
Computational Individuation

Abstract

I argue that accounting for computational individuation is the most important desiderata

of a theory of physical computation by showing that indeterminacy objections to struc-

tural/mechanistic accounts of computation reduce to the indiscernibility objections made

against mathematical structuralists. Roughly, this is because the structural invertibility of

logic-gates such as AND/OR is caused by the structural identity of the binary computa-

tional digits 0/1 themselves. I use a proof of this result to show that pure computational

structuralism is untenable because structural indeterminacy entails absurd consequences –

namely, that there is only one binary computational digit.

§1. When it comes to providing a satisfactory account of physical computation, three main

adequacy conditions emerge from the literature. The first and most classic is the avoid-

ance of triviality, i.e., ensuring one’s theory does not entail that every physical system imple-

ments every computation.1 The second adequacy condition is that computational explanation

is medium independent, i.e., that an account of physical computation can capture the fact that

computational systems are built with distinct materials and specifications.2 The third most re-

cently discussed condition that is primarily aimed against computational structuralism, is to

ensure the determinacy of a truth-functional implementation of a structural dual pair, i.e., that

an account can tell us when a physical system is computing AND rather than OR.

I will argue that failing to meet this third adequacy condition is far more problematic than

has been recognised since it can lead to a reductio ad absurdum. This demonstrates that ensur-

ing the determinacy of a truth-functional implementation is the most important of the three

adequacy conditions, since failing to meet the others, though objectionable, does not entail ab-

surdity. After all, legitimate views like pancomputionalism reject the first (e.g. Scheutz [2001])

and some structuralists reject the second (e.g. Dewhurst [2018b]).
1Note this is the weakest version of the triviality condition; it can be strengthened to ensure an adequate theory

should not entail that every physical system implements some computation, i.e., the theory should place suitable
restraints on the simple mapping account. See Putnam [1988]; Sprevak [2018]; Schweizer [2019].

2This can be understood as a species of Putnam’s multiple realisability thesis in the philosophy of mind; a single
computational state can be realised by many distinct physical systems (provided the systems’ physical properties
can support the state-transition rules, etc.). See Putnam [1967]; Shapiro [2000].

1



First I’ll show that for ‘pure’ computational structuralism a reductio can be established by

means of a simplemathematical proof (§3-4). I’ll then survey the prospects formodern ‘hybrid’

structuralism and conclude that the threat of the reductio will, at best, force them to foreclose

on satisfying the second adequacy condition: medium independence (§5-7).

§2. The third adequacy condition, which I shall call the determinacy condition, was first raised

by Shagrir [2001, 2012] as an objection to structuralist accounts of physical computation –

which broadly hold that physical computation is determined by the causal/functional/mechanistic

structure of the physical system.3 The simplest version of the objection, due to Sprevak, is given

by the ‘duality’ of basic Boolean gates. That is to say, the fact that pairs of two-input single-

output gates such as AND/OR are invertible, such that appealing to their structural features

alone cannot hope to determine whether a given physical component is an AND-gate or an

OR-gate. For an illustration of this, Sprevak [2010, 296] gives a simple gate which is sensitive

to voltage ranges 0–5v (0) or >5v (1):

input 1 input 2 output
1 1 1
1 0 0
0 1 0
0 0 0

Table 1: Gate 1

Blatantly, Gate 1 could be used to compute either AND or OR because the assignment of

the voltage ranges 0/1 to truth values T/F must be arbitrary if our only recourse is to the structural

features of the physical system. This indeterminacy is not restricted to AND/OR; it generalises

to any structural dual pair of two-input single-output Boolean gates across different physical

mediums (e.g. electric, hydraulic). For example, NAND/NOR, XOR/XNOR.4

Note that on the main alternative view to structuralism, semanticism, this indeterminacy

will be resolved by the additional representational content which semanticists characteristically

appeal to beyond themerely structural features of the physical system.5 ThusGate 1 can be said

to implement AND if the voltage range 0 represents F. For their part, most structuralists – such

as Dewhurst [2018b], CoelhoMollo [2018], Miłkowski and Fresco [2019] – opt to bite the bullet

with respect to this indeterminacy and accept the underdetermination of physical computation
3See Egan [1992]; Chalmers [1996]; Miłkowski [2013]; Fresco [2015] & Piccinini [2007, 2015].
4See Shagrir [2001]; Miłkowski and Fresco [2019, 2].
5Classic semantic accounts include: Dennett [1971]; Fodor [1998]; Shagrir [2001, 2012]; Sprevak [2010]; Rescorla

[2014].

2



as a fact of structuralist life. After all, they can still maintain there is some mapping between

the formal and the physical. Even a surjective non-injective mapping would guarantee that

Gate 1 is mapped to a logical function – just not uniquely. Thus, the structuralist need not

forgo the possibility of computational analysis when conceding to the semanticist that certain

truth-functions are systemically underdetermined by structuralist resources.

Inwhat follows, I will argue this indeterminacy is caused by amore fundamental indetermi-

nacy and is far more problematic than either semanticists or structuralists have realised, since it

commits structuralists to fatally absurd, and not merely indeterministic, results. In particular,

the equivocation of the two digits of binary computational 0/1.

§3. Beforewe go further, Imust drawadistinction between ‘pure’ structuralist accountswhich

appeal only to structural features of the causal system, such as can be found in Chalmers

[1996, 2011], Dewhurst [2018a], Schweizer [2019] and ‘hybrid’ structuralist accountswhich rely

on an appeal to non-structural features such as mechanisms or telofunctions, such as Piccinini

[2015], Coelho Mollo [2018], Miłkowski [2013] & Fresco [2015]. This distinction is important

because although the reductio can be raised against both species of structuralist accounts, they

require separate treatment for reasons that will become clear. Until §5, my focuswill be on pure

structuralist accounts for which the reductio’s application can be proven formally.

My first conjecture is that if there is indeterminacy with respect to the computational truth-

functions, then there is an (intractable) indeterminacy with respect to the computational digits

0/1. By digit, I will mean the most fundamental computational individuals given by a physical

system under a formal interpretation. Most views do not take all of the properties of physi-

cal states (such as voltage levels) to be computationally relevant. The relevant properties of the

physical states are conventionally represented by Boolean values (as in table 1). For pure struc-

turalists, the computationally relevant properties are exhausted by the causal structure of the

physical states within the context of the system, i.e., the digit’s structural profiles. In this way,

I distinguish physical states (e.g. 0V/5V) from computational digits (0/1) from truth-values

(T/F). Thus, digits are not abstract states but slight abstractions from the physical states, or

again, representations/types of the computationally relevant features of the physical states im-

plementing the computation.

To set out the indeterminacy between the computational digits, we return to Gate 1 (Table

1). Consider the following: if the digits 0/1 inGate 1were determinate, then the truth-functions

could not be indeterminate, e.g., if we assigned 0 to F, Gate 1 would implement AND. Contra-

3



positively, if there is indeterminacy in the truth-functions then there cannot be determinacy in

the digits. Therefore, the indeterminacy of AND/OR issues from the underlying indeterminacy

of 0/1. It seems no structural features of the voltage ranges 0–5v/>5v could determine which

range should be assigned T/F. This will be the case for all problematically structurally invertible

duals because the key point here is that computational truth-functions are truth-functional, i.e.,

they are exhaustively defined by their truth tables such that their values are a function of their

digit input.

Structuralists who accept the indeterminacy of the truth-functions will be unmoved by the

indeterminacy of the digits and wonder why they cannot simply adopt a many-one relation-

ship between the logical values and physical states. My next conjecture shows why not: if the

computational digits are indeterminate, then they are structurally identical. If the structural

profiles of the computational digits are identical, rather than merely invertible, this commits the

structuralist to the claim that there is only one computational digit – an absurdity so great it

must forfeit the very legitimacy of the account, undermining, as it does, any coherent concep-

tion of binary computation.

Structural identity is standardly established by demonstrating that some element or func-

tion can be permuted while the structure of the domain, or system, is preserved. As such, one

only need reflect on the fact that the voltage ranges the computational digits represent can be

swapped without change to the computational system to see that the digits are structurally

identical and hence identical for a pure structuralist. This point, which threatens to draw from

pure structuralism a consequence absurd enough to refute it, admits of a proof given below.

§4. To prove structural identity mathematically we standardly define a structure preserving

permutation, i.e., a non-trivial automorphism. For physical computation this amounts

to defining a gate in a given computational system which (determinately) computes a truth-

function which permutes the digits, i.e., an implementation of a non-trivial automorphism.

Given a simple computational system with three logical connectives (NOT, AND, OR) we can

define the automorphism with the following gate, where 1/0 represents the structurally rele-

vant feature of some specifiable discrete physical states:

input output
1 0
0 1

Table 2: Gate 2

4



Let S be the two-membered set of physical states including discrete voltage ranges (say S =

{0–5v, >5v}). The function f implemented by Gate 2 can then be defined:

f : S → S given by f(x) = ¬x, x ∈ S.

Let us now prove that f is a non-trivial automorphism: Since f is not the identity function

f(x) = x, f is non-trivial. A function is an automorphism iff it is an isomorphism which maps

the set S to itself. A function is an isomorphism iff it is a bijection and a homomorphism. A

function is a bijection iff it maps to every element in the set uniquely, i.e. it is surjective and

injective. It is straightforward to prove that f is a bijection by the fact that the function simply

swaps 1 and 0 by replacing each digit (surjective) with the other (injective). However, f is less

obviously homomorphic. A function is a homomorphism if it is a structure-preserving mapping,

i.e., a function h such that for the sets G, H under operations (G,∼) and (H, ∗), x, y ∈ G, h :

G→ H : h(x ∼ y) = h(x) ∗ h(y). Since we are establishing an automorphism, we need to show

for (S,∼) and (S, ∗), x, y ∈ S,

f : S → S : f(x ∼ y) = f(x) ∗ f(y)

for each of the operations defined on S, i.e. NOT, AND, OR. It is straightforward to show that

f(¬x) = ¬f(x). Substituting f(x) = ¬x gives: ¬(¬x) = ¬f(x) / ¬¬x = ¬(¬x). Next, although

f(x ∧ y) 6= f(x) ∧ f(y), we can prove: f(x ∧ y) = f(x) ∨ f(y) / f(x ∨ y) = f(x) ∧ f(y)

by De Morgan’s Laws since substituting f(x) = ¬x gives

¬(x ∧ y) = ¬x ∨ ¬y

¬(x ∨ y) = ¬x ∧ ¬y.

Revealingly, this latter part of the proof – i.e., that the operationsOR/ANDpreserve each other’s

structure across an automorphic mapping – is a mathematical way of formulating the original

indeterminacy objection as raised by Sprevak.

Since f is a bijection and homomorphism, f is an isomorphism. Since f is an isomorphism

which maps S to itself and not merely the identity mapping, the function implemented by

Gate 2 is a non-trivial automorphism. The significance of this result is that it serves as a formal

articulation and proof of the conjecture that the computational digits 0/1 have an identical

structural profile. It works by precisfying sameness of structure mathematically using some

of the basic tools of group theory. Since we chose the set S arbitrarily, the result applies to all

binary sets of physical states implementing computational digits without loss of generality.

5



It is no coincidence that a growing number of opponents ofmathematical structuralism have

defined automorphisms in precisely this way to establish precisely the same thing about var-

ious mathematical objects – namely that they are problematically structurally identical. Such

proofs issue from disparate fields of mathematics, ranging from complex analysis, group the-

ory, and even Euclidean space.6 The most problematic cases define automorphisms between

two unlabelled nodes in a graph.7 However, the classic example is an automorphism between

a+ bi and a− bi on the complex field; i.e., a function f : (C)→ (C) given by f(x) = −x, ∀x ∈ C.

§5. To take stock, the reductio and its proof establish our two conjectures: that if pure struc-

turalists accept the indeterminacy of structural duals, then they are committed to the inde-

terminacy of computational digits; and if they are committed to the indeterminacy of computa-

tional duals, they are provably committed to their identity, which is nonsense. Therefore, pure

structuralists cannot continue to bite the bullet when it comes to the determinacy condition.

Not only does this provide a new kind of objection to pure computational structuralism,

but it sheds an important light on the determinacy condition itself. In fact, I think it merits

a complete reformulation of the condition. For it is now clear that in order to provide a de-

terminate account of computing logic gates, we must be able to individuate the fundamental

computational digits, reducing the determinacy problem to the problem of providing an ade-

quate account of computational individuation, not merely for truth-functions.

As we have seen, extra-structural resources are required to distinguish the digits contra

pure structuralism. This brings us to hybrid resources such as Piccinini’s proper functions

or Coelho Mollo’s telofunctions. Hybrid accounts are, for the most part, safe from the formal

proof of the reductio because they import formally intractable appeals to suchmechanisms and

functions. Vitally, however, it is incumbent on hybrid accounts to precisify the concepts they

use to characterise computation – if not formally – to the extent that they can provide a criteria

of individuation for computational digits. Otherwise, such accounts will be both immune to

reductio proof and impotent to satisfy the individuation condition simply because the concepts

they import are too vague. Therefore, hybrid accounts are still vulnerable to the reductio if

their particular account of individuation is not able to distinguish digits, though this can only

be established on a case-by-case basis.

Unfortunately, of all the adequacy conditions, comparatively little work has been done on
6See: Burgess [1999]; Shapiro [2008, 2012]; MacBride [2006]; and Ladyman [2005].
7Leitgeb and Ladyman [2008, 390–93]

6



structuralist accounts of individuation. The arguments I have provided for the importance of

this condition and the disastrous consequences of neglecting it will hopefully put this to right,

but the burden of proof here lies squarely with contemporary structuralists. Two laudable ex-

ceptions include Dewhurst [2018b] and Coelho Mollo [2018], so I want to finish by survey-

ing the prospects of their respective attempts to provide an account of individuation by non-

structural non-semantic means.

§6. Dewhurst’s key insight is his distinction between two criteria of individuation operating

on computational systems: algorithmic equivalence and computational equivalence. The for-

mer is grounded in logical equivalence and the latter in physical equivalence such that the

same logical function can be computed by distinct computational systems [Dewhurst, 2018b,

110].8 On Dewhurst’s account the indeterminacy will remain because it maybe be indetermi-

nate which logical function a computational system is computing. However, he avoids the re-

ductio as follows: the definition of the automorphism establishes neither the algorithmic equiva-

lence of the digits nor their computational equivalence. This is because the structurally identical

digits 0/1 will be kept algorithmically distinct in virtue of their algorithmic equivalence being

grounded in the distinctness of the truth-values T/F. Similarly, the digits will be kept compu-

tationally distinct in virtue of their computational equivalence being grounded in two distinct

physical states, e.g., 0–5v/>5v. In this way, Dewhurst’s fix meets our new condition by ten-

dering out the individuation of the computational digits to the identity criteria of the physical

states.

Unfortunately, Dewhurst’s proposal globally undergenerates computational equivalences.9

The very same mechanism which protects his account against my objection – i.e., grounding

computational identities in physical identities – also entails that, in practise, no two systems are

computationally identical due to their inevitable minuscule physical variations.10 It is thus un-

clear that Dewhurst is providing an account of computational equivalence, given that we cannot

capture cases where we want to say that the same computation is being carried out by different

physical systems. Therefore, Dewhurst’s account satisfies individuation at the cost of another

important adequacy condition: the medium independence of computational explanation.
8Dewhurst means to supplement Piccinini’s mechanistic account of computation. Piccinini’s own solution, that

a device may implement a multiplicity of computations but that his systemic functions along with the wider system
will determine which function is relevant, will not avoid the reductio. Piccinini accepts the indeterminacy which
leaves himvulnerable to the indeterminacy and identification of the digits even beforewe consider he cannot account
for fully dual systems.

9As pointed out by Miłkowski and Fresco [2019], but first pointed out by Dewhurst himself [2018b, 110].
10Within a system there may be no equivalence between processors performing the same algorithmic operation.

7



§7. Coelho Mollo [2018] and Miłkowski and Fresco [2019] have recently argued Dewhurst’s

fix can be itself fixed to recapture medium independence on a mechanistic account. This

is important because so far it looks like structuralists will be systemically unable to fulfil all the

desiderata of an adequate account of computation. Coelho Mollo follows Dewhurst in draw-

ing a distinction between algorithmic equivalence and computational equivalence.11 However, he

grounds the latter not in physical structure but in “computationally-relevant” functional struc-

ture of a physical system. The functional structure, he says, is determined by a “teleological

function”, e.g., the capacity to “perform computations” [CoelhoMollo, 2018, 3495]. Thismeans

physically distinct systems can exhibit the same functional structures if they share a target ca-

pacity. Hence, the medium independence of computation is restored on this account.

To take his example, two devices, D1 and D2, with slightly different voltage ranges (0-4/5-

10V for D1 and 0-5/6-10V for D2) will have the same input-output tables “when put in terms

of equivalence classes” [2018, 3494], as below:

input 1 input 2 output
EC1 EC1 EC1
EC1 EC2 EC1
EC2 EC1 EC1
EC2 EC2 EC2

Table 3: Input–output table of D1 and D2’s functional EC’s

Although D1 and D2 are physically distinct, the computationally-relevant functional pro-

files of their input-output equivalence classes (EC’s) are identical and hence they count as com-

putationally equivalent [2018, 3496]. Coelho Mollo thus provides a precisification of ‘function’

tractable enough to provide a criterion of individuation of logic-gates. However, when used for

individuation of digits – which are, in this case, EC’s – the criterion fails to avoid the reductio.

According to Coelho Mollo the identity of the EC’s is defined by the uniform sensitivity of

the processing device with respect to its inputs and outputs [2018, 3494]. D1/D2 are sensitive

to physically distinct voltage ranges but the functional profiles of those voltage ranges are the

same, as in Table 3. This is what justifies him in equivocating EC’s defined relative to physi-

cally distinct devices, like EC1 of D1 (0-4V) and EC1 of D2 (0-5V). This means of satisfying the

individuation condition will be vulnerable to the reductio if the functional profiles of distinct

EC’s can be shown to be identical. We cannot mathematically prove this because an automor-

phism would establish the digit’s structural algorithmic identity, not their functional-structural
11My argument will apply equally to Miłkowski and Fresco’s account.

8



computational identity. Instead, we must show that the criterion of individuation used in Table

3 overgenerates to falsely equivocate EC1 and EC2.

Consider a fully dual system containing D1. Let EC1= {0−4V }, EC2= {5−10V } and letR

be the equivalence relation by which CoelhoMollo equates EC1 of D1 and EC1 of D2 (Table 3).

R holds between EC1/EC2 iff EC1/EC2 have identical functional profiles. To show EC1/EC2

have identical functional profiles, observe that EC1/EC2 can be permuted without change to

their functional profiles in D1 (table 4).

input 1 input 2 output
EC2 EC2 EC2
EC2 EC1 EC2
EC1 EC2 EC2
EC1 EC1 EC1

Table 4: Input–output table of D1’s functional EC’s after permutation

The functional profiles of EC1/EC2 are identical. Therefore R holds between EC1/EC2,

which is false.12 Permuting EC1/EC2 can have no effect on the uniform sensitivity of the processing

device. The EC’s are functionally aswell as structurally symmetric because any functional differ-

ences between EC1/EC2 “play no role in their general computational capacities” [2018, 3496].

Hence, the functional profiles of EC1/EC2 are identical and since computational individua-

tion is wholly determined by the computationally-relevant functional profiles of input-output

equivalence classes, EC1 = EC2.

To the pure structuralist, we said that since the digits have, bymathematical proof, identical

structural profiles and since appeal to structure is the only means they have of individuating

them, they are forced to identify the binary digits, which is absurd. To Coelho Mollo, we say

that since the EC’s have, by a simple permutation argument, identical functional profiles, and

since functional appeal is the only means he has of individuating them, he is forced to identify

the binary equivalence classes, which is absurd.

To avoid this absurdity, it seems the hybrid structuralist is forced to retreat to Dewhurst’s

original proposal of grounding computational individuation in the physical states. This would

individuate EC1/EC2 since they are implemented by distinct voltage ranges. As we saw, this

gives up on themedium independence conditionwhich threatens the accountwith explanatory

inadequacy. However, since explanatory inadequacy is a far better problem than absurdity,

Coelho Mollo’s improvement on Dewhurst fares far worst than Dewhurst’s original proposal.
12Note that we are not merely permuting the names of the EC’s (which are of course arbitrary) but the equivalence

classes themselves, i.e., the digits implemented by 0-4/5-10V.

9



This is no accident. As Coelho Mollo himself points out, there is an inherent tension between

the individuation condition and the medium independence condition. The digits – which are

in the binary case just symmetric images – must be fine-grained enough not to be identified but

course-grained enough to encompass computation across different mediums. This tension will

temper all hybrid accounts and should make us pessimistic at best that structuralists can meet

all the criteria of an adequate account of physical computation.

§8. We have established several interesting results: that if computational functions are inde-

terminate, computational digits are indeterminate; that the indeterminacy of the compu-

tational digits implies their structural identity; that the latter result admits of a mathematical

proof; that this indiscernibility problem threatens structuralism with reduction to absurdity;

that computational and mathematical structuralists face the same objection; that pure compu-

tational structuralism is untenable; that for the best available hybrid account, the permutation

of the EC’s preserves their functional profiles hence showing the EQ’s to be identical; and that

the burden of proof lies with other hybrid structuralists to urgently precisify their appeals to

mechanistic/teleofunctional resources far enough to assess whether their means of individu-

ating computational digits are also vulnerable to such a reductio. Most of all, I hope to have

demonstrated that providing an account of computational individuation presents us with an

adequacy condition more deserving of attention than that of triviality.

10



References

Burgess, J. (1999). Review of Shapiro (1997). Notre Dame Journal of Formal Logic 40, 283–91.

Chalmers, D. J. (1996). Does a Rock Implement Every Finite-State Automaton. Synthese (108),

309–333.

Chalmers, D. J. (2011). A Computational Foundation for the Study of Cognition. Journal of

Cognitive Science 12(4), 323–357.

Coelho Mollo, D. (2018). Functional Individuation, Mechanistic Implementation: The Proper

Way of Seeing the Mechanistic View of Concrete Computation. Synthese (195), 3477–3497.

Coelho Mollo, D. (2019). Are There Teleological Functions to Compute? Philosophy of Sci-

ence 86(3), 431–452.

Dennett, D. C. (1971). Intentional Systems. The Journal of Philosophy (68), 87–106.

Dewhurst, J. (2018a). Computing mechanisms without proper functions. Minds and Ma-

chines 28(3), 569–588.

Dewhurst, J. (2018b). Individuation Without Representation. The British Journal for the Philoso-

phy of Science 69(1), 103–16.

Egan, F. (1992). Individualism, Computation, and Perceptual Content. Mind (101), 443–459.

Fodor, J. A. (1998). Concepts. Oxford: Blackwell.

Fresco, N. (2015). Mechanistic Computational Individuation. Erkenntnis (80), 1031–53.

Ladyman, J. (2005). Mathematical Structuralism and the Identity of Indiscernibles. Analy-

sis 65(3), 218–21.

Leitgeb, H. and J. Ladyman (2008). Criteria of Identity and Structuralist Ontology. Philosophia

Mathematica 16(3), 388–396.

MacBride, F. (2006). What Constitutes theNumerical Diversity ofMathematical Objects? Anal-

ysis 66(1), 63–69.

Miłkowski, M. (2013). Explaining the Computational Mind. Cambridge, MA: MIT Press.

11



Miłkowski, M. and N. Fresco (2019). Mechanistic Computational Individuation without Biting

the Bullet. The British Journal for the Philosophy of Science (0), 1–8.

Piccinini, G. (2007). Computing Mechanisms. Philosophy of Science 4(74), 501–526.

Piccinini, G. (2008). Computation without Representation. Philosophical Studies 137(74), 205–

241.

Piccinini, G. (2015). Physical Computation: AMechanistic Account. New York: Oxford University

Press.

Putnam, H. (1967). Psychological Predicates. In W. H. Capitan and D. D. Merrill (Eds.), Art,

Mind, and Religion, pp. 37–48. Pittsburgh: University of Pittsburgh Press.

Putnam, H. (1988). Representation and Reality. Cambridge, MA: MIT Press.

Rescorla, M. (2014). The Causal Relevance of Content to Computation. Philosophy and Phe-

nomenological Research (88), 173–208.

Scheutz, M. (2001). Causal versus Computational Complexity. Minds and Machines 11(4), 534–

566.

Schweizer, P. (2019). Triviality Arguments Reconsidered. Minds and Machines 29, 287–308.

Shagrir, O. (2001). Content, Computation and Externalism. Mind 110(438), 369–400.

Shagrir, O. (2012). Computation, Implementation, Cognition. Minds andMachines (22), 137–48.

Shapiro, L. A. (2000). Multiple realizations. The Journal of Philosophy 12(97), 635–654.

Shapiro, S. (2008). Identity, Indiscernibility, and ante rem Structuralism: The Tale of i and −i.

Philosophia Mathematica 16(3), 285–309.

Shapiro, S. (2012). An ‘i’ for an i: Singular Terms, Uniqueness, andReference. Review of Symbolic

Logic 5(3), 380–415.

Sprevak, M. (2010). Computation, Individuation, and the Received View on Representation.

Studies in History and Philosophy of Science Part A 41(3), 260–70.

Sprevak, M. (2018). Triviality Arguments About Computational Implementation. In M. Spre-

vak andM. Colombo (Eds.), Routledge Handbook of the ComputationalMind, pp. 175–191. Rout-

ledge: London.

12


