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Abstract

This paper is about guessing: how people respond to a question when they aren’t certain
of the answer. Guesses show surprising and systematic patterns that the most obvious
theories don’t explain. We argue that these patterns reveal that people aim to optimize
a tradeoff between accuracy and informativity when forming their guess. After spelling
out our theory, we use it to argue that guessing plays a central role in our cognitive lives.
In particular, our account of guessing yields new theories of belief, assertion, and the
conjunction fallacy—the psychological finding that people sometimes rank a conjunction
as more probable than one of its conjuncts. More generally, we suggest that guessing helps
explain how boundedly rational agents like us navigate a complex, uncertain world.

1 Take a Guess

Where do you think Latif will go to law school? He’s been accepted at four schools: Yale,
Harvard, Stanford, and NYU; now he just has to choose. We don’t know his preferences, but
here’s the data on where applicants who’ve had the same choice have gone in recent years:

Yale ‘ Harvard ‘ Stanford ‘ NYU
38% | 30% | 20% | 12%

*Authors contributed equally. This project has benefited tremendously from more than the usual share of
feedback. Many thanks to audiences at Dartmouth, All Souls College, Oxford, the Virtual Language Work in
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and Psychology, and the University of Chicago; and to Kyle Blumberg, Lyle Brenner, Molly Brown, Fabrizio
Cariani, Emmanuel Chemla, Hasan Dindjer, Cian Dorr, Daniel Drucker, Diego Feinmann, Vera Flocke, Brian
Hedden, Daniel Hoek, Sophie Horowitz, Thomas Icard, Nathan Klinedinst, Joshua Knobe, Jason Konek, Har-
vey Lederman, Salvador Mascarenhas, Richard Pettigrew, Jonathan Phillips, Milo Phillips-Brown, Bernhard
Salow, Weng Kin San, Ginger Schultheis, and Julia Staffel, for extensive feedback and discussion. Special
thanks to Ben Holguin, whose work got us interested in the topic and whose feedback has greatly benefited
the paper.



So take a guess: Where do you think he’ll go?

Here are some observations. One natural guess is ‘Yale’. Another is ‘Either Yale or Har-
vard’. Meanwhile, it’s decidedly unnatural to guess ‘not Yale’, or ‘Yale, Stanford, or NYU’.

Though robust, these judgments are immediately puzzling. First, ‘Yale’ is a fine guess,
but its probability is below 50%, meaning that its negation is strictly more probable (38%
vs. 62%); nevertheless, ‘not Yale’ is a weird guess. Moreover, ‘Yale or Harvard’ is a fine
guess—meaning that it’s okay to guess something other than the single most likely school—
yet ‘Yale, Stanford, or NYU’ is a weird guess (why leave out ‘Harvard’?). This is so despite
the fact that ‘Yale or Harvard’ is less probable than ‘Yale, Stanford, or NYU’ (68% vs. 70%).

We'll generalize these patterns (§2, following Kahneman and Tversky 1982; Holguin 2020),
then develop an account that explains them (§3). The idea is that guessers aim to optimize
a tradeoff between accuracy and informativity—between, on the one hand, saying something
that’s as likely as possible to be true; and, on the other, saying something which is as infor-
mative or specific as possible. These goals directly compete: the more specific an answer is,
the less probable it will typically be. Different guessers, in different contexts, will treat this
broadly Jamesian tradeoff in different ways. Some will guess ‘Yale’; others will guess ‘Yale
or Harvard’; still others will guess something else. But we’ll show that, however they do so,
optimizing this tradeoff is guaranteed to satisfy the structural constraints on guesses that
we’ll bring out in §2.

After developing this account, we’ll use it to argue that guessing— along with its accuracy-
informativity tradeoff—plays a central role in our cognitive lives.! First (§4.1), we’ll argue that
our account of guessing underpins a promising theory of belief, namely that of Holguin (2020),
who argues that your beliefs are your best guesses. Holguin shows how this account unifies
recent observations about both the weakness and question-sensitivity of beliefs. We think our
account of guessing helps explain why guesses—and hence beliefs—have these features.

Second (§4.2), we’ll show that our theory of guessing helps to both explain and generalize
the standard pragmatic story about how conversations proceed, suggesting that guessing
plays a central role in ordinary exchanges of information.

Finally (§4.3), we’ll argue that our theory helps explain the conjunction fallacy—the
psychological finding that people sometimes rank a conjunction as more probable than one
of its conjuncts, contrary to the laws of probability (Tversky and Kahneman, 1983). Our
explanation is built on the observation that it is perfectly permissible to guess an answer
that is less likely—but more informative—than some other guess. We thus propose that the
conjunction fallacy arises when subjects rate answers for their quality as guesses rather than
for their probability of being true.

Often (depending on the precise framing), this is no mistake at all. Even when it is, it’s
a mistake that is easy to make sense of, given the central role that guessing plays in our
cognitive lives. Thus our account puts pressure on thoroughly irrationalist interpretations of
the conjunction fallacy, and instead helps situate it within a boundedly-rational picture of

LOur interest in guessing was sparked by recent work on its role in epistemology by Horowitz 2017, Builes
et al. 2020, and Holguin 2020.



the human mind (§5).

That is part of a broader narrative. We focus on these three applications—belief, assertion,
and the conjunction fallacy—mnot only because they are intrinsically interesting, but also
because they help to paint the bigger picture of this paper. On that picture, guessing is a
cognitively basic activity—one that we constantly engage in as we think, talk, and reason.
Moreover, it’s an activity that makes sense to engage in, for it’s part of how computationally
limited creatures like us cope with an intractably complex and uncertain world.

2 What We Guess

We start with a simple question: what sorts of guesses do we tend to make? The answer is both
surprising, and surprisingly systematic. In this section we bring out some of these patterns,
drawing on observations from Kahneman and Tversky 1982 and Holguin 2020. Along the
way, we explain why the most obvious theories of guessing won’t predict them—setting the
stage for our own theory, which we develop in the next section.

Recall the case of Latif, who’s been accepted to four law schools. Assume that your
credences—that is, your degrees of confidence—in where Latif will go track the past frequen-
cies, so that they are as follows:

Yale ‘ Harvard‘ Stanford‘ NYU
38% | 30% | 20% | 12%

Now suppose you are asked to guess where Latif will go. It seems like there is a range of
answers that could reasonably be your guess, given your credences:

(1) Yale. v/
Yale or Harvard. v
Yale or Harvard or Stanford. v

Yale, Harvard, Stanford, or NYU. v

/e Toe

A few notes: first, these are all meant to be elliptical for ‘He will go to Yale’, ‘He will go to
Yale or he will go to Harvard’, etc. We’ll use shorthands like this throughout. Second, there
may be some subtle effects concerning the order of disjuncts, but we’ll ignore them, assuming
throughout that a disjunction pV ¢ is permissible iff ¢V p is. Third, we’ll move freely between
speaking of answers as propositions and as the corresponding sentences. Fourth, consider the
answer ‘Yale, Harvard, Stanford, or NYU’ (= ‘One of those four’). Although saying this in
response to a request to guess is weird, we think this is for independent pragmatic reasons
(see §4.2). Moreover, there is a sense in which it is fine for this to be your guess: that is just
to decline to take a stance beyond what you are sure of. We are primarily interested in the
cognitive state of guessing—of something being your answer to a question—rather than the
speech act; and in the former sense, it is clearly a permissible guess. Finally, there are a variety
of ways of eliciting guesses: besides explicitly asking for a guess, we could ask questions like



‘Where do you think Latif will go?, ‘What do you think’s likely to happen?’, and so on. We’ll
shift freely between formulations like this, and come back to this point in due course.
There is also a range of answers that are intuitively unacceptable; for example:

Harvard. X

Stanford. X

NYU. X

Yale or Stanford. X

Yale or NYU. X

Harvard or Stanford. X

Not Yale. X

Harvard, Stanford, or NYU. X

Yale, and it’s cold in London today. X

j- Yale, or he has a birthmark on his left toe. X

(2)

@ oo a0 o

—

To be clear, we are not claiming that people never have guesses like these. Our claim is
normative: there is something peculiar—something irrational-—about guesses like this. Our
ultimate aim will be to give a theory which predicts that it’s epistemically irrational for
any of these answers to be your guess about the question ‘Where will Latif go?’, given
your credences. Insofar as people’s practices of guessing (and saying their guess) track this
normative structure, our theory will thus predict that they will tend to favor answers like
those in (1) over those in (2).

On to generalizing the patterns from (1) and (2). It will be helpful to lay out a formal
model of what a question is and what its answers are, drawing on standard formulations from
the semantics and pragmatics literature (Hamblin, 1973; Karttunen, 1977; Groenendijk and
Stokhof, 1984). Start with a set of possibilities (possible worlds) that comprise all and only the
worlds compatible with the assumptions in a given context—i.e. the context set (Stalnaker,
1974, 1978). In the case of a single person thinking to themselves, these will be the set of
worlds compatible with what the guesser is certain of. In the case of a conversation, it will
be the set of worlds compatible with what the interlocutors are (in some sense) commonly
certain of. To keep things simple, we’ll focus on the case in which the context set and the
guesser’s certainties coincide.?

A question is a partition of the context set: that is, a set of mutually exclusive and jointly
exhaustive subsets of the context set. The cells of the partition are the complete answers
to the question. So, in our example, we can model our question ‘Where will Latif go to
law school?’ as a partition of the options we leave open in this context, namely the set of
propositions { Latif will go to Yale, Latif will go to Harvard, Latif will go to Stanford, Latif
will go to NYU}. We'll assume that at any given point in a conversation, there’s a question
under discussion (QUD) that guessers aim to address (Roberts, 2012). Sometimes this QUD
will be set by explicit questions like, ‘Where will Latif go?’; but other times it will be gleaned

2The constraints that we discuss here can all be generalized, with minor tweaks, to the case where the
context set and the guesser’s certainties don’t coincide.



from other parts of the context: in general, by the structure and goals of the relevant inquiry.?

We'll assume that the guesser has credences which can be modeled with a probability func-
tion P that is regular over the context set (that is, for any proposition p that has a nonempty
intersection with the context set, P(p) > 0). We will, likewise, assume that questions are
always finite partitions.?

With this formalism in hand, let’s draw some generalizations from the observations above.
WEe’ll do this by way of exploring and rejecting some obvious theories of guessing.

The obvious proposal: you should guess p only if you think that p is more likely than
not to obtain. As we’ve seen, this is wrong: while some of the acceptable guesses above have
a greater than 50% chance (‘Yale or Harvard’, ‘Yale, Harvard, or Stanford, ...), others, like
‘Yale’ (38%), do not. So you don’t always have to pick an answer that is more likely than not

to obtain (Kahneman and Tversky, 1982):
Improbable Guessing: It’s sometimes permissible to answer p even when P(p) < 0.5.%

Note, second, that judgments about the reasonableness of answers depend substantially
on what question is being answered. Suppose that your credences are as above, but instead
of being asked where you think Latif will go, you're asked: ‘Will Latif go to Yale?’, i.e. the
question { Yale, not Yale}. Recall that you think there’s a 38% chance he’ll go to Yale, and
thus a 62% chance that he won’t. Given that, when addressing this question it seems like
‘Yale’ is not a very natural guess, since it is the substantially less likely of the two complete
answers. Thus, again following Kahneman and Tversky 1982:

Question Sensitivity: Whether p is a permissible answer depends not just on the
guesser’s credence in p but also in what question is being answered.

This means that—holding your credences fixed—p can be permissible relative to one question,
but impermissible relative to another. Because of this observation, following Holguin 2020,
we’ll understand guessing to be a three-place relation between a person x, a question @), and
a proposition p. Thus it’s possible that your guess about ‘Where will Latif go?’ may be ‘Yale’,
while your guess about ‘Will Latif go to Yale or not?” may be ‘not Yale’. For ease of exposition
we’ll use ‘guess’ sometimes to refer to the state of guessing that p about a particular question
@, and other times to refer to the proposition p that you guess about @); we’ll use answer

3In general, there can be small mismatches between questions explicitly asked and the QUD. For instance,
when you’re asked ‘Do you think p?’ the QUD (the one that is relevant for us, anyway) is usually p?, not a
partition over possible mental states.

“Infinite questions would require some infinity-friendly measure on the QUD. Notably, all of our constraints
on guessing could be stated in terms of a comparative confidence ordering, though the model (in §3) that
justifies them requires more structure. It’s an open question whether some refinement of our model could
explain these constraints appealing only to a comparative confidence ordering.

5A similar claim is sometimes made about other attitudes, like belief or acceptance (e.g. Levi, 1967;
Hawthorne et al., 2016). While we are sympathetic to this proposal (§4.1), two points: (1) the extension
to such further attitudes is separable from our core theory, which is about guesses; and (2) while improb-
able believing (accepting) is controversial, it should be uncontroversial that you can guess something with
probability below 0.5, as our cases illustrate.



univocally for the latter (the proposition that you guess).®

Next proposal: a natural way to account for Improbable Guessing and Question Sensitiv-
ity says that, given a question (), your answer should be the complete answer you have highest
credence in. This theory predicts that the only acceptable answer is ‘Yale’, so it rules out all
the bad responses in (2). But this overgeneralizes: it predicts that only complete answers are
permissible guesses; yet a range of partial answers (that is, unions of complete answers) are
permissible. In fact, it looks like for any number of complete answers, there is a permissible
answer which comprises the union of that number of answers: you can give a one-cell answer
(“Yale’), a two-cell answer (‘Yale or Harvard’), a three-cell answer (‘Yale, Harvard, or Stan-
ford’), or a four-cell answer (‘One of those four’). This leads to our next generalization, from
Holguin 2020:

Optionality: Given any question @, for any k: 1 < k < |Q], it’s permissible for your
guess about ) to be the union of exactly k cells of Q.

How might we capture Optionality? A natural proposal is that guessers may guess any
answer that is likely enough, i.e. that is more likely than some threshold set by the context.
This would generalize the Lockean Thesis, which says that you should believe any propo-
sition that you have high enough credence in (Foley, 1992; Sturgeon, 2008; Leitgeb, 2014;
Dorst, 2019). This theory accounts for Optionality—provided the relevant threshold can be
sufficiently low—but it cannot explain why all the answers in (2) are impermissible. Since
‘Yale’ is permissible, the threshold must be below 38%, but that would incorrectly predict
that answers like ‘Yale or Stanford’, or ‘Harvard or Stanford’, which are both more than 38%
likely, are permissible.”

What answers are permissible, then? The following constraint—also from Holguin (2020)—
accounts for the patterns above:

Filtering: A guess about @) is permissible only if it is filtered: if it includes a complete
answer ¢, it must include all complete answers that are more probable than q.
Precisely: p is filtered iff for any ¢,¢' € @ : if P(¢') > P(q) and ¢ C p, then ¢’ C p.

In other words, your guess can’t include a complete answer ¢ while excluding a strictly® more
likely complete answer ¢’.

SIf you are first asked ‘Where do you think will Latif go?’, and your guess is ‘Yale’, and then you are
immediately asked, ‘So, do you think he’ll go to Yale?’ it is very natural to say ‘yes’. This is presumably
explained by some ‘stickiness’ in the contextual resolution of the question under discussion: the first QUD
‘Where will Latif go?’ may remain salient even if the new question, ‘Will Latif go to Yale?’, is explicitly asked.

" Sophisticated Lockeans might make the thresholds proposition-sensitive (Easwaran, 2016; Dorst, 2019)—
but then they’d need a story for what controls these thresholds.

8An alternative formulation of Filtering would say that so long as ¢’ is at least as probable a g, it must
also be included. Which version you'll like depends on what you think about Optionality in the case of ties.
We think that if we’re about to toss a fair coin, it’s permissible to guess that it’ll land heads—despite the
fact that tails is equally likely—so we endorse Optionality even in this case, and thus use the strict-inequality
version of Filtering. The weak-inequality version could be derived from our theory below if we imposed the
constraint that your guess must uniquely maximize expected answer-value, in which case we would validate
Optionality only when there are no ties. These choices don’t matter for our central points.



Why ‘Filtering’? Imagine a filter through which the complete answers are strained. The
‘size’ of a complete answer corresponds to its probability. Whether the mesh of a filter lets
such an answer through depends only its size. A guess about Q) is filtered iff, for some such
mesh (some threshold of probability), the answer is the union of the complete answers that
survive this filtering process (that are more likely than that threshold).

Filtering rules out the answers in (2-a)—(2-h) above: each of those answers is non-filtered.
For instance, Harvard or NYU is non-filtered because it includes NYU as a subset, but does
not include every complete answer which is more likely than NYU—it is missing both Yale
and Stanford. Likewise, Harvard is non-filtered because it includes Harvard as a subset, but
does not include the more likely complete answer Yale.

Optionality and Filtering together predict the admissibility of the answers in (1), together
with the inadmissibility of the answers (2-a)—(2-h). The latter are all non-filtered; the former
are all filtered. In fact, for each k between 1 and 4 (the size of the QUD, |Q)]), there is exactly
one filtered answer which is the union of k complete answers, and these are the answers in
(1). In general—apart from cases of ties in probability among complete answers—for any k
between 1 and |Q|, there will be exactly one filtered answer to a question ) which is the
union of k complete answers.

What about answers like (2-1)—(2-j), e.g. ‘Yale, and it’s cold in London today’ or ‘Yale, or
he has a birthmark on his left toe’? Intuitively, such responses include irrelevant material.
In particular, they crosscut complete answers: (2-i) and (2-j) cannot be derived as a union of
complete answers to the QUD. In general:

Fit: If a guess crosscuts a complete answer, it’s impermissible.
Precisely: p is a permissible guess only there are qy, ..., gx € @ such that p = ¢ U...Ugz.

Though Fit is familiar from the literature on pragmatics (§4.2), this constraint applies just
as much to the cognitive act of guessing: if you formulate a guess, to yourself, about where
Latif will go, it’s bizarre for your guess to be (2-i) or (2-j).

An important complication: some apparent violations of Fit can be felicitous enough—
‘Latif will go to Yale, and I'm sure he’ll love it!’; ‘Latif will go to Yale or Harvard, and if he
goes to Yale, he’ll learn a lot’.? Nonetheless, other violations seem robustly bad, like those in
(2-1)—(2-j). The standard explanation of the felicity of the former answers is that it is easy to
accommodate more fine-grained questions that are in a similar vein to the QUD (e.g. ‘Where
will Latif go, and will he like it?’); relative to the finer-grained question, the answer satisfies
Fit. In contrast, (2-1)—(2-j) are infelicitous because the finer-grained question which would
need to be accommodated to satisfy Fit (e.g. ‘Where will Latif go, and what is the weather in
London?’) seem too irrelevant to the original QUD. Given the robustness of many intuitions
about Fit, we’re inclined to think this is the best way to make sense of the overall picture

here. 10

9 Another class of responses that violate Fit are ones like ‘I don’t want to guess’. As Diego Feinmann has
pointed out to us, these feel like ways opting out of answering the question (cf. Dorst, 2014); from the point
of view of the cognitive attitude, rather than speech act, these do not seem like guesses at all.

0Byt see Feinmann 2020 for a different, probabilistic take.



We'll draw out a couple more constraints on guesses in §3 below, but for now we’ll focus
on Improbable Guessing, Question-Sensitivity, Optionality, Filtering, and Fit. To strengthen
the case for these constraints, let’s briefly consider another example, drawn from recent ex-
perience. Consider a moment in the 2020 Democratic presidential primary when the only
remaining plausible candidates were Biden, Sanders, Warren, Bloomberg, and Buttigieg. Fol-
lowing FiveThirtyEight’s model, your credences in who’ll win a plurality of delegates are as
follows:

Biden ‘ Sanders ‘ Warren ‘ Bloomberg‘ Buttigieg
35% | 28% | 18% [ 13% | 6%

What’s your guess about who will win? It seems that all and only the following guesses are
permissible:

(3) Biden. v/
Biden or Sanders. v/
Biden, Sanders, or Warren. v/

Biden, Sanders, Warren, or Bloomberg v

oo o

Biden, Sanders, Warren, Bloomberg, or Buttigieg v/

Other guesses, like the following, are not:

(4) Sanders. X

Warren. X

Biden or Warren. X

Biden or Bloomberg. X

Biden or Sanders or Bloomberg. X

Sanders or Warren or Bloomberg. X

® o as TP

Biden, and it will rain tomorrow. X

Once again, we see evidence of Improbable Guessing and Optionality in the range of permis-
sible answers in (3). Filtering accounts for the infelicity of the answers in (4-a)—(4-f) (since
each of these contains some complete answer as a part while leaving out some strictly more
likely complete answer), and Fit accounts for the weirdness of (4-g).

Based on cases like this, we think the principles above hold robustly (for more examples,
see Holguin 2020).

These observations—Improbable Guessing, Question Sensitivity, Optionality, Filtering,
and Fit—bring out what guesses people tend to make, revealing surprising yet systematic
patterns. The most obvious accounts fail to predict these patterns—and it’s by no means
obvious how to explain them.



3 How We Guess

We propose to explain these patterns by giving a model of how we guess. The basic idea
behind our approach is a familiar thought from James 1897. A good guess about a question
Q@ is a good picture of how things stand, Q-wise. In trying to form such a picture, there’s an
inevitable tradeoff between two goals. On the one hand, we want our picture to be accurate—
we want our guess to be true. But being true often doesn’t cut it. After all, one way to
guarantee that your guess is true is to say very little: when asked ‘Where do you think
Latif will go?’, ‘Somewhere’ is sure to be true, but is unhelpful. We also want to take a
stand on things—to have an informative guess, one that helpfully narrows down the space
of alternatives we're considering. These two goals compete. Typically, the more informative
your guess is (‘He’ll go to Yale’), the less likely it is to be true; the more likely it is to be true
(‘He’ll go somewhere’), the less informative it is. On this Jamesian approach, trying to form
a picture of the world involves trading off informativity (believing substantive truths) and
accuracy (avoiding error). In this section, we’ll develop this idea of an accuracy-informativity
tradeoff to give an account of guessing—one which we think is intuitively plausible, and which
accounts for all the patterns brought out in the last section.

Our model of guessing is intended to be a computational level explanation in the sense
of Marr 1982. Our question is, What problem is a (rational) mind solving when it forms a
guess? and our answer is, How to optimally trade off accuracy and informativity. As always,
this style of explanation is neutral on the precise algorithms through which the mind solves
this problem, as well as on the question of whether the processes involved will be consciously
accessible or not.

3.1 Jamesian guessing

Our approach will be to view guessing as a kind of epistemic decision problem. First, we’ll try
to say what makes a guess objectively valuable (foreshadowing: true guesses are better than
false ones; and among true guesses, the more informative the better). Then we’ll propose that
people aim to maximize this objective value by choosing a guess with the highest expected
value (given their credences).

We build on a substantial literature in epistemic utility theory,!' but in particular on
Levi 1967, which is the closest precedent for our approach. In particular, Levi’s is the only
approach we know of which, like ours, measures informativity in terms of ruling out cells in

1 The epistemic utility theory literature uses decision-theoretic tools to explain the constraints of epistemic
rationality (e.g., Joyce 1998; Pettigrew 2016a; Horowitz 2018; Schoenfield 2019b). Though most of this liter-
ature focuses on degrees of belief, some of it focuses on qualitative states of ‘outright belief’ that are similar
to guesses—see Hempel 1962; Levi 1967; Maher 1993; Easwaran 2016; Pettigrew 2016b; Dorst 2019. As men-
tioned in footnote 1, the work in Sliwa and Horowitz 2015; Horowitz 2017; Builes et al. 2020 is closely related,
but puts guessing to a rather different use—arguing that the relationship between credences and guessing can
help obviate the need for the tools of epistemic utility theory. By contrast, we’ll argue that it is precisely these
tools that are needed to explain the relationship between credences and guessing. A referee points out that
parallels to Filtering may arise in other domains; the extent to which that’s true, and to which we can account
for it in a way continuous with our approach here, is an interesting question that deserves further exploration.



a relevant partition (we compare his view to ours in footnote 13, after we lay out our view).

So suppose you are trying to guess the answer to a question Q—say, ‘Where do you think
Latif will go?’. Your guess could be any proposition: ‘Yale’; ‘Stanford’; ‘I like lentils’; etc.
How good your guess is depends on how well it answers the question. That in turn depends
on whether your guess is true or false, and how valuable that kind of guess would be if it were
true and if it were false. Schematically, let Vio(p) be a function which yields the answer-value
of choosing p as your guess about @), depending on whether p is true or false. Whenever
you're unsure whether p is true, you’ll be unsure how much answer-value it has. Nevertheless,
you can use your credences in the various possibilities to form an estimate about how much
answer-value it has—p’s expected answer-value, written Eg(p). Precisely, we’ll assume we can
model any permissible measure of answer-value with a real-valued function Vg (p), such that
if p is true, guessing it yields answer-value Vg (p) = VQ+ (p), and if it’s false, guessing it yields
answer-value Vi(p) = V) (p). Using our guesser’s (probabilistic) credence function, we’ll
assume that expectations are defined in the standard way (assuming act-state independence,
for simplicity). Thus the expected answer-value of p is a weighted average of the various
possible values Vg(p) might take, with weights determined to how likely they are to obtain
(where p = —p):

Eq(p) == P(p)-V5(p) + P(®) -V, (p)

The core of our theory says that you must make a guess that maximizes this quantity, relative
to some epistemically permissible measure of answer-value:

Guessing as Maximizing: A guess is epistemically permissible given a question iff
it has maximal expected answer-value relative to that question, for some permissible

measure of answer-value.

The crucial question: Which measures of answer-value are epistemically permissible?
True guesses are better than false ones, so any permissible Vy must be truth-directed:

Vg is truth-directed iff any true guess has higher answer-value than any false guess.
Precisely: for all p, r: Vg (p) > Vg (r).

Truth matters. But—on our Jamesian picture—truth isn’t all that matters. Answer-value
also depends on informativity. The informativity of a guess depends on what question it’s
answering: ‘Latif will go to Yale’ is an informative answer to ‘Where will Latif go?’—but an
uninformative answer to ‘What are we having for dinner tonight?’. So Vér and Vi, should be
sensitive to the informativity of the answer, which, in turn, depends on Q.

In fact, holding fixed a guess’s truth-value, @) is arguably the only thing Vi should be
sensitive to. Suppose you ask who’ll win the election. In some sense, ‘Latif will go to Yale
and my grandpa was bald’ is more informative than ‘Latif will go to Yale’—but this doesn’t
seem to be the sense of informativity that governs guesses. After all, if you wanted to know
about my grandpa, you would’ve asked! Similarly, suppose that you guess that Latif will go to
NYU. In some sense, this is more informative than ‘Latif will go to Yale’, since learning that
it’s true would lead to a bigger change in your probabilities than would learning that he’ll go

10



to Yale. But there is another, equally intuitive sense in which this is not a more informative
guess than ‘Yale’: both guesses are maximally informative about the question asked.'?

Thus a natural idea is that how informative a guess is with respect to Q depends on only
the number of answers to @ it rules out. Precisely, given a question () and an answer p, let
the informativity of p relative to @) be the proportion of complete answers to @ that p rules

out: Q, := W. For example, if Q) is ‘Where will Latif go to law school?’, then

QYale = QStanford = QHarvaTd = QNYU = %aQYale or Harvard = %7 etc. If Q is “‘Who will win
a plurality of delegates in the Democratic primary?’, then Qpigen = Qsanders = @ Warren =
QBloomberg = %7 QBiden or Sanders = Q Sanders or Warren = %7 and so on. Given this, our second
constraint is that, given the truth-value of p, V(p) should then be fully determined by p’s
informativity:

Vo is question-based iff for all p: Vi(p) is fully determined by p’s informativity to-
gether with its truth-value.
Precisely: for all p,r, if @, = Q,, then Vg (p) = Vg (r) and Vg, (p) =V (7).

Our first main addition to the Guessing as Maximizing account is this: a measure of
answer-value 1is (epistemically) permissible only if it is truth-directed and question-based.
Why? Truth-directedness is straightforward, but the requirement that Vy be question-based
is somewhat more surprising. Apart from the intuitions just elicited, our primary argument
for it is an inference to the best explanation: as we’ll see in §3.2, any question-based measure
will offer a simple explanation of two of our most distinctive constraints—Fit and Filtering—
which is not available to non-question-based measures.

So suppose Vg is truth-directed and question-based. Although this will establish Fit and
Filtering, it doesn’t yet say anything about our observed permissions—that sometimes per-
missible guesses can be less likely than not (Improbable Guessing), and that a variety of
guesses are always permissible (Optionality). How can we account for these observations? A
very permissive approach would be to say that any truth-directed, question-based measure
of answer-value is permissible. It follows from our results below that this theory would yield
all the observations about guessing mentioned in §2, so it is worth flagging this position as a
natural, minimal version of our approach.

But we’ll do more: we’ll motivate a particular subclass of truth-directed, question-based
measures as the epistemically permissible ones, which we call Jamesian measures. We do

12More generally, the natural alternative to question-based measures are credal-based ones, which measure
accuracy by how well your guess promotes some desirable quality in your interlocutor’s credence function. There
are many such measures—(Shannon) information (Shannon, 1948; van Rooy, 2004), probability gain (Baron,
1985), accuracy (Oddie, 1997; Pérez Carballo, 2018), etc.—but they are not well-suited for our purposes.
They all involve quantifying how much learning (i.e. conditioning on) the answer to a question would improve
a credence function. Yet our context involves guessing the answer—not learning it—and in general people
shouldn’t update their credence function by conditioning on guesses. In fact, in cases where the probabilities
are common knowledge, often you shouldn’t change your credences at all in response to a guess. If we all know
this coin is 60% biased toward heads, then we know that you won’t change your credences when we guess how
it’ll land. That means that if what we care about is the impact of our guess on your credences, then any guess
is permissible (since none will have any effect) in this case. But that’s wrong—*‘heads’ is a permissible guess;
‘tails’ is not. This, in short, is why standard credal-based measures won’t do for our purposes.
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this for four reasons. First, giving a more specific class of measures helps bring out the basic
idea behind these constraints in a more concrete way. Second, it is important to see that
Improbable Guessing and Optionality will fall out of our approach even if we are not nearly
so permissive about what measures are allowed (since these encode permissions rather than
obligations, restricting the set of potential measures has the potential to invalidate them;
we’ll show that the class of Jamesian measures still validates them). Third, our preferred
class of measures will yield an explanation of a further generalization about guessing that
we’ll bring out in §3.3. Finally, our account of the conjunction fallacy in §4.3 will rely on a
systematic theory of how comparisons of expected answer-value will lead people to rank non-
optimal guesses. We need a more specific account of answer-value in order to make concrete,
empirically testable predictions about such rankings.?

However, the details of the model we will give are separable from many of the broader
proposals of this paper. There are a variety of other sub-classes of the truth-directed, question-
based measures that would predict (most of) our constraints on guessing—though none, we
think, work quite as elegantly as the Jamesian ones we will explore presently. '* There are
obviously many different ways to work out the details of a model like this, and we hope that
our discussion will invite the development and comparison of alternatives.

We also want to emphasize that the goal of these models is not to predict what particular
people will guess in particular situations. Rather, the goal is to elucidate the structural

13 This puts us in a position to sketch the two core differences between our account of guessing and Levi’s
(1967) theory of belief—which also analyzes answer-value in terms of (truly) ruling out cells of a salient
partition. The first difference is that Levi does not situate his account within the linguistic practices of guessing
and asserting. As a result, he does not make use of the notion of a contextually flexible QUD to generate the
relevant partition, nor does he motivate his approach as an account of the constraints on guessing we’ve
highlighted. (While his account in fact derives many of those constraints, it is inconsistent with Optionality
whenever there are ties in probability: if we're about to toss a fair coin, his approach would disallow you from
guessing that it’ll land heads.) The second difference is that Levi’s approach focuses exclusively on the question
of which answers mazimize expected answer-value, and as a result gives implausible verdicts about rankings
of expected answer-value. His formula for the expected answer-value of p reduces to P(p) — MT'q, where ¢ is a
‘boldness’ parameter that can take any value between 0 and 1, n is the size of the relevant partition, and [p] is
the number of cells of the partition consistent with p. On this measure, the expected value of contradictions
will always be 0, while that of contingent claims will often be negative. Example: if the question is ‘Will Latif
go to Yale?’, the expected answer-value of ‘Yes’ is 0.38 — 12J7 which is negative whenever ¢ > 0.76. Thus Levi’s
approach predicts that when people rank guesses in terms of expected answer-value, they will sometimes rank
‘He’ll go to Yale, and he won’t’ as a better guess than ‘He’ll go to Yale’. As we’ll argue in §4.3, such rankings
of non-optimal guesses are crucial to offering a plausible account of the conjunction fallacy. Our account will
generate rankings that predict a variety of empirical findings (§4.3), but examples like this show that Levi’s
account will not. We take this to show that Levi’s (1985, 2004) suggestion that his specific account can explain
the conjunction fallacy is incorrect—though we are obviously sympathetic to the more general idea.

1 An interesting alternative is to shift the location of the optimizing parameter by moving to Rank Depen-
dent Utility (RDU) theory (Quiggin, 1982; Buchak, 2013). RDU introduces a risk function r that is used to
modify the weight of a given level of probability. Assuming that Vg (p) > V4 (p), it sets your estimate for
the value of guessing p to be r(P(p)) - Vg(p) + (1 =r(P(p) -V, (p). We can let variations of r play roughly
the role that J plays in our model: when r is convex, you're risk-seeking and care more about informative
answers regardless of their low probability; when r is concave, you’re risk-averse and care more about making
sure your guess is true. If we treat any r function as epistemically permissible, we can use RDU to validate
all our constraints and permissions on guessing with a simple question-based measure like Vg (p) = ¢+ Qp,

and Vi (p) = —b for positive constants ¢, b.
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features that the practice of guessing is sensitive to, and thus explain why guesses rationally
should—and thus in fact tend to—meet constraints like Filtering, Fit, Optionality, and so
on. Viewing guesses as attempts to optimize a tradeoff between accuracy and informativity
(in the sense above) sheds light on what might otherwise look like arbitrary patterns.

Now to Jamesian measures. We'll give away the ending first, and then explain the reason-
ing behind it for those interested. Jamesian measures are those for which there is some J > 1
such that, for all p, Vg (p) = J9; and Vg (p) = 0. The parameter J represents the guesser’s
measure of the value of informativity, while @), is, again, the proportion of the QUD ruled
out by p. This yields the following simple formula for expected answer-value:

Jamesian Expected Answer-Value: Eé(p) = P(p)-J9 + P(p)-0
= P(p)-J%

Thus the expected answer-value of a guess is determined by two terms: its probability of being
true—P(p)—and its answer-value-if-true—J9». When J is small, changing the informativity
Q, of your guess will only change J @r a small amount—in the limiting case where J = 1, it
won’t change it at all, and the way to maximize expected answer-value is to pick a maximally
probable (and so minimally informative) answer. Conversely, as J gets large, changing the
informativity of your guess will change J%» a large amount, and therefore the way to maximize
expected answer-value is to pick an informative guess—in the limit, as J — oo, the way to
do so is to pick a mazimally informative (filtered) guess, regardless of how low its probability
is.

Our formula P(p) - J¥r thus captures the Jamesian tradeoff between accuracy and infor-
mativity. Picking an uninformative but very probable answer (‘He’ll go somewhere’) makes
the right term (J9r) small but the left term (P(p)) large; picking an informative but improb-
able answer (‘He’ll go to Yale’) makes the right term large but the left term small. Making a
good guess requires optimizing the tradeoff between these terms, in light of the probabilities
P and your value of informativity J.

We can see this tradeoff graphically in the Latif case by plotting the expected answer-
value of ‘Yale’ (‘Y’), ‘Yale or Harvard’ (‘Y or H’), etc. for various values of J (Figure 1).
As J increases, the optimal tradeoff between accuracy and informativity shifts towards in-
formativity: when 1.67 > J > 1, the best guess is ‘Yale, Harvard, Stanford, or NYU’; when
2.80 > J > 1.67, it’s ‘Yale, Harvard, or Stanford’; when 10.25 > J > 2.80, it’s ‘Yale or
Harvard’; and when J > 10.25, it’s ‘Yale’.

This sums up our preferred way of measuring answer value. The rest of this subsection will
explain the reasoning behind Jamesian measures; readers who are eager to see the applications
of our model may wish to skip to the next subsection.

Begin with false guesses. How valuable is a false guess? Suppose we’re asked where we
think Latif will go; one of us says, ‘Yale’; the other says ‘Yale or Harvard’. Turns out, Latif
goes to Stanford. Which of us was a more valuable guess, objectively speaking? Intuitively:
neither. Both were maximally far from the truth—since both ruled out the true complete
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Figure 1: Expected answer-value of law-school guesses, varying the value of informativity (J)

answer to the question. This intuition motivates setting Vo (p) equal to some constant low
value, regardless of the informativity of p; we set this value to V5 (p) = 0.1 (This is not to say
that all false guesses are the same: some false guesses will have higher expected answer-value
than others, and thus will be better from that, subjective, perspective.)

What about true guesses? Since Vi is question-based, Vg (p) will be a determined by
the proportion of cells that p rules out, i.e. @,. How it’s determined should depend on how
much you value informativity. If you really value having a complete answer to @, Vg (p) will
increase very quickly with p’s informativity; but if you don’t particularly value such a precise
answer, VJ (p) will increase much more slowly. By truth-directedness, any true answer—even
an uninformative one—must have some minimal positive answer-value ¢ > 0. This is the
value of ‘mere truth’. By what factor does guessing a mazimally informative (true) answer
improve on the value ¢ of mere truth? That depends on how you value informativity. Let J
be a real-valued parameter that measures this Jamesian value of (maximal) informativity, so
that a maximally informative (true) answer yields value J-¢. Since a maximally informative
(true) answer is at least as valuable as an uninformative one, J > 1.

How, exactly, should ch (p) vary as both informativity (@) and the value of informativity
(J) change? Note that, ranging over questions ), informativity has a minimum possible value
of 0 (ruling out no complete answers), and has a least upper bound of 1, since a complete
answer to () has informativity @T_Il’ which goes to 1 as |Q| — oco. If you don’t care at all about
informativity (if J = 1), then, no matter what Q,, is, VC'; (p) should be the value of mere truth,
i.e. t. Similarly, no matter how much you value informativity, if p is completely uninformative,
then Vg (p) should again be t. Finally, as p becomes mazimally informative, the value of truly

15Tn some instances intuitions about verisimilitude may make some false guesses seem closer to the truth
than others (Popper, 1963; Oddie, 2019; Schoenfield, 2019a); likewise, intutions about partial truth (Yablo,
2014); but we’ll set such issues aside for our purposes.
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guessing p should tend towards multiplying the value of mere truth by a factor of J: as Q, — 1,
we have Vg (p) — J-t. A natural way to capture all these constraints is to raise J to the
power of the (true) guess’s informativity, and use the resulting value to scale the value of mere
truth: VQ+ (p) = (J) - t. When p has minimal informativity (Q, = 0), VQ+ (p) =J° -t =t
likewise, when you don’t care about informativity (J = 1), then VJ (p) = 19 -t = t. And
when informativity approaches its maximal value (Q, — 1), answer-value scales the value of
mere truth by a factor of J: Vg (p) — J'-t = J-t. Generally: when J is small, answer-value
rises slowly with increases in informativity; when J is large, it rises steeply; and as J gets
arbitrarily large, increasing informativity dominates all other considerations (Figure 2).'6
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Figure 2: How answer-value varies with J and Q)

Summing up this discussion, we define our class of Jamesian measures of answer-value:

Vg is Jamesian iff, for some ¢t > 0 and J > 1:

(o) = J% .t ifpi
Vo = Vo (p) =J% -t if pis true
Vo) =0 if p is false

Given a Jamesian measure, the expected answer-value of a guess is:

Ej(p) = P(p) Vg (p) + P(0)- Vg ()
P(p)-(J9-t) + P(p)-0

P(p) - (JO -t)

Notably, comparisons of expected answer-value are insensitive to the value ¢ of ‘mere truth’:
for any p,r, Eq(p) > Eq(r) iff P(p)-J% -t > P(r)-J9 ¢ iff P(p)- J% > P(r)-J9 . So without
loss of generality we can assume that t = 1, and simply say Vg (p)=1J @r. Thus we arrive at
the formula above for Jamesian expected answer value: Eé (p) = P(p) - J%

Y5 This, intuitively, is why we raise J to the power of Q, rather than (say) multiplying them: we want high
values of J to allow for small increases in informativity to matter more and more.
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3.2 Deriving our constraints

We will thus adopt a theory on which p is epistemically permissible iff it has maximal expected
answer-value relative to your credences and some Jamesian measure of answer-value. In this
section, we will show that the constraints and permissions observed in §2 all follow from this
theory.!”

Start with Fit—the claim that a guess is impermissible if it crosscuts a complete answer,
such as: ‘I think Latif will go to Yale, and it’s cold in London today’. This follows easily.
If p violates Fit, then there is some complete answer that it overlaps but does not fully
include: there is a ¢ € Q such that ¢ N p # () but ¢ € p. Compare p to p U q. The two rule
out exactly the same number of complete answers, and thus by question-basing, have the
same answer-value if true and if false. But p U ¢ is more likely to be true than p (since we
are assuming our probability measure is regular over the context set). Therefore the expected
answer-value of pUgq is strictly higher than that of p. Any non-Fit answer will thus have lower
expected answer-value than some alternative Fit answer, and thus will never be a permissible
guess. (So, e.g., the expected answer-value of ‘Yale’ will always be higher than ‘Yale, and it’s
cold in London today’.)*®

Next, Filtering: a guess is permissible only if it is filtered—if it includes a complete answer
q, it must include all complete answers that are more probable than q. This follows from
any truth-directed, question-based measure because swapping out the less-probable complete
answer for the more-probable one maintains the same level of informativity, but increases the
probability of your guess being true. (So a non-Filtered answer like ‘Yale or Stanford’ will
always have lower expected answer-value than a filtered answer with the same size—in this
case, ‘Yale or Harvard’.)

In fact, Filtering is a special case of a more general constraint which is worth bringing
out. If you are asked to rank the complete answers to a question, your ranking should follow
the probabilities: ‘Yale’ is a better guess than ‘Harvard’, which is better than ‘Stanford’, etc.
Likewise if you are asked to rank the two-cell answers: ‘Yale or Harvard’ is better than ‘Yale
or Stanford’, and so on. Generally:

Filtered Rankings: Equally informative answers should be ranked by probability.
Precisely: if Q) = Qr, then Eg(p) > Eg(r) iff P(p) > P(r).

17"To be clear, Filtering and Fit will follow for any truth-directed and question-based measures. We’ll show
that Improbable Guessing, Question Sensitivity, and Optionality also hold provided that all and only Jamesian
measures are epistemically permissible—from which it follows that, if we treat a strictly larger class of measures
as epistemically permissible, Optionality will still hold.

18 A referee asks whether we should be trying to give a normative explanation of Fit—why not instead
say that, since guesses are always relativized to a question @, the only options for a guess about @ are the
propositions that are unions of complete answers to Q7 We don’t have a strong opinion on this question,
though we do think the metaphysical constraint is not obviously correct. Just as we all know people who are
over-specific in their verbal answers (‘Yes I'm having a good day; I had cereal for breakfast with plenty of milk
and...”), or who obsessively return to a fixed topic (‘Yes I'm good, but don’t forget to buy my new book!’), it
seems we can imagine people who similarly give unfit answers inside their own heads (think Cato the Elder:
‘Latif will go to Yale, and Carthage must be destroyed!’). Since this explanation immediately falls out of the
same story that accounts for Filtering, it seems to a virtue of our theory that it also explains Fit without
further assumptions.
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This follows from our model by the same reasoning.”

Consider next Improbable Guessing: sometimes it’s permissible to guess p even if it’s less
likely than not to obtain. We've already seen that in our original Latif case, when J > 10.25,
‘Yale’ is the optimal guess—despite the fact that P(Yale) = 0.38. The intuition is that high
informativity can outweigh low probability, especially as J grows large.

The next observation was Question Sensitivity: whether a guess is permissible depends on
what question it’s addressing. This follows because Jamesian measures are based on a guess p’s
informativity @), which in turn is determined by the question Q). For example, relative to the
four-cell question, ‘Where will Latif go?’ (complete answers: { Yale, Harvard, Stanford, NYU}),
‘Yale’ has informativity 3/4. But relative to the two-cell question ‘Will Latif go to Yale?’
(complete answers: {Yale, Yale}), it has informativity 1/2. Thus ‘Yale’ is a permissible answer
to the former (where it’s filtered), but not the latter (because it’s not filtered with respect to
{Yale, Yale}). Thus we capture Question Sensitivity in an intuitive way (since ‘No’ is a good
answer to ‘Do you think Latif will go to Yale?’, but ‘Not Yale’ is a weird answer to ‘Where
do you think Latif go?’).

Our final observation was Optionality: given a question () with |Q| possible complete
answers, for any 1 < k < |Q|, it’s permissible to give an answer that is a union of k-
cells. In particular, the filtered answer that’s a union of the k most-probable cells is always
permissible. Thus ‘Yale’, ‘Yale or Harvard’, ‘Yale or Harvard or Stanford’, and ‘One of those
four’ are all permissible guesses. As we’ve seen above (Figure 1), each of these maximizes
expected answer-value relative to certain values of J. The proof of Optionality requires some
footwork, so we leave it to an appendix, but the basic idea is straightforward: When J is low,
being informative provides little additional value, so the best guess is an uninformative (but
definitely true) guess (that is, |JQ). As J grows, being more informative gradually matters
more and more such that—mno matter your credences—you eventually start preferring an
answer comprising the union of (|Q| — 1)-cells, then (|Q| — 2)-cells, and so on until you prefer
a 1-cell answer. We can thus rationalize guesses of different levels of informativity by ascribing
to guessers different J-values: that is, different weights on informativity.

3.3 Setting J-values

This discussion raises a natural question: how are J-values set? And how do we know what
subjects’ J-values are?

We won’t offer a definitive answer to either question, but we’ll try to illustrate how the
structure of our model allows us to say interesting things about this issue, and in so doing
explain a further generalization about guessing.

First, it’s worth re-emphasizing that we're focusing on the cognitive attitude of having
something as your best guess about a question. On our account, this attitude is determined
entirely by your J-values and credences, given a question. There can of course be all sorts

'9This shows that our approach yields Horowitz’s (2017) Lockean-like relationship between credences and
guessing in a special case: when p and r are equally informative, then you should guess p over r if P(p) > P(r).
Thanks to Brian Hedden for pointing out this generalization of Filtering.
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of other (e.g. practical) values that affect the speech act of guessing. If we threaten to punch
you unless you correctly guess the exact number of jellybeans in a jar, the rational response is
obviously to pick some exact number—say, ‘457 —even if you have very little idea. Likewise: if
we threaten to punch you if you make a mistake, then it makes sense to refrain from guessing—
even if in fact you do have an idea. But this doesn’t imply that your J-value is high (low),
for in these cases the speech act of guessing plausibly comes apart from the corresponding
cognitive attitude. So J-values aren’t straightforwardly sensitive to practical stakes.

Instead, we take your J-value to be determined by your mental state in broadly the way
credences, utilities, and (on some views) risk profiles are. But unlike standard interpretations
of these states, we take J-values to be very flexible—able to adjust as you switch amongst
questions, or address the same question in different contexts. Our discussions later in the
paper about the role of guessing (§4.1, §4.2, and §5) will give more of a picture for why J-
values would need to be flexible like this. But we take it to be clear from our examples that
they are: given the credences above, it’s perfectly coherent to reply to “‘Where do you think
Latif will go?’ with ‘Yale, I think’, and yet (perhaps in a different context) reply to “Who do
you think will win the primary?’ with ‘Biden, Sanders, or Warren’—despite the fact that these
two guesses will require different J-values. In fact, this flexibility in J-values helps explain
why, when people make guesses, their statements are often peppered with markers that flag
various degrees of strength: ‘He’ll (definitely) go to Yale’ vs. ‘Yale, surely’; vs. ‘I think Yale’
vs. ‘I'd guess Yale—but it’s hard to say’. We think these markers are ways of flagging what
J-value you’re using, and therefore to what degree your guess is based on confidence in its
truth vs. a desire to be informative.

There are many questions about J-values that we don’t want to take a stand on: for
instance, whether they are more like a subject’s priors or more like a subject’s preferences—
and, if the latter, whether .J-values are under the subject’s voluntary control in some sense.
We suspect that you should answer these questions in the same way for guessing and for risk
aversion in general. Nonetheless, we have a bit more to say about how J-values are set.

Consider the following. Although we think Optionality is true—any filtered guess is
permissible—there are certain circumstances in which certain filtered guesses seem odd. In
particular, as the probabilities of the various complete answers ‘cluster’ together more tightly,
it becomes increasingly strange for your guess to crosscut these clusters—to include some but
not all of the cells in a cluster. To see this, consider some variations on our law-school case
where your credences about where Latif will go differ:

Scenario: || Yale Harvard | Stanford | NYU
Original: || 38% 30% 20% 12%
Close: 40% 35% 15% 10%
Near-Tie: || 40% 39% 11% 10%
Tie: 40% 40% 10% 10%

Consider the guess ‘He’ll go to Yale, Harvard, or Stanford’. This guess seems fine in the
original case, a bit odd in the Close case, quite odd in the Near-Tie case, and pretty bizarre
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in the Tie case. We summarize this trend with the following generalization:

Clustering: People tend to avoid making guesses that crosscut clusters of complete
answers with similar probabilities.

We state Clustering as a tendency because we don’t think it imposes a hard constraint
on permissible guesses. Two reasons. First, some guesses seem permissible even when they
crosscut cells with the same probabilities: in response to ‘How do you think this fair coin will
land?’, it seems perfectly permissible to guess ‘Heads’. Even in this Tie case, it doesn’t seem
outright impermissible to guess ‘Yale, Harvard, or Stanford’. Second, Clustering needs to be a
‘soft’ constraint because its effects are graded: ‘Yale, Harvard, or Stanford’ gets progressively
stranger as we move from the Original to the Close to the Near-Tie to the Tie case.

Our proposal is that Clustering reveals how people tend to select J-values—in particular,
they tend to select a J-value that makes their guess distinctive: one that makes its expected
answer-value not only maximal, but distinctively higher than that of alternative guesses. Note,
for instance, that in the Tie case, ‘Yale, Harvard, or Stanford’ will always have the exact same
expected value as ‘Yale, Harvard, or NYU’—thus even if we pick a J-value that leads both of
these to have maximal expected answer-value, neither can ever be uniquely maximal. Thus
we think that guess is odd because there can be nothing to uniquely recommend it. (Similarly
in the Near-Tie case, except that instead of the expected answer-values of ‘Yale, Harvard, or
Stanford’ and ‘Yale, Harvard, or NYU’ being the exact same, they are merely very close—
meaning neither can be very distinctive.) In contrast, for many values of J, in the Tie and
Near-Tie cases, ‘Yale or Harvard’ has an expected answer-value that is substantially higher
than any other potential answers. Thus our hypothesis is that Clustered guesses are natural
because there’s a way of valuing informativity that makes them distinctively best.

This notion of distinctiveness can be made precise as follows. Given credences P and a
question @, let the J-distinctiveness of a guess p, D?, be the ratio of its expected answer-
value to the highest expected answer-value of any other Fit guess (holding fixed J). That is,
where F), is the set of Fit answers to ) other than p, we have:

E}(p)

EJ(r)
v (o)

D?} =

And define the distinctiveness (period) of p, DP, to be the maximal J-distinctiveness it can
receive, for any value of J: DP := sup{Df} : J > 1}. So defined, we take the distinctiveness DP
of a guess to be a natural measure of its salience. Our proposal is that there is a tendency (but
not an obligation) to make guesses that are salient; and thus, inter alia, to make guesses with
high distinctiveness; and thus to use J-values that allow guesses to have high J-distinctiveness.

This explains Clustering. To see why, note the following. DP > 1 iff p is filtered.?? If p
includes complete answer ¢, excludes g2, and P(q1) = P(q2)+¢, then p’s distinctiveness is no

20Tf p is not filtered, it can never be maximal in expectation, so D? < 1. And if p is filtered, then by
Optionality, there is a setting of J on which it has maximal expectation, so D? > 1.
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greater than %.21 Thus if p is a filtered guess that crosscuts a cluster of equally-probable

complete answers, its distinctiveness is the minimal value of 1. And when it crosscuts a cluster
of almost-equally-probable answers, its distinctiveness will be only marginally greater than 1:
€ will be small, so DP < PI(ZEQE ~ 1. Meanwhile, when the least-probable cell included in p
is significantly more probable than the most-probable cell outside it (i.e. p doesn’t crosscut

any clusters), then DP is substantially larger than 1. For example, in the Tie case, ‘Yale or
Harvard’ has the highest distinctiveness of any guess—at 1.33—while that of ‘Yale, Harvard,
or Stanford’ has the minimal distinctiveness of 1; in the Near-Tie case, the distinctiveness of
the former is 1.32 while that of the latter is 1.01; in the Close case, the distinctiveness of the
former is 1.25 while that of the latter is 1.04; and so on.?? Thus a preference for distinctive
guesses explains Clustering.

Upshot: although J-values are flexible, the structure of Jamesian measures offers the
resources to help explain how people select them, and in so doing explains the Clustering
generalization. We take this result to both clarify and bolster the case for the Jamesian
Guessing-as-Maximizing account.??

4 When We Guess

So far we’ve offered an account of what we guess, and how we do so. We now turn to when we
guess. We’ll make the case that much of our cognitive lives involves trading off accuracy and

2LA relevant alternative to p is a guess p* that swaps our g for ¢1. Since Qp = Qp~, that means for any

p o BOW) _ P9 _ P _ P(p) _ P(p) _ _P(p
value of J, D; < EL(p™) P9  P(p7) | Po—a)+P@a) | Po—a)+Pa—  Pp)—<

22Qupposing p is filtered, a rather complicated proof and calculation (which we omit) offers the following
formula for D? and for the (often unique) J such that DY, = DP. Number the cells qi, ..., gn of Q such that
P(q1) > ... > P(gqn) (it doesn’t matter how ties are ordered), and define Q¥ := ¢, U ... U gi. If p includes k
cells, then for all J, E4(p) = ES(Q"). Let p’ := (Q" — qr) Ugr+1 (where gr1 =0 if k+1 > n). Thenif k=1
or k=mn, DP = If((;’)); and if 1 < k < n, then D? = min { 5((5))7 \/P(Qki(f;@k“) }. The relevant J-value(s)

n/2
that maximizes D* will be 1 if k = n, any high-enough number if k£ = 1, and (ﬁgg:ig) ifl<k<n.

23 A referee helpfully points out that, combined with a story of how J-values are set, the Jamesian account
makes some substantive predictions about how the QUD will affect people’s tendencies to guess. For instance,
consider two versions of the Latif case. Version 1 is the original. Version 2 replaces both Stanford and NYU
with 32 options, each with approximately 1% chance. In Version 1, the option with maximal distinctiveness
(1.27) is “Yale’, while in Version 2, the distinctiveness of ‘Yale’ remains the same, but that of “Yale or Harvard’
becomes maximal (1.33); thus the proposal in this section would predict that people are more likely to guess
the latter in Version 2 than Version 1. This seems to us to be a good prediction, insofar as the Clustering
intuition is correct. Moreover, it’s worth noting that the formula in footnote 22 is local, in the sense that the
distinctiveness for a size-n filtered answer depends only on the probabilities of the size n — 1 and n+ 1 filtered
answers—thus adding many small-probability outcomes will not affect the distinctiveness of most answers.
Finally, this formula predicts that is it the linear distance in probabilities that governs the Clustering. Though
perhaps surprising, this seems right to us: if A has a 90% chance to win, B has a 5% chance, and 500 other
people each have a 0.01% chance to win, then the natural guess about who will win is that A will (rather
than that A or B will)—despite the fact that the ratio between 5% and 0.01% is much larger than that
between 90% and 5%. Given that constraints like Question-Sensitivity and Clustering hold, we should expect
differences like these in the QUD to have effects on people’s guesses. We think it’s a virtue of our proposal that
it makes concrete predictions about such cases, but we are open to the idea that some other (question-based,
truth-directed) proposal will do even better.
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informativity—i.e. making good guesses based on limited information—and that, therefore,
our theories of cognition (individual and joint) should give a privileged role to guesses. In
particular, we’ll argue that guessing plays a central role in believing (§4.1), communicating
(84.2), and reasoning (§4.3).

Although we’re going to make the strongest case we can for each of our applications,
we want to emphasize their modularity. You might be convinced by our theory of guessing
and be unconvinced by some or all of our applications. Moreover, we want to flag that our
applications come in reverse order of originality: §4.1 primarily refines existing ideas in the
literature on belief; §4.2 proposes a revision to—and a new explanation of—the standard
pragmatics of assertion; §4.3 develops a new theory of the conjunction fallacy. Regardless
of which of these applications you find plausible or exciting, we hope to convince you that
understanding guessing in terms of expected answer-value helps us pose and address a variety
of fruitful questions in epistemology, philosophy of language, and cognitive science.

4.1 Guess when you believe?

Start with belief.2* We want to call attention to two relevant threads in the recent litera-
ture: the weakness and question-sensitivity of belief.

Start with weakness. At least in the sense of belief referred to by the ordinary word
‘belief’, believing p doesn’t require having a particularly strong attitude toward p. It doesn’t
require being sure or taking yourself to know, for it is perfectly sensible to say, ‘I { don t know
if it’ll rain, but I {,think 1 jt will’ (Hawthorne et al., 2016). Nor does it require having non-

think
believe

statistical evidence, since it’s perfectly sensible to say ‘I { } your lottery ticket will lose’.
In fact, believing that p doesn’t even seem to require believing that p is more likely than not!
For in response to the question, ‘Where do you think Latif will go?’, it’s reasonable to reply,
‘I {bte}ﬁg\lfe} he’ll go to Yale’ (Kahneman and Tversky, 1982; Hawthorne et al., 2016; Dorst,
2019; Rothschild, 2019). In fact, as Holguin (2020) brings out, this seems true no matter how
unlikely Latif is to go to Yale, so long it’s the most likely complete answer (cf. Windschitl
and Wells, 1998).25

However, the permissibility of thinking Latif will go to Yale depends on the question
you're answering.?6 Although, given the credences at the outset, it’s fine to say that you

think that Latif will go to Yale in response to the question ‘Where do you think he’ll go?’, if

AFollowing the recent literature, we’ll assume that believing that p is thinking that p, and move freely
between the two. See Hawthorne et al. (2016); Dorst (2019); Rothschild (2019); Holguin (2020) for extensive
discussion.

25Some have replied to this ‘belief is weak’ picture by arguing that the intended reading of the philosophical
term ‘belief’ is some notion of strong or firm belief—something like being sure (Clarke, 2013; Greco, 2015;
Friedman, 2019; Moss, 2019; Williamson, 2020). We’ll say more about this below (§4.2 and §5), but our
proposal is perfectly compatible with the idea that there is such a stronger notion that is philosophically
important and plays a different functional role than the weak readings of ‘belief” and ‘think’ that are favored
in natural language and are our target here (cf. Buchak, 2014; Staffel, 2016).

26Gee e.g. Levi 1967; Kahneman and Tversky 1982; Thomason 1986; Yalcin 2011, 2018; Drucker 2020; Hoek
2020a,b; Holguin 2020; cf. also Schaffer 2005, 2007; Schaffer and Knobe 2012; Schaffer and Szab6 2014; Gerken
and Beebe 2016 for closely related discussion. The theory of belief from Leitgeb 2017 is also partition-sensitive,
but in very different ways (for example, it requires beliefs to be more probable than not).
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you're instead asked ‘Do you think Latif will go to Yale, or not?’ it’s much more natural to
that say that you do not. A simple explanation of this contrast is that belief is not simply a
relation to a proposition, but rather a relation to a proposition, relative to a question. Thus
beliefs are answers to questions.

Drawing these two threads together, Holguin 2020 proposes that to believe p relative to
question @ is for p to be entailed by your best guess about ). The key motivation is that
rational best guesses, Holguin observes, obey the distinctive features of both Filtering and
Optionality—and so do beliefs. For example, with respect to the question ‘Where do you
think Latif will go?’, it’s permissible for the strongest thing you believe to be that he’ll go
to Yale, or that he’ll go to Yale or Harvard—but it’s not permissible for it to be that he’ll
go to Harvard, or to be that he’ll go to Harvard, Stanford, or NYU. Thus both guessing and
believing are weak and question-sensitive, and in the same ways. It’s natural to hypothesize
that what you believe just is whatever’s entailed by your best guess.

Our account of guessing nicely complements Holguin’s account of belief. His account
reduces the weakness and question-sensitivity of belief to that of guessing; our account of
guessing, in turn, explains why good guesses (and hence rational beliefs) are weak and question
sensitive (and Filtered, Fit, Optional, and Clustered): namely, because in forming your best
guess, and thus your belief, about @), you must maximize expected answer-value relative to

some Jamesian measure.27

4.2 Guess when you talk?

Turn now from thinking to talking. We suspect that guessing plays a key role in ordinary com-
munication. Ezplicit requests for guesses are not all that common in ordinary conversation—
but it is very common to ask or report what someone thinks or believes or thinks is likely
about some question. A natural thing to ask about Latif is where you think he’ll go to law
school; and a natural reply is that you think he’ll go to Yale, even if you're not sure. Re-
gardless of whether Holguin is right that you think p iff it’s entailed by your guess (§4.1),
we take our examples to have shown that these are natural ways to get your interlocutor to
take a guess —after all, if we ask you ‘Where do you think Latif will go?’, we’ll be unphased
if you give an improbable but filtered answer (‘Yale’), yet puzzled if you give a probable but
unfiltered one (‘Harvard, Stanford, or NYU”).

2"Two questions. First, where do J-values comes into the semantic calculations of attitude ascriptions: are
they supplied by the subject, or by the context of assertion or evaluation? The former answer fits naturally with
the picture here, and we think standard arguments against subject-sensitive invariantism are not compelling
in the case of ‘believe’ or ‘think’: ‘If more was riding on it, I wouldn’t think that the bank’s open—I’d suspend
judgment’ seems coherent. But our view is also consistent with contextualist or relativist treatments.

Second, given Optionality, does it follow that people who form different guesses—as a result of having differ-
ent (permissible) J-values—are not genuinely disagreeing? We don’t think so. Disagreement is a notoriously
thorny phenomenon, showing up in many domains where Optionality is plausibly in play (see Khoo 2015;
Khoo and Knobe 2018 for helpful recent discussion). Hence you may think that there is optionality about
how risk averse to be (with respect to utility in general), while acknowledging that actual decision makers
will disagree vehemently with other decision maker’s different levels of risk aversion. So there is still room for
disagreement about which guess is best, even if all are permissible in some sense.
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But we want to propose that guessing plays an even deeper role in communication. We
think that there is a basic norm along the following lines:

Say Your Guess: When the QUD is @, you should communicate your best guess
about Q).

To bring out the motivation for this picture, compare it to the standard pragmatic story
about assertion, which has two components:

Standard Pragmatics: When the QUD is @, you should give an answer that (1) you
are certain of, and (2) is a partial answer to @—a union of cells of @) that rules out at
least one cell of @ (Grice, 1975; Stalnaker, 1978; Roberts, 2012).

In a slogan: assert the strongest partial answer you’re sure of.

We have two arguments that Say Your Guess is a better picture about the fundamen-
tal rule of conversation than Standard Pragmatics. First, as a matter of fact people often
seem to permissibly say things that they are substantially less than sure of—but they never
permissibly say things that are not Filtered or not Fit. If so, Say Your Guess simply fits
the facts better than Standard Pragmatics. Second, Say Your Guess also ezplains these facts
better: it explains both the novel observation that assertions need to be Filtered, as well as
the standard observation that they need to be partial answers.

Take these points in turn. First, it seems to us that people often say things when they
are clearly not certain of them. It’s not unusual to overhear exchanges like, ‘What’s going to
happen in the primary?’; ‘It’ll be Biden or Bernie’; ‘Where’s Latif going to go?’, ‘He’ll end up
at Yale’; ‘Is teaching going to be in person in the fall?’, ‘No way—it’s going to be online’; ‘It
looks like it’s going to rain; will the concert be cancelled?’, ‘Nah, it’ll happen’; ‘Will Bernie
win in South Carolina?’, ‘No way—that’s Biden’s state’; etc. These assertions are clearly not
certain, or even plausibly known, yet they seem perfectly ordinary. Nevertheless, it’s felicitous
to report the speaker has having said p, rather than having said that they think or guess that
p (‘Jim said it’ll be Biden or Bernie.”) Thus it looks like, at least in some contexts, assertions
can be Improbable, like guesses.

But—again, like guesses—not just anything goes. While ‘Latif will end up at Yale’ is an
acceptable response to ‘Where do you think Latif will go?’, ‘Latif will go to Harvard’ is a
very weird thing to say, given your credences; so is ‘He’ll go to Harvard or Stanford’. Thus it
seems that assertions must be Filtered. And they must also be Fit: that is, again, a standard
pragmatic assumption, which follows from the requirement that your assertion should be a
partial answer to the QUD. Hence saying ‘Latif will go to Yale, and it is cold in London’ is
unacceptable in reply to the question ‘Where will Latif go to law school?’

These patterns are immediately explained if the basic rule of assertion is Say Your Guess.
And while a proponent of Standard Pragmatics might maintain that these cases of improbable
assertions are simply unremarkable violations of the standard rules of assertion, she would
not thereby have a good explanation of why these assertions still must be Filtered and Fit,
even though they can be Improbable.
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Now to our second point: the second part of Standard Pragmatics, that your assertion
should be a partial answer, is usually built in as a pragmatic primitive. By contrast, this is
explained by Say Your Guess. For, as we have seen, any permissible guess in our framework
is Fit. Moreover, the Gricean Maxim of Quantity plausibly entails that you shouldn’t assert
a contextual tautology. But a guess that is Fit but that also rules out some worlds from
the context set is just a partial answer! So Say Your Guess (together with the Maxim of
Quantity) explains a fundamental feature of Standard Pragmatics.

Thus it’s plausible that the fundamental norm of conversation is to Say Your Guess. This
explains patterns that are inconsistent with Standard Pragmatics—namely, that assertions
can be Improbable. It explains patterns that are consistent with but not entailed by Standard
Pragmatics—mnamely, that assertions must be Filtered. And it explains patterns that are
typically built in but not explained by Standard Pragmatics—mnamely, that assertions must
be partial answers.

Clearly there is much more to do to defend a picture like this—a project we take up in
further work (Mandelkern and Dorst, 2021). There we adduce more arguments that guessing is
the fundamental norm of assertion, and confront the best arguments for Standard Pragmatics:
the infelicity of Moorean sentences.

For the present, we want to just briefly answer two objections. First: just as some want
to distinguish an attitude of full belief from the target of our analysis above (the weak,
ordinary denotation of ‘think’), some might want to distinguish something like fully asserting
from ordinary run-of-the-mill speech acts that can indeed be relatively Improbable—call
them sayings. The idea would be that sayings is a broad category, which includes a special
subkind—assertions. On this approach, all sayings are governed by the basic rule Say Your
Guess, but assertions are governed by a further rule, ‘Say only what you’re certain of’. We are
open to an ecumenical approach like this. Even on that way of going, we’d still take Say Your
Guess to play an important explanatory role, since (i) much of what happens in ordinary
conversations are sayings and not assertions in this special sense, and (ii) our account would
still play a key role in explaining why sayings in general-—including assertions—must be Fit
and Filtered.

Second: you might wonder how much we are really doing to explain why assertions/sayings
must be partial answers to the QUD since it is simply stipulated in Say Your Guess that you
should say your guess about the QUD. But there are many different rules of assertion that are
QUD sensitive. For instance, you might have a theory that says: in response to o« QUD @,
say the thing you know that will most change your interlocutors’ credences in some cell of Q).
Indeed, theories like this have been defended (e.g. Feinmann 2020). And theories like that—
although they also take on board QUD sensitivity—do not require assertions to be partial
answers. So, while QUD sensitivity is indeed built into Say Your Guess from the start, our
theory still does important work in explaining why we assert partial answers to the QUD (in
addition, of course, to explaining why assertions must be Filtered, and can be Improbable).

24



4.3 Guess when you reason?

We turn finally to the role of guesses in reasoning. We’ll argue that our theory helps ex-
plain the conjunction fallacy—the well-known observation that people sometimes judge a
conjunction to be more probable than one of its conjuncts.

We think that this is a particularly interesting application for two reasons. First, the pat-
terns we’ve tried to explain above involve intuitive patterns in guessing, belief, and assertion.
All of those patterns could be tested experimentally, but—to our knowledge—have not yet
been. We think it is significant, then, that our account can also explain surprising and intri-
cate patterns of judgments that have been explored experimentally. Second, the conjunction
fallacy is a cornerstone of a fairly standard case in psychology that humans are fundamentally
not very good at reasoning under uncertainty.?® Our account gives a different diagnosis of
what is going on here, consistent with a different picture of human reasoning. This is philo-
sophically interesting in its own right; and, we think, provides further support for the thesis
that guessing in general—and something along the lines of our theory in particular—has an
important role to play in the theory of human cognition.

To get a feel for the conjunction fallacy, begin with the most famous case, from Tversky
and Kahneman 1983. Subjects were first given the following vignette:

Linda is 31 years old, single, outspoken and very bright. She majored in philos-
ophy. As a student, she was deeply concerned with issues of discrimination and
social justice, and also participated in anti-nuclear demonstrations.

Subjects were then asked which of two alternatives was more probable:

- Linda is a bank teller.

- Linda is a bank teller and is active in the feminist movement.

85% of the subjects chose the second option over the first, contrary to the laws of probability.

To see how our account of guessing might help explain this result, recall a central lesson
of our discussion of guessing above: it is acceptable to guess a less likely answer when it is
correspondingly more informative—if asked where Latif is likely to go, it can be acceptable to
guess ‘Yale’ over ‘Yale or Harvard’. In particular, when we measure informativity in terms of
the proportion of cells of the QUD that are ruled out, a conjunction will be more informative
than its conjuncts when both conjuncts address the QUD. So, although the conjunction will
never be more probable than one of its conjuncts, it may nevertheless be a better guess. Our
hypothesis is that the accuracy-informativity tradeoff of guessing can explain the conjunction
fallacy:

28For classic and modern statements of this kind of picture, see Tversky and Kahneman 1974; Kahneman
and Tversky 1982, 1996; Fine 2005; Ariely 2008; Kahneman 2011; Lewis 2016. For resistance to it, including
the rise of the ‘rational analysis’ program in cognitive science, see Anderson 1990; Gigerenzer 1991; Gigerenzer
and Goldstein 1996; Oaksford and Chater 1994, 1998; Kelly 2004, 2008; Oaksford and Chater 2007; Tenenbaum
and Griffiths 2006; Hahn and Oaksford 2007; Tenenbaum et al. 2011; Griffiths et al. 2012; Hahn and Harris
2014; Hedden 2018; Miller and Sanjurjo 2018.
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The Answer-Value Account: People commit the conjunction fallacy because they
rank outcomes according to their expected answer-value, rather than their probability.

A key motivation for this account is that evaluating expected answer-value—that is, compar-
ing potential guesses—is something we all do all the time (if our arguments so far are right:
whenever we think or talk).

Let’s work through the idea in more detail. Take the Linda case, where Tversky and Kah-
neman found that a large proportion of subjects rated ‘Linda is a feminist bank teller’ (F'T")
as more likely than ‘Linda is a bank teller’ (7). First, we assume that the vignette and the
alternatives offered (T vs. F'T) generate a QUD based on the relevant characteristics in play,
namely, the four-cell QUD obtained from crossing the question of whether Linda is a feminist
or not ({F, F}), and whether she is a bank teller or not ({T,T}): Q = {FT,FT,FT,FT}*
Then, given credences P and any J, the expected answer-values of F'T" and T are as follows:

E(FT) = P(FT) - (J**)
E)(T) = P(T) - (J'?)

Thus the expected answer-value of F'T' is greater than that of T iff:

P(FT) - (J*") > P(T) - (J'?)

- P(FT) - J
P(1) ~ J¥

1
& P(F|T) > T

When the value of informativity is minimal (J = 1), the right-hand side equals 11% =1, and
the expected answer-value of FT' is never higher than that of T (since P(F|T) < 1). But as J
grows, the right-hand side shrinks. And, when J > 1, the expected answer-value of ‘feminist
bank teller’ is higher than that of ‘bank teller’ iff the conditional probability of Linda being a
feminist, given that she’s a bank teller, is sufficiently high—where what counts as ‘sufficient’
is determined by the value of informativity J.

Why does the conditional probability P(F|T) matter, on our account? Because although
the conjunction F'T always has a lower probability than the conjunct 7', the degree to which
it’s lower is determined by how likely F' is given T', since P(FT) = P(T')- P(F|T). Thus when
the conditional probability P(F|T) is high, F'T will be only slightly less likely than T—which
speaks in favor of trading the (slightly) more probable but less informative guess T for the
(slightly) less probable but more informative guess F'T.

Concretely, suppose that you judge the probability that Linda is a feminist to be 0.8,

29TImportantly, our theory’s predictions don’t depend on the details of the QUD selected: one that draws
more distinctions about what Linda is like would yield the same (expected) answer-value scores for T', F'T,
etc., provided those distinctions are all (contextually) orthogonal to F' and T. So the same story extends to
cases where, say, more options about Linda’s livelihood are given (provided they are mutually consistent), as
in one version of the Linda case given in Tversky and Kahneman 1983.
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and to be independent of whether she’s a bank teller, so that P(F|T) = P(F') = 0.8. Then
you should guess ‘feminist bank teller’ over ‘bank teller’ iff P(F|T) = 0.8 > ﬁ, which in
turn holds iff J > 2.44, i.e. iff the value of a (true) maximally informative answer is a bit
more than twice that of a (true) completely uninformative answer. While we don’t expect to
have direct intuitions about J-values, recall that in our original law-school case, ‘Yale’ was
the best guess iff J > 10.25—=so the value of informativity required to yield the conjunction
fallacy is quite modest.?’

To be clear: we're not claiming that subjects have the judgments they do in conjunc-
tion fallacy cases because they are actually guessing. In fact, while the guess F'T' often has
higher expected answer-value than T, neither guess is filtered given intuitive probability
assignments—‘feminist and not a bank teller’ is more probable, but equally informative as,
‘feminist bank teller’; and ‘feminist’ is more probable, but as informative as, ‘teller’. So our
claim is not that FT is a good guess, but rather that it is a better guess than T', given many
natural credence functions and J-values.

This brings out something interesting about this application. We motivated our theory
mainly via binary observations about which guesses (and later, beliefs and assertions) are
permissible. To account for these judgments, we gave a theory which actually gives us some-
thing more general than a division among permissible and impermissible guesses: namely,
rankings of all possible answers according to their expected answer-value. While this may
have at first seemed over-committal, we hope to have shown how these rankings naturally
arise out of an intuitive picture of guessing—and now we are claiming that they in fact do
important theoretical work.

With the basic idea in hand, we want to briefly highlight some key predictions of our
account. The conjunction fallacy is an intricate phenomenon which has generated an enormous
amount of literature; for reasons of space, our discussion here must be limited. In future work,
we plan to offer a more detailed examination of both the empirical literature and the ways
our theory stacks up against other approaches. Here, we’ll simply highlight what we take to
be the key selling points of our account.

Start with an observation that follows from the discussion above:

Prediction 1: Ranking AB over B will be more common as P(A|B) goes up.

We have already seen why this follows: when the conditional probability, say, P(F|T) is high,
then F'T will be only slightly less likely than 7', which means subjects will (for many J-value)

390ne strategy for making concrete predictions here is to use the distinctiveness measure from §3.3 to predict
how people will set J-values. We have some hesitancy about this, since that measure is best motivated as a
way of seeing what the salient answers are, yet a conjunction fallacy case is one in which, by design, the
options for answers are artificially restricted (e.g. ‘feminist non-bank-teller’ is not an option). But setting this
hesitancy aside, here’s how the approach would go. Suppose for illustration the probability of Linda being a
bank teller is 0.1. Then the probabilities of the various complete answers are: F'T: 0.72; FT: 0.18; FT: 0.08;
FT: 0.02. This makes the distinctiveness of ‘feminist non-teller’ % = 4.00, while the next highest value is
1.07; thus we predict that there’ll be a strong preference for setting J to a value that makes F'T substantially
higher than its alternatives. FT' becomes more distinctive as J grows, thus predicting that people will have a

high J-value and thus will likely commit the conjunction fallacy.

27



be inclined to select the slightly less probable but much more informative guess F'I" over the
slightly more probable but much less informative one T

This prediction is confirmed by a variety of empirical studies (e.g. Gavanski and Roskos-
Ewoldsen 1991; Fantino et al. 1997; Costello 2009a,b; Tentori and Crupi 2012; though see
Tentori et al. 2013 for a challenge). For instance, Tentori and Crupi 2012 asked subjects about
two claims about a character Mark and a 100-ticket lottery, giving two stimuli: ‘Mark is a
scientist’ (S) and ‘Mark is a scientist and will win the lottery’ (SW). Subjects were given
different information about how many lottery tickets Mark has (either none, 1, 20, 50, 80, or
all). The rates of conjunction fallacy (i.e. the rate of ranking SW as more probable than S)
increased strictly with the number of lottery tickets Mark had—see Figure 3. This means, in
turn, that they increased strictly with the conditional probability of ‘Mark will win the lottery’
on ‘Mark is a scientist’ (since these are probabilistically independent, P(W1S) = P(W)).
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Figure 3: Conjunction-fallacy rates, varying P(W|S), recreated with permission (Tentori and Crupi, 2012).

Prediction 2: Ranking AB over B will not generally depend on the content of A and
B, but instead on their (conditional) probabilities.

This prediction follows because the Answer-Value Account of the conjunction fallacy is only
sensitive to (i) how much more informative AB is than B, and (ii) how much less prob-
able it is. Thus it is not generally sensitive to what A and B are about.?' Perhaps sur-
prisingly, this is empirically confirmed: the conjunction fallacy is found even for unrelated
conjunctions of events. For example, Yates and Carlson (1986) found that with two prob-
able but completely unrelated events—namely, ‘Governor Blanchard will succeed in raising

31We include the ‘generally’ rider because this holds in general only if A and B are equally informative; but
sometimes that is not plausible. In comparing ‘feminist bank teller’ to ‘bank teller’; a sensible overall question
is ‘What are Linda’s social and political positions?’ But if we ask you to compare ‘Linda is a bank teller’ to
‘Linda is a bank teller and has at least seven eyelashes’, you’ll be hard-pressed to come up with a sensible
overall question in which the second conjunct could play a part. We suspect this observation may help account
for the data found in Tentori et al. 2013.
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the Michigan state income tax’ and ‘Bo Derek will win an Academy Award for the movie
she is currently making’—people committed the conjunction fallacy 56% of the time. Simi-
larly for Costello (2009a) with unrelated weather events. (This is particularly challenging for
representativeness-based accounts, like that of Tversky and Kahneman 1983, to make sense
of.)

Prediction 3: When P(A|B) and P(B|A) are both high, ‘double’-conjunction fallacies
will be common: people will rank AB > A, B. Meanwhile, when P(A|B) is high but
P(B|A) is low, ‘single’-conjunction fallacies will be common: people will rank A >
AB - B.

These predictions follow because our account is symmetric: provided A and B are both
relevant to the QUD and are contextually orthogonal, the expected answer-value of AB is
higher than that of B iff P(A|B) > ﬁ; and it is higher than that of A iff P(B|A) > ﬁ;z
And indeed, in cases where both conditional probabilities are high, people standardly rank
the conjunction as more probable than both conjuncts as in this famous case from Tversky

and Kahneman (1983):

A young college runner, Peter, has already run the mile in 4:06. Please rank the
following for probability:

(a) Peter will complete the mile under 4 min.

(b) Peter will run the second half-mile under 1:55 and will complete the mile
under 4 min.

(c) Peter will run the second half-mile under 1:55

48% of subjects ranked (b) as the most probable of (a)—(c). (See Crupi et al. 2018 for more
cases.) This is expected from our view, since P(alc) and P(c|a) are both relatively high.

Prediction 4: Ranking AB over B will be equally common regardless of how exactly
the conjunction AB and conjunct B are phrased.

In particular, nothing about our account requires that the relevant expressions are literally
conjunctions and conjuncts—what matters is simply their informativity and probability. As
a result, different ways of expressing pairs of claims, one of which is more informative (but
less probable than) the other, will result in the same effect. Thus the account predicts that
the effect can occur when one of the claims is a disjunct and the other is a disjunction, or
when one is a broad category and the other is a narrow one (‘humanities’ vs. ‘literature’, etc.;
see Bar-Hillel and Neter 1993; Costello 2009a). Moreover, the account predicts the effect will

32In the Linda case people standardly rank rank F' > FT > T (Tversky and Kahneman, 1983). This is in
line with our predictions, for in this case P(F|T) is high (so likely above the threshold ﬁ), while P(T|F) is
low (so likely below it).
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still occur even when the claims are carefully phrased to avoid various implicatures, (e.g.,
‘Linda is a bank teller, whether or not she is a feminist’). This is empirically confirmed.33

Prediction 5: AB will often be ranked over B regardless of whether any evidence
relevant to A or B is provided.

That is, we predict that whether AB will be ranked over B depends on how high P(A|B) is,
which in turn may be so regardless of whether subjects have received any confirming evidence
for A (or B) as part of the experimental setup. Such evidence is part of the experimental
setup in the Linda case—the vignette provides evidence that she is a feminist—and that has
motivated ‘confirmation-theoretic’ accounts of the conjunction fallacy, based on the idea that
people may say ‘feminist bank teller’ is more likely because it’s more confirmed than ‘bank
teller’ by the relevant evidence (Sides et al., 2002; Crupi et al., 2008; Tentori and Crupi,
2012; Tentori et al., 2013; Crupi et al., 2018). But the conjunction fallacy is also observed
in scenarios wherein subjects are provided with no relevant evidence by the experimenters,
meaning neither answer is confirmed (Tversky and Kahneman, 1983; Yates and Carlson,
1986; Costello, 2009a). For example, Tversky and Kahneman (1983) asked some subjects to
evaluate the probability of (a), and others to evaluate the probability of (b):

(a) There will be a massive flood somewhere in North America in 1983, in which more than
1000 people drown.

(b) There will be an earthquake in California sometime in 1983, causing a flood in which
more than 1000 people drown.

The average estimates for (b) were higher than for (a). Our account (unlike confirmation-
theoretic accounts) generalizes immediately to this instance of the conjunction fallacy, since
(b) is more informative than (a) relative to a salient QUD (will there be an earthquake, and
will there be a flood?); and (b) is plausibly only somewhat less probable than (a).3*
Prediction 6: Since informativity relative to the QUD drives the effect, we expect that
corresponding effects will diminish in cases involving estimation of frequencies.

For example, tell subjects that 100 individuals fit Linda’s description, and ask them to esti-
mate the proportion of them that are s, where the blank is filled in either by ‘bank teller’
or ‘feminist bank teller.” Here the QUD is ‘What number of people have property 77, 80

33E.g. Tversky and Kahneman 1983; Adler 1984; Agnoli and Krantz 1989; Macdonald and Gilhooly 1990;
Politzer and Noveck 1991; Dulany and Hilton 1991; Gigerenzer 1991; Messer and Griggs 1993; Hertwig and
Gigerenzer 1999; Mosconi and Macchi 2001; Tentori et al. 2004; Hertwig et al. 2008. Moro (2009) gives a
helpful overview.

34 Another objection to confirmation-based accounts come from cases like this. Consider Mark, who buys
one ticket to a five-million ticket lottery. Then his friend gives him nine more tickets, so he now has ten tickets
total. What do you think is more likely, that Mark is right-handed, or that Mark is right-handed and will win
the lottery? We suspect subjects will judge the former to be more likely, even though it is not confirmed at
all by the vignette, while the latter is massively confirmed. This needs to be tested experimentally, but if it is
confirmed, it would show that confirmation alone does not drive the conjunction fallacy (which, of course, is
not to say confirmation plays no role).
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regardless of what fills in the blank, each answer is equally informative in our sense (saying
that 20 people are F'T is no more informative than saying that 10 are 7T; both are com-
plete answers to their respective questions). This prediction—that conjunction-fallacy rates
diminish or disappear in estimate settings like these—is empirically confirmed (Tversky and
Kahneman, 1983; Gigerenzer, 1991; Costello, 2009a; Moro, 2009).

In sum: our account makes a variety of subtle predictions which match a variety of robust
empirical trends in the literature.

Having explained the contours of the Answer-Value Account of the conjunction fallacy, we
want to briefly reflect on it more broadly. The general idea that an accuracy-informative
tradeoff is behind the conjunction fallacy has been discussed before, most prominently by
Tversky and Kahneman (1983).3° Their discussion is brief, concluding that ‘it is unlikely that
our respondents interpret the request to rank statements by their probability as a request to
rank them by their expected (informational) value’ (p. 312). The worry seems to be that an
account like ours is simply undermotivated (compare Moro, 2009, 18-19): why would people
who are asked about probabilities respond using an accuracy-informativity tradeoff?

We think that the work we’ve done in this paper helps put this worry to rest. We’ve argued
that assessing expected answer-value is a cognitively basic practice that plays a central role in
guessing, believing, and talking. If this is right, assessing expected answer-value is a natural
default mode of evaluating potential answers to questions. In other words, we think our
discussion changes the dialectic: rather than introducing a new apparatus to explain the
conjunction fallacy, we are showing how it arises naturally from a mechanism that arguably
plays a central role in our cognitive lives.

Of course, there are undoubtedly many dynamics behind the conjunction fallacy; we don’t
claim that the Answer-Value Account is the whole story. In particular, we leave it open that
other proposed factors—like confirmation, similarity, implicature, and noise—also influence
the effect; but we maintain that assessments of expected answer-value play a central role in
explaining the core phenomenon.

Zooming out a bit more: we are talking about the conjunction fallacy not just because it’s
a promising application of our theory, but because our account of it opens up philosophically
interesting avenues. The conjunction fallacy is often held up as part of the core evidence that
humans are fundamentally quite bad at dealing with uncertainty (Kahneman and Tversky,
1996; Kahneman, 2011). While our account is of course consistent with this picture, it’s also
consistent with a very different one.

Here’s what we mean. Everyone should agree that people are bad at conscious probabilis-

35Two other key precedents: first, again, a framework similar to ours was developed by Levi 1967, who
suggested it could be applied to the conjunction fallacy—but we don’t think the details work (see footnote
13). Second, Cross (2010) also proposes that a Jamesian tradeoff of some kind is behind the conjunction fallacy,
though he suggests spelling this out in terms of explanatory power instead of informativity in our sense. More
generally, the idea that we trade off accuracy and informativity is also present in Yaniv and Foster (1995), but
they do not give a general framework for evaluating informativity. Similar ideas are taken by Adler (1984);
Moro (2009) gives a helpful discussion of the idea. For the general idea that question sensitivity plays a central
role in human reasoning, spelled out in a different framework, see Koralus and Mascarenhas 2013, 2018.
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tic reasoning. This is demonstrated by the conjunction fallacy (among others), and is made
especially clear by the fact that people sometimes choose to bet on conjunctions rather than
their conjuncts (Tversky and Kahneman, 1983; Bar-Hillel and Neter, 1993; Sides et al., 2002;
Bonini et al., 2004). What should we conclude from this fact? In particular, does it show that
the way people form judgments under uncertainty is fundamentally non-probabilistic—that
they make do with other (worse) ways of managing uncertainty? Though popular,3® that
conclusion sits uneasily with the burgeoning literature on Bayesian cognitive science, which
uses probabilistic models to help explain the remarkable feats of human learning and infer-
ence (e.g. Anderson, 1990; Gopnik, 1996; Tenenbaum et al., 2011; Lake et al., 2016). That
literature suggests that people are very good are (implicit) probabilistic reasoning.

Our account of the conjunction fallacy may help to reconcile these pictures. On our
view, conscious ‘probabilistic’ reasoning is influenced by the calculation of expected answer-
value, which in turn is the product, in part, of (implicit) probabilistic calculations. Even if
those implicit calculations are probabilistic—as they are on our account—people’s conscious
probabilistic reasoning will be poor because expected answer-value doesn’t conform to the
rules of probability, and it is the outputs of expected answer-value assessments that are
most prominently consciously accessible. In other words: people may be bad at conscious
probabilistic reasoning not because they are bad probabilistic reasoners full stop, but because
they are bad at pulling apart judgments about probability from judgments about expected
answer-value.

Of course, probability is a component of expected answer-value. So should it be surprising,
on our view, that people are good at assessing the latter and bad at assessing the former?3”
We don’t think so—for two reasons.

First, the language we use to talk about probabilities is very close (in fact, often identical)
to the language we use to elicit guesses. Questions like ‘What’s most likely?’, or “‘What would
you bet will happen?’, are naturally used to elicit guesses, not probability judgments. Because
of this, we think most people simply don’t have much practice distinguishing these two types
of judgments.3® This may help make sense of why they sometimes have stubborn responses to

36Gee, for example, Kahneman et al. 1982; Tversky and Kahneman 1983; Gigerenzer and Goldstein 1996;
Kahneman and Frederick 2002; Hastie and Dawes 2009; Kahneman 2011; Thaler 2015; Tetlock and Gardner
2016.

3"Thanks to Josh Knobe for helpful discussion on this point.

38 A question we want to remain neutral on here: do words like ‘likely’ and ‘probably’ have a meaning accord-
ing to which they mean ‘has high expected answer value’? This is not by any means outlandish; for instance
Yalcin 2010 argues on the basis of cases like those we have focused on (following Windschitl and Wells 1998)
that ‘probably’ is assessed relative to a salient QUD. He leaves open the exact form of QUD-sensitivity; one
could naturally incorporate our account of guessing into a story about the meaning of ‘probably’. This would
lay the foundation for a very hard line on the rationality of the conjunction fallacy: if ‘probably’/‘likely’ liter-
ally have a meaning on which they are measures of expected answer value rather than probability, then there
is no mistake at all in conjunction fallacy judgments in response to questions about what is probable/likely.
A softer line would say that the literal meaning of these words is about probability, but for reasons of prag-
matics, questions about probability are naturally (mis/over)interpreted as questions about expected answer
value. This softer line is still consistent with a broadly rationalist line on the conjunction fallacy (compare
implicatures: one might deny that ‘John had some cookies’ literally means that he didn’t have all of them,
without thus thinking that subjects make an error if they conclude that he didn’t). The choice between these
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criticisms of their answers when they commit the conjunction fallacy. For example, Michael
Lewis recounts the following illustrative anecdote. Kahneman tried to convince a group of his
students that the conjunction fallacy was an error, asking: ‘Do you realize you have violated
a fundamental rule of logic?’ Lewis recounts: “So what!” a young woman shouted from the
back of the room. ‘You just asked for my opinion!” (Lewis, 2016, 325). If opinions are beliefs,
and hence guesses, then this woman is protesting in exactly the way we would expect—she
thought she was being asked for her guess, not for a probability judgment.

Second, and more generally, it’s normal for components of core cognitive competences to
be required for—but hard to separate from—those competences. You can effortlessly recognize
a face, but would struggle to articulate any of its distinctive features. You can easily press
the brake pedal just hard enough to avoid a collision, but would be at a loss to articulate
the underlying principles. Likewise: you can effortlessly respond to ‘Where do you think Latif
will go?’ with ‘Yale or Harvard’, without having any conscious access to the calculations that
went into this. In short: assessing probabilities is a crucial step in doing something we do all
the time (the quality of a guess), but one that can be consciously separated from it only with
care and practice.

5 Why We Guess

We've covered a lot of ground. What guesses do people make? The answer is subtle but
surprisingly systematic (§2; §3.3). How do people make guesses? By optimizing a tradeoff
between accuracy and informativity (§3). When do people make guesses? All the time: they
make guesses whenever they form beliefs, (§4.1), communicate (§4.2), or reason (§4.3) under
uncertainty.

But why? We've argued that guessing aims at both accuracy and informativity. We’ve
given this hypothesis a simple exposition, and argued that it helps to explain a variety of
patterns. We think the abductive case for it is strong.

Yet it may retain an air of mystery. When asked about guessing, the first things that come
to mind are quiz shows and country fairs: ‘Guess the exact number of jellybeans in this jar’;
‘Try to guess which cup I hid the prize under—you get two tries’; etc. These guessing games
have their own idiosyncratic rules: often only maximally informative guesses are allowed;
sometimes multiple guesses are permitted; etc. Considering examples like this, it may seem
that the practice of guessing itself will have no intrinsic rules or standards. Yet we’ve argued
at length that it does: that the cognitive attitude of guessing the answer to a question—of
figuring out what you think—always aims at accuracy and informativity. If we are correct
that the practice of guessing plays a central role in our cognitive lives, there must be some
explanation of why it involves these rules. What is that explanation?

Here we can only speculate. Start with a more general question: why would you want
to form a guess at all? If you already have credences—which, after all, are an input to our
theory of guessing—why not just use them in making your way through the world? A natural

approaches involves interesting methodological issues and deserves careful exploration.
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answer, in the spirit of theories of bounded rationality, is that your credences can at best be
extremely partial given your limited computational powers and the intractability of general
probabilistic inference.?® Thus you can only form credences over a relatively small set of
propositions—for instance, those generated by the QUD. Those credences can be used to
form a guess, which highlights a particular region of possibilities—the region that you take
most seriously, given the question at issue and your contextual priorities.

What, then, do you do with this region? Our proposal is that you use it to guide further
investments of cognitive resources. You reason within your guess: supposing it to be true, you
can form (and discuss) plans, preferences, or opinions about what to do, want, or think, if so.
Having a small region like this can greatly simplify thought and talk about these activities. If
we ask, “Where do you think Latif will go?’ and you reply, ‘I think he’ll go to Yale or Harvard’,
then it’s natural to follow up with plans (‘So we’ll be able to visit him on the weekends’),
preferences (‘So I'll want to put him in touch with Jane’), or more fine-grained credences (‘So
it’s likely he’ll need a car’). You can do all of this without losing sight of the fact that the
region is just your guess; possibilities inconsistent with your guess remain in your peripheral
vision, so to speak—preventing you from betting the farm on your guess the moment you
make it. But by being able to highlight certain regions of possibilities for further thought
and talk, you can reach a more fine-grained assessment of the various routes to action in the
scenario you guess will occur.*’

If something like this were right, it would make sense of why guessing has the profile
we've argued it does. Guesses should be accurate, since if your guess turns out to be false,
any contingency-planning you’'ve done within it will be wasted. But guesses should also be
informative: in choosing a region of possibilities to highlight for further investigation, it pays
to have a specific answer to the live question because this cuts down on the number of
distinctions you need to track—an informative guess allows you to make fine-tuned plans
even when you don’t have the resources to plan for every contingency. For example: if you
guess that Latif will go to Yale, you can focus on apartment listings in New Haven; if you
guess that he’ll go to Yale or Harvard, you can at least look at flight prices to the Northeast;
but if you guess that he’ll go to Yale, Harvard, or Stanford, your plans within this guess can’t
be nearly as specific. Thus the ‘reason within your guess’ picture may have the resources
to explain why guesses are subject to an accuracy-informativity tradeoff of the kind we’ve
spelled out.

Moreover, there’s empirical evidence that people do tend to reason within their guesses. A
common claim in the literature on confirmation bias in psychology—and on theory-choice in
philosophy of science—is that people have a tendency latch onto a specific, favored hypothesis,
and expend most of their cognitive effort using its predictions to guide their investigations.*! A

39E.g. Simon 1957; Cherniak 1986; Dagum and Luby 1993; Weirich 2004; Bradley 2017.

40This picture is related to (but interestingly distinct from) views on which subjects choose a set of possi-
bilities to treat as certain in a given context—for discussion, see Harsanyi 1985; Lance 1995; Lin and Kelly
2012; Lin 2013; Clarke 2013; Tang 2015; Greco 2015; Leitgeb 2017, and Staffel 2019.

41Gee, for example, Wason 1960; Kuhn 1962; Koriat et al. 1980; Klayman and Ha 1987; Kuhn 1989; Maher
1993; Gopnik 1996; Nickerson 1998; Whittlestone 2017.

34



common mistake in poker is to ‘put someone on a hand’—guess what they have, and use that
guess to guide your betting. The mistake is not in guessing per se, but in having a guess that’s
overly specific (and hence improbable); good poker players put their opponents on a range
of hands.*? Studies of doctors’ reasoning shows that they tend to commit the conjunction
fallacy—that is (we think) to guess—when proposing diagnoses, which presumably has a
direct impact on which procedures they go on to perform (Tversky and Kahneman, 1983;
Rao, 2009; Crupi et al., 2018). And, as mentioned above, people have some tendency to
commit the conjunction fallacy when selecting bets—indicating that they’re using their guess
to frame and guide their actions.

As some of these examples illustrate, reasoning within guesses can lead to mistakes. But,
again, we think situating them within a broader, bounded-rationality theory of guessing sug-
gests that they are very different kinds of mistakes than is standardly thought. For the same
mechanism that leads the human mind into conjunction-fallacy betting also—perhaps—helps
it consistently outperform computers in novel situations of intractable complexity (Tenen-
baum et al., 2011; Huang and Luo, 2015; Lake et al., 2016). There are over 10,000 known
human diseases, over 2.5 million different poker hands, and always infinitely many empirically
adequate scientific theories. Yet doctors, poker players, and scientists don’t simply freeze up;
instead, they make good guesses that allow them to reason within such complexity.

We can illustrate this point close to home, for we’ve reached the stage where we speculate
about future directions for our theory—that is, the stage where we guess. Obviously we can’t
formulate detailed opinions or plans about all the directions a theory like this could go. What
we can do is highlight a region of possibilities for future investigation. That region should be
small enough that we can see—albeit dimly—how such investigations might proceed; but it
should be large enough that it is likely to contain promising directions. That is: it should be
a good guess.

Our guess, then, is that this approach could be usefully applied to a range of topics in
both cognitive science and philosophy.

In cognitive science: expected answer-value may help to explain other peculiar patterns
in human judgments, like sub-additivity effects.*® The way people generate and then reason
within guesses may help to explain or refine the data surrounding confirmation bias—such as
the well-known Wason selection task* And, of course, our predictions about the conjunction
fallacy may lead to new discoveries about it and related phenomena.

In philosophy: the accuracy-informativity tradeoff of guessing may help refine our theories
of both conversational implicature and prediction*> The connection between guessing, (weak)
belief, and action suggests that previous authors may have been too quick to treat weak

“2Thanks to Ben Holguin for the example.

43Given a proposition ¢ and partition @ of g, people often report probability judgments P(-) such that
> weq P(z) > P(q) (see Tversky and Koehler 1994; Redelmeier et al. 1995; Rottenstreich and Tversky 1997).
Notably, (Jamesian) expected answer-value is subadditive: for any partition @ of ¢, > Ed(z) > E(q),
with equality only if @ = {q} or J = 1.

44E.g. Wason 1966; Klayman and Ha 1987; Nickerson 1998.

4E.g. Benton 2012; Ninan 2019; Cariani 2020.
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belief as a linguistic phenomenon that plays no role in decision theory.*6 And our account
of epistemic value and its relation to new constraints on guesses, beliefs, and questions may
open up new territory for the tools of epistemic utility theory.*”

In sum: the accuracy-informativity tradeoff of guessing may contribute to our understand-
ing of both human rationality and the role of question-sensitivity in our cognitive lives.

Appendix: Proof of Optionality

Theorem (Optionality). If P is regular over a question @ with |Q| = n, then for any
1 < k < n, there is some J > 1 such that any filtered k-cell answer maximizes Eé()

Proof. Order the cells ¢; of the QUD by probability, so that P(q1) > P(q2) > ... > Pl(qn),
and let Q° := ¢y U...Ug; be the union of the first 4 cells. The only guesses that can maximize
expected answer-value, for any value of J, are the filtered ones. And if p is filtered, then there
is a Q' that it is equivalent to in expectations—in particular, if p is a union of k cells and
p is filtered, then P(p) = P(Q¥) and @, = Qqr, so—recalling that Eé(r) = P(r)-J9—we
have that for all J, Eé(p) = Eé(@k) Thus it suffices to show that for any 1 < k < n, there
is a J > 1 such that Eé(Qk) > EQJ?(Q’) for all i # k.

We begin with several observations about the probabilities and expected values of the Q)*.

Lemma 1. The pairwise conditional probabilities are ordered: P(Q'|Q?) < P(Q?*Q3) <
< PQYHQM).

Proof. Take an arbitrary 1 < i < n — 2 and consider P(Q%), P(Q"™), and P(Q™*?), re-
labelling them pg, p1, p2 respectively. Note that P(Q'|Q"t!) = Pf(gé?ﬂ) = %(1)’ and similarly
P(Q™Q1T2) = EL. Thus to establish Lemma 1 it suffices to show that 2 < L.

Note that by construction, 0 < py < p1 < p2, and moreover that p; — py = P(Q"!) —
P(Q%) = P(gi11) and similarly ps —p; = P(g;12). Since we know P(g; 1) > P(gi12), it follows
that p1 — pg > p2 — p1. Thus we have that 2p; > pg + p2 and so w < p1. Note that what
we want to show is that %‘1’ < %7 which holds iff popa < (p1)?; by the above inequality it

suffices to show that pops < (22322)2. This holds iff

P2+ 2pop2 + P3
1

& dpope < pi + 2pop2 + 3
& 0 < pj— 2pop2 + p3
& 0 < (po—po)?

pop2 <

which of course is true. It follows that P(Q'|Q"t!) = B<l = P(Q™1Q™?), and since i
was arbitrary, Lemma 1 follows in turn. O

16E.g. Christensen 2004; Kriz 2015; Dorst 2019; Friedman 2019; Moss 2019; Williamson 2020.
4TCf. Horowitz 2018; Pérez Carballo 2018; Schoenfield 2019b.
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Lemma 2. For any 1 <4 <n—1: EH(Q) 2 EH(Q™") iff P(Q'|Q"™) =2 1.
Proof. Noting that the proportion of Q ruled out by @Q° is ”T_i, we have that Eé(QZ) Z
E&S(QZ—H) iff
. n—i . n—(i+1)
P(QZ) JT 2 P(QZ+1)’J n+1

n—i—1

PQ) I

& ; —
P = g%
<z>P(Q’L‘QZ+1) 2 Jn_ri_l_nT_i = Jn_i_’rll_n-'—i = J_Tl = Jl/n
as desired. ]

From here we establish that for any J, the expectations of the Q* are ‘single-peaked’:

Lemma 3 (Single-Peaked Expectations). For any 1 < i < n: if Eg)(QFl) > Eé(Qi),
then E(Q") > EL(Q™1); and if EL(Q") < EH(Q™), then EL(Q™") < EL(Q").

Proof. Suppose Eé(Qi_l) > Eé(QZ) By Lemma 2 this implies that P(Q"~!|Q?) > J11/n-
By Lemma 1, we know that P(Q'|Q""!) > P(Q"~!|Q"). Stringing these inequalities together
yields:

P@QIQT) > P@TIQ) > i

But Lemma 2 again tells us that since P(Q*|Q*"1) > J11/n, we have Eé(Ql) > Eé(Q”l), as

desired.
If Eé(QZ) < Eé(QiH), parallel reasoning establishes that Eé(Qiil) < Eé(QZ)
O

We’re now in a position to complete the proof of Optionality. Given an arbitrary k£ such that
1<k <n,wefindaJ>1 for which Eé(Qk) is maximal amongst the Q.

If & = n, then, by setting J = 1, Lemma 2 implies that Eé(Q”fl) < Eé(Q") iff
P(Q™ QM) < 11% = 1, which (by regularity) holds. Lemma 3 then implies that Eé(Ql) <
RS Eé(Q”), as desired. Meanwhile, if £ = 1, then sending J — oo suffices, since this sends

ﬁ — 0, and once P(Q'Q?) > J11/n7 Lemma 2 implies the Eé(Ql) > Eé(QQ), and then

Lemma 3 implies that Eé(Ql) > > Eé(Q”), as desired.
Now consider the case when 1 < k < n. Given the single-peaked expectations from
Lemma 3, it suffices to show that there is a J > 1 such that Eé(Qk_l) < Eé(Qk) >

Eé(Qk"H) By Lemma 2, this holds iff both P(Q*~1|Q*) < J11/n and P(QF|QF1) > ﬁ By

Lemma 1 we know that there are t,e > 0 such that P(Q*~1|Q¥) =t < t + ¢ = P(Q¥|Q**1).
Thus it suffices to show that there is a J > 1 such that ﬁ

thresholds—say, Jl—l/n =t + §. This holds iff J = W Since t + €/2 is strictly between
0 and 1, likewise (¢t +¢€/2)™ is as well, and hence m > 1 meaning that J can indeed match

that value. At this value of J, Eé(@kil) < Eé(Qk) > Eé(Qk“), completing the proof. [

is strictly between these
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