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1 Introduction

Time is a complex, still only partially formalized, notion that incorporates a number of
distinct, not neccessarily mutually consistent meanings (Rovelli, 2021). In physics and
computer science, time is typically formalized as “objective” in the sense of being observer
or agent-independent; it can be considered to be defined by a designated “master clock”
(e.g. the expansion of the universe) that cannot be perturbed by any agent. This global,
shared, objective notion of time is familiar, in particular, from classical physics and non-
relativistic quantum mechanics (e.g. Landau & Lifshitz, 1958). It underlies temporal logics
in the lineage of A. N. Prior’s (1957) tense logic TL, which have been broadly applied to
formalize temporal reasoning in ordinary-language discourse about external objects and,
particularly since Pnueli (1977), in execution traces generated by linear or concurrent com-
putions (for reviews see Hodkinson & Reynolds, 2007; Fisher, 2008). “Time” in such logics
may be discrete or continuous, linear or branching, but in either case it is unidirectional,
i.e. representable as a directed acyclic graph (DAG). “Events” are effectively fragments
of time slices of possible worlds (PWs), the states of which are viewed as time-dependent.
They can be thought of as sets of time-labeled propositions that may, but do not neces-
sarily, refer to past or future events, including past or future events on specific branches
and at specific times. Time may be regarded as primitive, in which case events (or time-
stamped states) are assigned to times and processes are driven by “next-time” operators
that “jump forward” by a fixed interval (e.g. to the next second). Alternatively, events or
states may be regarded as primitive, in which case times are assigned to events/states and
processes are driven by “next-event/state” operators that are, effectively, next-time oper-
ators without a specified temporal interval (see Fisher, 2008, for discussion). Applications
to asynchronous concurrent processes typically regard events/states as primitive; here the
goal is often to show that undesirable outcomes such as deadlocks do not occur, i.e. that
specified “safety” and “liveness” constraints are satisfied Lamport (1977); see Sistla (1994)
for review. The internal “time” generated by event/state sequences within the system of
interest is, in such cases, implicitly referenced to an external time in which the execution
of the process is observed and its compliance with relevant constraints tested. Such ob-
servation and testing can be considered a two-player game between the system and some
agent that observes and tests its behavior, in which a global, shared time remains unidi-
rectional while process-execution time alternates between the players (Alur, Henzinger and
Kupferman, 2002).

This objective notion of time can be contrasted with the subjective, “felt” or expe-
rienced time of some particular agent/observer. Our interest in the present paper is to
develop a formal representation of this subjective, experienced time. We are interested,
in particular, in experienced “long” times, e.g. the times between significant life events
recorded as episodic memories, as opposed to experienced “short” durations of particular
events or event sequences (e.g. Matthews et al., 2014; Hoerl & McCormack, 2019; Rose-
boom et al., 2019). We have two motivations for this. The first is the development in
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physics of observer-dependent, entropic definitions of time (Tegmark, 2012; Rovelli, 2017).
Time is entropic if the future is more uncertain than the past; from the point of view of
some observer, time is entropic if there is a net information flow inward from the observed
environment, i.e. if learning exceeds forgetting. An entropic conception of time comports
well with cosmological models in which spacetime is emergent from underlying quantum-
informational processes (e.g. Swingle, 2012; Arkani-Hamed & Trnka J. , 2014; Pastawski et
al., 2015; D’Ariano & Perinotti, 2017). Nonobjective, though not necessarily entropic, con-
ceptions of time can also be found in constructivist approaches to cybernetics (von Foerster,
2003; Fields et al., 2017) and to the psychology of perception (Hoffman, Singh & Prakash,
2015; Fields et al., 2018), and in some postmodernist philosophical thinking (Baudrillard,
1983; Deleuze & Guattari, 1987), and have a deep history in both Eastern (particularly
Buddhist) and Western (anti-foundationalist and subjectivist) philosophy. Our second mo-
tivation is the increasingly well-established constructive nature of human episodic memory
(Schacter & Addis, 2007; Hassabis & McGuire, 2009; Nadel et al., 2012; Schwabe, Nader &
Pruessner, 2014), which puts (retrospective) memory on a par with (prospective) planning
as complementary forms of “mental time travel” (Boyer, 2008). Central to these capabil-
ities are the inference of object persistence (Baillargeon, Spelke & Wasserman, 1985; Xu,
1999) and the ability to track object identities through (experienced) time (Scholl, 2007;
Fields, 2016). These latter abilities are not human-specific, but characterize all animals
able to recognize individual objects, e.g. objects used repeatedly as tools or particular
conspecifics, at multiple times; however, it is not clear whether animals other than humans
experience time itself in the way that humans do (Hoerl & McCormack, 2019). Our two
motivations are not logically independent: identifying an object requires measurement,
a physical process of information exchange that is enacted in spacetime (Fields, 2018a).
When measurement is conceptualized in terms of subjective probabilities and Bayesian
inference (e.g. Fuchs, 2010; Mermin, 2017; Fields, Friston, Glazebrook and Levin, 2022),
measurements of time become agent-dependent and hence non-objective.

To develop a formal representation of nonobjective, experienced time, we follow Goguen
(1991) by adopting a category-theoretic perspective. Category theory1 provides a general
framework for mathematical modeling of arbitrary systems, and has been applied exten-
sively in physics and computer science (see Fields & Glazebrook, 2019a, for examples). We
employ three sets of mathematical tools. We begin by showing that events specified by finite

1A category comprises a set of objects and a set of morphisms between objects, subject to the

requirements that 1) every object has an associated Identity morphism and 2) morphisms compose

associatively. A functor is a mapping between categories that respects Identity morphisms and

morphism composition. Finite sets with functions, and groups, rings, fields, or topological spaces

with their associated homomorphisms all form categories; indeed all of mathematics can be formu-

lated in category-theoretic terms. For introductions to the theory, see e.g. Adámek, Herrlich and

Strecker (1990), https://en.wikipedia.org/wiki/Category (mathematics), or the extensive resources

of https://ncatlab.org/.
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numbers of n-ary relations on finite numbers of objects can be redescribed by finite multi-
hypergraphs (MHGs) that generalize hypergraphs by allowing multiple distinct, labeled
hyperedges connecting any subset of vertices. Events here correspond to “event files” as
defined by Hommel (2004) in the short-duration limit; objects correspond to time-stamped
“object tokens” as defined by Zimmer & Ecker (2010). These structures naturally give rise
to an observer-relative, entropic conception of time. Time in this representation becomes
both discrete and functorial, consistent with its functorial nature in topological field theo-
ries (Atiyah, 1988). We then reformulate events in the more expressive language of sheaves,
and show how episodic memories, whether retrospective or prospective, can be viewed as
intermediate steps between an experienced event and a sheaf-theoretic limit that captures
the maximum information available in that event. Sheaf-theoretic methods have previously
been employed in concurrency applications (Goguen, 1992; Sofronie-Stokkermans, 2009);
we make similar use of sheaf-gluing conditions to enforce consistency conditions. As a final
step, we employ the methods of Clausen & Scholze (2021) to condense episodic memories
in this sheaf-theoretic representation onto a notional point interpretable as the present, in
the process demonstrating the construction of extended “past” and “future” representa-
tions from this point. This enables us to make a formal prediction that episodic memory is
implemented by a time-symmetric constructive functor in humans. We then examine some
specific consequences of this prediction, including a critical role for stigmergic memories
in rendering experienced time entropic, and consider experimental approaches that could
test them.

2 Events as MHGs

Intuitively, an event occurs when something happens. One encounters a friend at a party,
for example. Barwise and Perry (1983) define an “event” as a tuple (Obj, Prop,Rel) where
Obj is a finite set of individual objects {a1 . . . an}, Prop is a set of unary properties P (x),
and Rel is a set of binary relations R(x, y), where x, y ∈ Obj. Associated with each event
is a collection of labels, including a label specifying a spacetime location. Such events
are clearly amenable to organization with standard spatial and temporal logics that treat
spacetime location as event-independent.

Somewhat broader concepts of “events” have been introduced by psychologists, be-
ginning with the “event file” defined by Hommel (2004), a transient representation of
objects, motions, and actions as well as affective states and motivations of agents includ-
ing the self, information that would be attached as labels to an event as defined above.
Event files capture an “instantaneous” situation, including occurent actions, in a short-
duration limit of approximately 350 ms (Zmigrod & Hommel, 2011), but can also repre-
sent temporally-extended “events” when time is suitably coarse-grained (see also Altmann
& Ekves, 2019; Cohn-Sheehy & Ranganath, 2017, for more recent extended event mod-
els). These psychologically-motivated notions of an “event” pertain, significantly, to the
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experiences of a single agent. When extended across sensory modalities, moreover, they
characterize all that the agent experiences at a particular time. We can, therefore, add
to the intuition that “something happens” in an event that what happens is experienced
by some particular agent, and forms the complete experience, at that time, of that agent.
This “completion” is attention-dependent and may be rather vague; the party at which one
encounters one’s friend may be crowded and noisy, with neither the crowd nor the noise
resolved into further particulars.

Here we define an (complete, instantaneous, experienced) event as follows:

Definition 1. An (complete, instantaneous, experienced) event V = (A,R,L) comprises

a finite set A of n objects, a finite set R of unary to (n− 1)-ary relations together with a

unique n-ary relation V , and a finite list L of labels, each of which is a bit string of finite

length.

We interpret “object” broadly, e.g. considering the crowd in our example to be an ob-
ject and “noisy(·)” to be a unary relation applying to it. The “membership” relation
V (a1, . . . an) indicates that the objects a1, . . . an all occur in the single named event V,
which can be thought of informally as a component of an instantaneous state of a PW.
As each event V has a unique membership relation V , we will use V (a1, . . . an) as a short-
hand for V = (A,R,L). We will also use the simplified notion a, b, c, . . . for objects and
P,Q,R, . . . for relations within an event. The list L may include labels such as ‘occurent
percept’ or ‘(episodic) memory’ as discussed in §7 below. Definition 1 generalizes that of
Barwise and Perry (1983) by allowing (n− 1)-ary relations, and by not requiring the list L
to include a label specifying a spacetime location. Spatial relations and hence spatial labels
do not concern us here; temporal relations and hence temporal labels are constructed as
discussed in §4 below.

We understand the above Definition 1 as referring to complete, instantaneous expe-
riences of single agents. As such, events are neither decomposable nor composable. We
explicitly do not assume any binary operations on events that yield events; an ordered pair
(V1,V2), for example, is not an event. This usage differs from agent-nonspecific notions
of events in which, for example, simultaneous events in different components of a single
distributed system are considered to be single “events” from the perspective of some 3rd

party observer.
While the notation of 1st order logic is traditional for describing events, here we will

employ the alternative notation of MHGs for reasons that will be come clear. Recall that
a graph is a pair (X,E), where X is a set of nodes and E is a set of pairs (x, y), where
x, y ∈ X, called edges. Note that this definition allows loops, i.e. edges (x, x). Assigning
a unique label, a bit string of finite length, to each of the nodes, and similar but distinct
labels to each of the edges yields a labeled graph. A labeled multigraph is a pair (X,E∗),
where X is a set of labeled nodes and E∗ is a set of triples (x, y, l), where x, y ∈ X and
the label l is a bit string of finite length. Here any pair of nodes can be be connected by
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multiple edges that are distinguished by their labels. A labeled, undirected hypergraph is a
pair (X,H), where X is a set of labeled nodes and H is a set of labeled subsets of X called
hyperedges. By analogy with the multiple, labeled edges allowed between two nodes of a
multigraph, we can define:

Definition 2. A labeled, undirected multi-hypergraph (MHG) comprises a finite set X of

m labeled nodes, and a finite set H∗ of pairs (h, lh), where h is a unary to m-ary hyperedge

and its label lh is a bit string of finite length.

We will, for convenience, also refer to H∗ as the “set of” hyperedges, leaving implicit the
fact that each hyperedge has a distinct label. If a hyperedge h = {xi}, xi ∈ X, we will say
that h covers each of the xi.

If two MHGs G and K each contain a node or hyperedge with some particular label,
we will say that they share that node or hyperedge. By analogy with morphisms between
graphs, we can define:

Definition 3. Given MHGs G and K, an MHG morphism is a map f : G→ K, f : XG 7→
XK and f : H∗G 7→ H∗K , where XG, XK and H∗G, H

∗
K and the nodes and hyperedges of G

and K respectively, are subject to the constraint that if ({xi}, l) ∈ H∗G and f : ({xi}, l) 7→
({yj}, f(l)) ∈ H∗K , then f(xi) ∈ {yj} whenever f(xi) is defined.

Note that the above definition allows an MHG morphism to be a partial function of either
or both of X and H∗, i.e. to have a restricted domain in either set. Intuitively, an MHG
morphism from G to K adds or deletes one or more nodes and/or hyperedges to/from G to
produce K, leaving all shared node and hyperedge labels fixed; Fig. 1 shows two examples.
Each MHG G has a unique associated MHG morphism IdG : G 7→ G that leaves the nodes
and hyperedges of G fixed. Any three MHG morphisms f : G → K, g : K → L, and h :
L → M obviously compose associatively. A category MHG can, therefore, be defined by
taking MHGs to be the objects of MHG and MHG morphisms to be the morphisms of
MHG.
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Figure 1: Examples of MHG morphisms that delete (f) or add (g) objects (dark circles)

and/or relations (colored shapes) to an MHG V1(a, b, c). These MHGs satisfy the require-

ments for being “events” and are labeled by their maximal hyperedges V1, V2, and V3.

We will be particularly interested in MHGs in which the set X of nodes is interpreted
as the set A of objects in some event V, the set H∗ of labeled hyperedges is interpreted
as the set R of relations in V, and there is only a single m-ary (i.e. maximal) hyperedge
V ∈ H∗, where m is the number of nodes/objects in V, interpreted as indicating that the
objects a1, . . . am co-occur in the single event V. For simplicity, we will refer to MHGs with
only a single m-ary hyperedge, i.e. MHGs amenable to this interpretation, as “events” and
will consider the label lV of the single m-ary hyperedge V to label or “name” the MHG as
a whole. The subset of Obj(MHG) containing all and only such “event” MHGs can be
rendered a subcategory EVT of MHG by requiring that if G and K are “event” MHGs,
any MHG morphism f : G → K preserves the restriction to a single hyperedge covering
all nodes; this can be done by requiring f : VG 7→ VK and f : lVG 7→ lVK . We will refer to
morphisms satisfying this restriction as “EVT morphisms” and employ the event notation
V = (A,R,L) for MHGs in Obj(EVT). Note that, from an interpretative point of view,
this restriction on EVT morphisms means that larger events subsume smaller ones, and
hence enforces the idea that events are unitary entities that neither compose nor decompose
into other, distinct events.

7



3 Object typing and object identity

Beginning in early infancy, humans segregate perceived objects from the “background” and
assign them to types (or “cognitive categories”), e.g. as being a person, chair, tree, etc.
based on their properties and relations (Baillargeon, Spelke & Wasserman, 1985; Xu, 1999).
While nonhuman animals lack human-like grammatical languages, they exhibit a richness of
communicative behavior that clearly indicates that specific objects are segregated from the
general environment and assigned collections of properties or affordances, i.e. classified into
types (Scott-Phillips& Heintz, 2022). The phylogenetic breadth and social learning of tool
cultures and other group-specific behaviors similarly indicate well-developed object-typing
and individual-object identification capabilities (Whiten, 2021). It is commonplace to treat
such types as forming a strict hierarchy with a type name such as <thing> as the root;
here and below we will use English words for type names as a convenience. Generalizing to
a directed network with additional semantics is formally straightforward (Sowa, 1992) even
if challenging in practice. Formally, we assume a finite, rooted DAG Type in which each
node i is labeled with a finite type name (e.g. <person> or <chair>) and each downward-
directed edge i→ j represents specialization to a less-inclusive (sub)type j. The leaf nodes
of Type can be considered to be labeled with names of minimally-inclusive subtypes that
have at least two exemplars, i.e. singleton categories corresponding to particular individuals
are not included in Type. Any sub-DAG of Type with more than one node is, effectively,
a taxonomy of its root type down to its leaf-node subtypes.

Definition 4. A typing is an EVT morphism C : (A,R,L) 7→ (A, (R ⊔ C),L), where ⊔
denotes disjoint union, that assigns a set C of “new” hyperedges to an event (A,R,L).

We employ the term “typing” to emphasize that assigning a type name to an object is a
cognitive process that attaches further semantic information (the additional hyperedges in
C), beyond that specified by observed inter-object relations, to an event. We can represent
an event with its attached typing as in Fig. 2.
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Figure 2: a) A 4-object event V, labeled by its membership relation V (a, b, c, d), with 2-

ary (orange) and 3-ary (magenta) relations between objects, “decorated” with unary and

binary typings. b) The typings in a) can be regarded as “bundled together” (indicated by

knotted string) over the event V to emphasize that they “add information” to V. Note

that any object can be covered by both one or more observed relations and one or more

typings.

An “object token” as defined by Zimmer & Ecker (2010) represents a typed object
within a given event. The 2-ary (orange) relation in Fig. 2 could, for example, be “next-
to” and the 3-ary (magenta) relation could be “having the same velocity as”; these are
spatial relations computed by the dorsal visual stream in humans and other mammals. In
this case, the event depicted shows the instant at which one object is next to one of three
co-moving objects; we can infer that one or the other of these relations does not hold in
the immediately preceding or following events. Object typing depends not only on such
spatial relations, but also on nonspatial information (e.g. size, shape, and color) computed
by the ventral visual stream (see Goodale, 2014, for discussion); e.g. assigning the typing
“is-a human” typically (although not necessarily) involves more than just location and
motion information. Identifying an observed object as a specific individual, not just as a
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member of some type, typically involves multiple type assignments, i.e. multiple labels from
Type; identifying a specific individual person, for example, requires more information than
recognizing an observed object as being a human, i.e. as being some person or other. The
features, i.e. unary typings, of an object are often sufficient for individual identification,
e.g. when recognizing a friend by her face. Beginning in childhood, humans also employ
history information for individual identification (see e.g. discussion in Fields, 2012); we
defer consideration of histories to §7.

4 Inter-event object identity induces temporal arrows

Now consider two distinct events V1 and V2 labeled by their membership relations V1(a, b, c)
and V2(a, b, c, d), respectively, as shown in Fig. 3. The objects a, b, and c are present in
both events, but what constitutes the evidence that a, for example, reappears in V2? This
is the question of individual identification in practice, a question that remains unresolved
despite decades of experimental work on humans and other animals, and despite millenia
of in-principle philosophical speculation (Scholl, 2007; Fields, 2016)2. The only kind of
evidence thus far defined is commonality of typing: here the object a has been assigned the
same (possibly singular) typing in both V1 and V2, the object b has been assigned different
typings in the two events, and the object c in V1 is joined by a new member, d of the same
type in V2. A new person d, for example, may have walked into the room. We can consider
these typings to indicate, effectively, “hypotheses” that a, b, and c are shared by V1 and
V2, and that c and d are related by being of the same type but are non-identical. With
this interpretation, we can view the typings as inducing a map:

T12 : a 7→ a; b 7→ b; c 7→ c;V1 7→ V2

This map is clearly an EVT morphism. We will call this map T12 a “time” morphism from
V1 to V2 as it captures the intuition that time is what connects events that share at least
one object. In general, we can write a time morphism:

Tij : Vi 7→ Vj (1)

connecting distinct events Vi and Vj that share at least one object. Directionality is
imposed by requiring that T be a partial order on the set of all events, with the maps Tij
becoming arrows or compositions of arrows in the Hasse diagram for T . Directionality in
this sense forbids temporal loops, but allows any event to have arbitrarily many “pasts” and
“futures”; hence it fully captures the branching time constructs common in concurrency

2We are assuming here that it is meaningful to talk about individuals being identifiable as such over time,

an assumption that is questioned by multiple philosophical traditions. We do not engage here with this

philosophical debate, but rather explore, in what follows, how observers go about identifying individuals,

and how this process relates to the subjective experience of time.
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applications. Note that past and future events may be isomorphic; no entropic or other
means of distinguishing past from future events by content is assumed.

Figure 3: Two distinct events V1 and V2 labeled by their membership relations V1(a, b, c)

and V2(a, b, c, d), respectively, joined by shared typings (light green and dark green shapes);

T12 is the induced time morphism.

With this notation, we can characterize the EVT subcategory of MHG as the subcat-
egory in which the objects are events with typings and the morphisms Tij between distinct
events are supplemented by identities that (abusing notation) can be written Tii.

5 Entropic typing as retrospective time

To further investigate the relationship between typing and time, it is convenient to con-
struct a functor:

f : Evt→ Chu
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from Evt to the category Chu of Chu spaces (O,A, |=), where O is a set of objects, A is
a set of attributes, and |= ⊆ O × A is a satisfaction relation (Barr (1979); see Fields &

Glazebrook (2019a) for discussion and examples). Morphisms within Chu are pairs
−→
f ,
←−
f

such that for Chu spaces (O,A, |=) and (O′, A′, |=′):

−→
f :O → O′ (2)
←−
f :A′ → A (3)

such that:

∀o ∈ O and ∀a′ ∈ A′,
−→
f (o) |=′ a′ iff o |=

←−
f (a′). (4)

In the Channel Theory language of Barwise & Seligman (1997), the pair
−→
f ,
←−
f is an “in-

fomorphism” between “classifiers” representable as Chu spaces3.
Now consider events Vi with objects Ai and relations Ri and Vj with objects Aj and

relations Rj such that:

f : Ai 7→ O;Aj 7→ O′;Ri 7→ A;Rj 7→ A′,

for some Chu spaces (O,A, |=) and (O′, A′, |=′), with f the presumptive functor to be
constructed. We can write Tij : Vi 7→ Vj as the pair:

−→
Tij :Ai → Aj (5)
←−
Tij :Rj → Ri (6)

Consider now some object o ∈ Ai and some relation r′ ∈ Rj , and suppose that
−→
Tij : o 7→

o′ ∈ Aj , i.e. that o is propagated forward from Vi to Vj . The condition stated by Eq. (4)
is satisfied if:

∀o ∈ Ai and ∀r′ ∈ Rj ,
−→
Tij(o) is covered by r′ iff o is covered by

←−
Tij(r

′), (7)

i.e. if is covered by functions as a Chu-space satisfaction relation. As a hyperedge is simply
a set, this is clearly the case; hence the presumed f : Evt→ Chu is indeed a functor.

Following the interpretation of the previous section, the forward component
−→
Tij is the

“time” through which objects evolve, while the backward component
←−
Tij is the “time”

of (retrospective, episodic) memory, restricted to require that the quantity of relational
information – including typings – covering any object is preserved whenever the object is

3Again see Fields & Glazebrook (2019a) for discussion and examples. Channel theory has been refor-

mulated in the alternative language of institutions (Goguen & Burstall, 1992) in Goguen (2004).
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preserved. Objects, in other words, do not lose information as they propagate through time.
This restriction is effectively entropic: it requires Card(Ri) ≤ Card(Rj), which can be
written as a “Second Law” S(Ri) ≤ S(Rj) by defining an “entropy” S(X) = log(Card(X))
for any set X. We can then define:

Definition 5. An entropic typing is a typing of objects shared by events Vi and Vj for

which
−→
Tij is injective and

←−
Tij is surjective on Dom(

−→
Tij).

In general, events involve varying numbers of objects and relations; hence a typing may
fail to be entropic if it joins a current event involving few relations to a past event involving
many relations. Using Def. 4 to write:

R = Rcore ⊔ C

We can see that the condition:

(S(Cj)− S(Ci)) > (S(Rcorej )− S(Rcorei )) (8)

guarantees increasing entropy from Vi to Vj and hence an entropic time operator Tij .
We can interpret Eq. (8) as requiring that entropic typings “build in past relational
information” about the objects they type. One’s friend may be typed, for example, as
the kind of person who likes strong coffee and abstract ideas. This lays a foundation for
viewing entropic typings as “histories” of objects in §7. Hence while such typings carry
no explicit temporal information, they can be viewed as encoding expectations about how
an object will behave in future events. Such expectations enable prospective episodic
memory, i.e. prediction of and planning for future events. It is worth noting here explicitly
that typings are an instance of semantic memory, and hence that typings being a key
component of event representations is an instance of coupling between the semantic and
episodic memory systems (see Renoult et al., 2019, for review).

6 Entropic typings as presheaves

We turn to the language of sheaves as a more expressive formalism with which to investigate
the construction of temporal relations between events; indeed the basic intuition of a sheaf
is suggested by the depicted typings being “tied together” in Figs. 2b and 3. This language
allows us to construct temporal histories of individual objects, and to bind such histories
together into episodic memories (Tulving, 2002) and generative models (Friston, 2010). We
will see that such constructions can fail to be unique, producing a “plurivocity” of distinct
temporal histories and hence “identities” for objects.

To begin, we note that by adding a null, i.e. 0-ary relation V̄ to each event, we can
re-express events as discrete topological spaces in which every subset {ak} ∈ A of objects
related by some relation R(ak) ∈ Rcore is an open set. Recall the idea of a presheaf:
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Definition 6. (Hartshorne, 1977) Let X be a topological space. A presheaf of sets on X

is a contravariant functor F : Op(X)→ Sets on the category Op(X) of open sets of X.

Intuitively, a presheaf assigns some set of data to each point, or neighborhood of points,
on the space X. Since the presheaf operates on all open sets of X, the assignments
must be self-consistent, i.e. larger neighborhoods inherit the assignments of data to their
constitutive points. Taking X to be a set of events, we can regard typings as data assigned
to the events. Hence we can state:

Lemma 1. Entropic typings are presheaves on events.

Proof. Let {Vi} be a set of of events with an entropic typing C. For any event Vi, F : Ai →
{Cik}; i.e. F maps each object to its type labels as assigned by C(Vi). Hence F inherits

compositionality and respect for identities from C. Contravariance of F is guaranteed by

contravariance of
←−
Tij whenever C is entropic.

We can think of the presheaf F as mapping each event Vi to its typing C(Vi); hence
we will abuse notation slightly and write:

F : V 7→ C (9)

to indicate that C is an entropic typing of the set V = {Vi} of events, viewed as a presheaf
F.

7 Constructed events and memories

Presheaves of events provide a natural representation for events as experienced. A key
aspect of the construction of time, however, is the assumption that between any two dis-
tinct events experienced by some agent A, other things happened (i.e. non-agent-specific
“events” occured) that A did not experience, but some other agent B may have experi-
enced. This is especially the case during extended periods of non-observation. We all, for
example, assume that various things happened between yesterday evening and this morn-
ing, and are eager to fill in knowledge of these happenings by checking the morning news.
This “filling in” process is essential to the maintenance of object identity through time in a
way that supports counterfactuals; an ability that requires temporal reasoning and may be
human-specific (Hoerl & McCormack, 2019). This ability requires the generation of fictive
(i.e. unobserved) causal histories (FCHs) that explain what objects were doing between
observed events that include those objects (Fields, 2012, 2013). Such FCHs allow us to
make immediate judgements about, for example, whether it is plausible that Jones, who
we saw in Los Angeles on Saturday morning and are seeing again on Sunday afternoon,
was in Paris on Saturday night.
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From a concurrency perspective, an FCH constructed by an agent A is an assumed
process Pa acting on some previously-observed object a, which is concurrent with the
process PA that propagates A (i.e. A’s experienced “self”) forward in time, and that
satisfies the liveness condition that it delivers a into at least one future event experienced
by A. The object a is, in this case, analogous to a datum that A needs in the future. The
problem faced by A when experiencing the future event is determining whether the object
that appears to be a is in fact a. This is a problem of provenance or chain of custody; a
plausible FCH provides a heuristic solution (Fields, 2012). The solution is only heuristic,
in that the satisfaction of relevant safety conditions – e.g. that a has not been modified in
some critical but undetected way or replaced by an imposter – cannot in general be proven.
The possibility that such safety conditions fail is obviously of importance in communication
scenarios involving adverse actors; it also drives literary tropes of mistaken identity.

Consider now a set V = {Vi} of observed events over which some entropic typing C
defines a presheaf F via Lemma 1 above. To capture the action of FCHs between the events
in V, we need a way of “adding” events to V that respects all of the relational information
between the Vi. The concept of a “profinite set” accomplishes this:4

Definition 7. A profinite set is a compact, Hausdorff, totally disconnected topological

space that is a formal cofiltered limit of a collection of finite sets.

The elements of a profinite set constructed as a limit of V “fill in” event-like elements “be-
tween” the observed events in V while maintaining the discrete topology; hence extending
V to its profinite limit models the action of all possible relationship-preserving FCHs. An
intuitive idea of what this means and how this “filling in” process works, is that the profi-
nite limit is the “densest possible” set that includes the starting set and remains discrete.
Call these filled-in elements constructed events Ṽj and consider an entropic typing C̃ over

a profinite set Ṽ = V ⊔ {Ṽj} = {Vi} ⊔ {Ṽj} such that:

C̃ // C

Ṽ

F̃

OO

Proj // V

F

OO

commutes, where Proj projects the observed events V out of the profinite limit Ṽ. The
induced arrow in this case renders C̃ the limit, over Ṽ, of the observed typing C. It “fills in”
the appropriate type labels over the constructed extensions of the objects in the observed
events Vi ∈ V, i.e. it creates their FCHs.

As a limit, F̃ is unique (up to isomorphism). In practice, we will be interested in a
sequence of events that are “between” Ṽ and V in terms of packing density, i.e. sequences
that only partially “fill in” the “gaps” between the events in V. Such sequences model

4All standard definitions not otherwise referenced are from https://ncatlab.org/nlab/show/HomePage.
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only the FCHs that some agent actually constructs, not all possible FCHs. Hence we are
interested in presheaves F̃k such that:

C̃ // C̃k // C

Ṽ

F̃

OO

Proj // Ṽk

F̃k

OO

Proj // V

F

OO

(10)
commutes. Such a presheaf includes some, but not all, of the constructed events filled in to
form Ṽ. The commutativity constraint can be expressed more succintly by requiring that
for all k there are morphisms Gk,G

′
k such that:

F̃
Gk−−→ F̃k

G′
k−−→ F (11)

These Gk,G
′
k are clearly associative and respect identity; hence they are functorial (we

can also consider them as natural transformations of the relevant presheaves). We can,

therefore, regard the nested presheaves F̃, . . . F̃k, . . .F together with the functors Gk,G
′
k

as forming a 2-category. The functors Gk,G
′
k pick out a particular intermediate presheaf

F̃k that includes some, but not the maximal number, of constructed events with their
associated entropic typings. We can think of Gk,G

′
k as implementing FCHs that connect

observed events not to each other, but to the particular constructed event F̃k.
The existence of Gk,G

′
k renders entropic time functorial: the local entropic time oper-

ators embedded in each presheaf F̃k, and in the limits F̃ and F, must associate and respect
identities if the Gk,G

′
k do so. The sets Ṽk of events, including the “observed” events V and

the maximally “filled in” limit Ṽ can, therefore, all be viewed as “small” categories. This
categorical interpretation of the Ṽk is natural given the neuroscience of “layers” of process-
ing in which within-layer connections are interactions between representations of a given
type, level of abstraction, and semantics, while “vertical” connections between layers are
effectively maps between different types of representations at different levels of abstraction
and with different semantics (see Fields & Glazebrook, 2019b, for extensive discussion).

Treating time as functorial relates the current, psychologically-motivated framework
to relevant results obtained by physicists. The entropic condition expressed by Eq. (8)
can be viewed as “classicalizing” the functorial time evolution of events represented by
coordinate-free (hence “topological”) quantum states (Atiyah, 1988), allowing a functorial
time in a setting containing bounded and hence classical objects (cf. the construction
of “objects” from quantum interactions in Fields, Glazebrook & Marcianò, 2021). This
classicalization can be viewed as a coarse-graining, confirming the dependence of entropic
time on coarse-grained “macroscopic” degrees of freedom emphasized by Rovelli (2019).
To our view, these cross-disciplinary connections are not accidental, but rather speak to a
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deep relationship between experiences of time and of object identity. We return to this in
§8 and 11 below.

Let us consider, as above, an entropic typing (i.e. presheaf) F of “observed” events.
We are now in a position to state a formal definition of episodic memory as event memory:

Definition 8. An episodic memory associated with an “observed” entropic typing F is a

presheaf F̃k satisfying the commutativity constraint stated by Eqs. (10) and (11).

An episodic memory is retrospective if its events are arranged in positive temporal order
from some past event to the present, and is prospective if its events are arranged in positive
temporal order from the present to some future event. A prospective episodic memory can
also be considered a plan (see Schacter & Addis, 2007, for extensive discussion). We can
also regard memories as either retrospective or prospective histories as this term is used in
Fields (2012), bearing in mind that here “history” is as constructed by a remembering or
planning agent, not “objective” in the sense of agent-independent.

We emphasize that between any two observed events V1 and VN there can exist many
distinct memories that may include both additional observed events and different numbers
of filled-in constructed events. Distinct memories may encode different fictive causal his-
tories of the objects appearing in V1 and VN as illustrated in Fig. 4. These memories may
impose inconsistent typings on the “boundary” events V1 and VN.
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Figure 4: Two distinct memories connecting two observed events V1 and VN. Panel a)

has only observed events V1 and VN, plus four constructed events (dashed ovals). Panel

b) adds an observed event Vk in which an object ok (dashed trajectory) not included in

either V1 or VN appears. Because they contain different sets of observed events ({V1,VN}
versus {V1,Vk,VN}), they have different profinite limits that may, but may not, impose

consistent typings.
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Larger numbers of observed events further “classicalize” the functorial time evolution by
imposing constraints on both the particular paths taken by the incorporated objects and,
as illustrated in Fig. 4b, the co-occurrence of new objects and hence new potential interac-
tions in particular “internal” events. Memories with large numbers of observed events are
analogous, in a quantum-theoretic setting, to trajectories with intervening “which-path”
measurements; however, we will not pursue this analogy here.

8 Memories as sheaves

The event-dependent, constructed time of retrospective and prospective memories pro-
vides, in the current framework, an alternative to the objective time of TL and its de-
scendants. To explore some consequences of this non-objective representation of time, it
is useful to complete the formal characterization of memories as sheaves. As noted in the
Introduction, a sheaf-theoretic representation of event sequences provides a natural way
to encode dependency relations between sequences in concurrency applications (Goguen,
1992; Sofronie-Stokkermans, 2009); here we will see that sheaves are equally useful for
encoding logical relations between events and their contexts of observation. Sheaves are
presheaves satisfying additional consistency constraints:

Definition 9. (Hartshorne, 1977) Let X be a topological space. A sheaf F on X is a

presheaf satisfying two axioms:

• Let U be an open subset of X and Ui an open cover of U . Given a collection of

sections si on Ui, with si|Uij = sj |Uij, then there exists a section s on U such that

s|Ui = si.

• Let U be an open subset of X and Ui an open cover of U . If s is a section on U such

that ∀i, s|Ui = 0, then s is zero.

A sheaf is, in other words, a presheaf in which “nothing is missing” – all of the information
that can be consistently assigned to the points in X has been assigned. In this regard, a
sheaf F on a topological space X packs local data attached to open sets of X. As such,
sheaves are tools used to transfer between local and global data: global in the sense that
data is assigned to every open set of X; local, in the sense that data assigned on every
open set can be restricted, in a compatible way, to data assigned on coverings of that open
set, such that these data are equivalent.

The collection {Ck} of type descriptors assigned by C to events Vi ∈ V is clearly an
open cover of the set A = {Ai} containing any object that appears in any event contained
in V. Hence we immediately have:

Lemma 2. F̃ is a sheaf on Ṽ.
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Proof. We consider the discrete topology on Ṽ. Both sheaf conditions are guaranteed by

the functorial nature of the morphisms Gk,G
′
k between presheaves nested in F̃, i.e. by Eqs.

(10) and (11). The entropic typing C̃ is, in particular, maximal because Ṽ is profinite.

Recall the following:

Theorem 1. Sheafification (Theorem 1.2.9 of Alper (2021)) Let S be a site and Sh(S)

and Pre(S) be the categories of sheaves and presheaves, respectively, on S. The forgetful

functor f : Sh(S)→ Pre(S) admits a left adjoint f → f sh, called the sheafification.

Here we introduce Grothendieck’s notion of a “site” as a way of making any category
“look like” a topological space by putting a topology on a category. In particular, a site is
a category endowed with a Grothendieck topology which constructs objects in the category
to behave like open sets. Further, it abstracts the usual notion of a point to allow any
object to “look like” a point in a topological space.

Recall from the discussion of Eq. (11) that the functors Gk,G
′
k render time functorial

and hence the memories Ṽk as well as their limits V and Ṽ small categories. Hence Ṽ can
be considered a site. We have from Lemma 2 that F̃ is a sheaf on Ṽ. The functors Gk are
clearly forgetful; hence Theorem 1 allows us to construct adjoints Gsh

k .
The “upwards” construction in Fig. 2b has previously been shown (Fields & Glaze-

brook, 2019b) to have a “downwards” dual in which objects are viewed as labels (“in-
stances”) attached to the type descriptors, which now play the role of the “objects” being
labeled. This duality has previously been explored in the setting of Barwise-Seligman clas-
sifiers and their associated infomorphisms. Here we consider this duality, for each episodic
memory k, as the specific left adjoint Gsh

k defined above as the sheafification. Whereas
Gk expresses a consistency condition on objects that is imposed by an entropic typing, the
adjoint Gsh

k expresses a consistency condition on entropic typings that is imposed by (the
assumption of) object identity. We can therefore dualize Eq. (11) as:

F̃
Gsh

k←−− F̃k
Gsh′

k←−−− F (12)

The Gsh
k ,G

sh′
k are effectively embeddings of memories within more-inclusive, but fully

consistent, memories involving the same objects and typings, up to the limit specified by
F̃.

Recalling the discussion of Fig. 4b above, it is clear that this sheafification-induced
duality depends on consistent typing at each step k of the embedding Gsh

k ,G
sh′
k ; Eq (4)

can, therefore, be viewed as a consistency test. Failures of Eq (4) can be due to failures
of object identity, e.g. an object losing some “essential” identifying property or relation in
some incorporated event. “Mistakes” about object identity – particularly mistakes about
the identities of other people – leading to unexpected consequences are common enough
among humans to be a literary trope; see Scholl (2007) or Nichols & Bruno (2010) for
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examples and Fields (2012) for further discussion. They can also, however, be due to
“intrinsic” (or “quantum”) context changes, as discussed in this sheaf-theoretic context by
Abramsky & Brandenburger (2011); see Fields & Glazebrook (2020) for further discussion.
As a “context” in this sense is specified by a set of objects and relations, “enlarging”
an event by embedding it in a larger event risks context change, and hence failure of Eq
(4). Increasing the number of degrees of freedom of a joint system that are measured, for
example, can introduce context shifts and hence violations of the Kolmogorov axioms by
the joint distributions of observational outcomes in a quantum setting (Kochen & Specker,
1967); see Dzhafarov, Cervantes & Kujala (2017) for proof that such context shifts can
be fully modeled in classical probability theory. Events that introduce new objects and
relations, as illustrated in Fig. 4b, must in principle be proved to introduce no significant
context change. The question of how to construct such proofs is known in AI as the Frame
Problem (McCarthy & Hayes, 1969); it is now known to be intractable (again see Fields &
Glazebrook, 2020, for discussion).

9 Sheaves over mutually-consistent memories

Consistency of typing across a collection of memories is effectively a gluing condition; hence
we can re-express the consistency condition implicit in Eq. (12) through a further sheaf
construction. We follow a procedure one of us recently used to conjecture a pro-diamond
(Dobson, 2021a,b) towards a theory of pro-emergent time; here, we construct a pro-object
of the category Shv of sheaves. Def. 7 can be generalized to:

Definition 10. A pro-object of a category C is a formal cofiltered limit of objects of C.

Note that a profinite set is a pro-object in FinSet. Indeed, pro-objects of any category
C bear the relationship to the objects of C that profinite sets bear to finite sets: they
are “completions at maximum density” of their objects. The category of pro-objects of an
arbitrary category C is written Pro-C, and meets the following conditions:

• The objects are pro-objects in C.

• The set of arrows from a pro-object F : D → C to a pro-object G : E → C is the
limit of the functor (Dop × E)→ Set given by HomC(F (·), G(·)).

• Composition of arrows arises, given pro-objects F : D0 → C, G : D1 → C, and
H : D2 → C of C, by applying the limit functor for diagrams (Dop × E) → Set to
the natural transformation of functors (HomC(F (·), G(·)) ×HomC(G(·),H(·))) →
HomC(F (−), H(−)) given by composition in C.

• The identity arrow on a pro-object F : D → C arises, using the universal property
of a limit, from the identity arrow HomC(F (c), F (c)) for every object c of C.
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This construct allows us to tighten the formal relationship between typings and the objects
and events that they characterize. This is expressed by the following:

Theorem 2. The sheaf over entropic typings of objects/events is a projective limit of a

sheaf over objects/events. Therefore, the sheaf over typings is a pro-object in Shv, the

category of sheaves.

Proof. Let I be a partially ordered set. Recall the following:

Definition 11. Rotman (2000) Given a partially ordered set I and a category C, an inverse

system in C is an ordered pair ((Mi)i∈I , (ψ
j
i )j≥i) abbreviated {Mi, ψ

j
i }, where (Mi)i∈I is an

indexed family of objects in C and (ψji :Mj →Mi)j≥i) is an indexed family of morphisms

for which ψji = 1Mi for all i, and such that the following diagram commutes whenever

k ≥ j ≥ i.

Mk Mi

Mj

ψk
i

ψj
i

ψk
j

Now let Mi be the graded sheaf over i-objects/events, Shv the category of sheaves, and
{Mi, ψ

j
i } an inverse system in Shv over I. Take the sheaf over typings of objects/events

as an object lim
←
Mi. By definition of entropic typing we have a family of projections

(αi : lim←
Mi →Mi)i∈I . For our inverse system to be a projective limit we need:

• i) ψjiαj = αi for i ≤ j,

• ii) for every X ∈ obj(Shv) and all morphisms fi : X → Mi satisfying ψ
j
i fj = fi

for all i ≤ j, there exists a unique morphism θ : X → lim
←
Mi making the diagram

commute.

lim
←
Mi X

Mi

Mj

αi
fi

αj

θ

ψj
i

fj
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Conditions i) and ii) are just the consistency conditions for sequentially embedding the

entropic typings C̃k; they are met whenever (12) is satisfied as discussed above.
Intuitively, Theorem 2 constructs a maximal consistent episodic memoryM of the event

Mi as recalled at the event Mj . Hence it provides a representation of the “best possible”
memory between any two observed events. As noted above, there may be other memories,
inconsistent with M and at least some of its components, that connect these events and
include object identity changes or context shifts. These can be considered “failures” or
“pathologies” of – or simply as design flaws in – the memory system as discussed further
in §11 below.

10 Condensing memories onto the present

Any account of episodic memory must eventually face questions of implementation, both
for the memory itself as a data structure and for the recall mechanism that retrieves one
or more memories in response to some cue. The “picture” of memories as sheaves, or as
in Theorem 2, projective limits of sheaves, at least suggests the traditional (or “recon-
structive” or “preservationist”) view of episodic memories as explicit records (or “traces”)
stored in a “library” of sorts and recalled via some kind of indexing system Robins (2017).
This explicit view of episodic memory takes the common phenomenology of “clear and
distinct” memories of actual past events at face value, considering them “ground truth”
points between which FCHs may be interpolated. It is the model of memory most straight-
forwardly implemented in symbolic (i.e. “GOFAI”) AI systems, where arbitrarily-detailed
event memories can be written to stable declarative data structures, e.g. images or text
files.

The explicit view of episodic memory has been challenged by empirical results sup-
porting a constructive view (Schacter & Addis, 2007; Hassabis & McGuire, 2009; Nadel
et al., 2012; Schwabe, Nader & Pruessner, 2014) in which even observed events are con-
structed “on the fly” and in a current-context dependent way (see Addis, 2018; Werning,
2020; Perrin, 2021, for recent reviews). This constructive view suggests that what is re-
membered is not a set of explicitly-represented events, but rather a set of operators with
which to construct representations of such events. The previously-firm distinction between
“observed” and “constructed” events thus drops away; all episodic memory becomes FCH
construction, i.e. more or less constrained imaginative confabulation. How the construc-
tion process is constrained, and the conditions under which these constraints fail, thus
become outstanding empirical questions.

Here we employ methods developed by Scholze (2017) and Clausen & Scholze (2021)
to re-express the previous sheaf-theoretic “picture” of episodic memory in terms of a
“condensed” object located at a single notional “point” that we interpret informally as
“the present” without committing ourselves to any particular position in the presentism–
eternalism debate (e.g. Noonan, 2013; Rovelli, 2019). This condensed object can, in turn,
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be considered a representable functor, and so effectively a family of operators invokable
at the present. These operators construct extended, multi-event representations of the
(retrospective) past or the (prospective) future. This operator-based “picture” of episodic
memory is purely constructive: recalling a past event or planning a future event consists
in executing one or more such families of operators.

Let C be a category, and let Cond(C) denote the category of “condensed” objects of
C. Clausen & Scholze (2021) show that Cond(C) can be represented as the category
of small sheaves on C, or equivalently as a representable functor F : Cop → Set. More
formally, we have:

Definition 12. (Clausen & Scholze (2021) Definition 1.2) The pro-étale site ∗proét of a
point is the category of profinite sets Pro-FinSet, with finite jointly surjective families

of maps as covers. A condensed set is a sheaf of sets on ∗proét. Similarly, a condensed

ring/group/object is a sheaf of rings/groups/objects on ∗proét.

We can understand this definition as follows. First, condensed sets capture similar
phenomena as topological spaces, but, categorically speaking, condensed sets formally be-
have like sets. A condensed set X measures the mapping of profinite sets S into X in the
following way, as described by Scholze himself:

Let me describe what a condensed set X “is”: For each profinite set S, it
gives a set X(S), which should be thought of as the “[continuous] maps from
S to X”, so it is measuring how profinite sets map into X. The sheaf axiom
guarantees some coherence among these values. Taking S = ∗ a point, there is
an “underlying set” X(∗). Scholze (2020)

Consider the following construction of a very familiar topological space as the quotient
of a profinite set.

Let T be a compact Hausdorff space. Then a classical and somewhat weird fact
is that T admits a surjection S → T from a profinite set S. One construction is
to let S be the Stone-Čech compactification of T δ, where T δ is T considered as
a discrete set. This lets one recover T as the quotient of S by the equivalence
relation R = S ×T S ⊂ S ×S. Thus, compact Hausdorff spaces can be thought
of as quotients of profinite sets by profinite equivalence relations....This is what
happens in the condensed perspective, which only records maps from profinite
sets. Scholze (2020)

Secondly, the étale topology (étale means “slack” or “relaxed”) is a Grothendieck topol-
ogy which is defined in positive characteristic, is finer than the Zariski topology, and resem-
bles the Euclidean topology. Informally, étale morphisms are the algebraic equivalent of
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local diffeomorphisms between manifolds. The pro-étale topology Bhatt & Scholze (2013)
resembles the étale topology, but can better handle infinite constructions in cohomology.
The pro-étale site contains all finite limits and is locally contractible. Moreover, any site
gives rise to a category of sheaves and Sets are sheaves on a point.

Now consider the “current” event Vc located at “the present” regarded as a point.
Recall from §3 that a typing Cc of Vc is just an assigment of subgraphs of the type hierarchy
Type to the objects in Vc. This assignment is a finite set of jointly surjective maps, i.e.
Cc : Type→ Ac can also be thought of as a set {ξi} of maps ξi : Type→ ai for each object
ai ∈ Ac. We can, therefore, regard Vc as a pro-étale site on the present; these sites inherit
the discrete (indeed Grothendieck5) topology of events described earlier.

With this identification of Vc with ∗proét on the present, we can state:

Theorem 3. An entropic typing is a condensed set.

Proof. With the above identification, the local functor Fc : Vc → Cc is a presheaf on ∗proét.
Hence all that is required is to extend Fc by a map Fc → F→ F̃, and we have a sheaf over
∗proét by Lemma 2. The required extension is, clearly, the adjoint pair G,Gsh satisfying
Eq. (11) and (12). These exist by construction for any entropic typing.

What Theorem 3 does, intuitively, is just to remove the need for a “target” event from the
sheaf-construction constraints given by Eqs. (10) and (11). All memories are, in this case,
constructed from the present by FCHs, with no “ground truth” targets as constraints. We
can restate Theorem 3 in the language of representable functors.

Definition 13. For a locally small category C, a presheaf on C or equivalently, a functor

f : Cop → Set on the opposite category of C and with values in Set is representable if it

is naturally isomorphic to a hom-functor:

hX := homC(·, X) : Cop → Set

that sends an object U ∈ C to the hom-set HomC(U,X) in C and that sends a morphism

α : U ′ → U in C to the function which sends each morphism U → X to the composite

(U ′
α→ U)→ X.

As noted in the discussion of Eq. (12), the existence of G,Gsh renders time functorial,
and hence requires all diagrams with horizonal time arrows and vertical type-assignment
arrows to commute. The above conditions are, therefore, satisfied whenever Eq. (11) and
(12) are satisfied, i.e. whenever a typing is entropic.

5As we began in §2 with an informal notion of the relation between experienced events, we can simply

stipulate that their topology is Grothendieck. Nothing we have done is inconsistent with this slightly

stronger notion of discreteness.
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This construction suggests a precise formal model of the implementation of human
episodic memory, i.e. of the structure of the memory-encoding “engram” (Eichenbaum,
2016; Josselyn & Tonegawa, 2020) as implemented by networks of neural connections:

Prediction: The (episodic) engram is a representation of Gsh.

The observed context-dependence of episodic recall follows immediately from the definition
of Gsh in this model. If this prediction is correct, humans reconstruct an experienced time,
at each instant of recall, by reconstructing a memory. Hence time itself is condensed.

This condensed representation of episodic memory, and therefore of event-dependent
time, also provides a natural link to the traditional notion of an “objective” continuous
time. Pro-étale sites simplify open sets, so condensed sets simplify topological spaces:

Proposition (Proposition 3.1 Clausen & Scholze (2021)): The forgetful functor from
the category of topological spaces to condensed sets is a faithful functor. It becomes fully
faithful when restricted to compactly generated spaces. This functor admits a left adjoint,
which sends a condensed set T to the topological space given by the underlying set T ∗ of
T equipped with the quotient topology induced by the map ⊔

S→T
S → T ∗ where S runs

over all (κ-small) profinite sets mapping into T . The counit of this adjunction coincides
with the counit Xcg → X of the adjunction between (κ-small) compactly generated spaces
and topological spaces.

Hence we can see the discrete time constructed from the present by Theorem 3 as a local,
observer-specific coarse-graining of a continuous time. Nothing in the construction, how-
ever, guarantees any straightforward relationship between distinct such coarse-grainings.
The local “times” of different experiencing agents will, in general, not be commensurable.

11 Assumptions, implications, and proposed experimental

tests

Our goal here has been to develop a strict, well-defined formal representation of a pre-
viously informal notion, that of constructive episodic memory and hence of constructive,
agent-specific, experienced time. Such formal representations serve to make assumptions
explicit and to raise new questions to the status of explanada. They also allow rigorous,
purely formal assessments of consistency between theories developed from different start-
ing assumptions and intended to model and/or explain different phenomena. The present
formalism, for example, provides a model of the agent-specific time reference frame re-
quired for full compliance with the Markov blanket condition imposed on agents by the
Free-Energy Principle (Fields, Friston, Glazebrook and Levin, 2022).
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We assumed in §2 that long experienced times could be treated independently of space.
The independence of space as a “container” through which systems evolve in time is funda-
mental to classical (Newtonian) physics, and is at least approximated by the “folk physics”
that humans develop in early childhood (Bjorklund & Ellis, 2014) and appear to largely
share with other large-brained mammals. Indeed, it is the intuitive nature of space-time
independence that renders relativistic physics counter-intuitive. Recent experimental work
indicates that space and time representations are dissociable at the functional-network
level in humans for short-duration event sequences (Schonhaut, Aghajan, Kahana & Fried,
2022), suggesting at least that the same is true for the long-time representations of interest
here. Such dissociability is assumed by all models that treat spatial representations as
“maps” that are invariant across time, as they must be to support flexible composition of
sequences of actions either in memories or in plans (McNamee et al., 2022).

Experienced long times being entropic is a requirement for temporal directionality and
hence a past-future distinction. Equation (8) states this requirement, so it or an equivalent
is an essential component of any theory of time that supports human phenomenology,
or indeed, of any theory consistent with the 2nd Law of Thermodynamics. The sheaf-
theoretic treatment developed in §6 - 9 follows from Eq. (8) together with the use of FCHs
to maintain object identity across gaps in observation. The formal development in these
sections makes precise the empirically-motivated “picture” of FCH construction in Fields
(2012). More generally, it provides an explicit formal mechanism for the idea of object
continuity over time that underlies the operational notion of object persistence.

The formal development of §10 likewise provides a precise statement of the informal,
empirically-motivated idea of episodic memories being constructive. It predicts, in partic-
ular, that episodic engrams encode executable operations – representations of the functor
Gsh – that generate particular memories given particular cues. Hence it predicts that ret-
rospective and prospective memory are mechanistically symmetrical. This symmetry can
be made manifest by formulating local (to the present) analogs of the standard qualitative
temporal-logic operators Always, Sometimes, and Never, as well as quantitative extensions
such as At least twice in the past, etc. Let R(a, b, . . . ) be an arbitrary relation on a
finite set of objects {a, b, . . . }. We can define, relative to an event Vc:

• Always (R(a, b, . . . ) := ∀ sections s of F̃, (R(a, b, . . . ) on s.

• Sometimes (R(a, b, . . . ) := ∃ a section s of F̃ such that (R(a, b, . . . ) on s.

• Never (R(a, b, . . . ) := ¬∃ a section s of F̃ such that (R(a, b, . . . ) on s.

Alternatively, (R(a, b, . . . ) on all, some, or no images of Gsh acting on Fc. Note how these
definitions depend on time being entropic, i.e. on Vc encoding “past” relational information
that applies equally to constrain the “future” of prospective memory. Such information can
clearly be considered to include probability distributions, i.e. Vc can be taken to encode
prior probabilities of predictable events.
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The symmetry of Gsh raises an obvious question: the theory requires that time be
entropic, but what guarantees this operationally? What assures, at the implementation
level, that past relational information is built into current representations, as required by
Eq. (8)? This is an empirical question for which we can make a testable prediction:

Prediction: Episodic memory depends mechanistically on stigmergic memory.

As pointed out earlier, episodic memory depends on the persistence of typings, and hence
on semantic memory. This prediction is stronger: episodic memory depends also on the
existence of external records, accessible in the present, that encode past relational informa-
tion. Semantic memory of the existence of such records may substitute in part for current
access to stigmergic records, but not entirely. Hence we predict a fundamental asymmetry
in the implementation of memory:

Prediction: Stigmergic memory is primary; semantic and episodic memory are deriva-
tive.

This prediction can be empirically tested in basal cognitive systems, and appears to be
borne out: stigmergic memories are ubiquitous across phylogeny, while semantic and
episodic memories appear to be limited to late-evolved, large-brained vertebrates and
cephalopods (Fields, Glazebrook & Levin, 2021). It is also supported by considerable
observational evidence in humans. For humans, a major source of stigmergic memories is
other humans; written records, photographs, other artifacts, landscape modifications, etc.
provide additional sources. Both the content and the credibility of these sources are highly
manipulable. False-memory induction in therapeutic and other settings (e.g. Loftus, 2017)
thus provide evidence for the role of stigmergic memory in the construction of episodic
memories. Induced biases in planning provide similar evidence in the prospective direc-
tion. We can, indeed, expect radical manipulations of stigmergic memory to phenocopy
organic neurological dysfunction or neurodegeneration, as plausibly observed in cases of
delusional-belief induction by cults, conspiracy theories, and psychological torture.

While both stigmergic and semantic memories often encode explicit, external-clock
referenced time information, the model developed here implies, as noted earlier, that such
external time information is insufficient for an experience of time. This dissociation between
an impersonally known and a personally experienced past and, analogously, between an
impersonally predictable and a personally plannable future have been observed in amnesic
patients (Klein, Loftus & Kihlstrom, 2002).

The symmetry of Gsh also implies that both reconsolidation and competition effects
observed in memory encoding (reviewed in Josselyn & Tonegawa, 2020) will also be ob-
servable in planning, where they will present as context-specific biases. More precisely, we
can predict that:

28



Prediction: Episodic recall and planning of an event V employ the same engram complex.

Activation of “nearby” memories Vi of a target event Vj should disrupt planning of Vj .
Finally, the symmetry of Gsh implies that the source-monitoring processes that distin-

guish memories from plans and hence support a phenomenological past/future distinction
are independent of the engram itself. As in the case of perception versus imagination source
monitoring (e.g. Dijkstra Kok & Fleming, 2022), we can expect memory versus planning
source monitoring to be a metacognitive process that synthesizes contextual evidence, in-
cluding strength of top-down control. We predict that plans and memories can be confused
in contexts in which top-down control is sufficiently relaxed.

12 Conclusions and extensions

In this paper, we have developed the basic formalism needed to represent events and
episodic memory in a localized, agent-dependent functorial time. This formalism makes
precise the idea that episodic memories are constructs enacted in the present, and frees
temporal reasoning from the ontological constraint of a continuous “objective” time equally
shared by all experiencing agents. We are led quite naturally to a significant empirical
prediction, that episodic memories are encoded as representations of a particular functor,
Gsh, that constructs retrospective pasts and prospective futures subject to the constraint
of time being entropic, i.e. satisfying Eq. (8).

The constructions we report here leave open the question of how to most effectively rep-
resent typing inconsistencies in either retrospective pasts or prospective futures. Planning,
in particular, typically involves projecting multiple, mutually-inconsistent future environ-
mental contingencies and courses of action. Retrospective memory can, however, also
involve uncertainties about what actually happened, particularly during periods of non-
observation.

One approach to these questions is suggested by Fig. 4 and the formalism of topological
field theories: it is to reformulate episodic memory in terms of cobordisms, and to allow
topologically-complex evolutions that involve multiple intermediate boundaries. A second,
more algebraic approach is suggested by Theorem 2: it is to generalize in the direction
of derived categories and perverse sheaves. These approaches may, indeed, prove to be
closely related. Working from the “diamond” construct of Scholze (2017), one of us recently
conjectured a pro-diamond (Dobson, 2021a) towards a theory of pro-emergent time. This
construction naturally suggests a holographic interpretation (Dobson, 2021b) and hence a
formulation in terms of cobordisms.

To conclude, we suggest that viewing time as event-dependent, constructive, and in-
deed as condensed into a functorial operation on the present opens new opportunities for
modeling episodic memory, planning, and temporal reasoning. The formal methods en-
abling such a view have intriguing connections to field theories, particularly topological
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field theories. They enable novel predictions that are potentially testable as methods for
analyzing neuronal networks in humans and other organisms are further developed. Fi-
nally, such methods suggest a deeper connection between models of time and constructive,
experience- and reference-frame dependent models of space.
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