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Abstract

We develop an approach to temporal logic that replaces the traditional objective, agent- and

event-independent notion of time with a constructive, event-dependent notion of time. We

show how to make this event-dependent time entropic and hence well-defined. We use sheaf-

theoretic techniques to render event-dependent time functorial and to construct memories

as sequences of observed and constructed events with well-defined limits that maximize the

consistency of categorizations assigned to objects appearing in memories. We then develop

a condensed formalism that represents memories as pure constructs from single events. We

formulate an empirical hypothesis that human episodic memory implements a particular

constructive functor.
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1 Introduction

Temporal logics in the lineage of A. N. Prior’s (1957) tense logic TL are well developed

and have been broadly applied to formalize temporal reasoning in ordinary language and,

particularly since Pnueli (1977), execution traces generated by linear or concurrent com-

putions (for reviews see Fisher, 2008; Hodkinson & Reynolds, 2007). “Time” in such logics

may be discrete or continuous, linear or branching; in either case it is unidirectional, i.e.

representable as a directed acyclic graph (DAG). “Events” are effectively possible worlds

2



(PWs), sets of propositions that may, but do not necessarily, refer to past or future events,

including past or future events on specific branches and at specific times. While events

are labeled by and hence notionally dependent on time as a parameter, time is treated as

independent of the events that it labels. This “objective” notion of time is familiar from

ordinary language, classical physics, and nonrelativistic quantum mechanics (e.g. Landau

& Lifshitz, 1958).

Here we consider models in which events are primitive and time is an inferential con-

struct. This view of time as event-dependent is motivated by observer-dependent, entropic

definitions of time (Rovelli, 2017; Tegmark, 2012) and by cosmological models in which

spacetime is emergent from underlying informational processes (e.g. Arkani-Hamed & Trnka

J. , 2014; D’Ariano & Perinotti, 2017; Pastawski et al., 2015; Swingle, 2012). Similar con-

ceptions of time as nonobjective can be found in constructivist approaches to cybernetics

(Fields et al., 2017; von Foerster, 2003) and to the psychology of perception (Fields et al.,

2018; Hoffman, Singh & Prakash, 2015), and in some postmodernist philosophical thinking

(Baudrillard, 1983; Deleuze & Guattari, 1987). We show how this event-dependent concep-

tion of time provides the flexibility needed to model phenomena such as episodic memory

and object-identity tracking (Fields, 2016; Scholl, 2007) in a realistic way.

We begin by showing that events specified by finite numbers of n-ary relations on finite

numbers of objects can be redescribed by finite multi-hypergraphs (MHGs). Events here

correspond to “event files” as defined by Hommel (2004) in the short-duration limit; objects

correspond to time-stamped “object tokens” as defined by Zimmer & Ecker (2010). These

structures naturally give rise to an entropic conception of time. Time in this representation

becomes both discrete and functorial, consistent with its functorial nature in topological

field theories (Atiyah, 1988). We then reformulate events in the more expressive language

of sheaves, and show how memories, whether retrospective or prospective, can be viewed as

intermediate steps between an experienced event and a sheaf-theoretic limit that captures

the maximum information available in that event. As a final step, we employ the methods

of Clausen & Scholze (2021) to condense memories onto a notional point interpretable as

the present, in the process demonstrating the construction of extended “past” and “future”

representations from this point. This enables us to make a specific, formal prediction about

the implementation of episodic memory in humans. We close by reformulating the standard

operators Always, Sometimes, and Never as localized operators on memories constructed

from the present.
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2 Events as MHGs

Barwise & Perry (1983) define an “event” as a finite set of individual objects {a1 . . . an}, a

set of unary properties P (x), a set of binary relations R(x, y), and a collection of metadata

including “situational state” and a spacetime location. Such events are clearly amenable

to organization with standard spatial and temporal logics that treat spacetime location as

event-independent.

Somewhat broader concepts of “events” have been introduced by psychologists, begin-

ning with the “event file” defined by Hommel (2004), a transient representation of objects,

motions, and actions as well as affective states and motivations of agents including the self,

information that would be attached as metadata to an event as defined above. Event files

capture an “instantaneous” situation, including occurent actions, in a short-duration limit

of approximately 350 ms (Zmigrod & Hommel, 2011), but can also represent temporally-

extended “events” when time is suitably coarse-grained (see also Altmann & Ekves, 2019;

Cohn-Sheehy & Ranganath, 2017, for more recent extended event models).

Here we define an (instantaneous) event as follows:

Definition 1. An (instantaneous) event V = (A,R,M) comprises a finite set A of n

objects, a finite set R of unary to (n−1)-ary relations together with a unique n-ary relation

V , and a finite list M of metadata.

The relation V (a1, . . . an) indicates that the objects a1, . . . an all occur in the single named

event V, which can be thought of informally as a component of an instantaneous state

of a PW. We will also use the simplified notion a, b, c, . . . for objects and P,Q,R, . . . for

relations within an event. The metadata may include labels such as ‘occurent percept’

or ‘(episodic) memory’ as discussed in §7 below. Definition 1 generalizes that of Barwise

& Perry (1983) by allowing (n − 1)-ary relations, but restricts it by removing spatial

and temporal labels from the metadata. Spatial relations and hence spatial labels do not

concern us here; temporal relations are constructed as discussed in §4 below.

While the notation of 1st order logic is traditional, here we will employ the alternative

notation of MHGs for reasons that will be come clear.

Definition 2. A multi-hypergraph (MHG) comprises a finite set N of m labeled nodes and

a finite set H of unary to m-ary labeled hyperedges.
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Note that the number of hyperedges on any collection of 1 ≤ m nodes is unrestricted,

unlike in a standard hypergraph. If two MHGs G and H each contain a node with some

particular label, we will say that they share the node with that label.

Definition 3. An MHG morphism is a map f : G → H, G and H MHGs that share at

least one node, that 1) adds or deletes one or more nodes to/from G and/or 2) adds or

deletes one or more hyperedges to/from G.

Each MHG G has a unique associated MHG morphism IdG : G 7→ G that leaves the nodes

and hyperedges of G fixed, and MHG morphisms obviously compose associatively; MHGs

and their associated morphisms thus define a category MHG.

We will be particularly interested in MHGs in which the nodes are interpreted as ob-

jects, the hyperedges are interpreted as relations, and there is only a single n-ary hyperedge

V , n the number of nodes/objects, interpreted as indicating that the objects a1, . . . an co-

occur in a single event. We will consider such MHGs to have attached metadata and will

for simplicity also refer to them as “events”. MHG Morphisms that preserve these in-

terpretations clearly compose associatively; hence we can think of these metadata-labeled

MHGs as composing a subcategory of MHG that is effectively a “category of events” as

described more precisely below.

3 Categorization and object identity

Beginning in early infancy, humans segregate perceived objects from the “background”

and assign them to cognitive categories, e.g. as being a person, chair, tree, etc. based on

their properties and relations (Baillargeon, Spelke & Wasserman, 1985; Xu, 1999). It is

commonplace to treat categorization as hierarchical, with a category name such as <thing>

as the root. Formally, we assume a finite, rooted DAG Cat in which each node i is labeled

with a set Ci of finite descriptors and each downward-directed edge i → j represents

specialization to a less-inclusive category j.

Definition 4. A categorization is an assignment of one or more additional hyperedges,

each labeled with some sub-DAG of Cat, to each of the nodes (i.e. objects) in an MHG

representing an event.

We employ the term “categorization” to emphasize that assigning a category descriptor to

an object is a cognitive process that attaches further semantic information, beyond that of
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observed inter-object relations, to an event. We can represent an event with its attached

categorization as in Fig. 1. When drawn this way, it is clear that the categorized event is

itself an MHG; we can therefore view a categorization C as an MHG morphism:

C : (A,R,M) 7→ (A, (R t ⊕iCi),M) (1)

with t disjoint union and the Ci sets of descriptors labeling nodes in the relevant sub-DAG

of Cat.

Figure 1: a) A 4-object event V(a, b, c, d) with 2-ary (orange) and 3-ary (magenta) relations

between objects, “decorated” with unary and binary categorizations. b) The categoriza-

tions in a) can be regarded as “bundled together” (indicated by knotted string) over the

event V to emphasize that they “add information” to V.

An “object token” as defined Zimmer & Ecker (2010) represents a categorized object

within a given event. Identifying an object as an individual assigns it to a singular category,
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a leaf node of Cat. The features, i.e. unary relations, of an object are often sufficient for

individual identification, e.g. when recognizing a friend by her face. Beginning in childhood,

humans also employ history information for individual identification (see e.g. discussion in

Fields (2012)); we defer consideration of histories to §7.

4 Inter-event object identity induces temporal arrows

Now consider two events V1(a, b, c) and V2(a, b, c, d) as shown in Fig. 2. The objects a, b,

and c are present in both events, but what constitutes the evidence that a, for example,

reappears in V2? This is the question of individual identification, a question that remains

unresolved despite decades of experimental work and millenia of philosophical speculation

(Fields, 2016; Scholl, 2007). The only kind of evidence thus far defined is categorization:

here the object a has been assigned the same (possibly singular) categorization in both V1

and V2, the object b has been assigned different categorizations in the two events, and the

object c in V1 is joined by a new member, d of the same category in V2. We can consider

these categorizations to indicate, effectively, “hypotheses” that a, b, and c are shared by

V1 and V2, and that c and d are related but non-identical. With this interpretation, we

can view the categorizations as inducing a map:

T12 : a 7→ a; b 7→ b; c 7→ c;V1 7→ V2

This map is clearly an event morphism. We will call this map T12 a “time” map from V1

to V2 as it captures the intuition that time is what connects events that share at least one

object. In general, we can write:

Tij : Vi 7→ Vj (2)

for distinct events Vi and Vj . Directionality is imposed by requiring that T be a partial

order on the set of all events, with the maps Tij becoming arrows or compositions of

arrows in the Hasse diagram for T . Directionality in this sense forbids temporal loops, but

allows any event to have arbitrarily many “pasts” and “futures”; hence it fully capures the

branching time constructs common in concurrency applications. Note that past and future

events may be isomorphic; no entropic or other means of distinguishing past from future

from past events by content is assumed.
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Figure 2: Two events joined by shared categorizations; T12 is the induced time morphism.

With this notation, we can characterize the Evt subcategory of MHG as the subcate-

gory in which the objects are events with categorizations and the morphisms Tij between

distinct events are supplemented by identities that (abusing notation) can be written Tii.

5 Entropic categorization as adjoint time

To further investigate the relationship between categorization and time, it is convenient to

consider the functor:

f : Evt→ Chu

where Chu is the category of Chu spaces (O,A, |=), O a set of objects, A a set of attributes,

and |=⊆ O × A a satisfaction relation (Barr (1979); see Fields & Glazebrook (2019a) for
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discussion and examples). Morphisms within Chu are adjoint pairs
−→
f ,
←−
f such that for

Chu spaces (O,A, |=) and (O′, A′, |=′):

−→
f :O → O′

←−
f :A′ → A

such that ∀o ∈ O and ∀a′ ∈ A′,
−→
f (o) |=′ a′ iff o |=

←−
f (a′). In the Channel Theory language

of Barwise & Seligman (1997), the adjoint pair
−→
f ,
←−
f is an “infomorphism” between “clas-

sifiers” representable as Chu spaces (again see Fields & Glazebrook (2019a) for discussion

and examples).

If we now consider events Vi with objects Ai and relations Ri and Vj with objects Aj
and relations Rj such that:

f : Ai 7→ O;Aj 7→ O′;Ri 7→ A;Rj 7→ A′,

we can write Tij : Vi 7→ Vj as the adjoint pair:

−→
Tij :Ai → Aj (3)
←−
Tij :Rj → Ri (4)

The forward component
−→
Tij is the “time” through which objects evolve, while the backward,

adjoint component
←−
Tij is the “time” of (retrospective) memory, restricted to require that

every relation – including every categorization – in Rj maps to a unique relation in Ri.
This restriction is effectively entropic: it requires Card(Ri) ≤ Card(Rj), which can be

written as a “Second Law” S(Ri) ≤ S(Rj) by defining an “entropy” S(X) = log(Card(X))

for any set X. We can then define:

Definition 5. An entropic categorization is a categorization of objects shared by events Vi
and Vj for which the adjoint time operator

←−
Tij in Eq. (4) is well-defined.

In general, events involve varying numbers of objects and relations; hence a categorization

may fail to be entropic if it joins a current event involving few relations to a past event

involving many relations. Using Eq. (1) to write:

R = Rcore t ⊕kCk
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We can see that the condition:

(S(⊕kCjk)− S(⊕kCik)) > (S(Rcorej )− S(Rcorej )) (5)

guarantees increasing entropy from Vi to Vj and hence well-defined adjoint time Tij . We

can interpret Eq. (5) as requiring that entropic categorizations “build in past relational

information” about the objects they categorize. This lays a foundation for viewing entropic

categorizations as “histories” of objects in §7. Hence while such categorizations carry no

explicit temporal information, they can be viewed as encoding expectations about how

an object will behave in future events. Such expectations enable prospective memory, i.e.

prediction of and planning for future events.

6 Entropic categorizations as presheaves

We use the language of sheaves to investigate the construction of temporal relations between

events, leading eventually to the construction of temporal histories of individual objects,

and the binding together of such histories into episodic memories (Tulving, 2002) and

generative models (Friston, 2010). We will see that such constructions can fail to be

unique, producing a “plurivocity” of distinct times and “identities” for objects.

To begin, we note that by adding a null, i.e. 0-ary relation V̄ to each event, we can

re-express events as discrete topological spaces in which every subset {ak} ∈ A of objects

related by some relation R(ak) ∈ Rcore is an open set. Recall the idea of a presheaf:

Definition 6. (Hartshorne, 1977) Let X be a topological space. A presheaf of sets on X

is a contravariant functor F : Op(X)→ Sets on the category Op(X) of open sets of X.

Lemma 1. Entropic categorizations are presheaves on events.

Proof. Let {Vi} be a set of of events with an entropic categorization C. For any event

Vi, F : Ai → {Cik}; i.e. F maps each object to its category labels as assigned by C(Vi).
Hence F inherits compositionality and respect for identities from C. Contravariance of F

is guaranteed by contravariance of
←−
Tij whenever C is entropic.

We can think of F as mapping each event Vi to its categorization C(Vi); hence we will

abuse notation slightly and write:
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F : V 7→ C (6)

to indicate that C is an entropic categorization of the set V = {Vi} of events, viewed as a

presheaf F.

7 Constructed events and memories

Presheaves of events provide a natural representation for events as experienced. A key

aspect of the construction of time, however, is the assumption that between any two distinct

experienced events, other events occured that were not experienced. We all, for example,

assume that various things happened between yesterday evening and this morning, and

are eager to fill in knowledge of these happenings by checking the morning news. This

“filling in” process is, moreover, essential to the maintenance of object identity through

time, which requires the generation of fictive (i.e. unobserved) causal histories that explain

what objects were doing between events of observation (Fields, 2012, 2013). Such fictive

histories allow us to make immediate judgements about, for example, whether it is plausible

that Jones was in Paris last weekend.

Consider now a set V = {Vi} of observed events over which some entropic categorization

C defines a presheaf F via Lemma 1 above. Now recall:1

Definition 7. A profinite set is a compact, Hausdorff, totally disconnected topological

space that is a formal cofiltered limit of a collection of finite sets.

The elements of a profinite set constructed as a limit of V would “fill in” event-like elements

“between” the observed events in V while maintaining the discrete topology. Call these

filled-in elements constructed events Ṽj and consider an entropic categorization C̃ over a

profinite set Ṽ = V t {Ṽj} = {Vi} t {Ṽj} such that:

C̃ // C

Ṽ

F̃

OO

Proj // V

F

OO

commutes, where Proj projects the observed events V out of the profinite limit Ṽ. The

1All standard definitions not otherwise referenced are from https://ncatlab.org/nlab/show/HomePage.
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induced arrow in this case renders C̃ the limit, over Ṽ, of the observed categorization C.

It “fills in” the appropriate category labels over the constructed extensions of the objects

in the observed events Vi ∈ V, i.e. it creates their fictive causal histories.

As a limit, F̃ is unique. In practice, we will be interested in a sequence of events that

are “between” Ṽ and V, and hence presheaves F̃k such that:

C̃ // C̃k // C

Ṽ

F̃

OO

Proj // Ṽk

F̃k

OO

Proj // V

F

OO

commutes. Such a presheaf includes some, but not all, of the constructed events filled

in to form Ṽ. The commutativity constraint can be expressed more succintly by requiring

that for all k there are morphisms Gk,G
′
k such that:

F̃
Gk−−→ F̃k

G′
k−−→ F (7)

These Gk,G
′
k are clearly associative and respect identity; hence they are functorial. We

can, therefore, regard the nested presheaves F̃, . . . F̃k, . . .F together with the functors

Gk,G
′
k as forming a 2-category. The functors Gk,G

′
k pick out a particular intermedi-

ate presheaf F̃k that includes some, but not the maximal number, of constructed events

with their associated entropic categorization.

The existence of Gk,G
′
k renders entropic time functorial: the local entropic time oper-

ators embedded in each presheaf F̃k, and in the limits F̃ and F, must associate and respect

identities if the Gk,G
′
k do so. The sets Ṽk of events, including the “observed” events V

and the maximally “filled in” limit Ṽ can, therefore, all be viewed as “small” categories.

This categorical interpretation of the Ṽk is natural given the neuroscience of “layers” of

processing in which within-layer connections are interactions between representations of

a given type, level of abstraction, and semantics, while “vertical” connections between

layers are effectively maps between different types of representations at different levels of

abstraction and with different semantics (see Fields & Glazebrook (2019b) for extensive

discussion).

The entropic condition (5) can be viewed as “classicalizing” the functorial time evolu-

tion of events represented by coordinate-free (hence “topological”) quantum states (Atiyah,
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1988), allowing a functorial time in a setting containing bounded and hence classical ob-

jects (cf. the construction of “objects” from quantum interactions in Fields, Glazebrook

& Marcianò (2021)). This classicalization can be viewed as a coarse-graining, confirm-

ing the dependence of entropic time on coarse-grained “macroscopic” degrees of freedom

emphasized by Rovelli (2019).

Let us consider, as above, an entropic categorization F of “observed” events. We are

now in a position to state:

Definition 8. A memory associated with an “observed” entropic categorization F is a

presheaf F̃k satisfying the commutativity constraint stated by Eq. (7).

A memory is retrospective if its events are arranged in positive temporal order from some

past event to the present, and is prospective if its events are arranged in positive temporal

order from the present to some future event. A prospective memory can also be considered a

plan (see Schacter & Addis, 2007, for extensive discussion). We can also regard memories as

either retrospective or prospective histories as this term is used in Fields (2012), bearing

in mind that here “history” is as constructed by a remembering or planning agent, not

“objective” in the sense of agent-independent.

We emphasize that between any two observed events V1 and VN there can exist many

distinct memories that may include both additional observed events and different numbers

of filled-in constructed events. Distinct memories may encode different fictive causal his-

tories of the objects appearing in V1 and VN as illustrated in Fig. 3. These memories may

impose inconsistent categorizations on the “boundary” events V1 and VN.
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Figure 3: Two distinct memories connecting two observed events V1 and VN. Panel a) has

only observed events V1 and VN, plus four constructeds events (dashed ovals). Panel b)

adds an observed event Vk in which an object ok (dashed trajectory) not included in either

V1 or VN appears. Because they contain different sets of observed events ({V1,VN} versus

{V1,Vk,VN}), they have different profinite limits that may, but may not, be consistent as

categorizations.
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Larger numbers of observed events further “classicalize” the functorial time evolution by

imposing constraints on both the particular paths taken by the incorporated objects and,

as illustrated in Fig. 3b, the co-occurence of new objects and hence new potential interac-

tions in particular “internal” events. Memories with large numbers of observed events are

analogous, in a quantum-theoretic setting, to trajectories with intervening “which-path”

measurements; however, we will not pursue this analogy here.

8 Memories as sheaves

The event-dependent, constructed time of retrospective and prospective memories provides,

in the current framework, an alternative to the objective time of TL and its descendants.

Before defining modal operators on this constructed time, however, it is useful to complete

the formal characterization of memories as sheaves. Recall that:

Definition 9. (Hartshorne, 1977) Let X be a topological space. A sheaf F on X is a

presheaf satisfying two axioms:

• Let U be an open subset of X and Ui an open cover of U . Given a collection of

sections si on Ui, with si|Uij = sj |Uij, then there exists a section s on U such that

s|Ui = si.

• Let U be an open subset of X and Ui an open cover of U . If s is a section on U such

that ∀i, s|Ui = 0, then s is zero.

The collection {Ck} of category descriptors assigned by C to events Vi ∈ V is clearly an

open cover of the set A = {Ai} containing any object that appears in any event contained

in V. Hence we immediately have:

Lemma 2. F̃ is a sheaf on Ṽ.

Proof. We consider the discrete topology on Ṽ. Both sheaf conditions are guaranteed by

the functorial nature of the morphisms Gk,G
′
k between presheaves nested in F̃, i.e. by Eq.

(7).

Viewing the discrete topology on Ṽ as a stratification, we will consider any entropic cat-

egorization as a constructible sheaf that is locally constant on the strata in our forthcoming

Part II of this paper. Recall the following:
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Theorem 1. Sheafification (Theorem 1.2.9 of Alper (2021)) Let S be a site and Sh(S)

and Pre(S) be the categories of sheaves and presheaves, respectively, on S. The forgetful

functor f : Sh(S)→ Pre(S) admits a left adjoint f → f sh, called the sheafification.

Recall from the discussion of Eq. (7) that the functors Gk,G
′
k render time functorial

and hence the memories Ṽk as well as their limits V and Ṽ small categories. Hence Ṽ can

be considered a site. We have from Lemma 1 that F̃ is a sheaf on Ṽ. The functors Gk are

clearly forgetful; hence Theorem 1 allows us to construct adjoints Gsh
k .

The “upwards” construction in Fig. 1b has previously been shown (Fields & Glaze-

brook, 2019b) to have a “downwards” dual in which objects are viewed as labels (“in-

stances”) attached to the category descriptors, which now play the role of the “objects”

being labeled. This duality has previously been explored in the setting of Barwise-Seligman

classifiers and their associated infomorphisms. Here we consider this duality, for each mem-

ory k, as the specific left adjoint Gsh
k defined above as the sheafification. Whereas Gk

expresses a consistency condition on objects that is imposed by an entropic categoriza-

tion, the adjoint Gsh
k expresses a consistency condition on entropic categorizations that is

imposed by (the assumption of) object identity. We can therefore dualize Eq. (7) as:

F̃
Gsh

k←−− F̃k
Gsh′

k←−−− F (8)

The Gsh
k ,G

sh′
k are effectively embeddings of memories within more-inclusive, but fully con-

sistent, memories involving the same objects and categorizations, up to the limit specified

by F̃.

Recalling the discussion of Fig. 3b above, it is clear that this sheafification-induced

duality depends on consistent categorization at each step k of the embedding Gsh
k ,G

sh′
k ;

Eq (4) can, therefore, be viewed as a consistency test. Failures of Eq (4) can be due to

failures of object identity, e.g. an object losing some “essential” identifying property or

relation in some incorporated event. “Mistakes” about object identity leading to unex-

pected consequences are common enough among humans to be a literary trope; see Scholl

(2007) or Nichols & Bruno (2010) for examples and Fields (2012) for further discussion.

They can also, however, be due to “intrinsic” (or “quantum”) context changes, as dis-

cussed in this sheaf-theoretic context by Abramsky & Brandenburger (2011); see Fields

& Glazebrook (2020) for further discussion. As a “context” in this sense is specified by a

set of objects and relations, “enlarging” an event by embedding it in a larger events risks
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context change, and hence failure of Eq (4). Increasing the number of degrees of freedom

of a joint system that are measured, for example, can introduce context shifts and hence

violations of the Kolmogorov axioms by the joint distributions of observational outcomes

in a quantum setting (Kochen & Specker, 1967). Events that introduce new objects and

relations, as illustrated in Fig. 3b, must in principle be proved to introduce no significant

context change. The question of how to construct such proofs is known in AI as the Frame

Problem (McCarthy & Hayes, 1969); it is now known to be intractable (again see Fields &

Glazebrook (2020) for discussion).

9 Sheaves over mutually-consistent memories

Consistency of categorization across a collection of memories is effectively a gluing con-

dition; hence we can re-express the consistency condition implicit in Eq. (8) through a

further sheaf construction. We follow a procedure one of us recently used to conjecture

a pro-diamond (Dobson, 2021a) (Dobson, 2021b) towards a theory of pro-emergent time;

here, we construct a pro-object of the category Shv of sheaves. Def. 7 can be generalized

to:

Definition 10. A pro-object of a category C is a formal cofiltered limit of objects of C.

Note that a profinite set is a pro-object in FinSet. The category of pro-objects of an

arbitrary category C is written Pro-C, and meets the following conditions:

• The objects are pro-objects in C.

• The set of arrows from a pro-object F : D → C to a pro-object G : E → C is the

limit of the functor (Dop × E)→ Set given by HomC(F (·), G(·)).

• Composition of arrows arises, given pro-objects F : D0 → C, G : D1 → C, and

H : D2 → C of C, by applying the limit functor for diagrams (Dop × E) → Set to

the natural transformation of functors (HomC(F (·), G(·)) ×HomC(G(·),H(·))) →
HomC(F (−), H(−)) given by composition in C.

• The identity arrow on a pro-object F : D → C arises, using the universal property

of a limit, from the identity arrow HomC(F (c), F (c)) for every object c of C.
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We now state the following:

Theorem 2. The sheaf over entropic categorizations of objects/events is a projective limit

of a sheaf over objects/events. Therefore, the sheaf over categorizations is a pro-object in

Shv, the category of sheaves.

Proof. Let I be a partially ordered set. Recall the following:

Definition 11. Rotman (2000) Given a partially ordered set I and a category C, an inverse

system in C is an ordered pair ((Mi)i∈I , (ψ
j
i )j≥i) abbreviated {Mi, ψ

j
i }, where (Mi)i∈I is an

indexed family of objects in C and (ψji : Mj →Mi)j≥i) is an indexed family of morphisms

for which ψji = 1Mi for all i, and such that the following diagram commutes whenever

k ≥ j ≥ i.

Mk Mi

Mj

ψk
i

ψj
i

ψk
j

Now let Mi be the graded sheaf over i-objects/events, Shv the category of sheaves, and

{Mi, ψ
j
i } an inverse system in Shv over I. Take the sheaf over categorizations of ob-

jects/events as an object lim
←
Mi. By definition of entropic categorization we have a family

of projections (αi : lim
←
Mi → Mi)i∈I . For our inverse system to be a projective limit we

need:

• i) ψjiαj = αi for i ≤ j,

• ii) for every X ∈ obj(Shv) and all morphisms fi : X → Mi satisfying ψji fj = fi

for all i ≤ j, there exists a unique morphism θ : X → lim
←
Mi making the diagram

commute.

lim
←
Mi X

Mi

Mj

αi
fi

αj

θ

ψj
i

fj
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Conditions i) and ii) are just the consistency conditions for sequentially embedding the

entropic categorizations C̃k; they are met whenever (8) is satisfied as discussed above.

Theorem 2 provides a maximal consistent memoryM between any two observed events.

As noted above, there may be other memories, inconsistent with M and at least some of

its components, that connect these events and include object identity changes or context

shifts. We will focus on these in the forthcoming Part II of this paper; here we turn to

our final constructive step before localizing the usual operators Always, Sometimes, and

Never to individual memories.

10 Condensing memories onto the present

Any account of memory must eventually face questions of implementation, both for the

memory itself as a data structure and for the recall mechanism that retrieves one or more

memories in response to some cue. The “picture” of memories as sheaves, or as in Theorem

2, projective limits of sheaves, at least suggests the traditional view of (episodic) memories

as explicit records stored in a “library” of sorts and recalled via some kind of indexing

system. This explicit view of memory has largely been replaced by a constructive view of

memory (Hassabis & McGuire, 2009; Nadel et al., 2012; Schacter & Addis, 2007; Schwabe,

Nader & Pruessner, 2014) in which even observed events are reconstructed “on the fly”

and in a current-context dependent way. This constructive view suggests that what is

remembered is not a set of explicitly-represented events, but rather a set of operators

with which to construct such events. The previously-firm distinction between “observed”

and “constructed” events thus drops away; all (episodic) memory becomes more or less

constrained imaginative confabulation.

Here we employ methods developed by Scholze (2017) and Clausen & Scholze (2021)

to re-express the previous sheaf-theoretic “picture” of memory in terms of a “condensed”

object located at a single notional “point” that we interpret informally as “the present”

without committing ourselves to any particular ontology. This condensed object can, in

turn, be considered a representable functor, and so effectively a family of operators invok-

able at the present. These operators construct an extended, multi-event representation

(i.e. a memory) of the (retrospective) past or the (prospective) future.

Let C be a category, and let Cond(C) denote the category of “condensed” objects of

C. Clausen & Scholze (2021) show that Cond(C) can be represented as the category
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of small sheaves on C, or equivalently as a representable functor F : Cop → Set. More

formally, we have:

Definition 12. (Clausen & Scholze (2021) Definition 1.2) The pro-étale site ∗proét of a

point is the category of profinite sets Pro-FinSet, with finite jointly surjective families

of maps as covers. A condensed set is a sheaf of sets on ∗proét. Similarly, a condensed

ring/group/object is a sheaf of rings/groups/objects on ∗proét.

Now consider the “current” event Vc located at “the present” regarded as a point.

Recall from §3 that a categorization Cc of Vc is just an assigment of subgraphs of the

category hierarchy Cat to the objects in Vc. This assignment is a finite set of jointly

surjective maps, i.e. Cc : Cat→ Ac can also be thought of as a set {ξi} of maps ξi : Cat→
ai for each object ai ∈ Ac. We can, therefore, regard Vc as a pro-étale site on the present;

these sites inherit the discrete (indeed Grothendieck2) topology of events described earlier.

With this identification of Vc with ∗proét on the present, we can state:

Theorem 3. An entropic categorization is a condensed set.

Proof. With the above identification, the local functor Fc : Vc → Cc is a presheaf on ∗proét.

Hence all that is required is to extend Fc → F → F̃, and we have a sheaf over ∗proét by

Lemma 2. The required extension is, clearly, the adjoint pair G,Gsh satisfying Eq. (7)

and (8). These exist by construction for any entropic categorization.

We can restate Theorem 3 in the language of representable functors.

Definition 13. For a locally small category C, a presheaf on C or equivalently, a functor

f : Cop → Set on the opposite category of C and with values in Set is representable if it

is naturally isomorphic to a hom-functor:

hX := homC(·, X) : Cop → Set

that sends an object U ∈ C to the hom-set HomC(U,X) in C and that sends a morphism

α : U ′ → U in C to the function which sends each morphism U → X to the composite

(U ′
α→ U)→ X.

2As we began in §2 with an informal notion of the relation between experienced events, we can simply

stipulate that their topology is Grothendieck. Nothing we have done is inconsistent with this slightly

stronger notion of discreteness.
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As noted in the discussion of Eq. (8), the existence of G,Gsh renders time functorial, and

hence requires all diagrams with horizonal time arrows and vertical category-assignment

arrows to commute. The above conditions are, therefore satisfied whenever Eq. (7) and

(8) are satisfied, i.e. whenever a categorization is entropic.

This construction suggests a precise formal model of the implementation of human

episodic memory, i.e. of the structure of the memory-encoding “engram” (Eichenbaum,

2016) as implemented by networks of neural connections:

Prediction: The (episodic) engram is a representation of Gsh.

The observed context-dependence of episodic recall follows immediately from the definition

of Gsh in this model. If this prediction is correct, humans reconstruct an experienced time,

at each instant of recall, by reconstructing a memory. Hence time itself is condensed.

This condensed representation of memory, and therefore of event-dependent time, also

provides a natural link to the traditional notion of an “objective” continuous time. Pro-

étale sites simplify open sets, so condensed sets simplify topological spaces:

Proposition (Proposition 3.1 Clausen & Scholze (2021)): The forgetful functor from the

category of topological spaces to condensed sets is a faithful functor. It becomes fully

faithful when restricted to compactly generated spaces. This functor admits a left adjoint,

which sends a condensed set T to the topological space given by the underlying set T ∗ of

T equipped with the quotient topology induced by the map t
S→T

S → T ∗ where S runs

over all (κ-small) profinite sets mapping into T . The counit of this adjunction coincides

with the counit Xcg → X of the adjunction between (κ-small) compactly generated spaces

and topological spaces.

Hence we can see the discrete time constructed from the present by Theorem 3 as a local

coarse-graining of a continuous time. Nothing in the construction, however, guarantees

any straightforward relationship between distinct such coarse-grainings. The local “times”

of different experiencing agents will, in general, not be commensurable.

11 Localizing Always, Sometimes, and Never to a memory

With this model of memory as a localized, condensed representation of Gsh, we are in

a position to define completely local analogs of the standard qualitative temporal-logic

operators Always, Sometimes, and Never, as well as quantitative extensions such as At

least twice in the past, etc. Let R(a, b, . . . ) be a relation on a finite set of objects
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{a, b, . . . }. We can define, relative to an event Vc:

• Always(R(a, b, . . . ) := ∀ sections s of F̃, (R(a, b, . . . ) on s.

• Sometimes(R(a, b, . . . ) := ∃ a section s of F̃, (R(a, b, . . . ) on s.

• Never(R(a, b, . . . ) := ¬∃ a section s of F̃, (R(a, b, . . . ) on s.

Alternatively, (R(a, b, . . . ) on all, some, or no images of Gsh acting on Fc.

Note how these definitions depend on time being entropic, i.e. on Vc encoding “past”

relational information that applies equally to constrain the “future” of prospective memory.

Such information can clearly be considered to include probability distributions, i.e. Vc can

be taken to encode prior probabilities of predictable events. Unpredictable events fall

outside this framework, i.e. represent failures of prospective memory.

12 Conclusions and extensions

In this Part I, we have developed the basic formalism needed to represent events and

memory in a localized, event-dependent functorial time. This formalism allows us to free

temporal logic from the ontological constraint of a continuous “objective” time equally

shared by all experiencing agents. We are led quite naturally to a significant empirical

prediction, that episodic memories are encoded as representations of a particular functor,

Gsh, that constructs retrospective pasts and prospective futures subject to the constraint

of time being entropic, i.e. satisfying Eq. (5).

The constructions we report here leave open the question of how to most effectively

represent categorization inconsistencies in either retrospective pasts or prospective futures.

Planning, in particular, typically involves projecting multiple, mutually-inconsistent future

environmental contingencies and courses of action. Retrospective memory can, however,

also involve uncertainties about what actually happened, particularly during periods of

non-observation.

One approach to these questions is suggested by Fig. 3 and the formalism of topo-

logical field theories: it is to reformulate memory in terms of cobordisms, and to allow

topologically-complex evolutions that involve multiple intermediate boundaries. A second,

more algebraic approach is suggested by Theorem 2: it is to generalize in the direction of

derived categories and perverse sheaves. These approaches may, indeed, prove to be closely
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related. Working from the “diamond” construct of Scholze (2017), one of us recently con-

jectured a pro-diamond (Dobson, 2021a) towards a theory of pro-emergent time. This

construction naturally suggests a holographic interpretation (Dobson, 2021b) and hence a

formulation in terms of cobordisms.

To conclude, we suggest that viewing time as event-dependent, constructive, and in-

deed as condensed into a functorial operation on the present opens new opportunities for

modeling memory, planning, and temporal reasoning. The formal methods enabling such

a view have intruiging connections to field theories, particularly topological field theo-

ries. They enable novel predictions that are potentially testable as methods for analyzing

neuronal networks in humans and other organisms are further developed. Finally, such

methods suggest a deeper connection between models of time and constructive, experience

and reference-frame dependent models of space.
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