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1 Introduction

Formal languages are interesting objects to studymathematically. To do so, one need
not actually understand the language one is studying in the same sense in which one
understands natural languages. One need not, for example, be in a position to use
any of its expressions to say things about the world. Nevertheless, sometimes we
do understand formal languages in this way—the most important roles of formal
languages in philosophy in fact depend on such understanding. Moreover, we can
sometimes manage to understand a formal language without the aid of some stip-
ulated translation scheme that maps expressions of the formal language to expres-
sions in some natural language we already understand. Indeed, this is the normal
case. For example, even thoughwe drawheavily on parallels with Englishwords like
‘and’, ‘or’, and ‘if’ in introducing the standard connectives of propositional logic, we
eventually end up with a grasp of these connectives that is sufficiently independent
of any particular English words to make room for serious debates about the extent to
which the meanings of those English words match those of their formal analogues.

These general remarks apply in particular to the formal languages of higher-order
logic. Higher-order languages have played a central role in logic at least since Frege
(1879), though their popularity dwindled in the second half of the twentieth cen-
tury, thanks especially to Quine’s influential crusade to establish the primacy of first
order logic (Quine 1953, 1970). Their distinctive feature is the presence of variables,
and associated quantifiers, in every syntactic category.1 For example, starting with a
sentence ¬(Fs) (‘Socrates is not foolish’) we can not only generate a first-order gener-
alization by replacing the singular term ‘s’ with an existentially quantified variable

∃𝑥.¬(F𝑥)
1This isn’t perfectly accurate since there are also variable-free versions of higher-order logicwhere

the job normally done by variable-binding is done by primitive combinators: see Bacon 2023 (§3.5).
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but also do the same thing to all of the other constituents of the original sentence:

∃𝑋.¬(𝑋s)
∃𝑂.𝑂(Fs)
∃𝑝.¬𝑝
∃𝑝.𝑝

In teaching higher-order logic, and in trying to find useful sounds to make while
pointing to higher-order expressions on handouts and slides, it is helpful to exploit
parallels with certain constructions found in natural languages. For example, one
might find it helpful to note the analogy between the four formulae exhibited above
and the following English sentences:

Some property is such that Socrates does not have it.
Some property of propositions is such that the proposition that Socrates
is foolish has it.
Some proposition is not true.
Some proposition is true.

But such glosses do not provide the only, or even the main, way into an understand-
ing of higher-order logic. Indeed, much of the promise of higher-order logic as a
tool for bringing clarity to the statement of philosophical questions and arguments
depends on our not understanding its sentences as mere stipulative equivalents of
English sentences along these lines. The most important pathway to understanding
comes, instead, from learning and becoming comfortable with the logical rules for
manipulating its expressions—logical rules which generalize the usual rules of first
order logic in a straightforward way, and which can play a similarly central role in
the constellation of facts about use in virtue of which the symbols mean what they
do.2

I will not be arguing in this paper for the intelligibility of the language of higher-
order logic. Indeed this isn’t really something I would know how to argue for: by
far the best way to convince people that something is intelligible is to get them to
understand it, and understanding isn’t a state apt to be inculcated by arguments. I
will also not be arguing for the interest or usefulness of higher-order logic. I do in fact
find many questions that can be formulated in higher-order logic intrinsically inter-
esting, and I have found it to be a useful aid to clear thinking and rigorous reasoning
in very much the same ways as first-order logic (which it extends). But again, this
perspective is best gained through experience.3

2Williamson (2003) gives a clear statement of this point.
3Hofweber (2022) interprets friends of “Higher Order Metaphysics” as holding that we should

stop asking certain questions posed in English and start investigating questions posed in Higher-
Orderese instead. He complains that no adequate reasons have been given for making such a switch.
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The present paper does not depend on our being interested in any questions for-
mulated in Higher-Orderese for their own sakes. I will (after §2) be assuming that we
understand the language and accept a standard system of classical logic for it. But
my interest here is in the light which such understanding may shed on certain clas-
sic philosophical questions formulated in English: especially, the question whether
there are abstract objects, such as properties, relations, and propositions. This ques-
tion has been central to the debate over “nominalism” in metaphysics, especially in
the wake of Quine (1953). It is not obvious how anything we can say using the re-
sources of higher-order logic might bear on it. But I will be arguing in this paper that
the perspective offered by higher-order logic points theway towards an illuminating,
irenic resolution of the debate formulated in English—a resolution on which the key
English sentences turn out to be ambiguous, in such a way that the central claims of
both nominalists and their opponents admit of true readings.

The argument will proceed as follows. §2 will be a quick introduction to higher-
order languages, emphasizing the idea that they can be understood without relying
on natural-language glosses usingwords like ‘property’, ‘relation’, and ‘proposition’.
§3 will introduce and motivate the thesis of this paper, which is that English sen-
tences using such words do, nevertheless, have the higher-order meanings needed
for those glosses to be literally correct. The following two sections will address the
main challenge for this thesis by showing how it can be derived from a systematic
compositional theory of meaning for English, stated in Higher-Orderese: §4 will in-
troduce a general format for such theories, and §5 will implement a higher-order
semantics for ‘property’-talk within this theoretical architecture. The remainder of
the paper (§6–§9) discuss some further challenges and show how the theory may be
extended to address them.

2 From first-order to higher-order logic, in five steps

Happily, the situation for philosophers wishing to learn about higher-order logic
with a view to understanding it (as opposed to taking it as an object of mathematical
investigation) is better now than it was a few years ago: good resources include Ba-
con 2023, the introduction to Fritz and Jones 2024, and the papers by Bacon (2024)
and Goodman (2024) in that volume. Here, nevertheless, is my version of such a
primer, aimed at philosophers already familiar with first-order logic. I will proceed
in five steps: if at the end you don’t feel that you have ended up in the state of un-
derstanding I’m hoping to instil, it may at least be interesting to reflect on where you
got off the boat.

Step One: types. When we are studying formal languages that extend first-order

I see a false dilemma here: there is no reasonwhy starting to ask new questionswould require ceasing
to ask any old ones! Of course one might worry that time devoted to the new questions will subtract
from the time available for thinking about the old ones, thus slowing progress on them. But this
thought neglects the potential for cross-fertilization between the investigations.
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logic, it becomes useful to have a general system of nomenclature for the syntactic
categories of the expressions we may find ourselves introducing. The standard ap-
proach uses special strings called types to label the syntactic categories. For our pur-
poses, the so-called “simple types” will suffice: the smallest set of strings that con-
tains the letters 𝑒 and 𝑡 and is such that whenever it contains 𝜎 and 𝜏, it also contains
(𝜎 → 𝜏) (i.e., the string derived from them by interpolating an arrow and surround-
ing the result with parentheses).

In referring to simple types, I will omit parentheses, restoring them from right to
left: for example I will write ‘𝑡 → 𝑒 → 𝑡’ instead of ‘(𝑡 → (𝑒 → 𝑡))’. To save space, I’ll
also use a more compact notation where, for any types 𝜎1, …, 𝜎𝑛, 𝜎1…𝜎𝑛 abbreviates
𝜎1 →⋯→ 𝜎𝑛 → 𝑡 (that is, (𝜎1 → (⋯(𝜎𝑛 → 𝑡)⋯))). Thus, 𝑒 is 𝑒 → 𝑡; 𝑒𝑒 is 𝑒 → 𝑒 → 𝑡;
𝑒 is (𝑒 → 𝑡) → 𝑡; 𝑒𝑒 is (𝑒 → 𝑡) → (𝑒 → 𝑡), etc.

Simple types are useful for labelling syntactic categories, including some syn-
tactic categories already encountered in first-order languages. An expression of type
𝑡 is a formula (a sentence if it lacks free variables); one of type 𝑒 is a singular term. An
expression of type 𝜎 → 𝜏 is something that combines with one of type 𝜎 to make one
of type 𝜏. So, for example, in first order languages, the negation symbol ¬ is of type
𝑡 → 𝑡 (or 𝑡): it can be written in front of a sentence 𝑃 to make a new sentence ¬𝑃.
A monadic predicate 𝐹 is of type 𝑒 → 𝑡 (or 𝑒): it combines with a singular term 𝑎 to
make a sentence 𝐹𝑎.

What about the conjunction symbol ∧, or a dyadic predicate 𝑅? Using a con-
venient trick (pioneered by Frege (1893) and further developed by Curry and Feys
(1958)), we can assign simple types to these by thinking of them as taking their argu-
ments one at a time rather than all together. For example, in a conjunctive sentence
𝑃∧𝑄, we think of the combination of the first sentence 𝑃with the conjunction sym-
bol ∧ not as a meaningless string of symbols, but rather as a well-formed expression
of type 𝑡 → 𝑡 (just like ¬), which is combined with 𝑄 to make the sentence. ∧ itself
is thus of type 𝑡 → 𝑡 → 𝑡 (or 𝑡𝑡). (To keep the official syntax simple, we treat the
infix notation 𝑃 ∧ 𝑄 as an unofficial way of writing the string ((∧𝑃)𝑄), which expli-
citly displays the order of pairwise syntactic combination.) Similarly, we think of a
binary (first-order) predicate 𝑅 as having type 𝑒 → 𝑒 → 𝑡 (or 𝑒𝑒), with 𝑅𝑎𝑏 short for
((𝑅𝑎)𝑏). More generally, an 𝑛-ary first-order predicate will have type 𝑒⋯ 𝑒, with 𝑛 𝑒’s.

This is reminiscent of what we see in natural languages. In the English sen-
tence ‘Phobos orbits Mars’, ‘orbits Mars’ is a meaningful unit in its own right—a
verb phrase (VP), syntactically just like ‘rotates’ in ‘Phobos rotates’. Admittedly, the
standard pedagogy of first-order logic does not encourage us to see a string like 𝑅𝑎
(where 𝑅 is a binary predicate) as a meaningful expression. If you wanted to insist
that it wasn’t, you could use a richer type system with types appropriate for “prim-
itively polyadic” expressions; the ascent from first-order to higher-order logic can
be carried out just as well in this setting. Here, I have found it more convenient to
stick to formal languages where every complex expression has exactly two immedi-
ate constituents.

Step Two: first-order lambda-abstraction. Natural languages provide a rich array of
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generating complex predicates. Among VPs, we not only have ‘orbits Mars’, but also
‘doesn’t orbit Mars’, ‘orbits some planet’, ‘orbits itself’, ‘is orbited by Phobos’, and
‘is orbited by something’. While our binary-branching regimentation of first-order
logic does contain some complex predicates—namely, those formed by combining
an 𝑛-ary predicate with fewer than 𝑛 arguments—it does not yet provide analogues
of the other complex VPs above. The next step along the road to higher-order logic is
to add a more flexible device for forming complex predicates that yields analogues
for all the above EnglishVPs, andmore. The standard such approach is to add lambda
predicates, constructed according to the following rule:

If 𝑃 is a formula (expression of type 𝑡) and 𝑥 is an individual variable, (𝜆𝑥.𝑃)
is a monadic predicate (expression of type 𝑒).

The following glosses will help illuminate the intended interpretations of these pre-
dicates, given a binary predicate orbits and singular terms mars and phobos. Of
course in the light of the remarks in the Introduction, you shouldn’t take these as
stipulative perfect equivalences:

(𝜆𝑥.orbits 𝑥mars) orbits Mars
(𝜆𝑥.¬(orbits 𝑥mars)) doesn’t orbit Mars
(𝜆𝑥.∃𝑦.planet 𝑦 ∧ orbits 𝑥 𝑦) orbits some planet
(𝜆𝑥.orbits 𝑥 𝑥) orbits itself
(𝜆𝑥.orbits phobos 𝑥) is orbited by Phobos
(𝜆𝑥.∃𝑦.orbits 𝑦 𝑥) is orbited by something
(𝜆𝑥.orbits phobosmars) is such that Phobos orbits Mars

Wewould also like to be able to construct polyadic predicates, which we can do using
the following generalization of the above rule:

If 𝑅 is an 𝑛-ary predicate (expression of type 𝜏 = 𝑒⋯𝑒, with 𝑛 𝑒’s), (𝜆𝑥.𝑅) is
an 𝑛 + 1-ary predicate (expression of type 𝑒 → 𝜏).

As an abbreviation, we will omit unnecessary parentheses and collapse strings of
lambdas into one: 𝜆𝑥𝑦𝑧.𝐴 is short for (𝜆𝑥.(𝜆𝑦.(𝜆𝑧.𝐴))).

Having introduced these new predicates, we will need some way of reasoning
with them. For example, wewant to be able to derive the sentence orbitsmars phobos
from (𝜆𝑥.orbits 𝑥mars)phobos and vice versa. The usual such approach is to lay
down a rule or axiom of beta-conversion that lets us freely interchange any expression
of the form (𝜆𝑣.𝐴)𝑏 (“beta-redex”) with its “reduct”, 𝐴[𝑏/𝑣]—the result of substitut-
ing 𝑏 for every free occurrence of the variable 𝑣 in the expression 𝐴—provided 𝑏 is
“safe” for 𝑣 in 𝐴, in the sense that this substitution will not result in any of 𝑏’s free
variables becoming bound. It is worth noting that with this rule, every sentence in-
volving predicates formed by lambda-abstraction can be proved to be equivalent to
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some sentence involving no such predicates, suggesting that this step is not a prom-
ising place for someone to dig in their heels and plead unintelligibility.4

Once we have 𝜆 as a variable-binder, it is natural and conceptually helpful to
rethink the syntax of the quantifiers in such away that it is the only variable-binder, so
that the quantifiers can be treated not as mere punctuation marks but as meaningful
expressions on a par with the propositional connectives (see Stalnaker 1977). We
can do this by treating ∀𝑣.𝑃 and ∃𝑣.𝑃 as shorthand for ∀(𝜆𝑣.𝑃) and ∃(𝜆𝑣.𝑃), where
∀ and ∃ are of type (𝑒 → 𝑡) → 𝑡 (or 𝑒). The important insight here—that first-order
quantifiers are higher-order predicates—-is due to Frege (1879), and already informs
his understanding of the more familiar variable-binding notation.

Step Three: complex higher-order predicates. A predicate type is any type of the form
𝜎1 → ⋯ → 𝜎𝑛 → 𝑡 (or 𝜎1…𝜎𝑛), with 𝑛 ≥ 0; a higher-order predicate type is any type
of this form where at least one 𝜎𝑖 is not 𝑒. By a higher-order predicate I just mean an
expressionwhose type is a higher-order predicate type. By this definition, the logical
constants¬,∧, ∨,→ are higher-order predicates, as are the quantifiers∀ and∃ (when
regimented as type-𝑒 constants). Our decision to use binary-branching syntaxmeans
we also have some complex higher-order predicates—for example, for any formula 𝑃,
∧𝑃 is a complex higher-order predicate of type 𝑡 → 𝑡 (or 𝑡). But our ability to generate
complex higher-order predicates is rather artificially limited, just as our ability to
generate complex first-order predicateswas before the introduction of lambda terms.

This limitation is easily remedied. Instead of having every variable be of type 𝑒,
we can help ourselves to a separate infinite population of variables for each type 𝜎
(with the type of a variable indicated by a superscript when necessary), and adopt
the following further generalization of the rule for forming complex predicates:

When 𝐴 is an expression of a predicate type 𝜏 and 𝑣 is a variable of type 𝜎,
(𝜆𝑣.𝐴) is an expression of type 𝜎 → 𝜏.

Of course, once we extend the formation rule in this way, we will want to extend
the 𝛽-conversion rule to cover higher-order as well as first-order predicates. This
requires nothing new, except perhaps a reminder that for a redex (𝜆𝑣.𝐴)𝐵 even to be
well-formed, the term 𝐵must have the same type as the variable 𝑣. With this rule, it
remains true that every sentence we can form with lambda-abstraction is provably
equivalent to some sentence without it.

4In the setting where we have added nothing to first-order logic besides complex predicates, the
effect of the 𝛽 rule can also be got from an axiom-scheme whose instances are biconditionals:

(𝜆𝑣1…𝑣𝑛.𝑃)𝑎1…𝑎𝑛 ↔ 𝑃[𝑎1/𝑣1, … , 𝑎𝑛/𝑣𝑛]Extensional 𝛽

where 𝑣1…𝑣𝑛 are all distinct, and any free variables in 𝑎𝑖 are safe for 𝑣𝑖 in 𝑃. However, once we add
further resources to the languages, such as modal operators, 𝛽 becomes strictly stronger. In this paper
I will be assuming a higher-order logic that uses the full 𝛽 rule, mostly for reasons of convenience.
See Dorr, Hawthorne, and Yli-Vakkuri 2021 (ch. 1) for a weaker system that only has the extensional
version of 𝛽-conversion.
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To keep things looking neat, wewill try to avoid using variables that differ only in
their type-superscript. This lets us omit the superscripts on boundvariable-occurrences,
since they can be recovered by finding the 𝜆 that binds them.5

Allowing complex higher-order predicates built up by lambda-abstraction lets us
introduce new binary connectives like the Sheffer stroke (‘neither/nor’):

𝜆𝑝𝑡𝑞𝑡.¬𝑝 ∧ ¬𝑞.

new restricted quantifiers

𝜆𝑋𝑒.∀𝑧𝑒. red 𝑧 → 𝑋𝑧

and new higher-order predicates, of the same type as the quantifiers

𝜆𝑋𝑒.𝑋mars

In fact, by successive application of 𝜆, we can form closed terms in every predicate
type.

Terms of all these will of course differ as regards which other terms they can
grammatically take as arguments. It is worth emphasizing that, contrary to the im-
pression given by many authors (including to some extent Russell (1908)), these
restrictions are not something invented to block some paradox that would arise in
a system without them. They are motivated in exactly the same way as the gram-
matical restrictions we are already familiar with in first-order logic, such as the fact
that the negation symbol needs to combine with a formula, whereas an ordinary
one-place predicate needs to combine with a singular term.6

Step Four: non-logical higher-order predicates. In first-order logic, we are encour-
aged to introduce novel predicates and singular terms as non-logical constants (e.g.
by exploiting our pre-existing understanding of corresponding expressions in nat-
ural languages), but we are stuck with a fixed stock of constants of other types,
namely the standard propositional connectives and quantifiers.7 But many other
terms of other types seem intelligible. And insofar as they are intelligible, it is hard
to see any in-principle problemwith adding them to the language of first-order logic
(either in its original form, or extended with complex predicates as at the previous
steps). Most famously, modal logic considers languages that add one or more new
constants of type 𝑡, which we are can understand by leveraging our understand-

5This convention leads to a visual convergence with the approach more common in theoretical
computer science, where variables lack built-in types, but expressions have types only relevant to “en-
vironments” that assign types to their free variables, and 𝜆-terms (normally written as (𝜆𝑣 ∶ 𝜎. 𝐴)) ex-
plicitly specify a type for the variable they bind. This approach brings elegance and suggests import-
ant avenues of generalization, at the cost of making many syntactic notions annoyingly environment-
relative.

6Goodman (2024) is particularly clear on this point.
7Standard versions of first-order logic also allow function symbols with types like 𝑒 → 𝑒, but these

raise special interpretative issues I don’t want to get into.
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ing of English modal words like ‘necessarily’. Generalizations such as conditional
logics add constants taking further type-𝑡 arguments (e.g. of type 𝑡𝑡). But there
are many other such additions, inspired by other families of expressions in natural
language, that prima facie suggest regimentation as predicates taking arguments of
types other than 𝑒 and 𝑡. One particularly relevant example for this paper involves
talk about meaning or reference—important topics where the kind of rigor made pos-
sible by formalization will be particularly welcome. A natural formalization will
provide, for each type 𝜎, an “expressing” predicate ⁝𝜎 (naturally taken to be of type
𝑒𝜎), intended to be the analogue for type 𝜎 of the first-order reference predicate
in ‘“Mars” refers to Mars’. With the aid of these predicates (along with a quota-
tional device for talking about linguistic expressions), we will be able to formalize
not only claims about meaning in formal languages, but also claims about meaning
in natural languages like is⋅self-identical ⁝𝑒 𝜆𝑥𝑒.𝑥 = 𝑥, everything ⁝𝑒 𝜆𝑋𝑒.∀𝑦𝑒.𝑋𝑦, and
everything⋅is⋅self-identical ⁝𝑡 ∀𝑥𝑒.𝑥 = 𝑥.

Obviously any particular proposed additionmust be individually scrutinized for
intelligibility. Natural languages are a rich resource, but things can go badly wrong
if we try to naïvely import words from natural language into formal languages in
types that do not properly reflect their original linguistic role (see Dorr, Hawthorne,
and Yli-Vakkuri 2021: §1.3). But I see no good grounds for a sweeping Quinean
scepticism that questions the intelligibility of any new non-logical expressions other
than first-order predicates.

Step Five: higher-order quantifiers and identity. The last and probably most contro-
versial step is to add new logical constants, intended to stand to higher types just as
the usual identity symbol and quantifiers of first-order logic stand to type 𝑒. In par-
ticular: for each type 𝜎, we have new logical constants=𝜎 of type 𝜎𝜎, and∀𝜎 and ∃𝜎 of
type 𝜎. (As in the first-order case, ∀𝑣𝜎.𝑃 abbreviates ∀𝜎(𝜆𝑣𝜎.𝑃); ∀𝑢𝜎𝑣𝜏.𝑃 abbreviates
∀𝜎(𝜆𝑢𝜎.∀𝜏(𝜆𝑣𝜏.𝑃)), etc.)

For certain types 𝜎 ≠ 𝑒, we can find expressions in natural languages which look
prima facie like close analogues to the type−𝜎 quantifiers and identity predicate. For
higher-order quantification, Prior (1971) considers sentences like ‘He is something
I am not—kind’ and ‘However he says things are, thus they are’.8 For higher-order
identity, Dorr (2016) considers sentences like ‘To be awatermolecule is to amolecule
consisting of two hydrogen atoms and one oxygen atoms’ and ‘For there to be vixens
is for there to be female foxes’. Such natural-language counterparts provide one po-
tentially helpful entry-point for a more general understanding of higher-order quan-
tification and identity. However, as usual, it would be a mistake to hold the intelli-
gibility of a formal language hostage to our ability to translate each of its sentences
into a natural language (Williamson 2003). There are other routes to understanding
a new constant, such as grasping its inferential role in the linguistic practice of those
who use it: what they are happy to infer from a sentence involving the constant, and

8See also Rayo and Yablo 2001. For a competing treatment that assimilates the quantifiers in such
sentences to first-order quantifiers, see Moltmann 2013 (ch. 3).
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what they are happy to infer it from. In the case of the higher-order quantifiers and
identity, these inferential roles are easy to master, since they are exactly the same
as those of the first-order quantifiers and first-order identity, modulo the change in
type. These roles are very rich: as with other logical constants, there is a sense in
which they completely pin down the interpretation of the symbols that they character-
ize (see Harris 1982, Dorr 2014a).

3 Higher-Orderese and ‘property’ talk

As we have noted, English glosses using words like ‘property’, ‘relation’, and ‘pro-
position’ can be be helpful pedagogical tools for helping people understand expres-
sions in Higher-Orderese. But if we understand Higher-Orderese in the way that
makes it a valuable tool, it is not obvious that its sentences are equivalent (in mean-
ing, or even in truth value) to their glosses. Nor is it obvious that they are not equi-
valent: it is a tricky question, with reasonable arguments on both sides. It need not
be settled by our linguistic competence in both languages, just as it may be an open
question for a bilingual native speaker of English and French whether ‘There are
elms’ means the same as ‘Il y a des ormes’.9

Moreover, it is a philosophically profitable question to investigate. For words
like ‘property’ are widely used in formulating philosophically interesting theses and
questions in English, and play an especially central role in certain canonical debates
in metaphysics such as the debate over nominalism (often understood as committed
to the claim that there are no properties, relations, or propositions). Once we have
attained a sufficiently independent understanding of a higher-order language, re-
flecting on its semantic relationship to these puzzling parts of natural language may
help us resolve, or at least better navigate, these classic disputes.

3.1 A view from beyond

A thought experiment will make the investigation a bit more vivid. Imagine we
are alien field linguists (from the exoplanet Lambda Serpentis b, say), whose native
language is Higher-Orderese. Having travelled to Earth, we are now trying to figure
out what English-speakers are trying to tell us using various English sentences. For
a wide swath of ordinary language, this project has been going well, thanks to the
convenient presence in our native dialect of Higher-Orderese of constants that look
like close analogues of various English nouns, verbs, adjectives, and adverbs. For
example, we have type-𝑒 constants planet𝑒 and twinkles𝑒 with which we can form
the sentence ¬∃𝑥𝑒.planet𝑒 𝑥 ∧ twinkles𝑒 𝑥. And we have found strong support for

9Someone might argue that if one understands two sentences 𝐴 and 𝐵 that both mean 𝑝, one will
know that𝐴means 𝑝 and know that 𝐵means 𝑝, and thus be in a position to come to know that𝐴 and
𝐵mean the same thing by a deductive inference. But the phenomenon whereby one can think about
the same thing under multiple “guises” means that extending one’s knowledge in this way need not
be so easy: see Quine 1956, Kripke 1979, Salmon 1986.
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the hypothesis that when the English-speakers say ‘No planet twinkles’, they mean
that this is the case. We express this hypothesis in our version of Higher-Orderese
as follows:

(1) no⋅planet⋅twinkles ⁝𝑡 ¬∃𝑥𝑒.planet𝑒 𝑥 ∧ twinkles𝑒 𝑥

Here, no⋅planet⋅twinkles is our analogue of the English quote-name ‘“Noplanet twinkles”’,
and 𝐴 ⁝𝑡 𝑃 is our analogue of the English ‘𝐴 means in English that 𝑃’.10 Moreover,
we have have found plausible ways of explaining these discoveries about the se-
mantic roles of English sentences using hypotheses about the semantic roles of the
words fromwhich they are constructed. Whereas English features a rather bewilder-
ing variety of terminology for talking about matters of linguistic meaning—‘means’,
‘refers’, ‘denotes’, ‘expresses’…—on Lambda Serpentis we are a bit more systematic:
for each type 𝜎, we have a binary predicate ⁝𝜎 taking an argument of type 𝜎. Us-
ing these predicates, we have formulated some hypotheses about the constituent
words of the above sentence, which one can think of as Higher-Orderese analogues
of ‘“Planet” means planet’, ‘“Twinkles” means twinkles’, and ‘“No” means no’:

planet ⁝𝑒 planet𝑒(2)
twinkles ⁝𝑒 twinkles𝑒(3)

no ⁝𝑒𝑒 𝜆𝑋𝑒𝑌𝑒.¬∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧(4)

We have also formulated some general compositional laws, which can be combined
with these hypotheses to derive claims about the meanings of complex expressions,
such as (1).11

But we are perplexed when we try to extend our theory to English expressions
like ‘property’, ‘relation’, ‘proposition’, ‘fact’, and so on. We have not found any ana-
logues of these words in our native language. Indeed it is not even obvious which of
our variously-typed ‘expressing’ predicates ⁝𝜎we should be using in trying to explain
their communicative roles in English.

To flesh out the thought experiment a bit more, let’s imagine that our field lin-
guists are, like many Lambda Serpentian philosophers, adherents of the following
thesis:

𝑒-Materialism ∀𝑥𝑒.material𝑒 𝑥

Here, ‘material𝑒’ is a type-𝑒 constant whose usage is broadly analogous to that of
‘material object’ in English.12 Of course, 𝑒-Materialism does not command universal

10Presumably, the binary predicate ⁝𝑡 is not actually a primitive constant in our language, but is
derived from a ternary predicate with an extra argument for a linguistic community by plugging in
our name for the community of English speakers.

11See §4.2 below for one possible version of such laws.
12We can imagine that philosophers propose slightly different explanations of what it is to be
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assent. But its main detractors are proponents of various traditional religious views
that no longer have many adherents in educated circles on Lambda Serpentis b.

The sociological situation there thus contrasts interestingly with the situation fa-
cing philosophers on Earth who propound theses like

Materialism Everything is a material object.

Materialism is not so popular, sincemany philosophers take it to be refuted by simple
arguments like the following:

Redness isn’t a material object; so not everything is a material object.
The fact that there are dogs isn’t a material object; so not everything is a
material object.
The number two isn’t a material object; so not everything is a material
object.
Theword ‘cat’ isn’t amaterial object; so not everything is amaterial object.

Proponents of 𝑒-Materialism on Lambda Serpentis b never have to address argu-
ments analogous to these, since their dialect of Higher-Orderese has no type-𝑒 terms
that are at all analogous to ‘redness’, ‘the fact that there are dogs’, ‘the number two’,
or ‘the word “cat”’. The closest analogues to these English expressions in their lan-
guage are terms of higher types. For example, they just get bywith a type 𝑒 predicate
red𝑒, and have no need for anything like the English nominalizing device ‘-ness’. In
situations where we might utter an English sentence with ‘redness’ as its grammat-
ical subject, they will reach for a Higher-Orderese sentence in which red𝑒 occurs as
the argument of a type-𝑒 predicate. Similarly, they may have a system of Arabic nu-
merals that look like ours, but they use them as type-𝑒 terms—for example, treating
‘2’ as equivalent to 𝜆𝑋𝑒.∃𝑦𝑒𝑧𝑒.𝑋𝑦 ∧ 𝑋𝑧 ∧ 𝑦 ≠𝑒 𝑧.13 And the closest analogue of quo-
tation in their language is a system of special constants which can be used to form
terms of type 𝑒. For example, for them, cat (written in the special font) is a term of
type 𝑒which they can truly apply to blobs of ink shaped like this: cat.14

Given this background and their Materialist𝑒 sympathies, it’s clear why our field
linguists will be puzzled by English expressions like ‘redness’, ‘the property of being
red’, ‘the fact that there are dogs’, ‘the number two’, and ‘the word “cat”’. They seem
tomake ameaningful contribution tomany straightforwardlymeaningful sentences.
And in view of their syntactic resemblance to expressions like ‘Mars’, ‘this dog’, and
‘he’, it is natural to assume that their semantic role would consist in “referring to ob-
jects”, i.e. that if they aremeaningful at all, then∃𝑥𝑒.redness ⁝𝑒 𝑥,∃𝑥𝑒.the⋅number⋅two ⁝𝑒
material𝑒, with some favouring geometrical vocabulary, some mereological vocabulary, some draw-
ing on theoretical terms drawn from their best theories of physics, etc.

13Theymay have a separate numeral system for each type, distinguishedwith subscripts, e.g. treat-
ing ‘2𝜎’ as equivalent to 𝜆𝑋𝜎.∃𝑦𝜎𝑧𝜎.𝑋𝑦 ∧ 𝑋𝑧 ∧ 𝑦 ≠𝜎 𝑧.

14The symbol ⋅ is a constant of type 𝑒 → 𝑒 → 𝑒 such that 𝑋𝑒 ⋅ 𝑌𝑒 holds of blobs of ink consisting of
an 𝑋𝑒 blob followed by a 𝑌𝑒 blob. For example,cat⋅cat applies to blobs of ink shaped like this: cat cat.
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𝑥, etc. Likewise, in view of the syntactic resemblance between words like ‘property’,
‘fact’, and ‘number’ and ordinary nouns like ‘planet’, and the syntactic resemblance
between words like ‘instantiates’ and ordinary transitive verbs like ‘orbits’, it is nat-
ural to assume that the former have meanings of type 𝑒 and the latter meanings of
type 𝑒𝑒, if they are meaningful at all. The problem is that given 𝑒-Materialism, there
don’t seem to be any good candidate meanings of these types. No material object
looks like a plausible candidate to be referred to by ‘redness’ or in the extension of
‘property’, and no pair of material objects seems a plausible candidate to be in the
extension of ‘instantiates’.

In viewof these facts, someof the field linguists—call them“inflationists”—might
be led to the view thatmost English-speakers are in the grip of what, from their point
of view, will look like an astonishingly bold and specific metaphysical hypothesis,
radically unlike their own Materialist𝑒 outlook. According to this hypothesis, not all
individuals are material: instead, there is a vast array of non-material individuals—
abstract objects. Among these are universals, such as redness. Material objects (like
planets) can have or instantiate abstract objects (like universals). And this happens
according to some quite distinctive laws: for example, that there is a property (red-
ness) that is, necessarily, instantiated by all and only red objects:

∃𝑥𝑒.2∀𝑦𝑒. red𝑒 𝑦 ↔ 𝑦 inst𝑒𝑒 𝑥

The closest parallel to this on Lambda Serpentis involves certain religious systems
whose believers were, in a somewhat similar way, committed not only to the bare
existence of non-material objects, but to some suspiciously specific claims about the
natures of these objects and about how they stand towards material objects.

Others—call them “deflationists”—will have misgivings about the attribution of
this view to English-speakers. Theywill find it hard to believe that such a demanding
and prima facie implausible belief-system could persist on Earth with so little scep-
ticism. Of course, if they visit some philosophy departments, they will eventually
find some who seem to be the analogues of atheists, namely nominalists, who from
time to time can be heard to produce sentences like ‘There are no properties’, ‘There
are no abstract objects’, ‘Everything is material’, etc. But even these oddballs seem
to have trouble sticking to their convictions: when not safely ensconced in a “philo-
sophy room” (Lewis 1983b: x), their use of the problematic vocabulary is more or
less indistinguishable from everyone else’s.

The deflationists will also be impressed by the extensive parallels between the
ways English-speakers use many sentences involving words like ‘property’ and the
use on Lambda Serpentis of certain Higher-Orderese sentences, namely those of
which they could serve as “glosses” according to the usual pronunciation schemes.
For example, English-speakers’ use of ‘Some property of Mars applies to Venus’—a
sentence which, according to the inflationists, expresses a tendentious claim relating
Mars andVenus to the supposed realm of abstract objects—has a lot in commonwith
their own use of the sentence ∃𝑋𝑒.𝑋mars𝑒 ∧𝑋venus𝑒. Just as they would unhesitat-
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ingly infer the latter sentence from anything of the form 𝐹mars𝑒 ∧ 𝐹 venus𝑒 (where
𝐹 is some type 𝑒 term), English speakers seem—with the exception of a few philo-
sophers in those special rooms—to unhesitatingly infer the former sentence from
any sentence of the form ‘Mars 𝑉𝑃 and Venus 𝑉𝑃’ (where 𝑉𝑃 is any verb phrase).
The deflationists see this as weighty evidence that that’s what the sentence means in
English: i.e.,

some⋅property⋅of⋅Mars⋅holds⋅of⋅Venus ⁝𝑡 ∃𝑋𝑒.𝑋mars𝑒 ∧𝑋venus𝑒

More generally, they propose that a wide variety of English sentences involving
words like ‘property’ express exactly what the Higher-Orderese sentences of which
they could serve as “glosses” express, so that their truth is entirely consistent with
𝑒-Materialism.

While the deflationary hypothesis has obvious attractions, its proponents face
a challenge. Can they derive their proposals about the meanings of the puzzling
sentences from proposals about their constituent words, together with simple, prin-
cipled generalizations about the semantic role of syntactic composition? The chal-
lenge is pressing one: if their proposal required some radical departure from the
standard vision of semantic compositionality, that would be a serious count against
it. In §5, I will attempt to show how this challenge can be met, by sketching a theory,
constructed along standard compositional lines, that has the desired claims about
the meanings of the puzzling sentences as theorems. The basic idea—not in the least
novel!—is that the syntactic similarities we have noted are not indicative of any kind
of semantic similarity. For example, despite its resemblance to ‘Mars’, ‘the property
of being red’ doesn’t refer to any object, but rather expresses exactly what the verb
phrase ‘is red’ expresses:

the⋅property⋅of⋅being⋅red ⁝𝑒 red𝑒

Similarly, despite its resemblance to ‘picture ofMars’, ‘property ofMars’ has a higher-
type meaning:

property⋅of⋅Mars ⁝𝑒 𝜆𝑋𝑒.𝑋mars𝑒

Many other expressions also end up with meanings in semantic types other than
what purely syntactic considerations might lead one to expect. And the composi-
tional rules are set up in a way that is general enough to allow these meanings to
combine to spit out the desired “deflationary” meanings for sentences.

3.2 The scope of the challenge

Although “property talk” is widespread in philosophy, it is not particularly common
in ordinary life; Moltmann (2013) classifies it as part of the “periphery” rather than
the “core” of natural language. Given this, the task of providing a semantic account
of this particular family of expressionsmay not seem a very high priority for our field
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linguists, or for their real-world counterparts in linguistics departments. But there
are many phenomena closer to the “core” that generate similar puzzles: namely,
families of expressions that seem capable of playing similar syntactic roles to ordin-
ary proper names like ‘Mars’, or to ordinary predicates like ‘planet’, but where if one
took these syntactic similarities seriously as a guide to the type of the expressions’
meanings, one would be forced to interpret some wide range of ordinary sentences
as expressing claims inconsistent with 𝑒-Materialism. I have already mentioned ex-
pressions like ‘number’, ‘word’, ‘sentence’, ‘the number two’, and ‘“cat”’. Here are
some more kinds of expressions that can sometimes play a name-like syntactic role
(e.g. as the subject of a verb), and which some semanticists have treated as denoting
special individuals, of a sort prima facie ruled out by 𝑒-Materialism:

• Bare gerunds (‘being polite’) and infinitives (‘to be polite’) (Chierchia 1984),
and more complex nominals built around them (‘John being polite’, ‘John’s
being polite’, ‘Brutus’s stabbing Caesar’, ‘Brutus’s stabbing of Caesar’, ‘for John
to be polite’) (Vendler 1967).

• Bare ‘that’ clauses (‘that it is raining’) (Cresswell 1973: 165-169) and more
complex nominals built around them (‘the belief that it is raining’, ‘John’s belief
that it is raining’, ‘a rumor that I have resigned’) (Moltmann 2013).15

• Plural definites (‘John and Mary’, ‘the cards’) (Link 1983).

• “Kind-denoting” uses of definite singular noun phrases (‘the Siberian tiger’).

• Bare plurals and mass nouns (‘dinosaurs’, ‘dinosaurs with feathers’ ‘clean wa-
ter’) (Carlson 1977, Liebesman 2011).

• Bare abstract nouns (‘redness’, ‘hostility’), and more complex nominals built
around them (‘the wisdom of Socrates’) (Moltmann 2013).

We could also add a host of ordinary expressions to which many semanticists would
assign denotations in types taking individual arguments (such as 𝑒), which would
prima facie be uninstantiated given 𝑒-Materialism, leading to trivialization in the truth
conditions:

• Count-noun-like uses of gerunds (‘Every killing by John was justified’).

• Other kinds of nominalizations of verbs (‘Every dance was beautiful’, ‘The ex-
amination was sat in the the Exam Schools’, ‘The treatment was successful’).

• Other nouns that don’t seem to apply straightforwardly to material objects
(‘problem’, ‘error’, ‘battle’, ‘meeting’, …).

15Rosefeldt (2008) takes the view that ‘that’ clauses have type-𝑒 denotations to be a commitment
of the orthodox “relational theory” of propositional attitudes. He argues that they have a different
type—the analogue in his system of our 𝑡—while assuming that expressions of the form ‘the propos-
ition that…’ have only type-𝑒 denotations.
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• Verbs and adverbs, according to the influential tradition of Davidson (1980)
and Parsons (1990).

Property-talk can be seen as a minimally distracting test case, where the pressure to-
wards semantic homogeneity is especially strong, and the general shape of a “defla-
tionary” alternative especially clear. For all of the other phenomena just listed, there
will be similar possibilities for deflationary treatments compatiblewith 𝑒-Materialism,
though in each case filling in the details will involve significant further choice points.

4 Doing natural-language semantics in Higher-Orderese

Before turning to the special challenges thatwords like ‘property’ raise for the project
of giving a rigorous semantic theory for English stated in a higher-order language,
we need to get on the table some of the basic architectural principles of such a theory,
specifically principles connecting the semantic roles of complex expressionswith the
semantic roles of their constituents.

4.1 Meaning as category-relative

So far, we have been theorizing using a family of binary “expressing” predicates ⁝𝜎 of
type 𝜖𝜎, where 𝜖 is the type of quote-names like no⋅planet⋅twinkles. (We posited that
on Lambda Serpentis this is 𝑒, but from now on I’ll just write 𝜖 for the sake of greater
neutrality.) But for the purposes of systematic theorizing about human languages,
there is reason to want a more discriminating ideology. Consider for example the
word ‘fish’. It can function both as a noun and as an intransitive verb, and makes
different semantic contributions when it occurs in these different capacities. Any
systematic theory of the meanings of complex expressions will need to somehow be
sensitive to this, e.g., in order to explain why the sentences ‘You fish’ and ‘You are a
fish’ mean different things.

To provide a canonical format for characterizing this sort of relativity, I will use
a more complicated family of primitive three-place semantic predicates ⦙𝜎, that add
an extra argument place for a syntactic category, in order to track the differences that
matter for words like ‘fish’. It doesn’t matter much what these syntactic categories
are, since their role is just to serve as labels to aid in disambiguation. But for con-
venience, we will identify syntactic categories with strings—e.g. n for noun and s for
sentence—making ⦙𝜎 a predicate of type 𝜖𝜖𝜎.16 So we can write down sentences like
these (writing the symbol ⦙𝜎 between its first and second argument):

planet ⦙𝑒 n planet𝑒

no⋅planet⋅twinkles ⦙𝑡 s¬∃𝑥𝑒.planet𝑒 𝑥 ∧ twinkles𝑒 𝑥
16We can understand the ternary predicates ⦙𝜎 as derived from more basic quaternary predicates

by a name for the community of English speakers into one argument, analogous towhatwe suggested
above for the binary predicates ⁝𝜎 (see note 10 above).

16



I will often omit the subscript 𝜎 when it can be reconstructed by checking the type
of the third argument.17

The basic theoretical role of these newpredicates is given by the following schema,
according to which what an expression means is what it means relative to some cat-
egory or other:

𝑎 ⁝𝜎 𝑥 ↔ ∃𝑐𝜖.𝑎 ⦙𝜎 𝑐 𝑥

Of course, this falls well short of pinning down the meaning of ⦙𝜎. But as with other
theoretical terms, the hope is the meaning of the new vocabulary will be sufficiently
constrained by its role in a theory.

4.2 Composition laws

Anice thing about keeping explicit track of syntactic categories in our semantic ideo-
logy is that it lets us formulate some quite simple and general compositional laws. To
do so, we can follow Bar-Hillel (1953) and Lambek (1958) in allowing for complex
syntactic categories, built up from simpler ones using parentheses and two different
directions of slashes.

/ ∶ 𝜀 → 𝜀 → 𝜀
\ ∶ 𝜀 → 𝜀 → 𝜀

When 𝑐 and 𝑑 are strings, 𝑐/𝑑 is just the string formed by concatenating a left paren-
thesis, 𝑐, the forward slash character, 𝑑, and a right parenthesis (in that order); 𝑐\𝑑
is the same but using the backward slash. The idea is that expressions of categories
𝑐/𝑑 and 𝑑\𝑐 are ones that can combine with an expression of category 𝑑 to yield one
of category of 𝑐, with the former taking its input on the right and the latter taking its
input on the left. In writing long expressions built up using the slashes, we econom-
ize on parentheses by treating \ as binding more tightly than /; / as left-associative;
and \ as right-associative.18

Appealing to complex syntactic categories, we can formulate two simple schemas
that can be used to derive claims about the meanings of complex expressions from

17The idea of meaning as relativized to something like a syntactic category is pervasive in the lit-
erature on categorial grammar. For example, in the system of Morrill (1994), the basic items that
occur in derivations are tripartite “assignments” comprising a “prosodic object”, a “semantic object”,
and a “category form” (other authors (Moortgat 1996, Kubota and Levine 2020) call these tripartite
things “signs”). In the philosophical literature, Rieppel (2016) argues for a relativization of the gen-
eric notion of denotation to something he calls an “expression type”, which looks quite like what I
am calling a “syntactic category”. Note that Rieppel uses ‘syntactic category’ differently, such that
certain expressions that have denotations relative to several different “expression types” nevertheless
are assigned to a single “syntactic category”. I doubt anything substantive turns on this.

18Thus, e.g., 𝑎\𝑏/𝑐 is (𝑎\𝑏)/𝑐, 𝑎/𝑏\𝑐 is 𝑎/(𝑏\𝑐), and 𝑎/𝑏\𝑐\𝑑/𝑒/𝑓 is ((𝑎/(𝑏\(𝑐\𝑑)))/𝑒)/𝑓.
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claims about the meanings of their simpler parts:

(>) 𝑎 ⦙𝜎→𝜏 𝑐/𝑑𝑋 ∧ 𝑏 ⦙𝜎 𝑑 𝑦 → 𝑎⋅𝑏 ⦙𝜏 𝑐𝑋𝑦Functional Applicaton
(<) 𝑎 ⦙𝜎→𝑡 𝑑\𝑐𝑋 ∧ 𝑏 ⦙𝜎 𝑑 𝑦 → 𝑏⋅𝑎 ⦙𝜏 𝑐𝑋𝑦

Gloss: when 𝑎 has a type 𝜎 → 𝜏 meaning 𝑋 and 𝑏 has a type-𝜎 meaning 𝑦, and
moreover the categories relative which they have these meanings are such as to li-
cense the combination, the result of concatenating 𝑎 and 𝑏 in the appropriate order
has the type-𝜏meaning that results from applying 𝑋 to 𝑦.19

Here is a illustrative example that shows howwemight use Function Application
to explain a semantic fact about a sentence by appeal to semantic postulates about
its constituent words:

no ⦙ (s/np\s)/n
𝜆𝑋𝑒𝑌𝑒.¬∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧

planet ⦙ n
planet𝑒

>
no⋅planet ⦙ s/np\s

(𝜆𝑋𝑒𝑌𝑒.¬∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧)planet𝑒
conv

no⋅planet ⦙ s/np\s
𝜆𝑌𝑒.¬∃𝑧𝑒.planet𝑒 𝑧 ∧ 𝑌𝑧

twinkles ⦙ np\s
twinkles𝑒

>
no⋅planet⋅twinkles ⦙ s

(𝜆𝑌𝑒.¬∃𝑧𝑒.planet𝑒 𝑧 ∧ 𝑌𝑧) twinkles𝑒
conv

no⋅planet⋅twinkles ⦙ s
¬∃𝑧𝑒.planet𝑒 𝑧 ∧ twinkles𝑒 𝑧

Here the premises correspond to our earlier hypotheses about ‘planet’, ‘twinkles’,
and ‘no’, but add explicit proposals about the categories relative to which they ex-
press what they express. The steps labelled with < or > become valid inHwhen the
appropriate instance of Function Application is added as a supplementary premise.
Those labelled with ‘conv’ are just applications of the 𝛽-conversion rule of H. (From
now on, I will keep these derivations compact by skipping steps of 𝛽-conversion.)

The general structure of derivations like the one given above will look famil-
iar to anyone who knows a bit of natural-language semantics, especially in any of

19Some recentwork in the tradition of categorial grammar (e.g. de Groote 2001,Worth 2014) uses a
different system onwhich the bearers ofmeaning—in our system, the first argument of the expressing
constant ⦙—is not always a string, but can be of amore complicated type such as that of functions from
strings to strings—e.g. we might have (𝜆𝑎𝜖.𝑎 ⋅ twinkles) ⦙ np\s twinkles𝑒. In such systems, we can re-
place the directional slashes with an all-purpose symbol⊸ and replace the two Function Application
schemas with

𝑈𝜎′→𝜏′ ⦙𝜎→𝜏 𝑑⊸𝑐𝑋 ∧ 𝑣𝜎′ ⦙𝜎 𝑑 𝑦 → 𝑈𝑣 ⦙𝜏 𝑐𝑋𝑦

Since the phenomena we are concerned with do not require the flexibility such systems confer, I am
sticking with the more familiar picture where the bearers of meaning are always strings. But the
theory below can straightforwardly be modified to fit the picture where meaning-bearers themselves
come in a variety of types.
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the traditions influenced by Montague (1974). In these traditions, the central activ-
ity is the construction of formal systems that allow derivations roughly like ours.
However, the prefatory remarks about the intended theoretical significance of these
derivations often diverge quite drastically from the perspective adopted here. Fol-
lowing Montague, the systems in question are widely understood as specifications
of a “translation function” from the relevant natural language to a formal language
such as that of higher order logic. On this understanding, both the natural-language
expression that in my notation appears as the first argument of ⁝𝜎 and the formal-
language expression that appears as its last argument are taken to be mentioned: the
derivation establishes that the translation function maps the former to the latter. For
Montague, “semantics” is set-theoretic model theory, and the translation from a nat-
ural to a formal language is just a component in an indirect way of specifying the
required set-theoretic definitions:

We could…introduce the semantics of our fragment directly; but it is
probably more perspicuous to proceed indirectly, by (1) setting up a cer-
tain simple artificial language, that of tensed intensional logic, (2) giving
the semantics of that language, and (3) interpreting English indirectly by
showing in a rigorous way how to translate it into the artificial language.

(Montague 1974: 256)
By contrast, for us, the formal-language expression that appears as the last argument
of ⦙𝜎 is used, not mentioned: the conclusion of the derivation is itself a sentence in the
same formal language. Set-theoreticmodel-theory plays no role; like Burgess (2008),
I find Tarski’s decision to commandeer the word ‘semantics’ for that enterprise ex-
tremely unfortunate. The questions our field linguists are interested in are certainly
not questions about models, and nor do models play any role in the theories they
come up with to answer those questions.

As in the derivation above, we will often help ourselves to constants of Higher-
Orderese homophonically corresponding to individual English “non-functional”words
(above, ‘planet’ and ‘twinkles’). While we can understand these as genuine con-
stants, reflecting a convenient overlap between the language we are theorizing in
and the language we are theorizing about, we could alternatively take them as mere
placeholders. On this approach, the conclusion of the above derivation is really short
for a universal generalization:

∀𝑋𝑒𝑌𝑒.planet ⦙ n𝑋 ∧ twinkles ⦙ np\s𝑌 → no⋅planet⋅twinkles ⦙ s¬∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧

or perhaps the conjunction of this with the claim that the relevant words do have
meanings of those types relative to those categories, i.e.:

∃𝑋𝑒𝑌𝑒.planet ⦙ n𝑋 ∧ twinkles ⦙ np\s𝑌

The earlier lines in the derivation can be understood in parallel fashion. Interpreted
like this, the claims we are deriving can be expressed in a language with a fairly
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restricted range of constants: the logical constants; the expressing constants ⁝𝜎; the
string-building operations ⋅, /, and \, and names for words and basic categories.

4.3 Four kinds of ambiguity

Our field-linguists won’t get far before finding reason to posit cases of ambiguity or
semantic multiplicity.20 In principle there are four forms this could take for a given
expression 𝑎:
(i) 𝑎 expresses distinct things of a certain type 𝜎 relative to distinct categories:

∃𝑥𝜎𝑦𝜎𝑐𝜖𝑑𝜖. 𝑎 ⦙𝜎 𝑐 𝑥 ∧ 𝑎 ⦙𝜎 𝑑 𝑦 ∧ 𝑥 ≠𝜎 𝑦 ∧ 𝑐 ≠𝜖 𝑑

(ii) 𝑎 expresses distinct things of a certain type 𝜎 relative to a single category:

∃𝑥𝜎𝑦𝜎𝑐𝜖. 𝑎 ⦙𝜎 𝑐 𝑥 ∧ 𝑎 ⦙𝜎 𝑐 𝑦 ∧ 𝑥 ≠𝜎 𝑦

(iii) 𝑎 expresses things of distinct types 𝜎 and 𝜏 relative to distinct categories:

∃𝑥𝜎𝑦𝜏𝑐𝜖𝑑𝜖. 𝑎 ⦙𝜎 𝑐 𝑥 ∧ 𝑎 ⦙𝜏 𝑑 𝑦

(iv) 𝑎 expresses things of distinct types 𝜎 and 𝜏 relative to a single category:

∃𝑥𝜎𝑦𝜏𝑐𝜖. 𝑎 ⦙𝜎 𝑐 𝑥 ∧ 𝑎 ⦙𝜏 𝑐 𝑦

An example of (i) would be the distinct type-𝑒meanings of ‘fish’ as noun (category
n) and as verb phrase (np\s). An example of (ii) would be the distinct meanings of
‘bat’ (as noun). A possible example of (iii) would be the type-𝑒 meaning of ‘study’
as a verb phrase (np\s) and its type-𝑒𝑒meaning as transitive verb (np\s/np).

There are no similarly uncontroversial examples of type-(iv) ambiguity. Indeed,
following Montague (1974), semantic theories using categories like ours have gen-
erally disallowed even distinct expressions from having meanings of different types
relative to the same category. Such systems feature a category-to-type-correspondence:
each category-label 𝐶 is mapped to a unique type 𝜎𝐶, such that no expression has
a meaning relative to 𝐶 in any type other than 𝜎𝐶.21 In our formal language, this is
captured by the following schema:

Correspondence ¬(𝑎 ⦙𝜎 𝑐 𝑥 ∧ 𝑏 ⦙𝜏 𝑐 𝑦) where 𝜎 ≠ 𝜏
20Some authors reserve ‘ambiguity’ only for cases like ‘bat’ and ‘bank’ where the use of a single

sound and spelling to play multiple roles is just some arbitrary idiosyncrasy of the sort that would be
unlikely to arise independently in causally isolated linguistic communities: theywillwant to use some
more neutral expression like ‘ambiguity or polysemy or context-sensitivity’ where I have ‘ambiguity’.

21For a categorial formalism built around such a correspondence, see de Groote 2001. By contrast,
Linear Categorial Grammar (Worth 2014) allows in principle for a single category (“tectotype”) to
be associated with multiple semantic types.
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While this may a helpful architectural principle to adopt, it is worth noting that noth-
ing will break if we reject Correspondence. For an example of a case where onemight
be tempted to do so, consider so-called relational nouns, such as ‘author’, ‘friend’,
and ‘satellite’. We will need to give these type-𝑒meanings if we want treat sentences
like ‘Some author dances’ according to the same model as ‘Some planet twinkles’
above. But if these are the only basic postulates we have toworkwith, some semantic
facts about relational nouns will be hard to explain. For example, a type-𝑒 meaning
for ‘satellite’ would make it very hard to understand how ‘Phobos is a satellite of
Mars’ gets to mean the same as ‘Phobos orbits Mars’.22 The standard alternative is
to instead make ‘satellite’ type-ambiguous, positing an additional type-𝑒𝑒 meaning
𝜆𝑥𝑒𝑦𝑒.orbits𝑒𝑒 𝑦𝑥—the same as that of the transitive verb ‘orbits’. If we haven’t signed
up to Correspondence, we will then face the question whether to assign the type-𝑒𝑒
meaning to the same category n as the type-𝑒meaning. If we did so, we could derive
the appropriate meaning for ‘satellite of Mars’ as follows:

satellite ⦙ n
𝜆𝑥𝑒𝑦𝑒.orbits𝑒𝑒 𝑦𝑥

of ⦙ n\n/np
𝜆𝑥𝑒𝑌𝑒𝑒.𝑌𝑥

Mars ⦙ np
mars𝑒

>
of⋅Mars ⦙ n\n
𝜆𝑌𝑒𝑒.𝑌mars𝑒

<
satellite⋅of⋅Mars ⦙ n
𝜆𝑧𝑒.orbits𝑒𝑒 𝑧mars𝑒

(Of course, wewill presumably need othermeanings for of, such asof⦙n\n/np𝜆𝑥𝑒𝑌𝑒𝑧𝑒.𝑌𝑧 ∧ owns𝑒𝑒 𝑥𝑧,
to handle expressions like ‘sword of King Arthur’.) Lumping the differently-typed
meanings into the same category seems natural insofar as we are trying to be guided
by syntax asmuch aswe can—it is not obvious that there is any difference in syntactic
distribution between nouns like ‘satellite’ that admit relational uses and nouns like
‘sword’ that do not. However, it is probably too much to expect all decisions about
category-labels to be justified on entirely non-semantic grounds, and it may ulti-
mately prove better to use some other label for the relational meanings.23 Moreover,

22We would presumably have to posit that of ⦙ n\n/np𝑂, where 𝑂 is some operation such that
𝜆𝑥𝑒𝑦𝑒.𝑂 𝑥 satellite𝑒 𝑦 =𝑒𝑒 𝜆𝑥𝑒𝑦𝑒.orbits𝑒𝑒 𝑦𝑥. The difficulty is in coming up with an operation like this
that handles the whole range of cases to be explained.

23One problem with the lumping-together proposal is that some relational nouns can arguably
have their extra argument supplied by prepositions other than ‘of’. For example, perhaps ‘letter’ in
‘letter to Jane’ also contributes a relation of which ‘Jane’ gets plugged into one argument. Difference
of category-label provide a place we can keep track of such lexical differences, e.g. as follows:

satellite ⦙ n/𝑝𝑝of 𝜆𝑋𝑒𝑦𝑒.𝑋(𝜆𝑧𝑒.orbits𝑒𝑒 𝑦𝑧)

of ⦙ 𝑝𝑝of/np𝜆𝑥𝑒𝑌𝑒.𝑌𝑥 Mars ⦙ npmars𝑒
>

of⋅Mars ⦙ 𝑝𝑝of 𝜆𝑌𝑒.𝑌mars𝑒
>

satellite⋅of⋅Mars ⦙ n𝜆𝑦𝑒.orbits𝑒𝑒 𝑦mars𝑒

Similarly we could assign the relational meaning of ‘letter’ the category n/𝑝𝑝to.
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since the category-labels are part of the internal bookkeeping of the theory, we al-
ways have the option of preserving Correspondence by fine-graining the labels (e.g.,
replacing the single category nwith two categories n𝑒 and n𝑒𝑒).

One further point about the treatment of ambiguity in this system isworth noting:
each time we encounter an occurrence of an ambiguous word, we get to make a
fresh choice from among all its meanings that are of an appropriate type and are
had relative to an appropriate category. For example, assuming ‘bank’ is ambiguous
(as a noun) betweenmoney bank (mbank𝑒) and river bank (rbank𝑒), wewill be able
to derive a true meaning for ‘Some bank lends and no bank lends’:

some ⦙ (s/np\s)/n
𝜆𝑋𝑒𝑌𝑒.∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧

bank ⦙ n
mbank𝑒

>
some⋅bank ⦙ s/np\s

𝜆𝑌𝑒.∃𝑧𝑒.mbank𝑒 𝑧 ∧ 𝑌𝑧
lends ⦙ np\s
lender𝑒

>
some⋅bank⋅lends ⦙ s

∃𝑧𝑒.mbank𝑒 𝑧 ∧ lender𝑒 𝑧

and ⦙ s\s/s
𝜆𝑝𝑡𝑞𝑡.𝑞 ∧ 𝑝

no ⦙ (s/np\s)/n
𝜆𝑋𝑒𝑌𝑒.¬∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧

bank ⦙ n
rbank𝑒

>
no⋅bank ⦙ s/np\s

𝜆𝑌𝑒.¬∃𝑧𝑒. rbank𝑒 𝑧 ∧ 𝑌𝑧
lends ⦙ np\s
lender𝑒

>
no⋅bank⋅lends ⦙ s

¬∃𝑧𝑒. rbank𝑒 𝑧 ∧ lender𝑒 𝑧
>

and⋅no⋅bank⋅lends ⦙ s\s
𝜆𝑝𝑡.𝑝 ∧ ¬∃𝑧𝑒. rbank𝑒 𝑧 ∧ lender𝑒 𝑧

>
some⋅bank⋅lends⋅and⋅no⋅bank⋅lends ⦙ s

(∃𝑧𝑒.mbank𝑒 𝑧 ∧ lender𝑒 𝑧) ∧ ¬∃𝑧𝑒. rbank𝑒 𝑧 ∧ lender𝑒 𝑧

Often (though not always) speakers and hearers prefer uniform interpretations, in
which repeated occurrences of a word are interpreted in the same way (types and
categories permitting), and in which related words (e.g. ‘necessary’ and ‘possible’)
are interpreted in co-ordinated ways. This notion of uniformity is particularly im-
portant whenwe are interested in logical notions like consequence and contradictor-
iness (see Dorr 2014b). However, providing a rigorous theory of uniform expressing
will require some significant further adjustments to our semantic ideology (see Dorr
unpublished), which are not relevant for our present purposes.

5 Developing a deflationary account of property-talk

Now that we have a clearer picture of the general shape of a semantic theory for
English given in Higher-Orderese, we can both sharpen the puzzles that words like
‘property’, ‘relation’, ‘feature’, ‘state’, ‘condition’, ‘quality’, and ‘concept’ will raise
for our field linguists, and begin to see our way to a compositional implementation
of the “deflationary” approach to these words. Let’s focus on the word ‘instantiates’
and the expression ‘the property of being red’. Both have all the hallmarks of mean-
ingfulness. Moreover, ‘instantiates’ looks to have the same syntactic distribution as
run-of-the-mill transitive verbs like ‘orbits’, while ‘the property of being red’ looks
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very similar to proper nouns like ‘Mars’.24 This suggests that we should assign ‘the
property of being red’ the same category-label np we used for ‘Mars’, and ‘instanti-
ates’ the same category-label np\s/np we used for ‘orbits’. Assuming ∃𝑥𝑒.mars ⦙ np 𝑥
and ∃𝑌𝑒𝑒.orbits ⦙ np\s/np𝑌, this means that if we endorse Correspondence, we will
have to say that

∃𝑥𝑒.the⋅property⋅of⋅being⋅red ⦙ np 𝑥
∃𝑌𝑒𝑒.instantiates ⦙ np\s/np𝑌

But what could these 𝑥𝑒 and 𝑌𝑒𝑒 be? Given our assumed Materialist𝑒 commitments,
there are no good candidates.25

The obvious solution is simply not to treat the syntactic parallelisms between ‘in-
stantiates’ and ‘orbits’ and between ‘the property of being red’ and ‘Mars’ as requir-
ing semantic parallelism. This is most easily done by rejecting Correspondence, thus
enabling us to endorse derivations like the following:

Mars ⦙ npmars𝑒

instantiates ⦙ np\s/np𝜆𝑋𝑒.𝑋 the⋅property⋅of⋅being⋅red ⦙ np red𝑒
>

instantiates⋅the⋅property⋅of⋅being⋅red ⦙ np\s ((𝜆𝑋𝑒.𝑋) red𝑒)
𝛽

instantiates⋅the⋅property⋅of⋅being⋅red ⦙ np\s red𝑒
<

Mars⋅instantiates⋅the⋅property⋅of⋅being⋅red ⦙ s (red𝑒mars𝑒)

Of course we will also have
Mars ⦙ npmars𝑒 is⋅red ⦙ np\s red𝑒

<
Mars⋅is⋅red ⦙ s (red𝑒mars𝑒)

We will thus conclude that ‘Mars instantiates the property of being red’ and ‘Mars
is red’ express the same thing.

This looks like awelcome result, given that the formerwould (outside philosoph-
ical contexts) generally be treated as nothing more than an oddly pompous variant
of the latter. True, the two sentences are not treated interchangeably by all speakers
in all contexts—there are those oddball philosophers. But the fact that some com-
petent speakers fail to treat two sentences as interchangeable is not a good objection
to the claim that they express the same thing, in the sense we are concerned with:

24This syntactic resemblance is not perfect. Proper names admit count uses (‘Every Kennedy was
elected’) whereas expressions headed by ‘the’ do not (‘*Every the property of resembling Kennedy is
instantiated’). Also, ‘The planet Mars’ is well-formed, unlike ‘*The planet the property of being red’
(and ‘*The property the property of being red’).

25If we were just looking at these two words we might consider interpreting ‘instantiates’ to mean
something like resembles in color and taking ‘the property of being red’ to denote some specific red
material object. But this sort of proposal will obviously run aground once we look at a wider pattern
of usage (e.g. including ‘the property of being coloured’).
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consider ‘Furze has yellow flowers’ and ‘Gorse has yellow flowers’, or ‘Vixens live in
dens’ and ‘Female foxes live in dens’.26

The rejection of Correspondence isn’t crucial: as before, if one were determined
to preserve Correspondence as a matter of principle, one could do so by imposing a
more fine-grained system of categories, e.g. np𝑒 for ‘Mars’ and np𝑒 for ‘the property
of being red’. But this does not look like a particularly illuminating exercise. Given
how much theoretical freedom we have in the choice of a system of categories, it
seems more disciplined to try to restrict them to the kind of information that might
be relevant for a theory of syntactic well-formedness.27

‘The property of being red’ is, I suppose, what authors in the tradition of Frege
would call a “singular term” (Eigenname). The proposal we are considering thus
directly contradicts Frege’s notorious doctrine that no singular term can denote the
same thing as any predicate.28 Indeed, it is tempting to describe the proposal as one
on which on which ‘is red’ and ‘the property of being red’ are semantically identical
and merely syntactically different. However, one might dispute this characterization
on the grounds that not only properties of the form expressing such-and-such relat-
ive to some category or other, but also expressing such-and-such relative to category 𝑐,
should count as semantic properties of expressions. The question which category
a given meaning of an expression is relative to will, after all, be crucial for determin-
ing how the expression contributes to the meanings of larger expressions having it
as a constituent.29 On the other hand, the broader interpretation of ‘semantic prop-
erty’ would arguably make it impossible for any two expressions to be “semantically
identical but syntactically different”, so the narrower interpretation provides a more
interesting understanding of that formula. I don’t see a genuine issue here: both
ways of talking are fine so long as we don’t confuse them.

Obviously, if it is true that ‘is red’ and ‘the property of being red’ stand in this
intimate semantic relationship, this fact is an instance of a much more general pat-
tern. To capture that pattern, we would need to characterize the general syntactic
transformation that turns ‘is red’ into ‘the property of being red’. Roughly, the oper-

26I am open to there being other uses of the word ‘meaning’ onwhich wewouldwant to talk about
distinctions ofmeaning in some of these cases. But I believe themore “worldly” notion corresponding
to our higher-order ‘expressing’ constants will be a crucial component of any good theory of meaning
in this finer-grained sense.

27For the claim that ‘Mars’ and ‘the property of being red’ denote relative to the same syntactic
category (“expression type”), while ‘the property of being red’ and ‘is red’ denote the same thing
relative to different syntactic categories, see Rieppel 2016.

28This was the doctrine that notoriously led Frege to say that ‘the concept horse is not a concept’
(Frege 1892). Many contemporary authors seem to accept the doctrine: for example, Trueman (2021:
49) argues that ‘it does not make even make sense to suppose that a term and a predicate might co-refer’.
However, I think the right translation of my thesis into Trueman’s terminology is not the thing he
is claiming not to make sense, but rather that some term and some predicate ‘predicate-refer’ to the
same thing—a claim that he regards as meaningful but false.

29Rieppel (2016) understands category-relativity as a generalization of the idea (Wright 1998,
Liebesman 2015) that there are importantly different semantic relations of “reference” and “ascrip-
tion”, such that what ‘the property of being red’ refers to is what ‘is red’ ascribes.
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ation starts with a normal present-tense VP, replaces the main verb with its infinitive
form (e.g., ‘is’ with ‘be’), adds ‘ing’ to the stem, and adds ‘the property of’ in front.30
Calling this operation PROP𝜀→𝜀, we can propose the following schematic law:

Nominalization ∀𝑎𝜀𝑋𝜎.𝑎 ⦙𝜎 np\s𝑋 ↔ PROP𝜀→𝜀(𝑎) ⦙𝜎 np𝑋

Of course, wewould ultimately like to explain Nominalization compositionally from
semantic accounts of ‘the’, ‘property’, ‘of’, ‘-ing’, and the present tense. While this is
certainly not a trivial task, it does not look any harder than the corresponding com-
positional challenge that would arise if one wanted to posit a type-𝑒meaning for ‘the
property of being red’.31

Since expressions like ‘the property of being red’ take up a lot of space, I will
henceforth assume that NP-uses of abstract nouns should be treated analogously:
e.g., redness ⦙ np red𝑒 and wisdom ⦙ npwise𝑒. A full semantic account of these words
will also need to account for uses that aren’t syntactically NP-like—e.g. in ‘There is
more wisdom in your body than in your deepest philosophy’ and ‘The wisdom of
Socrates was celebrated’.32 But there is no a priori reason to expect such a theory to be

30Calling this an “operation” is perhaps a bit unnatural—it is more natural to think of ‘is red’ and
‘the property of being red’ as both derived via different syntactic operations from the base form ‘be
red’. Note that there doesn’t seem to be anything that stands to ‘was red’ as ‘the property of being
red’ stands to ‘is red’: the only candidate I can think of is ‘the property of having been red’, but this
corresponds to ‘has been red’, not ‘was red’. Similarly for VPs withmodal auxiliaries like ‘will be red’,
‘might be red’, ‘can be red’, etc.

Moltmann (forthcoming) claims that there are further restrictions on the verbs that can go after
‘the property of…’, namely that “eventive” verbs (as in ‘the property of walking home’ and ‘the prop-
erty of remaining sick’) and “concrete state” verbs (as in ‘the property of sleeping’ and ‘the prop-
erty of standing in the corner’) are disallowed (she marks them ‘??’). This seems wrong to me. In
English, ‘Mary walks home’ and ‘Mary stands in the corner’ only have habitual meanings: roughly,
those of ‘Mary typically {walks home/stands in the corner}’. And ‘Mary has the property of {walking
home/standing in the corner}’ seem to allow exactly these habituallymeanings. Plugging in an event-
ive verb sounds oddwhen the habitualmeaning is unlikely, as in ‘Mary has the property of eating that
piece of meat’. But this isn’t something special about ‘the property of…’, since ‘Mary eats that piece
of meat’ is equally odd. (I may not actually be disagreeing with Moltmann here, since she qualifies
her claim by admitting that ‘the property of…’ is acceptable for ‘verbs on a dispositional reading’.)

31The attempt to integrate Nominalization with a general account of ‘the’ might make trouble for
the principle as stated. If we demand a strictly parallel treatment of the determiners ‘the’ and ‘every’,
‘the property of being red’ will need a denotation of the same type as ‘every property Mars instan-
tiates’: perhaps 𝜆𝑋𝑒.𝑋 red𝑒 (or something logically equivalent). Handling this will require some ad-
aptations to our semantic architecture to handle quantificational expressions in object position (e.g.
along the lines of Moortgat 1996 or Barker and Shan 2014), but the result would not be importantly
different from Nominalization for the purposes of this paper.

32AsMoltmann (2013) points out, there is a strong syntactic parallel between words like ‘wisdom’
and ordinary mass nouns like ‘water’, which also admit both bare uses (‘Water is vital to all life’) and
modified ones (‘There is more water in this glass than in that thimble’, ‘The water of this fountain
is said to have magical properties’). Moltmann suggests that what stands to ‘wisdom’ as particular
samples of water stand to ‘water’ are tropes—the referents of expressions like ‘thewisdom of Socrates’.
While she thinks of these as individuals, I would put them in some higher type, though the question
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incompatible with the claim that qua NPs these words have type-𝑒meanings. Those
with doubts on this front should substitute ‘the property of being 𝐹’ wherever I have
‘𝐹-ness’.33

5.1 Type-ambiguity and property-talk

By analogy with our earlier treatment of ‘No planet twinkles’, we can explain why
‘Some planet twinkles’ means what it does by treating ‘some’ as a binary first-order
existential quantifier:

(5) some ⦙ s/np\s/n𝜆𝑋𝑒𝑌𝑒.∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧

But given the deflationary approach, this claim does not help to explain why ‘Some
property of Venus holds of Mars’ means what it does (or means anything at all).
‘Property of Venus’ and ‘holds of Mars’ will both have meanings of type 𝑒, which we
could perhaps derive as follows:

property ⦙ n
𝜆𝑥𝑒𝑍𝑒.𝑍𝑥

of ⦙ n\n/np
𝜆𝑥𝑒𝑌𝑒𝑒.𝑌𝑥

Venus ⦙ np
venus𝑒

>
of⋅Venus ⦙ n\n
𝜆𝑌𝑒𝑒.𝑌venus𝑒

<
property⋅of⋅Venus ⦙ n

𝜆𝑍𝑒.𝑍venus𝑒

holds ⦙ np\s
𝜆𝑥𝑒𝑍𝑒.𝑍𝑥

of ⦙ (np\s)\np\s/np
𝜆𝑥𝑒𝑌𝑒𝑒.𝑌𝑥

Mars ⦙ np
mars𝑒

>
of⋅Mars ⦙ (np\s)\np\s

𝜆𝑌𝑒𝑒.𝑌mars𝑒
<

holds⋅of⋅Mars ⦙ np\s
𝜆𝑍𝑒.𝑍mars𝑒

which type that should be is one I don’t want to get into here.
33Moltmann (2013) points out some intriguing contrasts between pairs like ‘wisdom’ and ‘the

property of being wise’ which are prima facie problematic for my proposal to treat them as having the
same denotation (as NPs). For example, whereas ‘John has encountered hostility’ is true (on its most
natural interpretation) so long as some people have been hostile to John, according toMoltmann ‘John
has encountered the property of being hostile’ lacks this reading—its only possible interpretation is
something that could be true only in a ‘metaphysical fantasy’. While there is certainly a striking con-
trast here, I am not convinced that the more humdrum meanings are entirely unavailable with ‘the
property of…’. Consider: ‘The shapes produced by this machine often have interesting mathematical
properties. For example, one I have often encountered is the property of having a prime number of
sides’. Given these, I suspect that the humdrum meaning is in principle available for ‘John has en-
countered the property of being hostile’, but hard to notice because of competition with more natural
modes of expression (such as using ‘hostility’). Similar points apply to Moltmann’s other contrasts.
For example, prima facie ‘Generosity exists’ seems to have a reading tantamount to ‘Some people are
generous’, while ‘The property of being generous exists’ lacks this reading. But consider ‘Many prop-
erties of humans also exist in the great apes. For example, the property of caring about your place in
society exists in bonobos’.

I do however see some differences specific to gradable adjectives: for example, ‘Even people who
aren’t wise have wisdom (it’s just that they have very little of it)’ sounds reasonable, unlike ‘Even
people who aren’t wise have the property of being wise’. While these contrasts might motivate as-
signing ‘redness’ a different semantic type from ‘the property of being red’, I don’t see how they could
motivate giving the former but not the latter a type-𝑒 denotation.
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But there is no way to use these ingredients to derive any prediction about ‘Some
property of Venus holds of Mars’: the meaning of ‘some’ given by (5) needs to com-
bine with inputs of type 𝑒, not 𝑒. The obvious solution is to say that while (5) is true,
(6) is also true:

(6) some ⦙ s/np\s/n𝜆𝑋𝑒𝑌𝑒.∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧

In other words, ‘some’ is type-ambiguous: it is both a first order and a second-order
quantifier. Which of its semantic roles is relevant to a given occurrence will depend
on themeanings of the expressions it combineswith. Its role as a second-order quan-
tifier is what lets it combine meaningfully with ‘property of Venus’ and ‘holds of
Mars’ to derive:

some ⦙ s/np\s/n
𝜆𝑋𝑒𝑌𝑒.∃𝑍𝑒.𝑋𝑍 ∧ 𝑌𝑍

property⋅of⋅Venus ⦙ n
𝜆𝑍𝑒.𝑍venus𝑒

>
some⋅property⋅of⋅Venus ⦙ s/np\s

𝜆𝑌𝑒.∃𝑍𝑒.𝑍venus𝑒 ∧𝑌𝑍
holds⋅of⋅Mars ⦙ np\s

𝜆𝑍𝑒.𝑍mars𝑒
>

some⋅property⋅of⋅Venus⋅holds⋅of⋅Mars ⦙ s
∃𝑍𝑒.𝑍venus𝑒 ∧𝑍mars𝑒

The need to posit type-ambiguity is not confined to determiners like ‘some’: par-
allel considerations motivate type-ambiguity for a very wide range of expressions.
For example, consider the VP ‘is interesting’. It will have to express something of
type 𝑒, to explain the meaningfulness of ‘Mars is interesting’. But this will not ac-
count for the meaningfulness of ‘Redness is interesting’. To do that, we can posit
that ‘is interesting’ also expresses something of type 𝑒 which can combine with the
type-𝑒meaning of ‘redness’. And of course, given that we are having ‘Mars instanti-
ates redness’ and ‘Redness holds of Mars’ turn out semantically equivalent to ‘Mars
is red’, we will presumably also want ‘Redness instantiates the property of being in-
teresting’ and ‘The property of being interesting holds of redness’ to be semantically
equivalent to ‘Redness is interesting’. ‘The property of being interesting’ will thus
need to be type-ambiguous in the same way as ‘is interesting’; and we will need
additional higher-type meanings for ‘instantiates’ and ‘holds [of]’:

instantiates ⦙ np\s/np𝜆𝑋𝑒.𝑋 holds ⦙ np\s𝜆𝑦𝑒𝑋𝑒.𝑋𝑦

Similarly, ‘mentions’ will need to both express something of type 𝑒𝑒, to account for
‘AristotlementionsMars’, and something of type 𝑒𝑒, to account for ‘Aristotlementions
redness’.

We are not just dealing with two-way type-ambiguities: similar considerations
motivate the view thatmany of the relevant expressions are in fact ambiguous across
infinitely many types. For example, neither of the two meanings for ‘some’ discussed
above can explain why ‘Some property of redness holds of blueness’ means what it
does. ‘Property of redness’ and ‘holds of blueness’ will both have type-𝑒 meanings,
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namely, namely 𝜆𝑋𝑒.𝑋 red𝑒 and 𝜆𝑋𝑒.𝑋blue𝑒. For ‘some’ to be able to combine these
meanings, we will need to assign it a third meaning:

(7) some ⦙ s/np\s/n𝜆𝑋𝑒𝑌𝑒.∃𝑧𝑒.𝑋𝑧 ∧ 𝑌𝑧

Similarly, for ‘Someproperty of the property of holding ofMars holds of the property
of holding of Venus’, ‘some’ will need a meaning taking arguments of the next type
up, and so on. All these meanings can be subsumed under a general schema with
an instance for each type 𝜎:

some ⦙ s/np\s/n𝜆𝑋𝜎𝑌𝜎.∃𝑧𝜎.𝑋𝑧 ∧ 𝑌𝑧

On similar grounds, we will need to posit infinite type-ambiguity in words like ‘in-
stantiates’, ‘holds [of]’, and ‘property [of]’: consider for example ‘The property of
holding of Mars instantiates the property of holding of redness’, ‘The property of
holding of redness instantiates the property of holding of the property of holding of
Mars’, and so on. Here again, we can subsume all the required meaning-attributions
under some simple general schemas:

instantiates ⦙ np\s/np𝜆𝑋𝜎.𝑋
holds ⦙ np\s𝜆𝑥𝜎𝑌𝜎.𝑌𝑥
property ⦙ n𝜆𝑥𝜎𝑌𝜎.𝑌𝑥

The pressure towards infinite type-ambiguity also applies to expressions like ‘is
interesting’ and ‘mentions’ for which there is no prospect of writing down compar-
able general schemas using only the logical constants. For example, ‘is interesting’
will need not only the type-𝑒 and type-𝑒 meanings discussed above, but a type 𝑒
meaning (to account for ‘The property of holding of Mars is interesting’), a type 𝑒
meaning (to account for ‘The property of holding of redness is interesting’), and so
on. If our field linguists are lucky enough to be theorizing in a higher-order lan-
guage with a corresponding infinite family of nonlogical constants, they will be able
to use these to formulate general schemas analogous to those discussed for ‘some’,
‘instantiates’, etc.:

is⋅interesting ⦙ np\s int𝜎

mentions ⦙ np\s/npmentions𝜎𝑒

If they are not in this fortunate situation, it will take more work if they want to
identify or constrain the meanings of ‘interesting’ and ‘mentions’ in terms of vocab-
ulary they do have. But of course they can still endorse existentially general schemas
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like

∃𝑋𝜎.is⋅interesting ⦙ np\s𝑋
∃𝑋𝜎𝑒.mentions ⦙ np\s/np𝑋

even if they are not yet in a position to propose any plausible witnesses.34

5.2 Why we need category-relativization

Now thatwehave seen how thedeflationary proposal naturally leads to type-ambiguity,
we can see why the original architectural decision to work with category-relative ex-
pressing predicates was crucial. Without such relativization, it would have been
natural to replace our function application schemas with ones that allow meanings
to compose in whatever direction makes type-theoretic sense:

(>) 𝑎 ⁝𝜎→𝜏 𝑥 ∧ 𝑏 ⁝𝜎 𝑦 ∧wellformed𝜀(𝑎⋅𝑏) → 𝑎⋅𝑏 ⁝𝜏 𝑥𝑦Type-Driven FA
(<) 𝑎 ⁝𝜎→𝜏 𝑥 ∧ 𝑏 ⁝𝜎 𝑦 ∧wellformed𝜀(𝑏⋅𝑎) → 𝑏⋅𝑎 ⁝𝜏 𝑥𝑦

This idea of type-driven composition (introduced byKlein and Sag (1985), and used in-
fluentially by Heim and Kratzer (1998)) has several attractions, including the way it
lets us outsource the theory of well-formedness to a separate theory of syntax whose
inner workings need play no further role in the theory of meaning. But it wouldn’t
work for us, as we can see by considering the following sentences:

(8) Something is interesting.

(9) The property of being instantiated is interesting.

For each type 𝜎, we will have the following claims about the constituents of these
sentences:

something ⁝𝜎 𝜆𝑋𝜎.∃𝑦𝜎.𝑋𝑦(10)
the⋅property⋅of⋅being⋅instantiated ⁝𝜎 𝜆𝑋𝜎.∃𝑦𝜎.𝑋𝑦(11)

is⋅interesting ⁝𝜎 int𝜎(12)

Since the available meanings for ‘something’ and ‘being instantiated’ are exactly the
same, Type-Driven FA predicts that substituting one for the other will not affect the

34I see no special reason why the Lambda Serpentians would not have infinite families of nonlo-
gical constants such as int𝜎 andmentions𝜎𝑒. Of course, since they are finite beings, they will not learn
to use these constants one by one. Rather, they will come to understand them just as they come to
understand the quantifiers in each type, by acquiring general dispositions of use, which are sensitive
to the internal structure of the type that occurs as a superscript to the symbol. Although the dispos-
itions relevant for constants like int𝜎 and mentions𝜎𝑒 are much messier than those relevant for the
quantifiers (which can arguably be codified as natural deduction rules), I see no deep difference of
principle.
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range of interpretations available for a complex expression, unless it blocks well-
formedness. Since (8) and (9) are obviously both well-formed, we get the obviously
wrong prediction that they have the same range of interpretations. In both cases, we
can apply Type-Driven FA from left to right to get

something⋅is⋅interesting ⁝𝑡 ∃𝑦𝜎. int𝜎 𝑦(13)
the⋅property⋅of⋅being⋅instantiated⋅is⋅interesting ⁝𝑡 ∃𝑦𝜎. int𝜎 𝑦(14)

or from right to left to get

something⋅is⋅interesting ⁝𝑡 int𝜎(𝜆𝑋𝜎.∃𝑦𝜎.𝑋𝑦)(15)
the⋅property⋅of⋅being⋅instantiated⋅is⋅interesting ⁝𝑡 int𝜎(𝜆𝑋𝜎.∃𝑦𝜎.𝑋𝑦)(16)

While (13) and (16) are just what we want, (14) and (15) are plainly false for many
types 𝜎. Category-relativization blocks this disaster by forcing the meanings to be
combined in such a way that the constituent with themore complex category label—
‘something’ in (8), and ‘is interesting’ in (9)—takes the other one as argument.35

5.3 Pervasive type-ambiguity and trivial meanings

The reasons for positing type-ambiguity are clear in the case of expressions like
‘some’, ‘instantiates’, and ‘is interesting’, for which we can identify useful, discrim-
inating meanings in many types. But once we admit type-ambiguity at all, there is
reason to posit it too in many other cases where there only seems to be one type
with a natural non-trivial candidate meaning. Consider ‘is red’. We certainly want
to say that is⋅red ⦙ np\s red𝑒, to explain why Mars⋅is⋅red ⦙ s red𝑒mars𝑒. But this will
not help with ‘The property of being red is red’ or ‘Redness is red’, which are also
grammatical sentences of English.

One might of course deny that these sentences are meaningful. Indeed it has of-
ten been taken for granted, by proponents and opponents alike, that higher-order
accounts of property-talk would require denying meaningfulness in various cases
like this.36 But this is hard to square with the fact that some larger sentences hav-
ing ‘Redness is red’ as a constituent seem to be not only meaningful but to express
truths: for example, ‘Either redness is red or it is not the case that redness is red’

35Note that nothing here turns on the choice to use directional slashes: we could instead follow
Lewis (1983a) and van Benthem (1988) in using directionless slashes and leaving the determination
of allowable word orders to a separate component of the theory.

36For example, in the context of expounding the view that ‘is a fact’ expresses 𝜆𝑝𝑡.𝑝, Prior (1971:
25) assumes that it implies various claims of meaninglessness: ‘For “Percy is a fact” (which would
mean “It is the case that Percy”, if it meant anything), “Percy is a falsehood” (=“It is not the case
that Percy”), ‘Percy is neither a fact nor a falsehood (=“It neither is nor is not the case that Percy”)
are all of them senseless, ungrammatical.’ Likewise Bealer (1993), in the passage quoted in §6 below,
assumes that the meaningfulness of various sentences suffices to show that the relevant discourse is
‘type-free’.
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or ‘It would be strange to say that redness is red’. To my mind, the need to accom-
modate such sentences provides a very strong reason to think that ‘Redness is red’
says something—i.e., that ∃𝑝.redness⋅is⋅red ⦙ s 𝑝. Given that ‘redness’ lacks a type-𝑒
denotation, this means that ‘is red’ will need to express something of type 𝑒 as well
as something of type 𝑒, just as ‘is interesting’ does.37

The central difference between the two cases is that ordinary, non-philosophical
usage doesn’t provide us with any useful guidance as regards what ‘is red’ might ex-
press in types other than 𝑒. Unlike the question ‘Is redness interesting?’, the question
‘Is redness red?’ is one that only a philosopher would ask. Moreover, as is common
for such questions, it tends to put hearers into a mode of philosophical speculation
(amateur or professional), in which they come out with such a variety of strange
speeches that there is no question of being charitable to all of them. Considering
this, our field linguists might reasonably maintain that the type 𝑒 aspect of the se-
mantics of ‘is red’ is drastically vague, for want of such clear constraints.38 But this is
not inevitable; they might, instead, decide to take seriously some of the more level-
headed of these philosophical speeches, such as the following:

No, redness is not red! The only red things arematerial objects, like books
andwalls. But redness is a property, and no property is a material object.

This suggests that the best candidates of type 𝑒 to be expressed by ‘is red’ are empty
(i.e., ∀𝑋𝑒.is⋅red ⦙ np\s𝑋 → ¬∃𝑦𝑒.𝑋𝑦). For example, we might propose that is⋅red ⦙
np\s𝜆𝑋𝑒.⊥. In what follows, I will assume this account, partly because the above
speech seems pretty sensible to me, and partly because it might not otherwise be
clear that the deflationary approach is even compatible with endorsing it.39

One might object to the hypothesis that ‘is red’ expresses 𝜆𝑋𝑒.⊥ on the grounds
that it runs together differences betweenEnglish sentenceswhich havedifferent “cog-
nitive value”, for example ‘Redness is red’ and ‘Yellowness is red’. Even if it is neces-
sarily false both that redness is red and that yellowness is red, couldn’t someone be-
lieve, or say, that redness is red but not that yellowness is red? Replying to this objec-
tionwould take us too far afield into a dialectic about Frege’s puzzle and the problem
of logical omniscience. Suffice it to say that inmy view, examples like ‘vixen’/‘female
fox’ and ‘attorney’/‘lawyer’ show that it must be a mistake for semanticists to infer
that there is a difference in what things express from the fact that substituting one
for the other in the context of an operator like ‘believes’ or ‘says’ can take us from a
true-seeming sentence to a false-seeming one.

37This argument is defended in detail by Magidor (2013: §3.4), in the context of defending the
general claim that “category mistakes” are meaningful. Magidor also has a plausible proposal for
explaining the oddity of the relevant sentences without denying their meaningfulness.

38On the theory of vagueness in Dorr unpublished, that would be to say that it expresses enorm-
ously many type-𝑒 things; maybe even every type-𝑒 thing.

39This substitution of automatic falsehood for meaninglessness corresponds to the second version
of Parsons’ (1979: 142) system ‘PQTB’. The first version, by contrast, treatedwhat Parsons calls ‘quasi-
grammatical’ sentences, such as ‘A property runs’, as uninterpretable.
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The argument against meaninglessness applies in the same way for other types.
For example, ‘the property of holding of Mars is red’ will require a type 𝑒meaning,
and so on. And clearly the same argument can be made for any other verb phrase.
We are thus led to the conclusion that every meaningful verb phrase has a meaning
of type 𝜎, for any type 𝜎.40 In the case of ‘is red’, we could plausibly add that in all
types 𝜎 ≠ 𝑒, its meaning is empty, perhaps 𝜆𝑥𝜎.⊥.

A parallel argument can be made for various other categories, such as that of
transitive verbs. For example, the previous subsectionproposed the following schema,
providing meanings for ‘instantiates’ in all types of the form 𝜎𝜎:

instantiates ⦙ np\s/np𝜆𝑋𝜎.𝑋

But this can’t be the full story, since it doesn’t generate any meaning for well-formed
(though odd) sentences like ‘Mars instantiates Venus’, ‘Redness instantiates Venus’,
‘The property of holding ofMars instantiates redness’, etc. Again, it seems a bad idea
to treat these as meaningless—consider the appeal of speeches like ‘Mars doesn’t in-
stantiate Venus, since Venus isn’t a property, and only properties can be instantiated’.
So, we will need meanings for ‘instantiates’ in a lot more types not of the form 𝜎𝜎. In
fact, it looks like everymeaningful transitive verb (type np\s/np) will need to express
something of type 𝜎1𝜎2, for any two types 𝜎1 and 𝜎2. For ‘instantiates’, we can default
to some boring meaning such as 𝜆𝑥𝜎1𝑦𝜎2.⊥ in the case where 𝜎1 is some type other
than 𝜎2. At a minimum, I will assume that when 𝜎1 ≠ 𝜎2, every type-𝜎1𝜎2 meaning
of ‘instantiates’ is actually empty.41

The availability of these all these supplementarymeanings for property-theoretic
words will rarely be relevant to ordinary, unreflective uses of property talk. But it
will matter when we come to certain speeches made by philosophers. For example,
consider a nominalist who argues, ‘Everything is material. But no property is ma-
terial. So there are no properties. So no property of Venus holds of Mars’. The
first sentence plausibly expresses ∀𝑥𝑒.material𝑒 𝑥. In a typical use, we would expect
‘No property of Venus holds of Mars’ to mean that ¬∃𝑋𝑒.𝑋venus𝑒 ∧𝑋mars𝑒. But
the context of making a deductive argument generates special pressure towards uni-
form interpretation across the argument: ceteris paribus, we don’t want to convict
people of committing fallacies of equivocation unless we must. So when a nominal-

40Formally, this can be captured by the schema: (∃𝑥𝜌.𝑎 ⦙𝜌 np\s 𝑥) → (∃𝑦𝜎.𝑎 ⦙𝜎 np\s 𝑦).
41For type 𝑒𝑒, there is some temptation to think that ‘instantiates’ expresses a relation that is in fact

empty (assuming 𝑒-Materialism is true), but could have been non-empty if there had been a sufficient
supply of non-material objects, playing roles sufficiently close to the roles of universals (properties-
as-individuals) in some reasonably fleshed-out theory about them.

In types of the form 𝜎1𝜎2, where 𝜎1 ≠ 𝜎2, one might consider trying to craft a non-trivial meaning
for ‘instantiates’ based on some relation C of “counterparthood” between type 𝜎1 and type 𝜎2—the
idea would be that ‘instantiates’ expresses 𝜆𝑌𝜎2𝑥𝜎1.∃𝑍𝜎1.𝑍𝑥 ∧ C𝑍𝑌. By saying that, e.g., 𝜆𝑥𝜎1.𝑥 =𝜎1 𝑥
is a counterpart of 𝜆𝑦𝜎2.𝑦 =𝜎2 𝑦, this will allow us to give a true reading for ‘the property of being
self-identical instantiates itself’. But it is not clear to me that the reasons to posit such readings are
strong enough to motivate the complexity of such a view.
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ist sets forth the above argument, it may be best to think that the quantifiers retain
their first-ordermeanings throughout. Thatwouldmean interpreting the conclusion
¬∃𝑥𝑒.𝑅venus𝑒 𝑥∧𝑅mars𝑒 𝑥, where 𝑅 is whatever we take ‘property’ and ‘applies’ to
express in type 𝑒𝑒 (presumably, the converse of whatever ‘instantiates’ expresses in
that type). Given our assumptions, 𝑅 is empty. So on the operative interpretation,
the conclusion is in fact true, despite the unequivocal truth of ‘Mars is red and Venus
is red’.

5.4 Type-ambiguity and Russell’s paradox

To sharpen our understanding of the ways in which the systematic type-ambiguity
we have posited can generatemultiple readings for a single sentence, it will be useful
to see how it plays out in the kinds of sentences that feature in (the property-theoretic
version of) Russell’s paradox. First, we can consider the following English ‘Naïve
Property Comprehension’ schema:

NPC [NP] [VP] if and only if [NP] instantiates [PROP(VP)].

In our system, every well-formed instance of this schema has a true reading, since
whatever theVP expresses (of any given type 𝜎)will also be expressed byPROP(VP)
and by ‘instantiates PROP(VP)’.

It would be too much to expect that instances of NPC exclusively have true read-
ings. For recall that when a sentence contains multiple ambiguous expressions we
get to “mix and match” their interpretations, insofar as this is allowed by their cat-
egories and their meanings’ types. For example, we can generate a false reading for
the NPC-instance

(17) Barclays is a bank if and only if Barclays instantiates the property of being a
bank

by interpreting the first ‘bank’ as money bank and the second as river bank. The
claims of type-ambiguity characteristic of the deflationary approach will also lead to
false interpretations of instances of NPC for similar reasons. For example, suppose
that redness is in fact interesting—i.e., int𝑒 red𝑒—and consider the following NPC-
instance:

(18) Redness is interesting if and only if redness instantiates the property of being
interesting.

We can get the left-hand side to express a truth by taking ‘redness’ to express red𝑒 and
‘is interesting’ to express int𝑒. We can nevertheless get the right-hand side to be false
by taking the second ‘redness’ still to express red𝑒, ‘the property of being interesting’
to express int𝑒, and ‘instantiates’ to express something of type 𝑒𝑒. (Recall that in the
last section I posited that ‘instantiates’ expresses empty relations in all types 𝜎1𝜎2
where 𝜎1 ≠ 𝜎2.)
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Of course, one would expect such false readings of (18) to be much less salient
than the true ones. The choice to interpret the two occurrences of ‘interesting’ in
different ways is unforced, and flies in the face of the pressure towards uniformity
generated by the parallel structure of the utterance. But one thing that distinguishes
type-ambiguity from ambiguity within a type is that the demands of compositional-
ity sometimes make it impossible to interpret all the occurrences of a type-ambiguous
expression in a sentence uniformly. To make the false readings of NPC-instances
more salient, we can consider instances all of whose readings involve some non-
uniformity:
(19) The property of being interesting is interesting if and only if the property of

being interesting instantiates the property of being interesting.
In the necessarily-true readings, the first and third ‘interesting’ express int𝜎 for some
𝜎, while the second and fourth express int𝜎, and ‘instantiates’ expresses 𝜆𝑋𝜎.𝑋, so
that both sides of the biconditional express int𝜎 int 𝜎. But given the structure of the
sentence, the option of assigning the same semantic type 𝜎 to all three occurrences
of ‘the property of being interesting’ (and hence to all but the second occurrence of
‘interesting’) is also quite salient. On that kind of interpretation, the right-hand side
will be false, since ‘instantiates’ will express an empty relation of type 𝜎𝜎. By con-
trast, our system provides no way of getting a corresponding false reading for the
left-hand-side of (19): the only readings we generate for ‘The property of being in-
teresting is interesting’ are propositions of the form int𝜎 int𝜎, which we may assume
to be all true.

Armed with an appreciation of these potential ambiguities, we can consider the
NPC-instance that figures in Russell’s paradox:
(20) The property of not instantiating oneself does not instantiate itself if and

only if the property of not instantiating oneself instantiates the property of
not instantiating oneself.42

The one extra ingredient we’ll need to treat (20) in our semantics is an account of the
reflexive pronoun ‘itself’. Following Szabolsci (1987), we can treat this as a reflexiv-
izer (W combinator), i.e. accept the following schema:

itself ⦙ (np\s/np)\(np\s) 𝜆𝑋𝜎𝜎𝑦𝜎.𝑋𝑦𝑦

This explains the basic facts about sentences where ‘itself’ occurs as the object of a
transitive verb:

Mars ⦙ npmars𝑒
orbits ⦙ np\s/nporbits𝑒𝑒 itself ⦙ (np\s/np)\np\s𝜆𝑋𝑒𝑒𝑦𝑒.𝑋𝑦𝑦

<
orbits⋅itself ⦙ np\s𝜆𝑦.orbits𝑒𝑒 𝑦𝑦

<
Mars⋅orbits⋅itself ⦙ s (orbits𝑒𝑒mars𝑒mars𝑒)

42Let’s understand the black-boxed syntactic operation PROP in such away that it does in fact turn
‘does not instantiate itself’ into ‘the property of not instantiating oneself’, so that (20) counts as an
instance of NPC.
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Note that the only meanings of a transitive verb 𝑉 that are relevant to the interpreta-
tion of ‘𝑉 itself’ are those of types of the form 𝜎𝜎. Whatever meanings 𝑉may have in
types 𝜎1𝜎2 where 𝜎1 ≠ 𝜎2 are distinct will be irrelevant to the semantics of ‘𝑉 itself’.
Given our postulate that the only non-empty meanings of ‘instantiate’ are those of
types 𝜎𝜎, the only relations of type 𝜎𝜎 that are expressed by ‘instantiates’ are empty.
This means that the only meanings of ‘does not instantiate itself’ in any type 𝜎 are
universal properties (i.e. are 𝑋𝜎 such that ∀𝑦𝜎.𝑋𝑦). This implies that the only pos-
sible interpretations of the left-hand side of (20) are true. By contrast, we can derive
a wider range of propositions for the right-hand side of (20):

(21) The property of not instantiating oneself instantiates the property of not in-
stantiating oneself.

Given that ‘the property of not instantiating oneself’ is the result of applying PROP
to ‘does not instantiates itself’, it is also such as to express only universal properties.
Thus on any derivable interpretation of (21), the first and second occurrences of ‘the
property of not instantiating oneself’ will have to be interpreted as denoting some
universal 𝑋𝜎1 and 𝑌𝜎2 (for some pair of types 𝜎1 and 𝜎2). Since ‘instantiates’ is a
transitive verb, it has a meaning for every pair of types; thus, each choice of 𝜎1 and
𝜎2 determines a meaning for (21) in which the type-(𝜎1𝜎2)meaning of ‘instantiates’
combines with the two universal properties expressed by the two occurrences of ‘not
instantiating oneself’. If we choose 𝜎2 to be 𝜎1, the relevant meaning of ‘instantiates’
will be 𝜆𝑥𝜎1𝑌𝜎1.𝑌𝑥. This will yield a truth when 𝑥 and 𝑌 are instantiated by universal
properties (indeed it is sufficient that 𝑌 be universal). So for these choices of 𝜎1
and 𝜎2, (21) comes out true, and hence (20) comes out true as well (since as we
have already seen, the left hand side only allows true interpretations). On the other
hand, if 𝜎2 is something other than 𝜎1, the relevant meaning of ‘instantiates’ will be
some empty relation of type 𝜎1𝜎2. On this reading, (21) comes out false, and hence
so does (20). The general pressure to treat ‘instantiates PROP(VP)’ as equivalent
to VP militates in favour of the necessarily-true readings of (20). By contrast, the
pull to interpret all three occurrences of ‘the property of not instantiating oneself’
uniformly—which is perhaps particularly strong in this case—militates in favour of
the false ones. Little wonder if we end up confused!43

I don’t want to put forth this way of defusing Russell’s paradox as a weighty
argument for the existence of the relevant type-ambiguities. In general, the fact that
positing some kind of semantic multiplicity would allow us to escape some paradox

43The foregoing analysis depends on the assumption that ‘instantiates’ only expresses empty re-
lations in types 𝜎1𝜎2 where 𝜎1 ≠ 𝜎2. The more complex “counterparthood” proposal considered in
note 41 allows for it to express non-empty relations in some such types, and thus allows ‘instantiates
itself’ to have non-empty meanings in some types. But the general outline of the account of (20) re-
mains the same: it’s true if we interpret the first and third occurrence of ‘instantiate’ uniformly and
interpret the second and fifth occurrence uniformly, false if we interpret the three occurrences inside
‘the property of not instantiating oneself’ uniformly, and uninterpretable if we insist on interpreting
all five occurrences uniformly.
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by pleading equivocation does not yet amount to a strong case for the existence of
suchmultiplicity. Still, such diagnoses becomemore satisfyingwhen themultiplicity
is backed up by independent arguments of some sort. And I do have an independent
argument: namely, that we should interpret arguments like ‘Mars is red; Venus is
red; so some property of Mars holds of Venus’ as good arguments, in a way that
they would not be good if the conclusion implied the existence of a non-material
individual of a sort thatmonolingual speakers of Higher-Orderesewould never even
have been tempted to posit.

6 The problems of mixed co-ordination and quantification

The idea that property-talk in natural languages is a disguised form of higher-order
quantification is not at all new. The thought has been around for long enough that
there are some standard objections to the proposal. All of them are present in the
following passage by George Bealer, which stuck in my mind when I first read it
and for a long time convinced me that a type-ambiguity approach was a complete
non-starter:

In my view, there are serious difficulties facing the prosentential theory.
The most salient in the present context is perhaps that, syntactically, the
theory is rigidly typed. The parts of discourse which the theory is de-
signed to capture aremanifestly type-free, however, as the following sorts
of examples indicate: ’Some things are neither true nor false; for example,
commands, questions, rules of inference, intellectual movements, gov-
ernments, artistic styles, sensations, events, and, of course, persons and
physical objects’. ’Murphy’s Law is that whatever can go wrong does go
wrong. When I first heard of O’Reiley’s Law, I mistakenly thought that it
was the same thing as Murphy’s Law, but it is not. O’Reiley’s Law is the
blackjack that O’Reiley keeps behind the bar at his saloon’. ’When I was
young, the things I cared most about were things that I could see or feel,
but now they are things I can know to be true’. Etc. (Bealer 1993: 9, n. 8)

Similar arguments are made by Chierchia (1982), Menzel (1986), Hofweber (2022),
Button and Trueman (2024), and many others. There are at least three challenges to
a type-ambiguity approach contained in Bealer’s passage. The first we have already
addressed: even if ‘O’Reiley’s Law’ is interpreted as type 𝑒 and ‘Murphy’s Law’ as
type 𝑡, we can get ‘O’Reiley’s Law is the same thing as Murphy’s Law’ to be mean-
ingful (and false) by assigning ‘is the same thing as’ some empty fallback meaning
in type 𝑒𝑡.44 The second challenge involves uses of quantifiers (‘some things’) which

44A follow-up challenge is to say how prefixing ‘I mistakenly thought that…’ to the identity sen-
tence can turn it into a truth. But this is bound up with general puzzles about attitude verbs which
are beyond the scope of the present paper.
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seem somehow to span multiple types simultaneously. And the third challenge—
which could be raised more simply by a sentence like ‘Questions and persons are
neither true nor false’—involves the possibility of co-ordination—i.e., linking with
words like ‘and’ or ‘or’—of expressions whose meanings differ in type. Button and
Trueman (2024: 19) helpfully isolate the third challenge from the second, giving a
battery of further examples including ‘Plato loves Socrates and wisdom’ and ‘Mary
can see roses, but not the colour red’.

I’ll focus initially on the co-ordination challenge, turning to the one about quan-
tification in §6.4. To avoid getting distracted by the semantics of plurals, let’s use an
example using ‘or’ rather than ‘and’:

(22) [Either] Mars or redness is interesting.

We would like this to turn out interchangeable with

(23) Mars is interesting or redness is interesting.

In particular, we would like to be able to derive that (22) and (23) both express

int𝑒mars𝑒 ∨ int𝑒 red𝑒

This is straightforward for (23): we can simply treat the two disjuncts separately
and combine them by positing that ‘or’ expresses disjunction (or ⁝𝑡𝑡 (∨)). But it is
hard to see how to arrange this for (22), given that we only have one occurrence of
‘interesting’ to work with. The one way we have of deriving semantic claims about
sentences, namely Function Application, only gives us access to one meaning at a
time for any given occurrence of a word.45

With other forms of ambiguity, we do get “zeugmatic” readings of sentences like
‘She came home in a sedan chair and a flood of tears’, where ‘in’ seems to be simul-
taneously functioning in two different ways. But it’s far from obvious how such uses
are to be explained, and anyway it does not seem plausible that whatever is going
with them also accounts for (22).

The underlying difficulty is not just about the role of ‘and’ and ‘or’. Similar issues
can be raised using ellipsis (‘Either Mars is interesting or redness is’) and anaphora
(‘Mars is interesting and so is redness’). In all these cases, the type-ambiguity theor-
ist seems to need a single occurrence of a word to somehow simultaneously play two
different semantic roles. While I won’t discuss ellipsis and anaphora, the technique
I’ll use to account for cases of mixed co-ordination should be easily to integrate with
standard accounts of these phenomena as well.

45Indeed, with our current toolkit, we cannot derive any meaning for (22), even a clearly incorrect
one.
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6.1 Preliminaries to a solution 1: co-ordination and lifting

To have any hope of addressing the challenge raised by tricky sentences like (22),
we had better first make sure we have a way of handling not-so-tricky sentences like
(24) and (25):

(24) [Either] Mars or Venus is interesting.

(25) [Either] redness or blueness is interesting.

Semanticists have developed many different accounts of ‘or’ which can account for
sentences like (24); for the analogous sentence using ‘and’, there is an even more
daunting menu of theoretical options. As far as I know, the solution I will propose
to the puzzle raised by (22) can be adapted toworkwith any of these approaches. But
for the sake of concreteness, I will adopt perhaps the best-known semantic treatment
of sentences like (24), due to Partee and Rooth (1983), generalizing the earlier work
of Montague (1974). This solution has two elements. The first is a treatment of
the word ‘or’ as type-ambiguous, indeed infinitely type-ambiguous, which we can
capture with the following postulates:

(26) a. or ⦙ s\s/s (∨)
b. or ⦙ n\n/n𝜆𝑋𝜎𝑌𝜎𝑧𝜎.𝑋𝑧 ∨ 𝑌𝑧
c. or ⦙ 𝑐\𝑐/𝑐 𝑅 → or ⦙ (𝑐/𝑑)\(𝑐/𝑑)/(𝑐/𝑑) 𝜆𝑋𝜎→𝜏𝑌𝜎→𝜏𝑧𝜎.𝑅(𝑋𝑧)(𝑌𝑧)
d. or ⦙ 𝑐\𝑐/𝑐 𝑅 → or ⦙ (𝑐\𝑑)\(𝑐\𝑑)/(𝑐\𝑑) 𝜆𝑋𝜎→𝜏𝑌𝜎→𝜏𝑧𝜎.𝑅(𝑋𝑧)(𝑌𝑧)

This approach accounts not just for disjunctions of sentences, but verb phrases (‘is
red or is hot’), transitive verbs (‘precedes or succeeds’), quantificational nounphrases
(‘every star or every planet’), quantificational determiners (‘most or all’), and many
other expressions. However, since none of the interpretations of ‘or’ provided by
(26) takes type-𝑒 arguments, it isn’t immediately clear how to apply it to (24). But
this is easy when we combine (26) with the second element of the solution, namely
the following extremely general type-shifting schema:

𝑎 ⦙𝜎 𝑐 𝑥 → 𝑎 ⦙(𝜎→𝜏)→𝜏 (𝑑/𝑐)\𝑑 𝜆𝑌𝜎→𝜏.𝑌𝑥Lift
𝑎 ⦙𝜎 𝑐 𝑥 → 𝑎 ⦙(𝜎→𝜏)→𝜏 𝑑/(𝑐\𝑑) 𝜆𝑌𝜎→𝜏.𝑌𝑥

Using the instance of Lift where 𝜎 = 𝑒 and 𝜏 = 𝑡, we can now provide a plausible
account of why (24) means what it does:
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Mars ⦙ np
mars𝑒

Lift
Mars ⦙ s/np\s
𝜆𝑋𝑒.𝑋mars𝑒

(26a)
or ⦙ s\s/s (∨)

(26c)
or ⦙ (s/np\s)\(s/np\s)/(s/np\s)

𝜆𝑈𝑒𝑉𝑒𝑋𝑒.𝑉𝑋 ∨ 𝑈𝑋

Venus ⦙ np
venus𝑒

Lift
Venus ⦙ s/np\s
𝜆𝑋𝑒.𝑋venus𝑒

>
or⋅Venus ⦙ (s/np\s)\(s/np\s)
𝜆𝑉𝑒𝑋𝑒.𝑉𝑋 ∨ 𝑋 venus𝑒

<
Mars⋅or⋅Venus ⦙ s/np\s
𝜆𝑋𝑒.𝑋mars𝑒 ∨𝑋venus𝑒

is⋅interesting ⦙ np\s
int𝑒

>
Mars⋅or⋅Venus⋅is⋅interesting ⦙ s

int𝑒mars𝑒 ∨ int𝑒 venus𝑒

The treatment of (25) will be parallel, substituting 𝑒 for 𝑒 throughout.46
Note that while (26) generates interpretations for ‘or’ in all types of the form

𝜏 → 𝜏 → 𝜏 (remembering that 𝑒 is not a terminal type), these interpretations are not
available relative to just any category, or even relative to any category of the form 𝑐\𝑐/𝑐.
In particular, (26) does not imply that ‘or’ expresses anything relative to the category
np\np/np. That’s good, since otherwise we could derive the implausible conclusion
that ‘Redness or blueness is interesting’ canmean the same as ‘The property of being
red or blue is interesting’:

redness ⦙ np
red𝑒

or ⦙ np\np/np
𝜆𝑈𝑒𝑉𝑒𝑥𝑒.𝑉𝑥 ∨ 𝑈𝑥

blueness ⦙ np
blue𝑒

>
or⋅blueness ⦙ np\np
𝜆𝑉𝑒𝑥𝑒.𝑉𝑥 ∨ blue𝑒 𝑥

<
redness⋅or⋅blueness ⦙ np
𝜆𝑥𝑒. red 𝑥 ∨ blue𝑒 𝑥

is⋅interesting ⦙ np\s
int𝑒

<
redness⋅or⋅blueness⋅is⋅interesting ⦙ s

int𝑒 𝜆𝑥𝑒. red𝑒 𝑥 ∨ blue𝑒 𝑥
Note that the problem isn’t with the claim that ‘or’ expresses the disjunction opera-
tion 𝜆𝑈𝑒𝑉𝑒𝑥𝑒.𝑉𝑥∨𝑈𝑥 of type 𝑒 → 𝑒 → 𝑒. (26) implies that it does express this relative

46The combination of Lift and (26) is quite powerful, since it allows ‘or’ to take arbitrarily wide
scope over any other scope-taking elements in a sentence. No matter how deeply embedded a dis-
junction might be, we can get a widest-scope interpretation by Lifting each disjunct to a complex
category that takes all the remaining ingredients of the sentence as arguments, and combining the
associated high-type meanings using the relevant meaning of ‘or’. Partee and Rooth (1983) believe
that at least in the case of ‘and’, many of these readings are in fact impossible—for example, they
claim that ‘John caught and ate a fish’ cannot mean John caught a fish and John ate a fish. As a result,
they posit a ‘processing strategy’ on which ‘all expressions are interpreted at the lowest type pos-
sible, invoking higher-type homonyms only when needed for type coherence’. In Rooth and Partee
1982 they introduce a very different treatment of ‘or’, based on dynamic semantics, that can generate
wide-scope readings for ‘or’ (but not ‘and’) evenwhen everything is interpreted in its lowest possible
type. Kubota and Levine (2020: ch. 4), by contrast, argue that there are no in-principle limits to the
ability of either ‘and’ or ‘or’ to take arbitrarily wide scope.
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to the category (np\s)\(np\s)/(np\s), and this will be crucial for explainingwhy, e.g., ‘is
red or is blue’ means what it does. This further illustrates the reason we needed to
work in a system where expressing is relativized to syntactic categories, rather than
relying on something like Type-Driven Composition.

6.2 Preliminaries to a solution 2: sum types

With a serviceable general account of noun phrase co-ordination under our belt, let’s
return to the sentence (22) (‘Mars or redness is interesting’) which seems to doom
the deflationary approach. My approach will be roundabout. In this section, I will
introduce amore complex kind of higher-order language thanwe have beenworking
with so far, with a richer system of types and new primitive term-forming operations
(analogous to 𝜆-abstraction and application) that allow for the construction of terms
with the new types, along with an extension of our basic higher-order logic with
new conversion rules (analogous to 𝛽 and 𝜂 conversion) for manipulating these new
terms. In §6.3, I will suggest a straightforward extension of the semantic theory we
have been developing, using the resources of this extended language, which can ac-
count for problematic co-ordinations like ‘Either Mars or redness is interesting’. We
can imagine this theory being formulated by a different group of field linguists who
have come to Earth from the exoplanet Iota Draconis c, whose inhabitants natively
speak such an extended higher-order language. §6.4 will extend this theory to cover
mixed quantification. Finally, §6.5 will show how the theory can provide a template
for an equally adequate account of the same phenomena that can be be stated in the
simply-typed higher-order language of Lambda Serpentis b.

The extended language is characterized by an extension of our type-system to
include sum types. Whenever 𝛼 and 𝛽 are types, we have a new type 𝛼 + 𝛽. We add a
new primitive way of forming terms of these types: when 𝐴 is a term of type 𝛼, 𝜄1𝛽𝐴
is a term of type 𝛼 + 𝛽, and when 𝐵 is a term of type 𝛽, 𝜄1𝛼𝐵 is a term of type 𝛼 + 𝛽.
The intuitive gloss is that insofar as you were thinking of 𝛼 and 𝛽 as names for sets
(something you really should not do!),you should think of 𝛼 + 𝛽 as a name for the
disjoint union of these two sets: a set that contains a representative 𝜄1𝛽𝑥 for every 𝑥
of type 𝛼, a separate representative 𝜄2𝛼𝑦 for every 𝑦 in 𝛽, and nothing else. But this
heuristic must be taken with a generous sprinkling of salt, since the interest of this
whole project depends on not thinking of higher order logic as “set theory in sheep’s
clothing” (Quine 1970).

In the system Iwill use, sum types are non-terminal types, whichmeans thatwhile
we have types like (𝑒+𝑡) → 𝑡, we do not have types like 𝑡 → (𝑒+𝑡). Such typeswon’t be
needed for the theory, and allowing themwould complicate the project of translating
from the extended language to the simply-typed language.47

In addition to 𝜄1 and 𝜄2, we need one further term-forming operation. When 𝐹

47The absence of types like 𝑡 → (𝑒 + 𝑡) explains why we needed to take 𝜄1𝛽 and 𝜄2𝛽 are mere punctu-
ation, like the letter 𝜆, rather than as terms in their own right.
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is a term of type 𝛼 → 𝛾 and 𝐺 is a term of type 𝛽 → 𝛾, ⟨⟨𝐹, 𝐺⟩⟩ is a term of type
(𝛼+𝛽) → 𝛾. Intuitively, ⟨⟨𝐹, 𝐺⟩⟩ is a function that looks at its argument (of type 𝛼+𝛽)
to seewhether it is the representative of something from type 𝛼 or of something from
type 𝛽, and depending on which case obtains, applies either 𝐹 or 𝐺 to whatever the
argument represents. This intuitive gloss is reflected by the addition to the logic of
new “injection-conversion” rules, playing an analogous rule to 𝛽-conversion for the
new types. The first rule lets us freely replace any constituent of the form ⟨⟨𝐹, 𝐺⟩⟩𝜄1𝛽𝐴
with 𝐹𝐴; the second lets us replace any constituent of the form ⟨⟨𝐹, 𝐺⟩⟩𝜄2𝛼𝐵with 𝐺𝐵.48

(In the official system (see Appendix B), ⟨⟨𝐹, 𝐺⟩⟩ is not actually primitive, but
defined in terms of an operation of “delta-application”. This brings certain advant-
ages of generality and elegance, but since it’s a bit harder to parse I’ll refer the reader
to the appendix for the details.)

Apart from these additions, the higher-order logicwe’ll assume for the languages
using the extended type system is the same as the one we have already using for
languages using only simple types. One feature worth noting is that we don’t need
to take quantifiers for the new types as primitive: there turns out to be a natural
way of defining the new quantifiers out of the old ones, using the new term-forming
operations. The details of this are given theAppendix, but themost important clause
is the following:

∀𝛼+𝛽 ≔ 𝜆𝑋𝛼+𝛽.(∀𝑦𝛼.𝑋𝜄1𝛽𝑦) ∧ (∀𝑧𝛽.𝑋𝜄2𝛼𝑧)

That is: a property of type-𝛼 + 𝛽 things is defined to be universal iff it holds of the
representative of every type-𝛼 thing and of every type-𝛽 thing.

Now, if I managed to convince you that you can understand our starting version
type theory, metaphysical alarm bells should be ringing. Doesn’t the very idea of a
sum-type like 𝑒 + 𝑡 amount to taking a perspective “outside the type hierarchy” in
which one thinks in terms of a big domain of “things”, of which type-𝑒 things and

48To illustrate the application of these conversion rules, here is how we can use them to establish
that the left injection 𝜄1𝛽𝑥 of some type-𝛼 thing 𝑥 is not also the left-injection of something other than
𝑥, or the right-injection of anything:

[𝜄1𝛽𝑥 =𝛼+𝛽 𝜄1𝛽𝑦]1

=Intro
𝑥 =𝛼 𝑥

conv
(𝜆𝑢𝛼.𝑥 =𝛼 𝑢)𝑥

conv
⟨⟨𝜆𝑢𝛼.𝑥 =𝛼 𝑢, 𝜆𝑣𝛽.⊥⟩⟩𝜄1𝛽𝑥

=Elim
⟨⟨𝜆𝑢𝛼.𝑥 =𝛼 𝑢, 𝜆𝑣𝛽.⊥⟩⟩𝜄1𝛽𝑦

conv
(𝜆𝑢𝛼.𝑥 =𝛼 𝑢)𝑦

conv
𝑥 =𝛼 𝑦

→Intro 1
𝜄1𝛽𝑥 =𝛼+𝛽 𝜄1𝛽𝑦 → 𝑥 =𝛼 𝑦

[𝜄1𝛽𝑥 =𝛼+𝛽 𝜄2𝛼𝑧]1

=Intro
𝑥 =𝛼 𝑥

conv
(𝜆𝑢𝛼.𝑥 =𝛼 𝑢)𝑥

conv
⟨⟨𝜆𝑢𝛼.𝑥 =𝛼 𝑢, 𝜆𝑣𝛽.⊥⟩⟩𝜄1𝛽𝑥

=Elim
⟨⟨𝜆𝑢𝛼.𝑥 =𝛼 𝑢, 𝜆𝑣𝛽.⊥⟩⟩𝜄2𝛼𝑧

conv
(𝜆𝑣𝛽.⊥)𝑧

conv
⊥

¬Intro 1
𝜄1𝛽𝑥 ≠𝛼+𝛽 𝜄2𝛼𝑧

41



type-𝑡 things are just two of many varieties? And isn’t it integral to the metaphys-
ically interesting interpretation of higher-order logic that it rejects the very idea of
such a perspective?

On the other hand, the spirit of the deflationary approach to property-talk in nat-
ural language is that when we are looking at a linguistic practice that doesn’t neatly
fit the syntactic limitations characteristic of simply-typed higher-order languages, we
should not be quick to assume that the practitioners are in the grip of some meta-
physical picture radically at odds with those popular on Lambda Serpentis b. If our
field linguists travel to Iota Draconis, the same charitable sensibilities which sug-
gested a higher-order semantics for English property-talk will lead them to look for
a similarly “deflationary” accounts of the language spoken there. And in fact, as I
will explain below in §6.5, this project will meet with success. There is a system-
atic way of “translating” from a higher-order language with sum types to a simply-
typed higher-order language, such that the sentences valid in the higher-order logic
with sum-types are exactly those that aremapped to sentences valid in simply-typed
higher-order logic.

Given the availability of this “reduction”, sum-types are not in fact crucial to the
argument of this paper. Applying the translation procedure to the semantic theory
for English given in a higher-order languagewith sum-typeswill yield an equally ad-
equate semantic theory for English in a simply-typed higher-order language. There
is thus in principle no need to think at all about extra types, term-forming opera-
tions, or conversion rules. However, this apparatus is helpful in getting an intuitive
understanding of what’s going on, since the new semantic primitives and principles
needed to account for the puzzles look more familiar when presented in the exten-
ded language.

6.3 Explaining mixed co-ordination with sum-types

For field linguists from Iota Draconis c, whose native dialect of Higher-Orderese in-
cludes sum-types, the challenge of extending the deflationist semantics to handle
‘Mars or redness is interesting’ is not a very hard one.49 They can extend their type-
ambiguous treatment of ‘is interesting’ to allow it to express not only something of
type 𝑒 (namely int𝑒) and something of type 𝑒 (namely int𝑒), but something of type
𝑒 + 𝑒 that behaves like int𝑒 on arguments of the form 𝜄1𝑒𝑥𝑒 and like int𝑒 on arguments
of the form 𝜄2𝑒𝑌𝑒. In other words, we can say that

(27) is⋅interesting ⦙ np\s ⟨⟨int𝑒, int𝑒⟩⟩

Here, ⦙ is as a constant of type 𝜀 → 𝜀 → ((𝑒 + 𝑒) → 𝑡). To use this new entry for
‘interesting’, we’ll need to find a way to get ‘Mars or redness’ to express something
of the higher type 𝑒 + 𝑒 that can combine with it by function application to make a

49For the general utility of sum-types as away of handling co-ordination of semantically dissimilar
expressions, see Morrill 1994 (§6.1) and Carpenter 1997 (§6.2.4).
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proposition. There are a few ways we could do this. One is to have a general law
that allows for arbitrary words to be shifted into sum-types:

Inject 𝑎 ⦙𝛼 𝑐 𝑥 → 𝑎 ⦙𝛼+𝛽 𝑐 𝜄1𝛽𝑥 ∧ 𝑎 ⦙𝛽+𝛼 𝑐 𝜄2𝛽𝑥

Note that we use the same syntactic category 𝑐 for the new sum-type meaning as for
the original one.50 Using Inject together with Lift, we can derive the meaning we
want for (22). (We abbreviate the category s/np\s as np↑.)

Mars ⦙ np
mars𝑒

Inject
Mars ⦙ np
𝜄1𝑒 mars𝑒

Lift
Mars ⦙ np↑

𝜆𝑋𝑒+𝑒.𝑋𝜄1𝑒 mars𝑒

or ⦙ np↑\np↑/np↑
𝜆𝑈𝑒+𝑒𝑉𝑒+𝑒𝑋𝑒+𝑒.𝑉𝑋 ∨ 𝑈𝑋

redness ⦙ np
red𝑒

Inject
redness ⦙ np
𝜄2𝑒 red𝑒

Lift
redness ⦙ np↑
𝜆𝑋𝑒+𝑒.𝑋𝜄2𝑒 red𝑒

>
or⋅redness ⦙ np↑\np↑

𝜆𝑉𝑒+𝑒𝑋𝑒+𝑒.𝑉𝑋 ∨ 𝑋𝜄2𝑒 red𝑒
<

Mars⋅or⋅redness ⦙ np↑
𝜆𝑋𝑒+𝑒.𝑋𝜄1𝑒 mars𝑒 ∨ 𝑋𝜄2𝑒 red𝑒

is⋅interesting ⦙ np\s
⟨⟨int𝑒, int𝑒⟩⟩

>
Mars⋅or⋅redness⋅is⋅interesting ⦙ s

⟨⟨int𝑒, int𝑒⟩⟩𝜄1𝑒 mars𝑒 ∨ ⟨⟨int𝑒, int𝑒⟩⟩𝜄2𝑒 red𝑒
conv

Mars⋅or⋅redness⋅is⋅interesting ⦙ s
int𝑒mars𝑒 ∨ int𝑒 red𝑒

The crucial thing here is the new entry (27). It is natural to look for some gen-
eral principle which could let us derive this from our old (simply-typed) entries
is⋅interesting ⦙ np/s int𝑒 and is⋅interesting ⦙ np/s int𝑒. The following law, which allows
us to combine any two meanings of a type-ambiguous predicate into a meaning tak-
ing a sum-type argument, would do the trick:

Combination 𝑎 ⦙𝛼→𝛾 𝑐 𝑥 ∧ 𝑎 ⦙𝛽→𝛾 𝑐 𝑦 → 𝑎 ⦙𝛼+𝛽→𝛾 𝑐 ⟨⟨𝑥, 𝑦⟩⟩

Unfortunately, Combination will have problematic consequences if we want a sys-
tem that can not only dealwith the specific controversial claims of type-ambiguity re-
quired by a deflationary account of ‘property’ talk, butwith othermore familiar cases
of ambiguity or semantic multiplicity. For by applying Combination to a single oc-
currence of an ambiguous expression, wewill be able to generate weird “zeugmatic”

50By contrast, Morrill (1994) has sum-categories as well as sum-types (as one would expect given
that his system conforms to Correspondence), meaning that we can derivemeanings of the same type
and category for any two expressions whatsoever. This gives rise to worries about overgeneration
(Milward 1994, Carpenter 1997: §6.2.4). No analogous problems arise for our rule, because of its
limitation to a single category.
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readings in which that occurrence functions like multiple occurrences with different
interpretations. For example, given is⋅a⋅bank ⁝𝑒 mbank𝑒 and is⋅a⋅bank ⁝𝑒 rbank𝑒, we’ll
be able to derive a further entry is⋅a⋅bank ⁝𝑒+𝑒 ⟨⟨mbank𝑒, rbank𝑒⟩⟩. And using this
hybrid entry we’ll be able, e.g., to derive a false reading for ‘Either Barclays or Wil-
lowy is a bank’, where ‘Barclays’ names a certain money-bank and ‘Willowy’ names
a certain river-bank.

Barclays ⦙ np
b𝑒

Inject
Barclays ⦙ np

𝜄2𝑒 b𝑒
Lift

Barclays ⦙ np↑
𝜆𝑋𝑒+𝑒.𝑋𝜄2𝑒 b𝑒

or ⦙ np↑\np↑/np↑
𝜆𝑈𝑒+𝑒𝑉𝑒+𝑒𝑋𝑒+𝑒.𝑉𝑋 ∨ 𝑈𝑋

Willowy ⦙ np
w𝑒

Inject
Willowy ⦙ np

𝜄1𝑒 w𝑒

Lift
Willowy ⦙ np↑
𝜆𝑋𝑒+𝑒.𝑋𝜄1𝑒 w𝑒

>
or⋅Willowy ⦙ np↑\np↑
𝜆𝑉𝑒+𝑒𝑋𝑒+𝑒.𝑉𝑋 ∨ 𝑋𝜄2𝑒 w𝑒

<
Barclays⋅or⋅Willowy ⦙ np↑
𝜆𝑋𝑒+𝑒.𝑋𝜄2𝑒 b𝑒 ∨𝑋𝜄1𝑒 w𝑒

is⋅a⋅bank ⦙ np\s
⟨⟨mbank𝑒, rbank𝑒⟩⟩

>
Barclays⋅or⋅Willowy⋅is⋅a⋅bank ⦙ s

⟨⟨mbank𝑒, rbank𝑒⟩⟩𝜄2𝑒 b𝑒 ∨⟨⟨mbank𝑒, rbank𝑒⟩⟩𝜄1𝑒 w𝑒

conv
Barclays⋅or⋅Willowy⋅is⋅a⋅bank ⦙ s

rbank𝑒 b𝑒 ∨mbank𝑒w𝑒

Since Barclays isn’t a river-bank and Willowy isn’t a money-bank, both disjuncts are
false, whereas prima facie the sentence should only allow the true readings Either
Barclays or Willowy is a money bank and Either Barclays or Willowy is a river bank.51 The
moral is that we should not try to derive (27) from some general principle applying
to all kinds of ambiguity. Rather, we should see it as capturing a distinctive kind of
harmony that obtains between the type-𝑒 and type-𝑒 meanings we have posited for
‘is interesting’.52

51One might hope to avoid this unwelcome consequence by restricting Combination to require
𝛼 and 𝛽 to be two different types. But this just postpones the problem. Recall that in our system,
‘is a bank’ will also have a type 𝑒 meaning (presumably something empty like 𝜆𝑥𝑒.⊥), to account
for the meaningfulness of ‘Redness is a bank’. Using this, we could apply the restricted version of
Combination twice, to get first

is⋅a⋅bank ⦙ np\s ⟨⟨mbank𝑒, 𝜆𝑥𝑒.⊥⟩⟩

and then
is⋅a⋅bank ⦙ np\s ⟨⟨mbank𝑒, ⟨⟨rbank𝑒, 𝜆𝑥𝑒.⊥⟩⟩⟩⟩

This will generate an unwelcome false reading for ‘Barclays, Willowy, or redness is a bank’.
52There are some special circumstances in which this kind of two-faced interpretation is arguably

possible given an appropriate context: see the counterexamples to ‘Repetition’ in Dorr 2014b (§ 8)
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6.4 Explaining cross-type quantification with sum-types

Sum-types also help with a related problem. Plausibly,

(28) Everything Mary mentioned is interesting

has a reading where it both entails ‘If Mary mentioned Mars, Mars is interesting’
and ‘IfMarymentioned redness, redness is interesting’. We can secure such readings
easily by extending the type-ambiguitywe have already postulated in the quantifiers
to cover sum-types. For example, we will allow entries like:

every ⦙ (s/np\s)/n𝜆𝑋𝑒+𝑒𝑌𝑒+𝑒.∀𝑧𝑒+𝑒.𝑋𝑧 → 𝑌𝑧

Similarly, mutatis mutandis, for unary quantifiers:

everything ⦙ s/np\s∀𝑒+𝑒

Recall that quantifiers for sum-types are defined, in the background logic, using
quantifiers for simple types. In particular,

∀𝑒+𝑒 ≔ 𝜆𝑋𝑒+𝑒.(∀𝑦𝑒.𝑋𝜄1𝑒𝑦) ∧ (∀𝑧𝑒.𝑋𝜄2𝑒𝑧).

Allowing quantifier-words to express sum-type quantification thus gives the effect
of quantifying in several types at once. For example:

everything ⦙ s/np\s
(𝜆𝑋𝑒+𝑒.(∀𝑦𝑒.𝑋𝜄1𝑒𝑦) ∧ (∀𝑧𝑒.𝑋𝜄2𝑒𝑧))

is⋅interesting ⦙ np\s
⟨⟨int𝑒, int𝑒⟩⟩

>
everything⋅is⋅interesting ⦙ s

(∀𝑦𝑒.⟨⟨int𝑒, int𝑒⟩⟩𝜄1𝑒𝑦) ∧ (∀𝑧𝑒.⟨⟨int𝑒, int𝑒⟩⟩𝜄2𝑒𝑧)
conv

everything⋅is⋅interesting ⦙ s
(∀𝑦𝑒. int𝑒 𝑦) ∧ (∀𝑧𝑒. int𝑒 𝑧)

The same treatment will carry over to sentences like (28).53

(which also work when we use co-ordination rather than ellipsis). Combination might explain how
those cases work; however, wewould not want to lose sight of the contrast between these special cases
and completely unproblematic examples (22).

53The above derivation turned on our decision to treat quantifiers for sum-types as abbreviations.
But even if one wanted to treat all quantifiers as primitive, any remotely adequate background meta-
physics should at least imply the necessitated biconditional

□(∀𝛼+𝛽𝐹 ↔ ((∀𝑦𝛼.𝐹𝜄1𝛽𝑦) ∧ (∀𝑧𝛽.𝐹𝜄2𝛼𝑧)))

and hence also
□(∀𝑒+𝑒⟨⟨int𝑒, int𝑒⟩⟩ ↔ ((∀𝑦𝑒. int𝑒 𝑦) ∧ (∀𝑧𝑒. int𝑒 𝑧)))

So the conclusion of the above derivation will at least be true up to necessary equivalence.
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This solution to the problem of cross-type quantification is not limited to quan-
tifiers like ‘every’ and ‘some’ that commute with conjunction or disjunction. For ex-
ample, ‘Most 𝐹s are 𝐺’ can plausibly be analyzed as ‘any relation that every 𝐹-and-𝐺
thing bears to some 𝐹-and-not-𝐺 thing fails to be one-to-one’:

most𝛼𝛼 ≔ 𝜆𝐹𝛼𝐺𝛼.∀𝑅𝛼𝛼.
(∀𝑥𝛼.(𝐹𝑥 ∧ 𝐺𝑥) → (∃𝑦𝛼.𝐹𝑦 ∧ ¬𝐺𝑦 ∧ 𝑅𝑥𝑦)) → (∃𝑥𝛼𝑦𝛼𝑧𝛼.𝑅𝑥𝑧 ∧ 𝑅𝑦𝑧 ∧ 𝑦 ≠𝛼 𝑧)

We can use this to derive a cross-typemeaning for ‘Most essay topics are interesting’:

most ⦙ s/np\s/n
most𝑒+𝑒 𝑒+𝑒

essay⋅topics ⦙ n
⟨⟨topic𝑒, topic𝑒⟩⟩

>
most⋅essay⋅topics ⦙ s/np\s
most𝑒+𝑒 𝑒+𝑒 ⟨⟨topic𝑒, topic𝑒⟩⟩

are⋅interesting ⦙ np\s
⟨⟨int𝑒, int𝑒⟩⟩

>
most⋅essay⋅topics⋅are⋅interesting ⦙ s

most𝑒+𝑒 𝑒+𝑒 ⟨⟨topic𝑒, topic𝑒⟩⟩⟨⟨int𝑒, int𝑒⟩⟩

We can convert the final denotation to an ℒ-sentence, analogous to what we did
earlier with in the case of ‘everything’. The result is a paragraph-length universal
quantification over quadruples of relations of types 𝑒𝑒, 𝑒𝑒, 𝑒𝑒, and 𝑒𝑒, which does not
wear its meaning on its sleeve. But given its equivalence to themore comprehensible
ℒ +-sentence, there is no doubt that it will behave as we would wish. For example,
if we define exact numerical quantifiers ∃𝑛𝜎 in the standard way, the sentence follows
from

(∃ 𝑗𝑥𝑒. topic𝑒 𝑥) ∧ (∃𝑛𝑥𝑒. topic𝑒 𝑥 ∧ int𝑒 𝑥) ∧ (∃𝑘𝑦𝑒. topic𝑒 𝑦) ∧ (∃𝑚𝑦𝑒. topic𝑒 𝑦 ∧ int𝑒 𝑦)

if 𝑛 + 𝑚 > (𝑗 + 𝑘)/2, and the two are inconsistent otherwise.
Introducing these new options for the interpretation of English quantifier-words

makes a big difference to our linguists’ assessment of English-speaking philosoph-
ers’ debates about doctrines like “materialism” and “nominalism”. Imagine an anti-
nominalist who puts forth the following argument:

Some property of Mars applies to Venus—for example, being a planet. So,
there are properties. But no property is material. So, not everything is
material. But of course some things are material—for example, Mars. So,
some but not all things are material.

Before, it might have seemed that we would have to say that this anti-nominalist
was just getting confused, committing a fallacy of equivocation by failing to track
the different semantic roles of the quantifiers in the first four sentences (which in-
volve higher-order quantification) and the penultimate sentence (which involves
first-order quantification). But now, we have the wherewithal to interpret the en-
tire argument uniformly, using type 𝑒 + 𝑒 quantifiers. So interpreted, the argument
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is sound. Even if the type-𝑒 denotation of ‘material’ is universal (as 𝑒-Materialism
holds), its type 𝑒 denotation is empty (maybe 𝜆𝑋.⊥), so the type-𝑒 + 𝑒 denotation is
neither universal nor empty.

Of coursewe can still interpret ‘Everything ismaterial’ as true (assuming 𝑒-Materialism)
by taking the quantifier to be first order. When nominalists come out with this sen-
tence, considerations of charity will tend to favour doing so. One might worry that
such charity would be misplaced, analogous to a theist perversely interpreting an
atheistic materialist’s utterance of ‘Absolutely everything is material’ to mean ‘Abso-
lutely everything that is not God or an angel is material’. But that analogy is not apt,
since the different candidate interpretations we are considering involve quantifiers
of different types, not differently restricted quantifiers of a single type. And while
there is a certain loose sense in which a sum-type quantifier ∀𝛼+𝛽 might be said to be
“more inclusive” than the quantifiers ∀𝛼 and ∀𝛽 in terms of which it is defined (at
least when 𝛼 ≠ 𝛽), there is no corresponding sense in which we can think of all three
as restrictions of a “maximally inclusive” quantifier, since there is no type that could
be assigned to such a quantifier.54

Notoriously, the presence of ambiguity in language—especially subtle ambiguity—
is apt to lead to “merely verbal disputes”, in which two parties mistakenly take one
another to believe incompatible things, when in fact they are merely focusing on
different readings of some ambiguous sentence. Type-ambiguity is no exception.

6.5 Dispensing with sum-types

The work we have done with sum-types in explaining facts about co-ordination and
quantification in Englishmight suggest thatwe are now in for a difficult debate about
their intelligibility or metaphysical good standing. Fortunately, we can bypass the
need for such a debate, since there is a way of systematically “translating” sentences
and theories stated in the extended language ℒ + into the simply-typed language
ℒ. The details are explained in Appendix C; here, I will just give a brief sketch that
illustrates how the translation applies to the small fragment of the semantic theory
for the extended language which we used in the previous section to derive an inter-
pretation for a sentence involving cross-type quantification.

everything⋅is⋅interesting ⦙ s (∀𝑦𝑒. int𝑒 𝑦) ∧ (∀𝑧𝑒. int𝑒 𝑧)(29)

While this conclusion is a sentence in the original (simply-typed) higher-order lan-
guage, our derivation of it turned on three premises—two new semantic postulates,

54As the author of a paper called ‘There Are No Abstract Objects’ (Dorr 2007), I can attest that
frommy present high-order-logic-loving standpoint, the interpretation ofmy former self as intending
only type-𝑒 quantification feels correct. The balance of interpretative considerations may however be
rather different for nominalists of a more aggressive temperament, who take their view to imply that
the beliefs of ordinary folk are rife with error.

47



plus an instance of Function Application—given in the extended language.

is⋅interesting ⦙ np\s ⟨⟨int𝑒, int𝑒⟩⟩(30)
everything ⦙ s/np\s∀𝑒+𝑒(31)

∀𝑎𝜀𝑏𝜀𝑐𝜀𝑑𝜀𝑋𝑒+𝑒𝑦𝑒+𝑒. 𝑎 ⦙𝑒+𝑒 𝑐/𝑑𝑋 ∧ 𝑏 ⦙𝑒+𝑒 𝑑 𝑦 → 𝑎⋅𝑏 ⦙𝑡 𝑐𝑋𝑦(32)

These sentences contain two new nonlogical constants

⦙𝑒+𝑒 ∶ 𝜖 → 𝜖 → ((𝑒 + 𝑒) → 𝑡) → 𝑡
⦙𝑒+𝑒 ∶ 𝜖 → 𝜖 → (((𝑒 + 𝑒) → 𝑡) → 𝑡) → 𝑡

The translation depends on the observation that these two extended types are “iso-
morphic” to two simple types:

𝜖 → 𝜖 → (𝑒 → 𝑡) → (𝑒 → 𝑡) → 𝑡
𝜖 → 𝜖 → ((𝑒 → 𝑡) → (𝑒 → 𝑡) → 𝑡) → 𝑡

By saying that types 𝛼 and 𝛽 are isomorphic, Imean that there is a function 𝑓 from the
set of type-𝛼 terms to the set of type-𝛽 terms and a function 𝑔 from the set of type-𝛽
terms to the set of type-𝛼 terms such that 𝑓(𝑔(𝐴)) is convertible with𝐴 for any term𝐴
of type 𝛼, 𝑔(𝑓(𝐵)) is convertible with 𝐵 for any 𝐵 of type 𝛽, and both functions “com-
mute with substitution up to convertibility”.55 When types are isomorphic in this
sense, any theoretical work we do with a nonlogical constant of one type could be
done equally well using a constant of the other type and converting as necessary. In
our translated theory, the two new nonlogical constants ⦙𝑒+𝑒 and ⦙𝑒+𝑒 are replaced by
simply-typed surrogates ⦙′𝑒+𝑒 and ⦙′𝑒+𝑒. We can turn any sentence using the former con-
stants into a sentence using the surrogates just by applying the relevant isomorphism
to each surrogate. And once we have turned a sentence into one all of whose con-
stants have simple types, it turns out that—thanks to a theorem of Dag Prawitz—that
we can always convert the resulting sentence into one all of whose constituents have
simple types—i.e. a sentence of a simply-typed language. Applying this procedure
to the three key premises given above yields the following:

is⋅interesting ⦙′𝑒+𝑒 np\s int𝑒 int𝑒(33)
everything ⦙′𝑒+𝑒 s/np\s (𝜆𝑋𝑒𝑌𝑒.∀𝑒𝑋 ∧ ∀𝑒𝑌)(34)
∀𝑎𝜖𝑏𝜖𝑐𝜖𝑑𝜖𝑋𝑒𝑒𝑦𝑒𝑧𝑒. 𝑎 ⦙′𝑒+𝑒 𝑐/𝑑𝑋 ∧ 𝑏 ⦙′𝑒+𝑒 𝑑 𝑦 𝑧 → 𝑎⋅𝑏 ⦙𝑡 𝑐𝑋𝑦𝑧(35)

These threeℒ-sentences can easily be seen to imply (29) in H.56

55To say that 𝑓 commutes with substitution up to convertibility is to say that whenever every free
variable in 𝐵 is safe for 𝑣 in 𝐴, 𝑓(𝐴[𝐵/𝑣]) is convertible with 𝑓(𝐴)[𝑓(𝐵)/𝑣].

56If we instantiating the universally quantified variables in (35) respectively with everything,
is⋅interesting, s, np\s, (𝜆𝑋𝑒𝑌𝑒.∀𝑒𝑋 ∧ ∀𝑒𝑌), int𝑒, and int𝑒, we get something that beta-converts to the
conditional (34) ∧ (33)→ (29).
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We can apply a parallel procedure to all of the new semantic constants and to
the theory stated in terms of them. That theory is thus re-expressed in simply-typed
terms as a theory about novel, primitively polyadic semantic relations. Some ex-
pressions primitively stand (relative to a category) in a kind of ‘joint expressing’ re-
lation to multiple entities of different types, as ‘is interesting’ does according to (33).
Other expressions, have meanings that require multiple arguments, as ‘everything’
does according to (34). The new rules for syntactic combination, like (35), gener-
alize Function Application in such a way that an expression of the former sort can
provide an expression of the second sort with all the arguments it needs. This the-
oretical architecture is conceptually independent of the idea of sum-types: it could
have been invented on Lambda Serpentis. The formulation with sum-types has the
advantage that we can stick with the more familiar ideology where our “express-
ing” predicates all take the same number of arguments, and the relatively familiar
Function Application rules. But the existence of the translation means that we are
free to adopt this mode of expression without worrying that we will thereby become
subject to new intelligibility worries or “ideological costs”.

6.6 Could we appeal to sum-types to avoid type-ambiguity?

If one really hated type-ambiguity, one could also use the apparatus of sum-types
to account for some central facts about property-talk in English without any type-
ambiguity, and without having to expand one’s view of what individuals there are
beyond the confines of 𝑒-Materialism. The strategy would be to choose, once and
for all, some reasonably inclusive sum type 𝛼 combining 𝑒 with various other types
such as 𝑒, and say that 𝛼 is the only type in which expressions of type np express
anything, just as for us 𝑡 is the only type in which expressions of type s express any-
thing. Suppose for simplicity that 𝛼 is 𝑒 + 𝑒. Then we will no longer accept that
Mars ⦙ npmars𝑒: instead, we will just say that Mars ⦙ np 𝜄1𝑒 mars𝑒, as a basic postu-
late. Similarly, instead of red𝑒, ‘is red’ will express something of type 𝛼: presumably,
⟨⟨red𝑒, 𝐹⟩⟩ for some empty 𝐹 ∶ 𝑒. ‘The property of being red’ and ‘redness’ will like-
wise no longer express red𝑒 but instead its injection into type 𝛼, 𝜄2𝑒 red𝑒. ‘Instantiates’,
finally, will, like any transitive verb, have a meaning of type 𝛼𝛼. By taking this to be
⟨⟨⟨⟨𝑅, 𝑆⟩⟩, ⟨⟨𝜆𝑌𝑒.𝑌, 𝑇⟩⟩⟩⟩ for some 𝑅 ∶ 𝑒𝑒, 𝑆 ∶ 𝑒𝑒, and 𝑇 ∶ 𝑒𝑒—plausibly empty—we can
predict that ‘Mars instantiates redness’ and ‘Mars is red’ express the same thing:

Mars ⦙ np
𝜄1𝑒 mars𝑒

is⋅red ⦙ np\s
⟨⟨red𝑒, 𝐹⟩⟩

<
Mars⋅is⋅red ⦙ s
red𝑒mars𝑒

Mars ⦙ np
𝜄1𝑒 mars𝑒

instantiates ⦙ np\s/np
⟨⟨⟨⟨𝑅, 𝑆⟩⟩, ⟨⟨𝜆𝑌𝑒.𝑌, 𝑇⟩⟩⟩⟩

redness ⦙ np
𝜄2𝑒 red𝑒

>
instantiates⋅redness ⦙ s

⟨⟨red𝑒, 𝑇 red𝑒⟩⟩
<

Mars⋅instantiates⋅redness ⦙ s
red𝑒mars𝑒
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We can generalize this by claiming that the nominalization of any verb phrase ex-
presses the injection into𝛼 of the 𝑒-component of itsmeaning, ignoring the 𝑒-component:

Nominalization∗ ∀𝑎𝜀𝑋𝑒.(∃𝑌𝑒.𝑎 ⦙𝛼 np\s ⟨⟨𝑋, 𝑌⟩⟩) ↔ PROP(𝑎) ⦙𝜎 np 𝜄2𝑒𝑋

This treatment ensures that ‘[NP] [VP]’ and ‘[NP] instantiates PROP([VP])’ ex-
press the same thing when the NP expresses something of the form 𝜄1𝑒𝑥𝑒. But all
bets are off when the NP expresses something of the form 𝜄2𝑒𝑌𝑒: ‘[NP] instantiates
PROP([VP])’ will then express 𝑇𝑌𝑒𝑍𝑒 (where 𝑇 is the type-𝑒𝑒 component of the
meaning of ‘instantiate’ and 𝑍 is the type-𝑒 component of the meaning of the VP). If
𝑇 is empty, all such sentences will be false. We could try to do better by finding some
appropriate non-empty𝑇 such that, e.g., 𝑇(𝜆𝑥𝑒.𝑥 = 𝑥)(𝜆𝑥𝑒.𝑥 = 𝑥), so that ‘the property
of being self-identical instantiates the property of being self-identical’ can be true.57
But without type-ambiguity (and given our classical background logic) there is of
course no hope of getting a true reading for every instance of Naïve Property Com-
prehension. Nevertheless, one might argue that this approach does sufficient justice
to our disposition to treat any (present-tense) VP as interchangeable with ‘instanti-
ates [VP]’. And by choosing amore complex sum-type to inject everything into—say,
𝑒 + 𝑡 + 𝑒 + 𝑡 + 𝑒 + 𝑡 + 𝑒 + 𝑡—one might hope to keep failures of Naïve Property Com-
prehension out of view in all but highly theoretical contexts.58

The biggest problem with this approach is that it seems excessively arbitrary to
pick a single sum-type as the once-and-for-all semantic correlate of the category NP.
Whatever sum-type one picks, there will in principle be ways in which our dispos-
ition to treat Naïve Property Comprehension as unproblematic could play out that
one will be unable to accommodate, although one could have done so if one had
picked amore complex sum-type. True, computational limitationsmean that in prac-
tice we will anyway be terrible at keeping track of discourses about, say, properties
of properties of properties of properties of individuals. But it looks wrongheaded to
inscribe these limitations into the architecture of our theory of meaning. The type-
ambiguity approach, by contrast, lets us treat ascent to an appropriately capacious
sum-type as an option that is always in-principle available when needed, with no
need to pretend that the option is always exercised. To my eye, this promises more
insight into how the linguistic practice actuallyworks, even in simple cases that come
nowhere near the computational limitations.

57See note 41 for an idea on how this might go.
58The view that the Lambda Serpentians should reject type-ambiguity and instead pick some com-

plex sum-type as the one and only semantic correlate of the category NP raises some interesting fur-
ther questions about the interpretation of the expression ‘type 𝑒’ as used by actual metaphysicians
and semanticists. Some explanations of this type link it tightly to English NPs. At least when the
Lambda Serpentians are interpreting theoreticians who use ‘type 𝑒’ in this way, they will have good
reason to interpret their ‘type 𝑒’ terms using the same complex type they use for NPs. It is a good
question whether there is some more independent kind of explanation that we could use to latch on
to the Lambda Serpentians’ type 𝑒—something for which 𝑒-Materialism is plausible but nontrivial.
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7 Worries about schemas and universal generalizations

Schemas with infinitely many instances play a crucial role in the higher-order se-
mantic theory for English I have sketched. We have both general schemas like Func-
tion Application as well as specific schemas characterizing the semantic profiles of
words like ‘some’, ‘instantiates’, and ‘interesting’. At a very abstract level, the use
of schemas or some equivalent device is an inevitable part of the development of
any sort of rigorous theory. Even if one’s theory of some subject matter is finitely
axiomatized, its predictive power will depend on some rules by which those axioms
can generate infinitely many theorems to which one is also taken to be committed.
For example, the capacity of a universally quantified axiom to do useful theoretical
work will depend on having in the background something schema-like such as the
Universal Instantiation axiom or the ∀Elim rule.59

However, even if one is unperturbed by the general practice of theorizing us-
ing schemas, one might be uncomfortable to have to rely so heavily on schemas in
formalizing one’s theory about a subject matter as localized as English semantics. If
we imagine the perspective of a theorist investigating such a subject matter, refining
their views about it in response to new evidence, and attempting to communicate
their new ideas to others engaged in the same project, we can see that they would
find it very helpful to have some sentence they could assert that would be treated as
implying all the infinitely many instances of the schema. An autobiographical sen-
tence like ‘I accept all the instances of this schema’ doesn’t really play the desired role:
what’s wanted is something that one theorist might assert, while another might only
embed under some operator like ‘It is not that case that…’ or ‘I am moderately sure
that…’ or ‘I am tempted to conjecture that…’. In my informal English presentation of
the deflationary semantic theory, I have often found it helpful to play fast and loose
by writing down sentences that appeared to quantify into the position of a type su-
perscript or subscript.60 If the Lambda Serpentians have to content themselves with
schemas in place of such sentences, their debates about English semantics will have
a strangely indirect or performative character that makes them look oddly different
from debates in biology or history.

Moreover, extensive reliance on schemas tends to make for theories with a dis-
appointingly limited capacity to explain universally generalized facts about the tar-
get subject matter. For example, consider the English sentence ‘Everything is self-
identical’. One striking fact about this sentence is that everything it expresses is true.
That is:

(36) ∀𝑝𝑡. everything⋅is⋅self-identical ⦙ s 𝑝 → 𝑝
59The difference between schemas and inference rules doesn’t matter for present purposes; the

job of any of our schemas could be done by a customized inference rule allowing schema-instances
for higher types to be inferred from schema-instances for lower types. The observation about the
inescapability of such devices is due to Lewis Carroll (1895).

60See, e.g., the gloss on the Function Application schema in §4.2.

51



This is a striking fact that cries out for an explanation. An adequate explanationmust
surely appeal to the fact that the sentence is the result of combining ‘everything’ and
‘is self-identical’, together with some facts about those constituents. But given that
both of them are type-ambiguous, it is hard to see how we could achieve this. We
could certainly endorse schemas like the following:61

∀𝑋𝜎.everything ⦙ s/np\s𝑋 → 𝑋 =𝜎 ∀𝜎(37)
∀𝑌𝜎.is⋅self-identical ⦙ np\s𝑌 → 𝑌 =𝜎 𝜆𝑧𝜎.𝑧 =𝜎 𝑧(38)

But these do not imply (36). And the deficit can’t be made up by adding further
auxiliary premises: since deducibility is compact, any set of sentences that did imply
(36) and included all instances of (37) and (38)would be such that somefinite subset
of it already implied (36).

It might seem that this problem isn’t specific to our deflationary approach, but
arises even for competing theories that flatly reject type-ambiguity. For how is that
very rejection of type-ambiguity to be expressed, if not by schemas such as (39) (cor-
responding to the idea that 𝑒 is the unique semantic type for verb phrases)?

(39) ¬∃𝑎𝜖𝑥𝜎.𝑎 ⦙𝜎 np\s 𝑥 [where 𝜎 ≠ 𝑒]

But adding this schema to our theory will be of no use for explaining (36), given
that no finite set of its instances is. However, so long as we reject type-ambiguity,
there will be a potential avenue for explaining facts like (36) that does not turn on
schemas like (39). Instead, we could invoke “unique decomposition” principles like
the following, which limit the interpretations of sentences of the form exemplified
by (36) to those that can be derived by Function Application from meanings of their
constituents, in the types dictated by the constituents’ syntactic categories:

(40) ∀𝑎𝜖𝑏𝜖𝑝𝑡. 𝑎⋅𝑏 ⦙𝑡 s 𝑝 ∧ Syn𝜖𝜖 𝑎 s/np\s ∧ Syn𝜖𝜖 𝑏np\s
→ ∃𝑋𝑒𝑦𝑒.𝑎 ⦙𝑒 np\s/s𝑋 ∧ 𝑏 ⦙𝑒 np\s 𝑦 ∧ 𝑝 = 𝑋𝑦

Here Syn𝜖𝜖 is a constant meaning ‘is the (unique) syntactic category of’. In conjunc-
tion with the 𝜎 = 𝑒 instances of (37) and (38) and the unproblematic syntactic claims
Syn𝜖𝜖 everything s/np\s and Syn𝜖𝜖 is⋅self-identicalnp\s, (40) implies (36). To general-
ize this approach, onewouldwant to allow somehow for the fact thatmany sentences
are associated with more than one “parse tree”; but this should be feasible, given a
background syntactic theory strong enough to spit out a finite list of parse trees for
any given string.

Unfortunately, this strategy depends crucially on the rejection of type-ambiguity.
So, there is a genuine explanatory and expressive challenge here for the type-ambiguity

61(37) is arguably too strong because of the phenomenon of contextual quantifier domain-
restriction, but the present challenge would still arise if we weakened it to ∀𝑋𝜎.everything ⦙ s/np\s𝑋 →
∃𝑍𝜎.𝑋 =𝜎 𝜆𝑌𝜎.∀𝑢𝜎.𝑍𝑢 → 𝑌𝑢.
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approach, that we should want to meet somehow. One might suppose that meeting
it would require some enrichment of the syntax of our higher-order language—for
example, one that includes variable-like expressions that can take play the role of
a type subscript or superscript, and quantifier-like expressions that stand to them
as ordinary quantifiers stand to ordinary variables. But the need can also be met
within the confines of the standard higher-order syntax by adding some new con-
stants, governed by an appropriate logic. The constants needed are disquotational
meaning predicatesM𝜎 for the original higher-order language (i.e. the one without the
new constants). And the background logic is some analogue for these predicates
of the kind of theory investigated in the literature on so-called “typed” theories of
truth in classical logic.62 Of course, the language of the Lambda Serpentians already
has a system of predicates ⁝𝜎 that can be used to talk about the meanings of arbitrary
expressions as used by arbitrary communities, including their own. But the new
disquotational-expressing predicates M𝜎 work very differently: for example, truths
about what an expression disquotationally-expresses are non-contingent. By calling
them “disquotational” I mean that the background logic that gives them their useful
role includes as theorems all instances of the following schema, where 𝐴 is a closed
type-𝜎 expression of the original language without the M𝜎 predicates, and ⌜𝐴⌝ is a
character-by-character specification of the string 𝐴:

DM ∀𝑥𝜎.⌜𝐴⌝ M𝜎 𝑥 ↔ 𝑥 =𝜎 𝐴

I don’t mean that the background logic includes nothing more than the instances
of DM. For example, any minimally adequate syntactic theory will be able to form-
alize the notion of a string being a theorem of H (in the original signature), and I
assume the background logic will also include the claim that all theorems of H are
disquotationally-true (disquotationally-express only truths):

Reflection ∀𝑎𝜖.TheoremOfH𝜀 𝑎 → T𝜀 𝑎

where the “disquotational truth” predicateT𝜀 is defined as𝜆𝑎𝜖.(∃𝑝𝑡.𝑎 M𝑡 𝑝)∧(∀𝑝𝑡.(𝑎 M𝑡
𝑝) → 𝑝). By Tarski’s theorem on the undefinability of truth, there is no way these
new predicates M𝜎 can be defined in the old language—for any candidate definition
we will be able to find an instance of DM whose negation follows from our old the-
ory. Nevertheless, this seems to me to be a good exhibit for the idea that we can
sometimes come to understand new predicates by accepting a theory expressed in
terms of them that brings us some important explanatory benefits.

Using these new expressive resources, we can strengthen our semantic theory for
English in a way that allows it to be finitely axiomatized (thus eliminating the need
to rely on schemas), and moreover allows for plausible lines of explanation for facts
like (36). For example, instead of the schemas (37) and (38), we can write down
single universally quantified sentences that (given the background theory) imply

62For example, the theory CT from Halbach 2011 (§8.6).
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all their instances:

∀𝑎𝜖.Typ𝜀 𝑎 → T𝜀 ⌜∀𝑋$𝑎. everything ⦙ np\s/s𝑋 → 𝑋 =$𝑎 ∀$𝑎⌝(41)
∀𝑎𝜖.Typ𝜀 𝑎 → T𝜀 ⌜∀𝑌$𝑎. is⋅self-identical ⦙ np\s𝑌 → 𝑌 =$𝑎 (𝜆𝑧$𝑎.𝑧 =$𝑎 𝑧)⌝(42)

(Here, the convention for corner-quotes is extended to allow for “anti-quotation”:
a type-𝜖 variable preceded by $ still functions as a variable, analogous to the con-
vention for Greek-lettered variables in Quine’s corner-quotes. Typ𝜀 is a predicate
characterizing those strings that are well-formed types in our type system.) The
disquotational-meaning predicates also give us an analogue of existential as well as
universal quantification into type position. This means we can now formulate par-
tial converses of Function Application that limit the meanings of complex English
expressions to things obtained by function-application from meanings of its con-
stituents. For example:

(43) ∀𝑎𝜖𝑏𝜖𝑐𝜖𝑝𝑡.Syn𝜖𝜖 𝑎 s/𝑐 ∧ Syn𝜖𝜖 𝑏 𝑐 ∧ 𝑎⋅𝑏 ⦙𝑡 s 𝑝 →
∃𝑓𝜖𝑍𝑡.Typ𝜀 𝑓 ∧ ⌜𝜆𝑞𝑡.∃𝑋$𝑓𝑦$𝑓. $𝑎 ⦙$𝑓 s/$𝑐𝑋 ∧ $𝑏 ⦙$𝑓 $𝑐 𝑦 ∧ 𝑞 =𝑡 𝑋𝑦⌝ M𝑡 𝑍 ∧ 𝑍𝑝

(Gloss: for any sentence formed by concatenating an expression 𝑎 of some category
s/𝑐 with an expression 𝑏 of category 𝑐, and any proposition 𝑝 it expresses, there is a
type 𝑓 such that 𝑝 has the property 𝑍 disquotationally-expressed by ‘is a 𝑞 such that 𝑞
is the result of applying something expressed by 𝑎 in type 𝑓 to something expressed
by 𝑏 in type 𝑓’.) And thanks to the presence of Reflection in the background theory,
(41), (42), and (43) will imply (36), via

(44) ∀𝑝𝑡. everything⋅is⋅self-identical ⦙ s 𝑝 →
∃𝑓𝜖𝑍𝑡.Typ𝜀 𝑓 ∧ ⌜𝜆𝑞𝑡.𝑞 = ∀𝑧$𝑓.𝑧 =$𝑓 𝑧⌝ M𝑡 𝑍 ∧ 𝑍𝑝

The disquotational meaning theory thus gives us a simulacrum of universal and ex-
istential quantification into type position, which we can use to strengthen our theory
to allow it to derive important facts about the limits of what can be expressed by cer-
tain English sentences.

Of course, schemas—specifically, the disquotational meaning schema DM, or
some other collection of schemas that imply it—still play a crucial role in this stronger
body of theory. But the hope is that the theory of disquotational-meaning can occupy
the same background role that classical higher-order logic was already playing, as
something that can be implicitly assumed by all of the parties involved in the em-
pirical project of constructing explanatory theories of meaning for some natural lan-
guage.
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8 Type-neutral generality in English

The semantic theory for quantification presented in section §6.4 (using the formalism
of sum-types) generates an infinite array of readings for quantified sentences like
(45) and (46):

(45) Every essay topic is interesting.

(46) Some essay topic is interesting.

For any finitelymany simple types 𝜎1, … , 𝜎𝑛, we can construct a sum-type to generate
meanings for (45) and (46) equivalent respectively to (47) and (48):

(∀𝑥𝜎1. topic𝜎1 𝑥 → int𝜎1 𝑥) ∧⋯ ∧ (∀𝑥𝜎𝑛. topic𝜎𝑛 𝑥 → int𝜎𝑛 𝑥)(47)
(∃𝑥𝜎1. topic𝜎1 𝑥 ∧ int𝜎1 𝑥) ∨⋯ ∨ (∃𝑥𝜎𝑛. topic𝜎𝑛 𝑥 ∧ int𝜎𝑛 𝑥)(48)

Under the reasonable assumption that all the relevant propositions are modally in-
dependent, this will yield infinite collections of meanings for (45) and (46). In the
former collection, we can find for every meaning a strictly stronger one (based on a
larger finite collection of types). In the latter, we can find for everymeaning a strictly
weaker one.

This pattern is somewhat reminiscent of “quantifier relativism”, the view that
there is no such thing as “absolutely unrestricted quantification”. Proponents of this
view hold, roughly speaking, that for any possible interpretation of the quantifi-
ers, there is an even broader interpretation of which the first interpretation is a re-
striction.63 Our type-ambiguous treatment of English quantification could be viewed
as an articulation of this notoriously elusive idea. However the picture is very dif-
ferent from the usual vision of quantifier relativism. For us, absolutely unrestric-
ted quantification for any given type is unproblematic; the different interpretations
of quantifiers responsible for the stronger-and-stronger meanings for (45) and the
weaker-and-weaker meanings for (46) belong to different types, and none is in any
straightforward sense a “restriction” of any other.

Nevertheless, the limitations in the readings we can generate for (45) and (46)
are not easy to live with. It feels like there should be the possibility of using (45) to
express something that entails all the conjunctions (47) (and is thus stronger than
any of them), and the possibility of using (46) to express something that is entailed
by all the disjunctions (48) (and is thus weaker than any of them).

Should we just dismiss the impulse to want such an overarching interpretation
as a mistake, illustrating the pitfalls of a way of talking that fails to perspicuously
display type distinctions in the syntax? That line would certainly fit standard as-
sumptions about what friends of higher-order logic should and should not take to
be intelligible. Butwe should not be too quick here. The impulse to think that there is
an intelligible type-neutral generalizations in the vicinity of (45) and (46) is not just a

63See Rayo and Uzquiano 2007 for a sample of the literature on this topic.
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product of the idiosyncratic expressive choicesmade in natural language. Aswe saw
in the previous section, it is an impulse that could be expected to arise organically
even in a community whose mother tongue was an entirely syntactically standard
dialect of Higher-Orderese as its mother tongue. Such speakers would have genuine
communicative and explanatory needs that could motivate them to introduce new
resources allowing them to, in effect, quantify simultaneously in every type. If these
new resources take the form of the disquotational meaning and truth predicates con-
templated in the previous section, they will be able to formulate sentences like the
following:

∀𝑓𝜖.Typ𝜀 𝑓 → T𝜀 ⌜∀𝑥$𝑓. topic$𝑓→𝑡 𝑥 → int$𝑓→𝑡 𝑥⌝(49)
∃𝑓𝜖.Typ𝜀 𝑓 ∧ T𝜀 ⌜∃𝑥$𝑓. topic$𝑓→𝑡 𝑥 ∧ int$𝑓→𝑡 𝑥⌝(50)

Against the background of the disquotationalmeaning theory, thesewill have the de-
sired logical behavior: (49) will imply every sentence of the form ∀𝑥𝜎. topic𝜎→𝑡 𝑥 →
int𝜎→𝑡 𝑥, and (50) will be implied by every sentence of the form ∃𝑥𝜎. topic𝜎→𝑡 𝑥 ∧
int𝜎→𝑡 𝑥.

There is thus no problem imagining a language with the capacity to express the
desired maximally strong and weak meanings. Could English itself be such a lan-
guage? We could generate the maximal readings for (45) and (46) by appealing to
some new basic principles that generate meanings for certain quantified sentences
not in accordance with function application. There are various possible ways this
might work: the one I will consider here posits new rules according towhich if a sen-
tence expresses the conjunction/disjunction of any finite subcollection of some col-
lection of propositions, it also expresses the conjunction/disjunction of all of them.

To capture this idea in our higher order language, we can introduce a system of
“rigidity” predicates Rig𝜎: for 𝑋 of type 𝜎, Rig𝜎𝑋 implies that 𝑋 is modally rigid
in the way that sets or pluralities are standardly considered to be.64 Then we can
understand quantification over ‘collections’ of propositions as quantification over
rigid properties of propositions (things of type 𝑡). We can equate the conjunction
[disjunction] of a collection of propositions with the proposition that all [some] of
them are true, and similarly for properties and relations:

Conj ≔ 𝜆𝑋𝜎1…𝜎𝑛𝑦𝜎11 …𝑦
𝜎𝑛𝑛 .∀𝑍𝜎1…𝜎𝑛.𝑋𝑍 → 𝑍𝑦1…𝑦𝑛

Disj ≔ 𝜆𝑋𝜎1…𝜎𝑛𝑦𝜎11 …𝑦
𝜎𝑛𝑛 .∃𝑍𝜎1…𝜎𝑛.𝑋𝑍 ∧ 𝑍𝑦1…𝑦𝑛

In these terms, the new principle can be expressed by the following schemas, where
64For details, see Dorr, Hawthorne, and Yli-Vakkuri 2021 (§1.5).
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𝜏 is any predicate type:

∀𝑎𝜖𝑐𝜖𝑋𝜏.Rig𝑋 ∧ (∀𝑌𝜏.Rig𝑌 ∧ Finite𝑌 ∧ 𝑌 ⊆ 𝑋 → 𝑎 ⦙𝜏 𝑐 Conj𝑌) → 𝑎 ⦙𝜏 𝑐 Conj𝑋
Conjunctive Closure

∀𝑎𝜖𝑐𝜖𝑋𝜏.Rig𝑋 ∧ (∀𝑌𝜏.Rig𝑌 ∧ Finite𝑌 ∧ 𝑌 ⊆ 𝑋 → 𝑎 ⦙𝜏 𝑐 Disj𝑌) → 𝑎 ⦙𝜏 𝑐 Disj𝑋
Disjunctive Closure

(Here, Finite is short for a standard higher-order definition of finitude, and 𝑌 ⊆ 𝑋
just means ∀𝑧𝜏.𝑌𝑧 → 𝑋𝑧.) Using these principles, and assuming some moderately
coarse-grained background logic (such as Classicism, see Appendix A), we will be
able to derive that (45) and (46) do in fact express appropriately maximal proposi-
tions.

Note that generating these meanings crucially relies on having new composi-
tional rules, rather than a special new meaning for ‘every’ and ‘some’ that could
combine by function application. Since there is no “sum of all types”, no suchmean-
ings could do the same work as Conjunctive and Disjunctive Closure.

Related to this, adding the closure principles will disrupt certain logical relation-
ships that were valid before. Consider for example the following argument:
P1 Some essay topic instantiates the property of being interesting.

P2 Jim mentioned the property of being interesting.

C Some essay topic instantiates some property Jim mentioned.
Assuming we posit a meaning for ‘mentioned’ of type 𝑒𝛼 for every extended type 𝛼,
the sum-type-based treatment of quantifiers will give this argument the following
nice status: for every proposition 𝑝 expressed by P1, there are corresponding pro-
positions 𝑞 and 𝑟 expressed by P2 and C respectively, such that □(𝑝 ∧ 𝑞 → 𝑟). But
if we add the closure principles, we will no longer predict this status. The problem
is that while P1 and C will both get new maximally weak readings that behave like
the disjunctions of all their old readings, P2 will not get any new readings, since its
old readings were not closed under finite conjunction or disjunction. In particular, it
will not get a reading whose conjunction with the new reading of P1 entails the new
reading of C.65

Ultimately, we know from Russell’s paradox that there are limits to the extent
to which we can vindicate all the modes of inference that seem prima facie com-
pelling when we are dealing with type-neutral interpretations of quantified sen-
tences. Because of the logical surprises they engender, I am ultimately not sure that

65It is not entirely obvious that P2 won’t get a new reading. In principle one might
think that in types of the form 𝑒𝛼 + 𝛽, ‘mentioned’ expresses the conjunctive relation
𝜆𝑥𝑒𝑌𝛼+𝛽.mention𝑒𝛼 𝑥 (𝜆𝑧𝛼.𝑌𝜄1𝛽𝑧) ∧ mention𝑒𝛽 𝑥 (𝜆𝑧𝛽.𝑌𝜄2𝛼𝑧). If so, Conjunctive Closure will after all
apply to P2, and generate a strong meaning that entails mention𝑒𝜎 jim𝑒 int𝜎 for each 𝜎, and thus
bridges the gap from the weak reading of P1 to the weak reading of C. But if you like that particular
theory of mentioning, just replace ‘mentioned’ in P2 and C with ‘didn’t mention’ and the problem
will come back.
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Conjunctive Closure and Disjunctive Closure are sufficiently well-motivated when
understood as claims about the semantics of ordinary language. They may, never-
theless, be a good description of certain extensions of our standard linguistic prac-
tices that can naturally arise in theoretical contexts when the need to convey certain
propositions not semantically expressible according to the ordinary rules becomes
pressing.

The foregoing discussion barely scratches the surface of the question whether
and how type-neutral generalizations can be expressed in natural languages raises.
The approach using the closure principles is certainly not the only one; there may be
other, more flexible and systematic ways to generate the desired readings for Eng-
lish sentences like (45) and (46). I include this preliminary discussion here here
mainly as a warning against assuming that a deflationary, higher-order approach to
property-talk in English will inevitably require resisting the impulse to posit type-
neutral readings in such cases.

9 Conclusion: in defence of type-ambiguity

There is a canonical way to argue for the presence of ambiguity (understood as en-
compassing all forms of semanticmultiplicity) in a certain sentence: one identifies an
actual or possible scenario in which it is plausible that one speaker sincerely asserts
the sentence and another speaker sincerely denies it, even thoughneither speaker has
any false beliefs. I have not given this kind of argument for the sentential ambigu-
ities posited by my favoured approach—e.g., that ‘The property of being interesting
is interesting’ can mean int𝜎 int𝜎 for any type 𝜎. And it wouldn’t be easy to do so,
since our usage of this sentence doesn’t seem to display any of the usual telltale hall-
marks of ambiguity.66 Ordinary speakers are not, for example, disposed to feel that
anything is going wrong with arguments which, according to the theory, involve fal-
lacies of equivocation, such as ‘The property of being self-identical is self-identical, so
the property of being self-identical has the property of being self-identical, so some
properties instantiate themselves’. Relatedly, insofar as ordinary speakers have dir-
ect intuitions on the question, they seem to favour non-ambiguity. Opponents of the
type-ambiguity approach have seen these facts as constituting strong evidence for
their view: ‘the proponent of the typed conception must argue, appearances to the
contrary, that not only quantifiers but many predicates as well in ordinary language
are systematically ambiguous. Intuitively, that just seems wrong’ (Menzel 1986 (5),
crediting Chierchia 1984).

In response, I want to insist that the question whether to posit some form of se-
mantic multiplicity in a population’s language is a theoretical one, to which many
kinds of evidence are relevant, among which the specific patterns of usage sup-
posedly diagnostic of ambiguity and its absence play no privileged role. Indeed,

66Or at least not the relevant sort of ambiguity—there will of course be variation stemming from
different answers to the question ‘interesting to whom’, different thresholds, etc.
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compared to really central aspects of the linguistic practice, such as speakers’ tend-
ency to treat ‘instantiates the property of being 𝐹’ as interchangeable with ‘is 𝐹’, the
usage-dispositions constituting the “appearance of non-ambiguity” do not seempar-
ticularly firm or central. In support of this comparison, we can note that our over-
all suite of dispositions includes a disposition to fall into self-contradiction the first
time we encounter Russell’s paradox. When people are brought face to face with
that paradox, the usual result—visible across the philosophical literature—is an un-
easy wariness when it comes to expressions like ‘instantiates itself’, coupled with
a continued willingness to rely on Naïve Comprehension in ordinary contexts that
seem safely far from the paradox. Often, when trying to explain the paradox, people
pick some other word like ‘condition’ or ‘category’ that is essentially a synonym of
‘property’ and appeal to instances of Naïve Comprehension for it even while reject-
ing them for ‘property’: ‘For some conditions, such as not instantiating oneself, there
is no property instantiated by all and only the things that meet that condition’. It is
implausible that this reflects some permanent semantic contrast between, say, ‘con-
dition’ and ‘property’. Rather, this looks like an example of the common pattern
where we facilitate communication by associating two different words that are am-
biguous in the same way with different resolutions of ambiguity for the purposes of
some particular discourse.67

The widespread view that vagueness is or involves a kind of semantic multiplicity
provides extra reason to resist the idea that semantic multiplicity should be expec-
ted to show up in distinctive hallmarks of usage or speaker intuitions.68 For almost
all expressions are vague: avoiding vagueness normally takes luck and hard work.
And while we do often display implicit awareness of vagueness, we can also easy be
misled into thinking aword is not vaguewhen is, e.g. because its borderline cases are
rare, hard to notice, or modally remote.69 Of course, the type ambiguities I am de-
fending differ in important ways from those involved in ordinary vagueness.70 Nev-
ertheless, the picture of semantic multiplicity on which it is as pervasive as vague-
ness seems friendly to the type-ambiguity approach. If even unnoticed vagueness
involves semantic multiplicity, we should give little weight to objections to claims of

67For example, both ‘book’ and ‘volume’ are plausibly ambiguous (polysemous) between ‘inform-
ational’ and ‘physical’ readings (Liebesman andMagidorMS), but ‘Although there aremany volumes
on that shelf, there is only one book’ and ‘Although there are many books on that shelf, there is only
one volume’ are much better than ‘Although there are many books on that shelf, there is only one
book’.

68See Dorr unpublished for a defence of this view of vagueness, and a more general picture on
which semantic multiplicity is a ubiquitous feature of human language.

69Relativity and quantum physics present many examples where words that might have been pre-
cise if Newtonian physics had been correct turned out to be vague—e.g. position-predicates like ‘are
closer together than’, as applied to particles.

70With an ordinary vague word, it is always possible (and typically natural) to interpret all occur-
rences of the word within a given sentence or discourse uniformly; by contrast, our theory implies
that fully uniform resolution of type-ambiguity is sometimes not possible (because of the need to
assign types that permit Function Application).
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multiplicity that turn on appeals to speakers’ intuitions, or on their failure to exer-
cise the kinds of care that would be warranted if one were sensitive to the dangers of
equivocation. Rather, we should see multiplicity as the default outcome, and as es-
pecially liable to show up in interestingwayswhen there are internal tensionswithin
our overall package of usage-dispositions, whether or not we have noticed the ten-
sions or devised explicit techniques formanaging them. Given that such tensions are
clearly present in ordinary property-talk, it is prima facie plausible that they would
manifest in some sort of multiplicity. And while it is not initially obvious what form
this might take, the pervasive, but simple and systematic, multiplicity characteristic
of the type-ambiguity approach seems to me to be very much the sort of thing one
might have expected.
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Appendix A Systems of classical higher-order logic

In this appendix I will precisely characterize the syntax of the higher-order language
whose intelligibility I defended in §2, along with the system of classical higher-order
logic presupposed in the rest of the paper.

The first order of business is to specify the set of types to be used. This is slightly
more complex than the basic definition of simple types from §2 because I want to
exclude types like 𝑒 → 𝑒.

Definition 1. 𝕋 (the set of types) and𝕋0 (the set of “terminal” types) are the smallest
pair of sets meeting the following conditions:

𝑒 ∈ 𝕋 𝑡 ∈ 𝕋0
𝜏 ∈ 𝕋0
𝜏 ∈ 𝕋

𝜎 ∈ 𝕋 𝜏 ∈ 𝕋0
(𝜎 → 𝜏) ∈ 𝕋0

A𝕋-typed signature Σ is a function that maps some set of constants (strings excluding
certain special characters) to types in 𝕋.

Definition 2. For a given 𝕋-typed signature Σ, the higher-order languageℒ(Σ) is the
smallest relation ∶ between strings (terms) and 𝕋-types subject to the following con-
ditions:

𝜎 ∈ 𝕋
Var

𝑥𝜎𝑖 ∶ 𝜎
Σ(𝐶) = 𝜎

Const
𝐶 ∶ 𝜎

𝐴 ∶ 𝜎 → 𝜏 𝐵 ∶ 𝜎 App
(𝐴𝐵) ∶ 𝜏

𝐴 ∶ 𝜏 𝜏 ∈ 𝕋0 𝜎 ∈ 𝕋
Abs

(𝜆𝑥𝜎𝑖 .𝐴) ∶ 𝜎 → 𝜏

(→)
→∶ 𝑡 → 𝑡 → 𝑡

𝜎 ∈ 𝕋
(∀)

∀𝜎 ∶ (𝜎 → 𝑡) → 𝑡

We writeℒ(Σ)𝜎 for the set of all terms 𝐴 such that 𝐴 ∶ℒ(Σ) 𝜎.
We could, if we wished, add more logical constants, but for brevity we will make

do with → and ∀𝜎 and treat the rest as defined. The following definitions have the
advantage of making it espeically easy to prove that the defined expressions obey
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the expected logical rules:

⊥ ≔ ∀𝑝𝑡.𝑝
⊤ ≔ ⊥ → ⊥
¬ ≔ 𝜆𝑝𝑡.𝑝 → ⊥
∧ ≔ 𝜆𝑝𝑡𝑞𝑡.∀𝑟𝑡.(𝑝 → 𝑞 → 𝑟) → 𝑟
∨ ≔ 𝜆𝑝𝑡𝑞𝑡.∀𝑟𝑡.(𝑝 → 𝑟) → (𝑞 → 𝑟) → 𝑟
↔ ≔ 𝜆𝑝𝑡𝑞𝑡.(𝑝 → 𝑞) ∧ (𝑞 → 𝑝)
∃𝜎 ≔ 𝜆𝑋𝜎.∀𝑝𝑡.(∀𝑦𝜎.𝑋𝑦 → 𝑝) → 𝑝
=𝜎 ≔ 𝜆𝑥𝜎𝑦𝜎.∀𝑍𝜎→𝑡.𝑍𝑥 → 𝑍𝑦
≠𝜎 ≔ 𝜆𝑥𝜎𝑦𝜎.¬(𝑥 =𝜎 𝑦)

So much for the syntax of ℒ(Σ). Before characterizing the system of logic we
will be using, we need a few auxiliary syntactic notions.

Definition 3. For any term 𝐴 ∶ 𝜎 and type-𝜎 variable 𝑣, the substitution function [𝐴/𝑣]
is the function (written in postfix position) such that 𝑣[𝐴/𝑣] = 𝑣, 𝐶[𝐴/𝑣] = 𝐶 if 𝐶
is a constant or a variable other than 𝑣, (𝐵𝐶)[𝐴/𝑣] = 𝐵[𝐴/𝑣]𝐶[𝐴/𝑣], (𝜆𝑢.𝐵)[𝐴/𝑣] =
𝜆𝑢.(𝐵[𝐴/𝑣])when 𝑢 ≠ 𝑣, and (𝜆𝑣.𝐵)[𝐴/𝑣] = (𝜆𝑣.𝐵).

Definition 4. 𝐹𝑉 is the function fromℒ(Σ)-terms to sets of variables such that 𝐹𝑉(𝑣) =
{𝑣} for every variable 𝑣, 𝐹𝑉(𝐶) = ∅ for every constant 𝐶, 𝐹𝑉(𝐴𝐵) = 𝐹𝑉(𝐴) ∪ 𝐹𝑉(𝐵),
and 𝐹𝑉(𝜆𝑣.𝐴) = 𝐹𝑉(𝐴) − {𝑣}. For a set of terms Ξ, 𝐹𝑉(Ξ) = ⋃{𝐹𝑉(𝐴) ∶ 𝐴 ∈ Ξ}.

We read ‘𝑣 ∈ 𝐹𝑉(𝐴)’ as ‘𝑣 is free in 𝐴’.

Definition 5. Safe is the function from pairs comprising a variable and an ℒ(Σ)-
term to sets of variables such that Safe(𝑣, 𝐶) for any variable or constant 𝐶 is the set
of all variables, Safe(𝑣, 𝐴𝐵) = Safe(𝑣, 𝐴) ∪ Safe(𝑣, 𝐵), and Safe(𝑣, 𝜆𝑢.𝐴) = Safe(𝑣, 𝐴) if
𝑣 ∉ 𝐹𝑉(𝐴) and Safe(𝑣, 𝐴) − {𝑢} otherwise.71

We read ‘𝑢 ∈ Safe(𝑣, 𝐴)’ as ‘𝑢 is safe for 𝑣 in𝐴’ (or ‘𝑢 is in no danger of being captured
if we substitute something for 𝑣 in𝐴’); we say that a term 𝐵 is safely substitutable for
𝑣 in 𝐴 iff 𝐹𝑉(𝐵) ⊆ Safe(𝑣, 𝐴) and 𝐵 is of the same type as 𝑣.

Definition 6. ∼𝛽𝜂 (“beta-eta convertibility”) is the smallest binary relation ∼ on
71For a set of terms Ξ, Safe(𝑣, Ξ) = ⋂{Safe(𝑣, 𝐴) ∶ 𝐴 ∈ Ξ}.
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ℒ(Σ)-terms meeting the following conditions:

𝐴 ∶ 𝜎 Ref
𝐴 ∼ 𝐴

𝐴 ∼ 𝐵
Sym

𝐵 ∼ 𝐴
𝐴 ∼ 𝐵 𝐵 ∼ 𝐶

Trans
𝐴 ∼ 𝐶

𝐴 ∼ 𝐵 𝐶 ∼ 𝐷 (𝐴𝐶) ∶ 𝜏
App∼(𝐴𝐶) ∼ (𝐵𝐷)

𝐴 ∼ 𝐵
Abs∼(𝜆𝑣.𝐴) ∼ (𝜆𝑣.𝐵)

𝐹𝑉(𝐵) ⊆ Safe(𝑣, 𝐴)
𝛽

(𝜆𝑣.𝐴)𝐵 ∼ 𝐴[𝐵/𝑣]
𝑣 ∉ 𝐹𝑉(𝐴)

𝜂
(𝜆𝑣.𝐴𝑣) ∼ 𝐴

Here, the first five conditions amount to the requirement that ∼𝛽𝜂 is a congruence
relation (with respect to the syntactic operations of application and abstraction); the
central work is done by 𝛽 and 𝜂. 𝛽 allows for beta-conversion, as explained in §2. 𝜂
takes care of an edge case, guaranteeing that every predicate—even constants and
variables—can be converted into a lambda-term.72

Instead of the axiomatic proof systems used in much recent philosophical work
(e.g. Dorr, Hawthorne, and Yli-Vakkuri 2021, Bacon and Dorr 2024), I will present
the logic in the formof a natural-deduction system,whichmay bemore familiar. So, I
will identify the logicwith its derivability relation—a set of ordered pairs comprising
a finite set of formulae and a formula.73

Definition 7. For a 𝕋-typed signature Σ, the classical higher order logic H(Σ) is the
smallest relation ⊢ between finite subsets ofℒ(Σ)𝑡 and members ofℒ(Σ)𝑡 meeting

72In combinationwith 𝛽, 𝜂 also guarantees the convertibility of terms that differ only by a permuta-
tion of bound variables (“𝛼-equivalent” terms)—for so long as 𝑣 isn’t free in 𝐴 and 𝑢 is safe for 𝑣 in
𝐴, we will have 𝜆𝑢.𝐴 ∼𝛽𝜂 𝜆𝑣.(𝜆𝑢.𝐴)𝑣 ∼𝛽𝜂 𝜆𝑣.𝐴[𝑣/𝑢]. For more on the motivation for including 𝜂 in the
definition of convertibility, see Bacon 2023 (§3.3).

73Such ordered pairs are known as sequents. I will write Γ ▷ 𝑃 as a notational variant of ⟨Γ, 𝑃⟩, and
Γ ⊢ 𝑃 for (Γ ▷ 𝑃) ∈ ⊢.
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the following conditions:

𝑃 ∶ 𝑡 Assumption
𝑃 ⊢ 𝑃

Γ ⊢ 𝑃 𝑄 ∶ 𝑡
Weakening

Γ,𝑄 ⊢ 𝑃

Γ, 𝑃 ⊢ 𝑄
→Intro

Γ ⊢ 𝑃 → 𝑄
Γ ⊢ 𝑃 → 𝑄 Γ ⊢ 𝑃

→Elim
Γ ⊢ 𝑄

Γ ⊢ 𝑃 𝑣 ∉ 𝐹𝑉(Γ)
∀-intro

Γ ⊢ ∀𝑣.𝑃
Γ ⊢ ∀𝜎𝐹 𝐴 ∶ 𝜎

∀-Elim
Γ ⊢ 𝐹𝐴

Γ ⊢ ¬¬𝑃
DNE

Γ ⊢ 𝑃

Γ ⊢ 𝑃 𝑃 ∼𝛽𝜂 𝑄
conv

Γ ⊢ 𝑄

Using this definition, we can easily show that H(Σ) has various other handy proper-
ties:

• The standard introduction and elimination rules for all the other logical con-
stants are admissible in H(Σ)when they are defined as above.

• H(Σ) is transitive, in the sense that if Γ ⊢H(Σ) 𝑃 for all 𝑃 ∈ Δ and Γ, Δ ⊢H(Σ) 𝑄,
then Γ ⊢H(Σ) 𝑄.

• H(Σ) is substitution-invariant, in the sense that if Γ ⊢H(Σ) 𝑃 and 𝐹𝑉(𝐴) ⊆
Safe(𝑣, Γ ∪ {𝑃}), then Γ[𝐴/𝑣] ⊢H(Σ) 𝑃[𝐴/𝑣].

The logic H is quite weak. For example, while it has 𝑃 ↔ ¬¬𝑃 as a theorem for
every formula 𝑃, it does not have any theorems of the form 𝑃 =𝑡 ¬¬𝑃. Such questions
about “fineness of grain” cry out for some systematic treatment, so it is interesting to
consider strengthenings ofHwhich answer them. Themost commonly-encountered
such strengthening is a system I’ll call E (for ‘Extensionalism’), which may be char-
acterized as the result of adding the following rule of “extensional substitution” to
those of H:

Γ, 𝑃 ⊢ 𝑄 Γ,𝑄 ⊢ 𝑃 Γ,Δ ⊢ 𝑅[𝑃/𝑥𝑡] 𝐹𝑉(Γ) ⊆ Safe(𝑥𝑡, 𝑅)
Ext

Γ, Δ ⊢ 𝑅[𝑄/𝑥𝑡]

But while E is convenient for some purposes (such as that of formalizing mathemat-
ics), it has the problem that on the interpretationwe care about, some of its theorems
are manifestly false. Here is a representative example, with □ a nonlogical constant:
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⋮
H

𝑃 ↔ 𝑄,𝑃 ⊢ 𝑄

⋮
H

𝑃 ↔ 𝑄,𝑄 ⊢ 𝑃

⋮
H

𝑃 ↔ 𝑄,□𝑃 ⊢ □𝑃
Ext

𝑃 ↔ 𝑄,□𝑃 ⊢ □𝑄
→Intro

𝑃 ↔ 𝑄 ⊢ □𝑃 → □𝑄
→Intro

⊢ (𝑃 ↔ 𝑄) → □𝑃 → □𝑄

But this is no good: for example, if □ expresses some nontrivial form of necessity,
there will clearly be 𝑃 and 𝑄 for which 𝑃 ↔ 𝑄 and □𝑃 are true but □𝑄 is false.

To stake out a middle ground between H and E, we can weaken the extensional
substitution rule by requiring each of 𝑃 and 𝑄 to be derivable from the other on its
own, without reliance on the side-premises Γ. In other words, we close H under the
rule of substitution of logical equivalents:

𝑃 ⊢ 𝑄 𝑄 ⊢ 𝑃 Δ ⊢ 𝑅[𝑃/𝑥𝑡]
Subst

Δ ⊢ 𝑅[𝑄/𝑥𝑡]

The resulting system C (for ‘Classicism’) is explored in detail in Bacon and Dorr
2024. In it, we can—happily—no longer prove the likes of (𝑃 ↔ 𝑄) → □𝑃 → □𝑄.
But we can, for example, prove 𝑃 =𝑡 ¬¬𝑃: just set 𝑄 in Subst to be ¬¬𝑃 and 𝑅 to be
𝑃 =𝑡 𝑥 and note that 𝑃 ⊢H ¬¬𝑃 and ¬¬𝑃 ⊢H 𝑃.

Even H is fraught with controversy—the rule of beta-conversion, in particular,
has been rejected for various metaphysically interesting reasons (Dorr 2016: §5).74
Nevertheless, as the ubiquitous invocations of 𝛽-conversion in the semantic deriva-
tions in this paper show, H is a rather convenient logic to have in the background
when we are doing natural language semantics. Without 𝛽-conversion to simplify
things, the only theorems we could derive about the denotations of even moder-
ately complex natural-language sentences involve hard-to-parse towers of lambda-
abstractions. Of course, even if we reject full 𝛽-conversion, we might hold on to have
the Extensional Beta schema discussed in note 4, meaning that the denotations we
come up with will typically be provably coextensive to the ones we would have de-
rived using beta-conversion; one might argue that this is all we should want given
the fine-grained metaphysical views that motivate the rejection of beta-conversion.
Still, H is quite helpful if only as a simplifying hypothesis. In fact the same goes
for C, which is much more metaphysically controversial than H. Typically when we
are trying to account for the meaning of some natural language sentence, we will be
happy enough if we can derive an interpretation that is correct “up to logical equi-
valence”. For example, if one theory says that ‘no human is immortal’ expresses
¬∃𝑥𝑒.human𝑒 𝑥 ∧ immortal𝑒 𝑥 and another says that it expresses ∀𝑥𝑒.human𝑒 𝑥 →
¬ immortal𝑒 𝑥, then even if we think that these propositions are distinct, so long as
we accept their logical equvivalence we will be happy to take a “spoils to the victor”

74See Dorr, Hawthorne, and Yli-Vakkuri 2021 (ch. 1) for a weaker system H0 that replaces beta-
conversion with Extensional Beta (note 4).
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attitude to the question which one ‘no human is immortal’ expresses. Even though
this paper hasn’t dealt with the kinds of phenomena where appealing to C would
lead to a substantial simplification, I anticipate that many working semanticists will
find it easier to adapt their usual practice to the setting of higher-order logic if they
allow themselves a relatively coarse-grained logic like C.

Appendix B Adding sum-types

Definition 8. The sets of extended types 𝕋+ and extended terminal types 𝕋+0 are the
smallest pair of sets satisfying all the conditions in Definition 1, together with

𝛼 ∈ 𝕋 𝛽 ∈ 𝕋
(+)

𝛼 + 𝛽 ∈ 𝕋

Definition 9. For a given 𝕋+-typed signature Σ, the extended higher-order language
ℒ +(Σ) over Σ is the smallest relation ∶ between strings and 𝕋+-types subject to all
the conditions in Definition 2 together with the following three:

𝐴 ∶ 𝛼 𝛽 ∈ 𝕋+
𝜄1

𝜄1𝛽𝐴 ∶ 𝛼 + 𝛽

𝐴 ∶ 𝛽 𝛼 ∈ 𝕋+
𝜄2

𝜄2𝛼𝐴 ∶ 𝛼 + 𝛽

𝐴 ∶ 𝛼 + 𝛽 𝐵 ∶ 𝛾 𝐶 ∶ 𝛾
𝛿

𝛿𝐴(𝑥𝛼𝑖 . 𝐵)(𝑦𝛽𝑗 . 𝐶) ∶ 𝛾

The intuition for 𝛿𝐴(𝑢𝛼. 𝐵)(𝑣𝛽. 𝐶) is that if𝐴 is the representative of something of type
𝛼 it will denote the same thing that 𝐵 denotes when 𝑢𝛼 is assigned to that thing, and
if 𝐴 is the representative of something of type 𝛽, it denotes the same thing that 𝐶 de-
noteswhen 𝑣𝛽 it is assigned to that thing. The term-building operation ⟨⟨ ⟩⟩used in the
main text is defined by a combination of lambda-abstraction and delta-application:
when 𝐹 ∶ 𝛼 → 𝜏 and 𝐺 ∶ 𝛽 → 𝜏, ⟨⟨𝐹, 𝐺⟩⟩ is short for 𝜆𝑥𝛼+𝛽.𝛿𝑥(𝑦𝛼. 𝐹𝑦)(𝑧𝛽. 𝐺𝑧), where
𝑥, 𝑦, 𝑧 are arbitrarily chosen variables not free in 𝐹 or 𝐺.75

The auxiliary syntactic notions we defined forℒ all extend naturally toℒ +:

Definition 10. The substitution operation [𝐴/𝑣] on ℒ +(Σ) is defined by the same
clauses as in Definition 3, plus:

• (𝜄1𝛼𝐵)[𝐴/𝑣] = 𝜄1𝛼(𝐵[𝐴/𝑣])

• (𝜄2𝛽𝐵)[𝐴/𝑣] = 𝜄2𝛽(𝐵[𝐴/𝑣])

• 𝛿𝐵(𝑥. 𝐶)(𝑦.𝐷)[𝐴/𝑣] = 𝛿𝐵[𝐴/𝑣](𝑥. 𝐶[𝐴/𝑣])(𝑦.𝐷[𝐴/𝑣])when 𝑣 ≠ 𝑥 and 𝑣 ≠ 𝑦

• 𝛿𝐵(𝑥. 𝐶)(𝑦.𝐷)[𝐴/𝑥] = 𝛿𝐵[𝐴/𝑥](𝑥. 𝐶)(𝑦.𝐷[𝐴/𝑥]) when 𝑥 ≠ 𝑦
75If we wanted to ⟨⟨ ⟩⟩ to be primitive, we could define 𝛿𝐴(𝑢𝛼. 𝐵)(𝑣𝛽. 𝐶) as ⟨⟨𝜆𝑢𝛼.𝐵, 𝜆𝑣𝛽.𝐶⟩⟩𝐴. But this

works only when the type 𝛾 of 𝐵 and 𝐶 is a terminal type. Taking ⟨⟨ ⟩⟩ as primitive would give us no
analogue of, for example, the delta-application 𝛿𝐴(𝑥𝛼. 𝜄2𝛽𝑥)(𝑦𝛽. 𝜄1𝛼𝑦), which turns 𝐴 ∶ 𝛼 + 𝛽 into a term
of type 𝛽 + 𝛼.
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• 𝛿𝐵(𝑥. 𝐶)(𝑦.𝐷)[𝐴/𝑦] = 𝛿𝐵[𝐴/𝑦](𝑥. 𝐶[𝐴/𝑦])(𝑦.𝐷) when 𝑥 ≠ 𝑦

• 𝛿𝐵(𝑥. 𝐶)(𝑥.𝐷)[𝐴/𝑥] = 𝛿𝐵[𝐴/𝑥](𝑥. 𝐶)(𝑥.𝐷).

Definition 11. 𝐹𝑉 is defined on ℒ + by the same clauses as in Definition 4, plus
𝐹𝑉(𝜄1𝛽𝐴) = 𝐹𝑉(𝐴), 𝐹𝑉(𝜄2𝛼𝐴) = 𝐹𝑉(𝐴), and 𝐹𝑉(𝛿𝐴(𝑢. 𝐵)(𝑣. 𝐶)) = 𝐹𝑉(𝐴) ∪ (𝐹𝑉(𝐵) − 𝑢) ∪
(𝐹𝑉(𝐶) − 𝑣).

Definition 12. Safe is defined on ℒ + by the same clauses as in Definition 4, plus
Safe(𝑣, 𝜄1𝛽𝐴) = Safe(𝑣, 𝐴), Safe(𝑣, 𝜄2𝛼𝐴) = Safe(𝑣, 𝐴), and Safe(𝑣, 𝛿𝐴(𝑥. 𝐵)(𝑦. 𝐶)) = Safe(𝑣, 𝐴)∩
Safe(𝑣, 𝐵)∩Safe(𝑣, 𝐶) if 𝑣 ≠ 𝑥 and 𝑣 ≠ 𝑦, Safe(𝑥, 𝛿𝐴(𝑥. 𝐵)(𝑦. 𝐶)) = Safe(𝑥, 𝐴)∩(Safe(𝑥, 𝐵)−
{𝑥}) ∩ Safe(𝑣, 𝐶) and Safe(𝑦, 𝛿𝐴(𝑥. 𝐵)(𝑦. 𝐶)) = Safe(𝑦, 𝐴) ∩ Safe(𝑦, 𝐵) ∩ (Safe(𝑦, 𝐶) − {𝑦})
if 𝑥 ≠ 𝑦, and Safe(𝑥, 𝛿𝐴(𝑥. 𝐵)(𝑥. 𝐶)) = Safe(𝑥, 𝐴) ∩ ((Safe(𝑥, 𝐵) ∩ Safe(𝑥, 𝐶)) − {𝑥}).

Definition 13. The conversion relation∼𝛽𝜂+ is the smallest smallest binary relation∼
on terms ofℒ +(Σ) obeying all the conditions in the definition of ∼𝛽𝜂 (Definition 6),
together with six further conditions:

𝐴 ∼ 𝐵

𝜄1𝛽𝐴 ∼ 𝜄1𝛽𝐵

𝐴 ∼ 𝐵

𝜄2𝛼𝐴 ∼ 𝜄2𝛼𝐵

𝐴 ∼ 𝐷 𝐵 ∼ 𝐸 𝐶 ∼ 𝐹

𝛿𝐴(𝑢𝛼. 𝐵)(𝑣𝛽. 𝐶) ∼ 𝛿𝐷(𝑢𝛼. 𝐸)(𝑣𝛽. 𝐹)

𝐹𝑉(𝐴) ⊆ Safe(𝑢𝛼, 𝐵)
𝛽1+

𝛿(𝜄1𝛽𝐴)(𝑢𝛼. 𝐵)(𝑣𝛽. 𝐶) ∼ 𝐵[𝐴/𝑢𝛼]

𝐹𝑉(𝐴) ⊆ Safe(𝑣𝛽, 𝐵)
𝛽2+

𝛿(𝜄2𝛼𝐴)(𝑢𝛼. 𝐵)(𝑣𝛽. 𝐶) ∼ 𝐶[𝐴/𝑣𝛽]

𝑢𝛼, 𝑣𝛽 ∉ 𝐹𝑉(𝐵) 𝐹𝑉(𝐴) ∪ {𝑢𝛼, 𝑣𝛽} ⊆ Safe(𝑥𝛼+𝛽, 𝐵)
𝜂+

𝛿𝐴(𝑢𝛼. 𝐵[𝜄1𝛽𝑢𝛼/𝑥𝛼+𝛽])(𝑣𝛽. 𝐵[𝜄2𝛼𝑣𝛽/𝑥𝛼+𝛽]) ∼ 𝐵[𝐴/𝑥𝛼+𝛽]

Here, the first three conditions merely guarantee that ∼𝛽𝜂+ will still be a congru-
ence with respect to the new term-forming operations. The next two conditions are
the analogues, in the system with delta-application as primitive, of the “injection-
conversion” rules ⟨⟨𝐹, 𝐺⟩⟩𝜄1𝛽𝐴 ∼ 𝐹𝐴 and ⟨⟨𝐹, 𝐺⟩⟩𝜄2𝛼𝐵 ∼ 𝐺𝐵, and yield them as theor-
ems: ⟨⟨𝐹, 𝐺⟩⟩𝜄1𝛽𝐴 is (𝜆𝑥𝛼+𝛽.𝛿𝑥(𝑦𝛼. 𝐹𝑦)(𝑧𝛽. 𝐺𝑧))𝜄1𝛽𝐴 (where 𝑥, 𝑦, 𝑧 are not free in 𝐹, 𝐺, or
𝐴), which 𝛽-converts to 𝛿(𝜄1𝛽𝐴)(𝑦𝛼. 𝐹𝑦)(𝑧𝛽. 𝐺𝑧), which 𝛽1+-converts to (𝐹𝑦)[𝐴/𝑦], which
is just 𝐹𝐴 since 𝑦 isn’t free in 𝐹; similarly for the other rule. 𝜂+, finally, plays a role
analogous to that of 𝜂. If 𝐴 was already of the form 𝜄1𝛽𝐶, the instance of 𝜂+ would
also be an instance of 𝛽1+ (since then 𝐵[𝜄1𝛽𝑢/𝑥][𝐶/𝑢] = 𝐵[𝜄1𝛽𝐶/𝑥] = 𝐵[𝐴/𝑥]) and similarly
if 𝐴 was already of the form 𝜄2𝛼𝐷; so 𝜂+ merely ensures that all terms of type 𝛼 + 𝛽
behave like these paradigm terms, just as 𝜂 guarantees that all terms of type 𝛼 → 𝛾
behave like the paradigm such terms, namely those of the form 𝜆𝑣𝛼.𝐴where 𝐴 ∶ 𝛾.

Note that ℒ + does not have any new logical constants beyond those of ℒ: in-
stead, we treat each quantifier ∀𝛼, where 𝛼 is an 𝕋+-type that is not an 𝕋-type, as
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defined in terms of the basic logical constants already present inℒ. The definitions
are a little involved; I give them below.

Definition 14. The logic H+(Σ) is defined by the same clauses as Definition 7, with
∼𝛽𝜂+ replacing ∼𝛽𝜂 in the conv rule, and one new rule:

Γ ⊢ 𝑃[𝜄1𝛽𝑢𝛼/𝑧𝛼+𝛽] Γ ⊢ 𝑃[𝜄2𝛼𝑣𝛽/𝑧𝛼+𝛽] 𝐹𝑉(𝐴) ⊆ Safe(𝑧𝛼+𝛽, 𝑃) 𝑢𝛼, 𝑣𝛽 ∉ 𝐹𝑉(Γ ∪ {𝑃})
Sum-Subst

Γ ⊢ 𝑃[𝐴/𝑧𝛼+𝛽]

Note that since we don’t have logical constants ∀𝛼 unless 𝛼 is a type in 𝕋, the quan-
tifier rules in this definition are to be understood as restricted to this case. However,
as we will show below when we have defined ∀𝛼 for extended types, H+ is in fact
also closed under ∀Intro and ∀Elim for other types.

Intuitively, Sum-Subst captures the idea that everything of type 𝛼+𝛽 is either 𝜄1𝛽𝑢𝛼

for some 𝑢𝛼 or 𝜄2𝛼𝑣𝛽 for some 𝑣𝛽. Given the extended quantifier rules, we can prove
this straightforwardly from Sum-Subst:

=Intro
⊢ 𝜄1𝛽𝑢𝛼 =𝛼+𝛽 𝜄1𝛽𝑢𝛼

∃Intro
⊢ ∃𝑥𝛼.𝜄1𝛽𝑢𝛼 =𝛼+𝛽 𝜄1𝛽𝑥

∨Intro
⊢ (∃𝑥𝛼.𝜄1𝛽𝑢𝛼 =𝛼+𝛽 𝜄1𝛽𝑥) ∨ (∃𝑦𝛽.𝜄1𝛽𝑢𝛼 =𝛼+𝛽 𝜄2𝛼𝑦)

=Intro
⊢ 𝜄2𝛼𝑣𝛽 =𝛼+𝛽 𝜄2𝛼𝑣𝛽

∃Intro
⊢ ∃𝑦𝛽.𝜄2𝛼𝑣𝛽 =𝛼+𝛽 𝜄2𝛼𝑦

∨Intro
⊢ (∃𝑥𝛼.𝜄2𝛼𝑣𝛽 =𝛼+𝛽 𝜄1𝛽𝑥) ∨ (∃𝑦𝛽.𝜄2𝛼 =𝛼+𝛽 𝜄2𝛼𝑦)

Sum-Subst
⊢ (∃𝑥𝛼.𝑧𝛼+𝛽 =𝛼+𝛽 𝜄1𝛽𝑥) ∨ (∃𝑦𝛽.𝑧𝛼+𝛽 =𝛼+𝛽 𝜄1𝛼𝑦)

∀Intro
⊢ ∀𝑧𝛼+𝛽.(∃𝑥𝛼.𝑧 =𝛼+𝛽 𝜄1𝛽𝑥) ∨ (∃𝑦𝛽.𝑧 =𝛼+𝛽 𝜄1𝛼𝑦)

In the presence of the quantifier rules for extended types, Sum-Subst is actually equi-
valent to this axiom. But Sum-Subst is used in deriving these rules.

Finally, we can define analogues of Classicism and Extensionalism for the exten-
ded language in the obvious way: C+ is the result of closing H+ under Subst, and
E+ is the result of closing H+ under Ext. In C+—and, a fortiori, in H+—Sum-Subst
need not be taken as primitive, since it can be derived from Subst. Let ⋀Γ be the
conjunction of the finite set Γ, 𝑥𝛼 and 𝑦𝛽 variables not free in Γ, and 𝑧𝛼+𝛽 a variable
for which 𝐴 is safe in 𝑃:

H
Γ ⊢ ⋀Γ

𝜂+
Γ ⊢ 𝛿𝐴(𝑥𝛼.⋀Γ)(𝑦𝛽.⋀Γ)

Γ ⊢ 𝑃[𝜄1𝛽𝑥𝛼/𝑧]
H

⋀Γ ⊣⊢ 𝑃[𝜄1𝛽𝑥𝛼/𝑧] ∧ ⋀Γ
Subst

Γ ⊢ 𝛿𝐴(𝑥𝛼. 𝑃[𝜄1𝛽𝑥𝛼/𝑧] ∧ ⋀Γ)(𝑦𝛽.⋀Γ)

Γ ⊢ 𝑃[𝜄2𝛼𝑦𝛽/𝑧]
H

⋀Γ ⊣⊢ 𝑃[𝜄2𝛼𝑦𝛽/𝑧] ∧ ⋀Γ
Subst

Γ ⊢ 𝛿𝐴(𝑥𝛼. 𝑃[𝜄1𝛽𝑥𝛼/𝑧] ∧ ⋀Γ)(𝑦𝛽. 𝑃[𝜄2𝛼𝑦𝛽/𝑧] ∧ ⋀Γ)
𝜂+

Γ ⊢ 𝑃[𝐴/𝑧] ∧ ⋀Γ
∧-Elim

Γ ⊢ 𝑃[𝐴/𝑧]
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In order to define ∀𝛼 where 𝛼 is an extended type, we will need a cluster of new
definitions. These will also be useful in the next section, when we are showing how
to eliminate the extended types.

Definition 15. We recursively define two subsets 𝕋1 and 𝕋2 of (𝕋+0 − 𝕋); a map-
ping ⋅′ ∶ 𝕋1 → 𝕋+0 ; mappings ⋅∗ and ⋅∗ ∶ 𝕋2 → 𝕋+0 ; for each 𝛼 ∈ 𝕋1, functions ∇𝛼 ∶
ℒ +(Σ)𝛼 → ℒ +(Σ)𝛼′ and Δ𝛼 ∶ ℒ +(Σ)𝛼′ → ℒ +(Σ)𝛼; and for each 𝛼 ∈ 𝕋2, functions
∇ 1
𝛼 ∶ ℒ +(Σ)𝛼 →ℒ +(Σ)𝛼∗, ∇ 2

𝛼 ∶ ℒ +(Σ)𝛼 →ℒ +(Σ)𝛼∗, and Δ𝛼 ∶ ℒ +(Σ)𝛼∗ ×ℒ +(Σ)𝛼∗ →
ℒ +(Σ)𝛼, as follows (where in each case the variables 𝑥, 𝑦 are chosen to not be free in
the terms 𝐴,𝐵):

• If 𝜏 ∈ 𝕋, then 𝛼 + 𝛽 → 𝜏 ∈ 𝕋2, and

(𝛼 + 𝛽 → 𝜏)∗ = 𝛼 → 𝜏 (𝛼 + 𝛽 → 𝜏)∗ = 𝛽 → 𝜏
∇ 1
𝛼+𝛽→𝜏(𝐴) ≔ 𝜆𝑥𝛼.𝐴𝜄1𝛽𝑥 ∇ 2

𝛼+𝛽→𝜏(𝐴) ≔ 𝜆𝑦𝛽.𝐴𝜄2𝛼𝑦 Δ𝛼+𝛽→𝜏(𝐵, 𝐶) ≔ ⟨⟨𝐵, 𝐶⟩⟩

• If 𝜏 ∈ 𝕋 and 𝛼 ∈ 𝕋2, then 𝛼 → 𝜏 ∈ 𝕋1, and

(𝛼 → 𝜏)′ = 𝛼∗ → 𝛼∗ → 𝜏
∇𝛼→𝜏(𝐴) ≔ 𝜆𝑥𝛼∗𝑦𝛼∗.𝐴Δ𝛼(𝑥, 𝑦) Δ𝛼→𝜏(𝐵) ≔ 𝜆𝑥𝛼.𝐵∇ 1

𝛼(𝑥)∇ 2
𝛼(𝑥)

• If 𝜏 ∈ 𝕋 and 𝛼 ∈ 𝕋1, then 𝛼 → 𝜏 ∈ 𝕋1, and

(𝛼 → 𝜏)′ ≔ 𝛼′ → 𝜏 ∇𝛼→𝜏(𝐴) ≔ 𝜆𝑥𝛼′.𝐴Δ𝛼(𝑥) Δ𝛼→𝜏(𝐵) ≔ 𝜆𝑥𝛼.𝐴∇𝛼(𝑥)

• If 𝛽 ∈ 𝕋2, then 𝛼 → 𝛽 ∈ 𝕋2, and

(𝛼 → 𝛽)∗ = 𝛼 → 𝛽∗ (𝛼 → 𝛽)∗ = 𝛼 → 𝛽∗
Δ𝛼→𝛽(𝐴, 𝐵) = 𝜆𝑥𝛼.Δ𝛽(𝐴𝑥, 𝐵𝑥) ∇ 1

𝛼→𝛽(𝐴) = 𝜆𝑥𝛼.∇ 1
𝛽 (𝐴𝑥) ∇ 2

𝛼→𝛽(𝐴) = 𝜆𝑥𝛼.∇ 2
𝛽 (𝐴𝑥)

• If 𝛽 ∈ 𝕋1, then 𝛼 → 𝛽 ∈ 𝕋1, and

(𝛼 → 𝛽)′ = 𝛼 → 𝛽′ Δ𝛼→𝛽(𝐴) = 𝜆𝑥𝛼.Δ𝛽(𝐴𝑥) ∇𝛼→𝛽(𝐴) = 𝜆𝑥𝛼.∇𝛽(𝐵𝑥)

This is a legitimate recursive definition, since when 𝛼 is in 𝕋+1 , 𝛼′ contains fewer oc-
currences of + than 𝛼, and when 𝛼 is in𝕋+2 , both 𝛼∗ and 𝛼∗ contain fewer occurrences
of + than 𝛼. Moreover, we can straightforwardly check that for every type in 𝕋+ is
either in 𝕋, in 𝕋1, in 𝕋2, or of the form 𝛼 + 𝛽. Thus, repeated application of ⋅′, ⋅∗, and
⋅∗ will reduce any type to either a sum-type or a 𝕋-type.

The key property of these definitions is that the Δ and ∇ operations are “in-
verses”, in a sense made precise by the following lemma:
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Lemma 16.

Δ𝛼(∇𝛼(𝐴)) ∼𝛽𝜂+ 𝐴 for 𝛼 ∈ 𝕋+1
∇𝛼(Δ𝛼(𝐴)) ∼𝛽𝜂+ 𝐴 for 𝛼 ∈ 𝕋+1

Δ𝛼(∇ 1
𝛼(𝐴), ∇ 2

𝛼(𝐴)) ∼𝛽𝜂+ 𝐴 for 𝛼 ∈ 𝕋+2
∇ 1
𝛼(Δ𝛼(𝐴, 𝐵)) ∼𝛽𝜂+ 𝐴 for 𝛼 ∈ 𝕋+2

∇ 2
𝛼(Δ𝛼(𝐴, 𝐵)) ∼𝛽𝜂+ 𝐵 for 𝛼 ∈ 𝕋+2

This is proved by an induction on types, appealing to 𝛽+ and 𝜂+ for the base cases of
types of the form 𝛼 + 𝛽 → 𝜏.

Using this systemof isomorphisms, we can introduce the quantifiers for extended
types:

Definition 17. The quantifiers ∀𝛼 for𝕋+-types 𝛼 that are not in𝕋 are defined recurs-
ively as follows:

∀𝛼+𝛽 ≔ 𝜆𝑋𝛼+𝛽.(∀𝑦𝛼.𝑋𝜄1𝛽𝑦) ∧ (∀𝑧𝛽.𝑋𝜄2𝛼𝑧)
∀𝛼 ≔ 𝜆𝑋𝛼.∀𝑦𝛼∗𝑧𝛼∗.𝑋Δ𝛼(𝑦, 𝑧) when 𝛼 ∈ 𝕋+2
∀𝛼 ≔ 𝜆𝑋𝛼.∀𝑦𝛼′.𝑋Δ𝛼(𝑦) when 𝛼 ∈ 𝕋+1

Since the types of quantifiers on the right always contain fewer occurrences of+ than
the ones on the left, this gives a well-formed definition for each ∀𝛼.

Given these definitions, we can establish the following important fact:

Theorem 18. H+ is closed under ∀Intro and ∀Elim for all the quantifiers ∀𝛼.

Proof. By induction on the construction of the type-subscript of ∀𝛼. The base case is that of a
simple type 𝜎. Then both claims hold since in that case ∀𝜎𝑣𝑃 ∼𝛽 ∀𝑣 ∶ 𝜎. 𝑃′. For the induction
step, there are three cases, depending on whether the type is a sum-type, a member of 𝕋2,
or a member of 𝕋1.

(i) For a sum-type 𝛼 + 𝛽, we use the following derivations. On both sides, 𝑦𝛼 and 𝑧𝛽 are
variables that don’t occur in Γ or 𝑃; on the right, 𝑣𝛼+𝛽 is also required not to be free in Γ. Steps
labeled ‘SI’ are justified by the substitution-invariance of H+.

Γ ⊢ ∀𝑣𝛼+𝛽.𝑃
Df.∀𝛼, conv

Γ ⊢ ∀𝑦𝛼.𝑃[𝜄1𝛽𝑦/𝑣] ∧ ∀𝑧𝛽.𝑃[𝜄2𝛼𝑧/𝑣]
∧Elim

Γ ⊢ ∀𝑦𝛼.𝑃[𝜄1𝛽𝑦/𝑣]
IH

Γ ⊢ 𝑃[𝜄1𝛽𝑦/𝑣]

Γ ⊢ ∀𝑧𝛽.𝑃[𝜄2𝛼𝑧/𝑣]
IH

Γ ⊢ 𝑃[𝜄2𝛼𝑧/𝑣]
Sum-Subst

Γ ⊢ 𝑃[𝐴/𝑣]

Γ ⊢ 𝑃
SI

Γ ⊢ 𝑃[𝜄1𝛽𝑦/𝑣]
IH

Γ ⊢ ∀𝑦𝛼.𝑃[𝜄1𝛽𝑦/𝑣]

Γ ⊢ 𝑃
SI

Γ ⊢ 𝑃[𝜄2𝛼𝑧/𝑣]
IH

Γ ⊢ ∀𝑧𝛽.𝑃[𝜄2𝛼𝑧/𝑣]
∧Intro

Γ ⊢ ∀𝑦𝛼.𝑃[𝜄1𝛽𝑦/𝑣] ∧ ∀𝑧𝛽.𝑃[𝜄2𝛼𝑧/𝑣]
conv, Df.∀𝛼+𝛽

Γ ⊢ ∀𝑣𝛼+𝛽.𝑃
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(ii) For a type 𝜎 ∈ 𝕋1, we reason as follows:

Γ ⊢ ∀𝛼𝑣.𝑃
Df. ∀𝛼, conv

Γ ⊢ ∀𝑦𝛼′.𝑃[Δ𝛼(𝑦)/𝑣]
IH

Γ ⊢ 𝑃[Δ𝛼(∇𝛼(𝐴))/𝑣]
Lemma 16

Γ ⊢ 𝑃[𝐴/𝑣]

Γ ⊢ 𝑃
SI

Γ ⊢ 𝑃[Δ𝛼(𝑦)/𝑣]
IH

Γ ⊢ ∀𝑦𝛼′.𝑃[Δ𝛼(𝑦)/𝑣]
conv, Df.∀𝛼

Γ ⊢ ∀𝑣𝛼.𝑃

(iii) For a type 𝛼 ∈ 𝕋2, we reason as follows:

Γ ⊢ ∀𝑣𝛼.𝑃
Df. ∀𝛼, conv

Γ ⊢ ∀𝑦𝛼∗𝑧𝛼∗.𝑃[Δ𝛼(𝑦, 𝑧)/𝑣]
IH

Γ ⊢ ∀𝑧𝛼∗.𝑃[Δ𝛼(∇ 1
𝛼(𝐴), 𝑧)/𝑣]

IH
Γ ⊢ 𝑃[Δ𝛼(∇ 1

𝛼(𝐴), ∇ 2
𝛼(𝐴))/𝑣]

Lemma 16
Γ ⊢ 𝑃[𝐴/𝑣]

Γ ⊢ 𝑃
SI

Γ ⊢ 𝑃[Δ𝛼(𝑦, 𝑧)/𝑣]
IH

Γ ⊢ ∀𝑧𝛼∗.𝑃[Δ𝛼(𝑦, 𝑧)/𝑣]
IH

Γ ⊢ ∀𝑦𝛼∗𝑧𝛼∗.𝑃[Δ𝛼(𝑦, 𝑧)/𝑣]
conv, Df.∀𝛼

Γ ⊢ ∀𝑣𝛼.𝑃

We could equally well have defined H+ using the full versions of ∀Intro and
∀Elim and leaving out Sum-Subst, since that rule is derivable from ∀Elim given the
definition of ∀𝛼+𝛽.76 Note however that this depends crucially on the definition of
∀𝛼+𝛽. If we had chosen instead to take ∀𝛼 as primitive for every 𝕋+-type, Sum-Subst
would not have been derivable even assuming ∀Intro and ∀Elim in every type.77

Appendix C Dispensing with sum-types

This appendixwill describemappings that turn any𝕋+-signatureΣ into a𝕋-signature
Σ† (that includes all the 𝕋-typed constants of Σ), and turn any sentence 𝑃 ofℒ +(Σ)
into a sentence 𝑃† ofℒ(Σ†), in a way that faithfully preserves logical relationships:
Γ ⊢H+(Σ) 𝑃 iff Γ† ⊢H(Σ†) 𝑃†.78 The point is to take a theory 𝑇 in some extended
language ℒ +(Σ) and replace it with a new theory 𝑇† (in ℒ(Σ†)), that has exactly

76Where 𝑢𝛼 and 𝑣𝛽 aren’t free in Γ or 𝑃 and 𝐴 is safe for 𝑧𝛼+𝛽 in 𝑃:

Γ ⊢ 𝑃[𝜄1𝛽𝑢𝛼/𝑧𝛼+𝛽]
∀Intro

Γ ⊢ ∀𝑢𝛼.𝑃[𝜄1𝛽𝑢𝛼/𝑧𝛼+𝛽]

Γ ⊢ 𝑃[𝜄2𝛼𝑣𝛽/𝑧𝛼+𝛽]
∀Intro

Γ ⊢ ∀𝑣𝛽.𝑃[𝜄1𝛽𝑣𝛽/𝑧𝛼+𝛽]
∧Intro

Γ ⊢ (∀𝑢𝛼.𝑃[𝜄1𝛽𝑢𝛼/𝑧𝛼+𝛽]) ∧ (∀𝑣𝛽.𝑃[𝜄1𝛽𝑣𝛽/𝑧𝛼+𝛽])
Df.∀𝛼+𝛽, conv

Γ ⊢ ∀𝑧𝛼+𝛽.𝑃
∀Elim

Γ ⊢ (𝜆𝑧𝛼+𝛽.𝑃)𝐴
conv

Γ ⊢ 𝑃[𝐴/𝑧𝛼+𝛽]

77This can be shown by constructing a simple model, but I will not describe it here.
78Γ† here is {𝑄† ∶ 𝑄 ∈ Γ}; we lift other functions from formulae to sets of formulae analogously.
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the same consequences as 𝑇 in the simply-typed fragment ℒ(Σ0) of the original
language (where Σ0 is the restriction of Σ to 𝕋-typed constants). Assuming the
facts we are trying to explain (e.g., meaning-facts of the form 𝐴 ⦙𝑡 s𝑃) can be stated
in ℒ(Σ0), this means that we could explain them just as well by appealing to 𝑇†,
without thereby incurring any potentially problematic commitments to new sen-
tences ofℒ(Σ0).

The key to this mapping is a result from Prawitz (1965: ch. IV). To state it, we
define the obvious syntactic “containment” relations on extended types and terms:

• ≤𝕋+ is the smallest relation ≤ on 𝕋+ such that for all 𝛼, 𝛽 ∈ 𝕋+ and 𝛾 ∈ 𝕋+0 :
𝛼 ≤ 𝛼, 𝛼 ≤ 𝛼 → 𝛾, 𝛾 → 𝛼 → 𝛾, 𝛼 ≤ 𝛼 + 𝛽, and 𝛽 ≤ 𝛼 + 𝛽.

• ≤ℒ +(Σ) is the smallest relation≤ onℒ +(Σ) such that for all terms𝐴,𝐵 ∈ ℒ +(Σ):
𝐴 ≤ 𝐴, 𝐴 ≤ 𝐴𝐵, 𝐵 ≤ 𝐴𝐵, 𝐴 ≤ 𝜆𝑣.𝐴, 𝐴 ≤ 𝜄1𝛼𝐴, 𝐴 ≤ 𝜄2𝛼𝐴, 𝐴 ≤ 𝛿𝐴(𝑢. 𝐵)(𝑣. 𝐶),
𝐵 ≤ 𝛿𝐴(𝑢. 𝐵)(𝑣. 𝐶), and 𝐶 ≤ 𝛿𝐴(𝑢. 𝐵)(𝑣. 𝐶), whenever these are well-formed.

Say that a term 𝐴 has the subterm property iff for any terms 𝐵 ∶ 𝛽 and 𝐶 ∶ 𝛾, if 𝐵 is
contained in 𝐴 and 𝐶 is contained in 𝐵, then 𝛾 is either contained in 𝛽, contained in
the type of some free variable in 𝐵, or contained in the type of some constant in 𝐵.
Then the result we’ll need is the following:

Theorem 19 (Prawitz). There is a “normalization” function ⇓ onℒ +(Σ)-terms such
that for everyℒ +-term 𝐴: (i) 𝐴 ∼𝛽𝜂+ ⇓𝐴; (ii) if 𝐴 is anℒ(Σ0)-term, 𝐴 ∼𝛽𝜂 ⇓𝐴; (iii)
⇓(𝐴[𝐵/𝑣]) = ⇓(𝐴[⇓𝐵/𝑣]); (iv) ⇓𝐴 contains no termsmatching the left-hand-side of the
𝛽, 𝛽1+, or 𝛽2+ rules; (v) 𝐹𝑉(⇓𝐴) ⊆ 𝐹𝑉(𝐴); and (vi) ⇓𝐴 has the subterm property.79

Note that any 𝕋+-type that is contained in an 𝕋-type is itself an 𝕋-type. So when
Σ0 is a 𝕋-signature and 𝐴 is a closed ℒ +(Σ0)-term such that its type and the types
of all its free variables are in 𝕋, the conditions on ⇓ imply that ⇓𝐴 belongs toℒ(Σ0),
since it cannot contain any terms constructed using 𝜄1,𝜄2, or 𝛿. In particular, this is
true when 𝐴 is a sentence (type-𝑡 term with no free variables) ofℒ +(Σ0).

We will use ⇓ as the last step in our translation procedure. Since our logical con-
stants already all have types in 𝕋, our remaining task in specifying the translation
thus amounts to providing, for each nonlogical constant in the input sentences, a
replacement expression built up entirely from 𝕋-typed constants.

I will assume here that our initial𝕋+-signatureΣdoesn’t have any nonlogical con-
stants in sum-types 𝛼+𝛽 (though it may still have constants in other extended types
such as 𝛼 + 𝛽 or 𝛼 + 𝛽). This is fine for the application we have in mind, since the se-
mantic theory stated in terms of sum-types didn’t need any sum-typed constants.80

79Prawitz’s theorem concerns derivations in intuitionistic propositional logic rather than terms,
but the result is essentially the same thanks to the Curry-Howard isomorphism. We could if we
wished include further normalization steps which would, e.g., guarantee that ⇓𝐴 also contains no
terms matching the left-hand-side of 𝜂 or 𝜂+.

80If we wanted to allow constants with sum-types, we would need an extra step where we add a
sentence letter 𝑃𝑐 to Σ† for each such constant in Σ, such that the translation of ∃𝑥𝛼.𝑐 =𝛼+𝛽 𝜄1𝛽𝑥 will be
logically equivalent to 𝑃𝑐.
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Given this restriction, we can specify a procedure for eliminating𝕋+-typed constants
by appealing to the “isomorphisms” defined in the previous section. Starting with
an 𝕋+-signature Σ, we define two new signatures:

• Σ ∗ is the smallest extension ofΣ such that whenever 𝑐 ∶Σ∗ 𝛼 and 𝛼 ∈ 𝕋+1 , 𝑐′ ∶Σ∗ 𝛼′,
and whenever 𝑐 ∶Σ∗ 𝛼 and 𝛼 ∈ 𝕋+2 , 𝑐∗ ∶Σ∗ 𝛼∗ and 𝑐∗ ∶Σ∗ 𝛼∗.

• Σ† is the restriction of Σ ∗ to 𝕋.

We then define a mapping | ⋅ | fromℒ +(Σ ∗) toℒ +(Σ†). The interesting clauses are
the ones for nonlogical constants:

|𝑐| ≔ 𝑐 when 𝑐 ∶Σ∗ 𝛼 and 𝛼 ∈ 𝕋
|𝑐| ≔ Δ𝛼(|𝑐′|) when 𝑐 ∶Σ∗ 𝛼 and 𝛼 ∈ 𝕋+1
|𝑐| ≔ Δ𝛼(|𝑐∗|, |𝑐∗|) when 𝑐 ∶Σ∗ 𝛼 and 𝛼 ∈ 𝕋+2

All the other clauses are trivial. Thus, for every term 𝐴 of ℒ +(Σ ∗), |𝐴| is a term of
ℒ +(Σ†)with the same free variables. When𝐴 and all of its free variables have types
in𝕋—for example, when𝐴 is a sentence—we define its translation𝐴† to be ⇓|𝐴|: the
ℒ(Σ†)-term that results from applying Prawitz’s normalization function to |𝐴|.

The adequacy of our translation scheme in this sense follows from the following
fact:

Theorem. If all free variables in Γ and 𝑃 are𝕋-typed, then Γ ⊢H+(Σ) 𝑃 iff Γ† ⊢H(Σ†) 𝑃†.

Proof. Let 𝑇 be the set of all sentences of the form 𝑐 =𝛼 Δ𝛼(𝑐′) (where 𝑐 ∶Σ∗ 𝛼 and 𝛼 ∈ 𝕋+1 ) or
𝑐 =𝛼 Δ𝛼(𝑐∗, 𝑐∗) (where 𝑐 ∶Σ∗ 𝛼 and 𝛼 ∈ 𝕋+2 ). To prove the theorem, we establish the following
five biconditionals:

(i) Γ ⊢H+(Σ) 𝑃 iff Γ ∪ 𝑇 ⊢H+(Σ∗) 𝑃
(ii) Γ ∪ 𝑇 ⊢H+(Σ∗) 𝑃 iff |Γ| ∪ 𝑇 ⊢H+(Σ∗) |𝑃|
(iii) |Γ| ∪ 𝑇 ⊢H+(Σ∗) |𝑃| iff |Γ| ⊢H+(Σ†) |𝑃|
(iv) |Γ| ⊢H+(Σ†) |𝑃| iff Γ† ⊢H+(Σ†) 𝑃†

(v) Γ† ⊢H+(Σ†) 𝑃† iff Γ† ⊢H(Σ†) 𝑃†

The left-to-right direction of (i) is trivial. For the other direction, we make the substi-
tutions [∇𝛼(𝑐)/𝑐′], [∇ 1

𝛼(𝑐)/𝑐∗], and [∇ 2
𝛼(𝑐)/𝑐∗]. This turns every member of 𝑇 into a theorem of

H+(Σ) (which is thus redundant) and leaves Γ and 𝑃 unaffected.
For (ii), we show (by an easy induction) that 𝑇 ⊢H+(Σ∗) 𝐴 =𝛼 |𝐴| for every ℒ +(Σ)-term

𝐴 ∶ 𝛼.
The right-to-left direction of (iii) is trivial. For the other direction, we make the substitu-

tionsΔ(𝛼)𝑐′/𝑐 andΔ(𝛼)𝑐∗𝑐∗/𝑐. This turns every axiom of 𝑇 into a theorem ofH+(Σ†) and leaves
|Γ| and |𝑃| unaffected.

For (iv), we use the conversion rule ofH+ to show that conversion preserves derivability.
The right-to-left direciton of (v) is trivial. For the other direction, we show (by in-

duction on the definition of provability in H+(Σ†)) that every sequent (i.e. ordered pair)
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Δ ▷ 𝑄 in H+(Σ†) has the following property: for any non-𝕋-typed variables 𝑥1, …, 𝑥𝑛 that in-
clude all such variables that are free in Δ or 𝑄, and anyℒ +(Σ†)-terms 𝐵1, …, 𝐵𝑛 of the same
types as 𝑥1, …, 𝑥𝑛 in which all free variables are 𝕋-typed and safe for 𝑥1, …, 𝑥𝑛 in Δ and 𝑄,
⇓(Δ[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]) ⊢H(Σ†) ⇓(𝑄[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]). The result follows from the 𝑛 = 0 case of
this, setting Δ = |Γ| and 𝑄 = |𝑃|.

The only nontrivial step is the one for Sum-Subst, since all the other rules of H+ except
for the conversion rule are also rules of H, and convertibility is preserved by ⇓ and the safe
substitutions [𝐵𝑖/𝑥𝑖]. So, suppose Δ ▷ 𝑄 follows by Sum-Subst from sequents Δ′ ▷ 𝑄′ and
Δ″ ▷ 𝑄″ that have the given property. Then 𝑄 is 𝑃[𝐴/𝑧] for some variable 𝑧 of type 𝛼 + 𝛽 and
some 𝐴 safe for 𝑧 in 𝑃; Δ′ = Δ″ = Δ; 𝑄′ = 𝑃[𝜄1𝛽𝑢𝛼/𝑧], and 𝑄″ = 𝑃[𝜄2𝛼𝑣𝛽/𝑧] for some variables
𝑢𝛼, 𝑣𝛽 not free in Δ or 𝑃. We may assume that 𝑧 is free in 𝑃, since if isn’t, 𝑄 = 𝑄′ and we
are done. Let 𝑥1, …, 𝑥𝑛 be any variables, and 𝐵1, …, 𝐵𝑛 be terms of the same types in which all
free variables are 𝕋-typed and not free in Δ or 𝑃[𝐴/𝑧]. Let 𝐴∗ be 𝐴[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]. We can
assume that 𝑧 isn’t among 𝑥1, …, 𝑥𝑛 or free in Γ or𝐴; if this assumption is false, just pick some
𝑧′ that does meet these conditions and replace 𝑃 with 𝑃[𝑧′/𝑧] throughout. Also 𝑧 isn’t free in
any 𝐵𝑖 since it has a non-simple type. So we have

⇓(𝑃[𝐴/𝑧][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]) = ⇓(𝑃[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛][𝐴∗/𝑧])
= ⇓(𝑃[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛][⇓𝐴∗/𝑧])
= ⇓(𝑃[⇓𝐴∗/𝑧][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛])

(since none of 𝑥1, …, 𝑥𝑛 is free in ⇓𝐴∗ and 𝑧 isn’t free in any of 𝐵1, …, 𝐵𝑛). Since ⇓𝐴∗ has the
subterm property and all of its free variables have 𝕋-types, all of its constituents that have
non-𝕋 types must have types that are constituents of its type, 𝛼 + 𝛽. It follows from this
that ⇓𝐴∗ is either 𝜄1𝛽𝐶 for some 𝐶 ∶ 𝛼 or 𝜄2𝛼𝐷 for some 𝐷 ∶ 𝛽. For it can’t be a constant,
since Σ† only has 𝕋-typed constants. It can’t be a variable, since all its free variables are
𝕋-typed. It can’t be a lambda abstraction, since it doesn’t have a function type. It can’t be
an application, since 𝛼 + 𝛽 isn’t a terminal type.81 And finally, the fact that the output of ⇓
never contains expressions matching the left-hand-side of 𝛽1+ or 𝛽2+ ensures that it can’t be
a delta-application 𝛿𝐶(𝑥.𝐷)(𝑦. 𝐸).82 Suppose without loss of generality that ⇓𝐴∗ is 𝜄1𝛽𝐶 (the
case where it is 𝜄2𝛼𝐷 is parallel). Since all free variables in 𝐶 are simply typed, safe for 𝑣 in
Δ (since 𝑣 isn’t free in Δ), and safe for 𝑣 in 𝑃[𝜄1𝛽𝑣/𝑧] (since safe for 𝑧 in 𝑃), the induction hy-
pothesis tells us that ⇓(Δ[𝐶/𝑣][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]) ⊢H(Σ†) ⇓(𝑃[𝜄1𝛽𝑣/𝑧][𝐶/𝑣][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]). But

81Even if we allowed terminal sum-types, ⇓𝐴∗ still couldn’t be an application 𝐶𝐷, since 𝐶 would
have to have some type 𝛾 → (𝛼 + 𝛽) not contained in 𝛼 + 𝛽.

82If it were, then 𝐶 would also have to be a term of some sum-type 𝛼 + 𝛽. By the same reasoning
it could not be a lambda-abstract or an application, so each must either be of the form 𝜄1𝛽𝐶′, 𝜄2𝛼𝐶′,
or 𝛿𝐶′(𝑥′. 𝐷′)(𝑦′. 𝐸′), where 𝐶′ is of some even simpler sum-type 𝛼′ + 𝛽′. We can’t have an infinitely
descending sequence of delta-applications, sowemust eventually find some subterm 𝛿𝐶′(𝑥′. 𝐷′)(𝑦′. 𝐸′)
where 𝐶′ is of the form 𝜄1𝛽′𝐶″ or 𝜄2𝛼″𝐶″. But we know that the output of ⇓ never contains any terms of
this form (𝛽+-redexes).
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Δ[𝐶/𝑣][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛] = Δ[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛], since 𝑣 isn’t free in Δ. And

⇓(𝑃[𝜄1𝛽𝑣/𝑧][𝐶/𝑣][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]) = ⇓(𝑃[𝜄1𝛽𝐶/𝑧][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛])
= ⇓(𝑃[⇓𝐴∗/𝑧][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛])
= ⇓(𝑃[𝐴/𝑧][𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛])
= ⇓(𝑄[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]).

Hence ⇓(Δ[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]) ⊢H(Σ†) ⇓(𝑄[𝐵1/𝑥1]⋯ [𝐵𝑛/𝑥𝑛]), as desired.

To conclude, we should check that the described translation procedure does in
fact apply in the way I claimed to the three particular axioms of the extended se-
mantic theory I took as examples in §6.5. Here they are again, written in official
prefix form, abbreviating 𝑒 + 𝑒 as 𝛼:

⦙𝛼 everything s/np\s∀𝑒+𝑒(51)
⦙𝛼 is⋅interestingnp\s ⟨⟨int𝑒, int𝑒⟩⟩(52)

∀𝑎𝜖𝑏𝜖𝑐𝜖𝑑𝜖𝑋𝛼𝑦𝛼. (⦙𝛼 𝑎 𝑐/𝑑𝑋) ∧ (⦙𝛼 𝑏 𝑑 𝑦) → (⦙𝑡 𝑎⋅𝑏 𝑐𝑋𝑦)(53)

These sentences contain (in addition to several 𝕋-typed nonlogical constants), two
non-𝕋-typed nonlogical constants ⦙𝛼 and ⦙𝛼, of types 𝜖𝜖𝛼 and 𝜖𝜖𝛼 respectively. 𝛼 is in
𝕋+2 , so 𝛼, 𝜖𝛼, 𝜖𝜖𝛼, 𝛼, 𝜖𝛼, and 𝜖𝜖𝛼 are all in 𝕋1. All the types just mentioned are just
one reduction-step away from 𝕋:

𝛼∗ = 𝑒
𝛼∗ = 𝑒
𝛼′ = 𝛼∗ → 𝛼∗ → 𝑡 = 𝑒 → 𝑒 → 𝑡
𝜖𝛼′ = 𝜖 → 𝛼′ = 𝜖 → 𝑒 → 𝑒 → 𝑡
𝜖𝜖𝛼′ = 𝜖 → 𝜖𝛼′ = 𝜖 → 𝜖 → 𝑒 → 𝑒 → 𝑡
𝛼′ = 𝛼′ → 𝑡 = (𝑒 → 𝑒 → 𝑡) → 𝑡
𝜖𝛼′ = 𝜖 → 𝛼′ = 𝜖 → (𝑒 → 𝑒 → 𝑡) → 𝑡
𝜖𝜖𝛼′ = 𝜖 → 𝜖𝛼′ = 𝜖 → 𝜖 → (𝑒 → 𝑒 → 𝑡) → 𝑡

When we move to the expanded signature Σ ∗, we will add new 𝕋-typed constants
⦙′𝛼∶ 𝜖𝜖𝛼′ and ⦙′𝛼∶ 𝜖𝜖𝛼′. To apply | ⋅ |, we simply replace ⦙𝛼 with Δ𝜖𝜖𝛼(⦙′𝛼) and ⦙𝛼 with

75



Δ𝜖𝜖𝛼(⦙′𝛼). The resulting sentences can then be reduced to sentences ofℒ, as follows

|(51)| =Δ𝜖𝜖𝛼(⦙′𝛼) everything s/np\s∀𝛼
∼𝛽𝜂+ Δ𝜖𝛼(⦙′𝛼 everything) s/np\s∀𝛼
∼𝛽𝜂+ Δ𝛼(⦙′𝛼 everything s/np\s) ∀𝛼
∼𝛽𝜂+ ⦙′𝛼 everything s/np\s∇𝛼(∀𝛼)
∼𝛽𝜂+ ⦙′𝛼 everything s/np\s (𝜆𝑌𝑒𝑍𝑒.∀𝛼(Δ𝛼(𝑌, 𝑍)))
∼𝛽𝜂+ ⦙′𝛼 everything s/np\s (𝜆𝑌𝑒𝑍𝑒.∀𝛼⟨⟨𝑌, 𝑍⟩⟩)

= ⦙′𝛼 everything s/np\s (𝜆𝑌𝑒𝑍𝑒.(𝜆𝑋𝛼.∀𝑦𝑒.𝑋𝜄1𝑒𝑦 ∧ ∀𝑧𝑒.𝑋𝜄2𝑒𝑧)⟨⟨𝑌, 𝑍⟩⟩)
∼𝛽𝜂+ ⦙′𝛼 everything s/np\s (𝜆𝑌𝑒𝑍𝑒.∀𝑦𝑒.⟨⟨𝑌, 𝑍⟩⟩𝜄1𝑒𝑦 ∧ ∀𝑧𝑒.⟨⟨𝑌, 𝑍⟩⟩𝜄2𝑒𝑧)
∼𝛽𝜂+ ⦙′𝛼 everything s/np\s (𝜆𝑌𝑒𝑍𝑒.∀𝑦𝑒.𝑌𝑦 ∧ ∀𝑧𝑒.𝑍𝑧)

|(52)| =Δ𝜖𝜖𝛼(⦙′𝛼) is⋅interestingnp\s ⟨⟨int𝑒, int𝑒⟩⟩
∼𝛽𝜂+ Δ𝜖𝛼(⦙′𝛼 is⋅interesting)np\s ⟨⟨int𝑒, int𝑒⟩⟩
∼𝛽𝜂+ Δ𝛼(⦙′𝛼 is⋅interestingnp\s)⟨⟨int𝑒, int𝑒⟩⟩
∼𝛽𝜂+ ⦙′𝛼 is⋅interestingnp\s∇ 1

𝛼(⟨⟨int𝑒, int𝑒⟩⟩) ∇ 2
𝛼(⟨⟨int𝑒, int𝑒⟩⟩)

∼𝛽𝜂+ ⦙′𝛼 is⋅interestingnp\s (𝜆𝑦𝑒.⟨⟨int𝑒, int𝑒⟩⟩𝜄1𝑒𝑦) (𝜆𝑧𝑒.⟨⟨int𝑒, int𝑒⟩⟩𝜄2𝑒𝑧)
∼𝛽𝜂+ ⦙′𝛼 is⋅interestingnp\s (𝜆𝑦𝑒. int𝑒 𝑦) (𝜆𝑧𝑒. int𝑒 𝑧)
∼𝛽𝜂+ ⦙′𝛼 is⋅interestingnp\s int𝑒 int𝑒

|(53)| =∀𝑎𝜖𝑏𝜖𝑐𝜖𝑑𝜖𝑋𝛼𝑦𝛼. (Δ𝜖𝜖𝛼(⦙′𝛼) 𝑎 𝑐/𝑑𝑋) ∧ (Δ𝜖𝜖𝛼(⦙′𝛼) 𝑏 𝑑 𝑦) → (⦙𝑡 𝑎⋅𝑏 𝑐𝑋𝑦)
∼𝛽𝜂+ ∀𝑎𝜖𝑏𝜖𝑐𝜖𝑑𝜖𝑋𝛼𝑦𝛼. (Δ𝜖𝛼(⦙′𝛼 𝑎) 𝑐/𝑑𝑋) ∧ (Δ𝜖𝛼(⦙′𝛼 𝑏) 𝑑 𝑦) → (⦙𝑡 𝑎⋅𝑏 𝑐𝑋𝑦)
∼𝛽𝜂+ ∀𝑎𝜖𝑏𝜖𝑐𝜖𝑑𝜖𝑋𝛼𝑦𝛼. (Δ𝛼(⦙′𝛼 𝑎 𝑐/𝑑) 𝑋) ∧ (Δ𝛼(⦙′𝛼 𝑏 𝑑) 𝑦) → (⦙𝑡 𝑎⋅𝑏 𝑐𝑋𝑦)
∼𝛽𝜂+ ∀𝑎𝜖𝑏𝜖𝑐𝜖𝑑𝜖𝑋𝛼𝑦𝛼. (⦙′𝛼 𝑎 𝑐/𝑑∇𝛼(𝑋)) ∧ (⦙′𝛼 𝑏 𝑑∇ 1

𝛼(𝑦)∇ 2
𝛼(𝑦)) → (⦙𝑡 𝑎⋅𝑏 𝑐𝑋𝑦)

∼𝛽𝜂+ ∀𝑎𝜀𝑏𝜀𝑐𝜀𝑑𝜀𝑋𝛼𝑦𝑒𝑧𝑒. (⦙′𝛼, 𝑎 𝑐/𝑑 ∇𝛼(𝑋)) ∧ (⦙′𝛼 𝑏 𝑑∇ 1
𝛼(Δ𝛼(𝑦, 𝑧))∇ 2

𝛼(Δ𝛼(𝑦, 𝑧)))
→ (⦙𝑡 𝑎⋅𝑏 𝑐 (𝑋Δ𝛼(𝑦, 𝑧)))

∼𝛽𝜂+ ∀𝑎𝜀𝑏𝜀𝑐𝜀𝑑𝜀𝑋𝑒𝑒𝑦𝑒𝑧𝑒. (⦙′𝛼, 𝑎 𝑐/𝑑 ∇𝛼(Δ𝛼(𝑋))) ∧ (⦙′𝛼 𝑏 𝑑 𝑦 𝑧) → (⦙𝑡 𝑎⋅𝑏 𝑐 (Δ𝛼(𝑋)Δ𝛼(𝑦, 𝑧)))
∼𝛽𝜂+ ∀𝑎𝜀𝑏𝜀𝑐𝜀𝑑𝜀𝑋𝑒𝑒𝑦𝑒𝑧𝑒. (⦙′𝛼, 𝑎 𝑐/𝑑𝑋) ∧ (⦙′𝛼 𝑏 𝑑 𝑦 𝑧) → (⦙𝑡 𝑎⋅𝑏 𝑐 (𝑋∇ 1

𝛼(Δ𝛼(𝑦, 𝑧))∇ 2
𝛼(Δ𝛼(𝑦, 𝑧))))

∼𝛽𝜂+ ∀𝑎𝜀𝑏𝜀𝑐𝜀𝑑𝜀𝑋𝑒𝑒𝑦𝑒𝑧𝑒. (⦙′𝛼, 𝑎 𝑐/𝑑𝑋) ∧ (⦙′𝛼 𝑏 𝑑 𝑦 𝑧) → (⦙𝑡 𝑎⋅𝑏 𝑐 (𝑋𝑦𝑧))
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