total. A function g from x to y is total (g : x −→ y) =df g maps every element
of x to some element of y.
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Injective Functions. A function g from x to y is injective (g : x
1−1−−→ y) =df g

maps all distinct elements of x to distinct elements of y.

Surjective Functions. A function g from x to y is surjective (g : x
onto−−→ y) =df

for every element z of y, g maps some element of x to z.

(‘g : x
(1−1)−−−→
(onto)

y’ can be read, when in sentence position, as ‘g is a (an injective/surjective)

function from x to y’.)

With these definitions in hand, the above set-theoretic analog of Hume’s Principle can

be rewritten as follows.

|x| = |y| =df there exists a g such that g : x
1−1−−→
onto

y.

The claim that |x| > |y| can be similarly defined as the claim that no function from y to x

is surjective, i.e.,

|x| > |y| =df for every g, it is not the case that g : y
onto−−→ x.

In simple terms, what this means is that any time one maps each member of y to a unique

member of x, there will be at least one leftover member of x to which no member of y has

been mapped.

I’ll now trace down the grounds of f6, with > so understood, to confirm that it has

a ground that is irrelevant to why {s} ∈ {{s}, {{s}}}, and so does not ground [{s} ∈

{{s}, {{s}}}], or therefore f1. Gideon Rosen (2010: 123) and Robert Schwartzkopff (2011:

362) propose that equinumerousity facts are grounded in appropriate facts about one-to-one

correspondences. A set-theoretic version of their principle follows.

The Schwartzkopff-Rosen Principle. If |x| = |y|, then [|x| = |y|] is fully

grounded in [there exists a g such that g : x
1−1−−→
onto

y].20

Using the same basic approach, ‘greater than’ facts would be grounded by appropriate true

universal generalizations about functions, viz.,

The Greater-Than Principle. If |x| > |y|, then [|x| > |y|] is fully grounded

in [for every g, it is not the case that g : y
onto−−→ x].21

20See Donaldson 2017 for an in-depth discussion of this principle.
21My conclusions in this section do not depend on [|x| > |y|] being grounded in [for every g, it is not the case

that g : y
onto−−−→ x] rather than these facts being identified. These assumptions yield the same grounds of f5,

and equally strong cases that f5 has a ground that f3 lacks. See fn. 8.
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f6, then, would be grounded by

f7: [for every g, it is not the case that g : {s} onto−−→ {s, {s}}].

f7 is a universally quantified fact, and such facts are typically taken to be grounded in their

instances.

(∀I) If ϕ(a), then [∀xϕ(x)] is (partially) grounded in [ϕ(a)].22

f7 will be grounded in as many facts as there are functions on sets in the domain of R2 that

meet the condition it specifies. There are two (total) functions from {s} to {s, {s}} that fail

to be surjective.

g1 : {s} −→ {s, {s}} where g1(s) = s

g2 : {s} −→ {s, {s}} where g2(s) = {s}

(In words, g1 is the function that maps the sole member of {s} to the member s of {s, {s}},

while g2 is the function that maps the sole member of {s} to the member {s} of {s, {s}}.)

f7, therefore, would be grounded by the following facts.

f8: [it is not the case that g1 : {s} onto−−→ {s, {s}}]
f9: [it is not the case that g2 : {s} onto−−→ {s, {s}}]

What are the grounds of f8 and f9? It is tempting to explain each by appealing to the

fact that, in plain English, {s, {s}} has more elements than {s}. But remember that this

is the fact whose grounds we are currently engaged in delineating, viz., [the cardinality of

{s, {s}} > the cardinality of {s}], i.e., f6. But there are facts which effectively specify the

exact number of elements of each of the sets which f8 and f9 concern which involve only the

ideological resources of first-order logic with identity, and they plausibly (at least partially)

ground f8 and f9. We need only look at these grounds of either f8 and f9 to eventually find

a ground of f6 that is not a ground of f3. In the case of f8, these facts are:

f10: [∃x (x ∈ {s}&∀y (y ∈ {s} → y = x))]

22This principle is from Schnieder 2011: 460–61. See Fine 2012b: 59–62 for difficulties with, and a solution to,
the formulation of a principle giving the full grounds of universal quantifications. Fortunately, I only need
to rely on the above principle, which gives only some of the partial grounds of such facts, and which does
not face this issue.
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f11: [∃x ∃y (x ∈ {s, {s}}& y ∈ {s, {s}}&x 6= y&
∀z (z ∈ {s, {s}} → (z = x ∨ z = y)))]

f10 and f11 are existentially quantified facts, and such facts are typically regarded as being

fully grounded in their instances.

(∃I) If ϕ(a), then [∃xϕ(x)] is fully grounded in [ϕ(a)].23

So f10 and f11 are fully grounded in the relevant instances, i.e.,

f12: [s ∈ {s}&∀y (y ∈ {s} → y = s)]

f13: [s ∈ {s, {s}}& {s} ∈ {s, {s}}& s 6= {s}&
∀z (z ∈ {s, {s}} → (z = s ∨ z = {s}))]

Subsequently applying (&I) to f12 and f13 yields the following more ultimate grounds of

these facts.

f14: [s ∈ {s}]
f15: [∀y (y ∈ {s} → y = s)]
f16: [s ∈ {s, {s}}]
f17: [{s} ∈ {s, {s}}]
f18: [s 6= {s}]
f19: [∀z (z ∈ {s, {s}} → (z = s ∨ z = {s}))]

Things have become rather complicated, so, before proceeding further, I’ll provide an

updated diagram of the grounds of f1 and f2. See figure 3 below. For simplicity, I depict

only f14, f16, and f17 from the list above. The universally quantified facts f15 and f19

will be grounded in their non-vacuous instances.24 But we can leave them aside, since

some of the facts in the list above concerning only particulars do not appear to ground

[{s} ∈ {{s}, {{s}}}], despite the fact that they concern Socrates or sets constructed from

him. Consider f16. It would be strange if part of a metaphysical explanation for why

23This principle can be found as stated in Correia (2011: 5) and Schnieder (2011: 460). Fine (2012b: 59–60)
provides a reason to add in the condition that a exists as well, where this existence predicate is primitive
and not defined as it usually is in terms of existential quantification and identity. But this does not affect
the intended result of my application of this condition, and so I ignore it for the sake of simplicity.

24Entities that vacuously satisfy the conditions specified in the universally quantified facts f15 and f19 will
include members of the domain of R2 that aren’t members of {s} and {s, {s}}, respectively, and for that
reason surely will themselves be or have grounds that are irrelevant to the fact that {s} ∈ {{s}, {{s}}. For
simplicity, and because there is precedent to include in at least some universally quantified facts’ grounds only
their non-vacuous instances (see, e.g., Skiles 2015: 731), I would consider only the conditions’ non-vacuous
instances.
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f1 = [{s} R2s {{s}, {{s}}}]

f2 = [{{s}, {{s}}} R2s {s}]

f4 = [{s} ∈ {s, {s}}& |{s, {s}}| ≥ |{s}|]

f3 = [{s} ∈ {{s}, {{s}}}]
f5 = [|{s, {s}}| ≥ |{s}|]

f6 = [|{s, {s}}| > |{s}|]

f7 = [∀g(¬ g :{s} onto−−→ {s, {s}})]

f8 = [¬ g1 :{s} onto−−→ {s, {s}}] f9 = [¬ g2 :{s} onto−−→ {s, {s}}]
...

f10 = [∃x (x ∈ {s}&
∀y (y ∈ {s} → y = x))]

f11 = [∃x ∃y (x ∈ {s, {s}}& y ∈ {s, {s}}&x 6= y&

∀z (z ∈ {s, {s}} → (z = x ∨ z = y)))]

f12 = [s ∈ {s}&
∀y (y ∈ {s} → y = s)]

f13 = [s ∈ {s, {s}}& {s} ∈ {s, {s}}& s 6= {s}&
∀z (z ∈ {s, {s}} → (z = s ∨ z = {s}))]

f14 = [s ∈ {s}]
f16 = [s ∈ {s, {s}}]

f17 = [{s} ∈ {s, {s}}]

Figure 3: Grounds of f5 (for R2). A dotted line running in a downward direction from a
node x to another node y, which may run through one or more other nodes, indicates that
x is partially but not fully grounded in y.

{s} ∈ {{s}, {{s}}} (f3) is that s ∈ {s, {s}}. The claims, after all, concern altogether

different objects. Granted, they are or are constructed from the same object, viz. Socrates,

via the set-forming operation. But neither fact seems to be a suitable ground of the other.

It is important not to confuse facts like f3 and f16 with the objects they concern. The sets

they concern are constructible, in the sense that they can be constructed out of more basic

elements of the ontology (as in Fine 1991: sec. 2). Constructible objects can plausibly be

taken to be grounded in the things from which they are constructed.25 If this is so, then each

25Fine (1991) does not say as much, though he says that an explanatory relationship of the same directionality
holds of our reasons for admitting constructible entities into our ontology: “Some of the objects of [a
constructional] ontology are accepted (i.e., included within the ontology) on the grounds that they are
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of the sets facts f3 and f16 concern (viz., {s} and {{s}, {{s}}} in the case of f3 and {s, {s}}

in the case of f16) will be ultimately grounded by Socrates, and perhaps also the set-forming

operation. These sets may even lack any other grounds. But this does not undermine the

idea that f3 and f16 have different grounds. The sets f3 and f16 concern are not f3 and

f16 themselves. f3 and f16 are rather facts about membership claims holding amongst these

objects.

It is plausible that constructible sets have the members they have because they are

constructed in the way they are. On this view, [s ∈ {s, {s}}] would be grounded in the fact

that the set-forming operation applies to Socrates in the final step of the construction of

{s, {s}}, and [{s} ∈ {{s}, {{s}}}] would be grounded in the fact that the operation applies

to {s} in the final step of the construction of {{s}, {{s}}}. The following diagram depicts the

constructions of {s, {s}} and {{s}, {{s}}}. See figure 4 below. Note that neither {s, {s}} nor

{s, {s}} {{s}, {{s}}}

{{s}}

{s}
s

Figure 4: The construction of {s, {s}} and {{s}, {{s}}}. A solid line running in a downward
direction from a node x to another node y, indicates that x is constructed by a single
application of the set-forming operation to y. A solid line connecting a node x to a solid
box enclosing nodes y1, y2, . . . indicates that x is constructed by a single application of the
set-forming operation to y1, y2, . . .

{{s}, {{s}}} is involved in the construction of the other — not in the final step or in any other

step. As a result, these considerations do not support the idea that one of [s ∈ {s, {s}}] and

[{s} ∈ {{s}, {{s}}}] grounds the other, and, indeed, speak against it. It seems reasonable to

constructed from other objects within the ontology”. I don’t take Fine’s claim to be the same as or support
my claim about the grounds of such objects. But the adoption of both claims would yield a satisfyingly
harmonious picture.
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expect the membership of a constructible set x to ground the membership of a constructible

set y only if the set-forming operation is applied to x to yield y, either immediately or

mediately. And this is not the case for {s, {s}} and {{s}, {{s}}}.26 In addition, no other

sort of reason to think that either of [s ∈ {s, {s}}] and [{s} ∈ {{s}, {{s}}}] grounds the

other is forthcoming. I conclude that f6, and therefore f5, has a ground, viz., [s ∈ {s, {s}}],

that f3 lacks. This may explain why f5 is irrelevant to why {s} ∈ {{s}, {{s}}}, and therefore

why f5 does not ground f3. But it also constitutes independent support for the claims that

f1 and f2 have different grounds, and are therefore distinct.
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