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POPPER’s LAWS OF THE EXCESS OF THE PROBABILITY OF THE
CONDITIONAL OVER THE CONDITIONAL PROBABILITY

by Georg I.W, Do-m, Salzburg*

Zusammenfassung: Karl Popper erkannte 1938, daB die unbedingte Watirscheinlichkeit eines materialen Im-
plikationssatzes der Form ‘“Wenn A, dann B’ normalerweise die bedingte Wabrscheinlichkeit von B unter
der Bedingung A iibersteigt. Damil war (ihm wohl als einzigem in jener Zeit) klar, daB bedingte Wahr-
scheinlichkeit nicht auf inbedingte Wahrscheinlichkeit von materialen Implikationssiitzen reduzierbar ist,
Ich verfolge zundichst die Entwicklung dieser Erkenninis in Poppers Schriften und schlieBe der historischen
eine logische Studie an, in der ich Gesetze des Uberschusses in der Kolmogorovschen mit denen in der Pop-
perschen Walrscheinlichkeitssemantik vergleiche.

Summary: Karl Popper discovered in 1938 that the unconditional probability of & conditional of the form
‘If A, then B’ normally exceeds the conditional probability of B given A, provided that *If A, then B’ is
taken Lo mean the same as ‘Not (A and not B)". So it was clear (but presumably only to him at that time)
that the conditional probability of B given A cannot be reduced to the uncondilional probability of the ma-
terial conditional ‘If A, then B’, I describe how this insight was developed in Popper’s writings and I add to
this historical study a logical one, in which I compare laws of excess in Kolmogorov probability seman-
tics with laws of excess in Popper probability semantics,

%ok ok ok

{ INTRODUCTION

Popper’s insight of 1938 that the unconditional probability of a conditional statement of the
form ‘If A, then B’ is normally different from the conditional probability of B given A, has
become a commonplace among those pliilosophers who use probability theory for their
research, David Lewis, for instance, devotes less than three Jines to it before he goes on to
develop his triviality results (see LEWIS, Probabilities, p. 298); typically, Popper’s laws
of excess are mentioned nowhere in Lewis’ article. But the difference between uncondi-
tional probability of the conditional and conditional probability had not always been as ob-

vious as it is today. To appreciate Popper’s insight, let us start by reformulating it more
precisely, as follows:

* I thank Mag. Monika Feldbacher (Center for Electronic Data Processing, Salzburg University) for valu-
able criticism of an earlier version of this article.
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Normally, p(A—B) > w(B, A).

Here A and B are arbitrary statements, and — serves as material implication sign; p is an
arbitrary unary probability function, i.e., p is a one-place function which maps statements
into the reals in accordance with the three standard conditions:

condition 1: p(A)=0,
condition 2: if A is a tautotogy, then p(A) = 1;
condition 3: if A=—B is a tautology, then p(AvB) = p(A)+p(B);

and 1 is the respective binary probability function, i.e., w is a two-place function which
maps ordered pairs of statements into the reals in accordance with the standard

condition 4: if p(A)>0, then w(B, A) = p(BAA)p(A).!

Sixty years ago, when probability théory advanced to the status of an axiomatic theory,
some philosophers, misled by the ambiguity of natural language, had not even grasped that
a staternent of the form

The probability of B[’s being true), if A [is true], equals r.
can mean at least two different things:

— plA=2B)=r;
— w(B, A)=r.

Confusing unconditional with conditional probability, they could not formulate, far less
answer questions about differences and similarities between unconditional probability of
the conditional and conditional probability.2 Others, however, knew from mathematics that
probability functions come in two classes: as unary functions (called *unconditional’ or
‘absolute probability functions’) and as binary functions (called *conditional” or ‘relative
probability functions®), They started asking themselves which relationships there are be-
tween p(A—>B) and w(B, A). Among them was Karl Popper, who in the late 1930s was
developing an abstract axiomatic probability theory, which was to turn out to be provocat-
ively different from Kolmogorov's famous axiomatization of 1933, with which Popper,
incidentally, was not acquainted at that time (see POPPER, LScD, p. 318). According to
his own account, in 1938 he had already proved some propositions about the excess of
p(A—sB) over w(B, A). The following proposition, which we shall call ‘the main law of
excess’, must have been one of them:

1. — serves here as negation, A as conjunction, and v as disjunction sign.

2. These limes are not quite past, as is illustrated by the case of Richard L. Purtill, who defines on p. 126
of his Logical Introduction to Philosophy p(H--G) by means of {GAH)/p(H), adding on p. 127—very
misteadingly indeed—that the equations p(H—G) = p(GAHIp(H) and p(HAG) = p(H)-p(H—G) “show
how the probabilitics of conjunctions and conditionals are interrelated”. Professor Purtill’s Logical Intro-
duction fo Philosophy was published by Prentice Hall in 1989.




For all A and B: If 0 < p(A) < 1 and if w(B, A) < 1, then p(A—B) > w(B, A).

To appreciate the general validity of the main law of excess, remember that here p and w
are arbitrary standard probability functions, i.¢., nothing more is required of them than ful-
filment of the four usual conditions, cited above. So the main law of excess holds for Kol-
mogorov’s, Carnap’s, Rényi’s and Popper’s probability functions. Note also that the
numerical difference between p(A—>B) and w(B, A) is often not negligible at all. For
instance, if A is the statement “The next throw- of the die will come up a 5, if B is the
slaternent “The next throw of the die will come up an even number”, if p(4) = 1/6 and if
P(BY = 12, then p(A—B) = 5/6, whereas w(B, A) = 0.

This article has four aims. Firstly, to skeich the history of Popper’'s laws of excess.
Secondly, to find out by means of detailed proofs within an axiomatic framework which
iaws of excess can be obtained in that version of Kolmogorov probability theory which
will be called here ‘Kolmogorov probability semantics’. Thirdly, to find out by the same
method which of those propositions, presented by Popper as laws of excess, are indeed
theorems of that version of his probability theory which will be called here ‘Popper prob-
ability semantics’. Fourthly, to compare both systems of probability semantics as regards
their laws of excess.

Because this article is long, it will be convenient to list its main contents now in order to
make its construction explicit and to facilitate access to its subsections:

1 On the History of Popper’s Laws of Excess
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1 ONTHE HISTORY OF POPPER’s LAWS OF EXCESS

1.1 Conjectures and Refutations, 1963

Popper’s first published reference to his laws of excess was in chapter 3 Verisimilitude in
the Addenda of the first edition of his Conjectures and Refutations, which appeared in
1963. There he wrote on page 396:

Incidentally, the fact that we have, quite generally,

(21)  Ola)-lac-ap) = CtE@)Crrla)

may appear somewhat surprising. Yet it is an immediate consequence of the following more general
formula

{22y placb)-pla, b) = Cila, HYCKY),

a formula which I derived many years ago in order to show that the absoluie probability of the one
conditional statement ‘@ if b* (or of the statement “If b than [1] a*) exceeds in general the relative
probability of some statement a, given some other statement b,

(Formula (22) thus compares, as it were, the arrow to the left ‘' with the comma *,’ and catculates the
never negative excess,

Exela, b= placb)-pla, b),
of the conditional probability over the relative probability.)

Let us try to state explicitly the definition of excess and the two taws of excess that are
hidden in this passage, itself hidden in a very technical addendum which, presumably, has
not been studied by any philosopher who is not a philosopher of science, The following
terminalogical remarks should therefore be useful. Firstly, when Popper writes ‘a0’, he
means b—a, where ‘—' is a material implication sign, Secondly, when Popper writes
‘Ctla, b)’, he means the content of statement a in regard to statement b, i.e. 1-p(a, b},
where p is a binary probability function, hence p{a, b) is the relative probability of 4 in
regard to b. Thirdly, when Popper writes ‘Ct(h)’, he means the content of b, i.e. 1-p(b),
whete p is a unary probability function, hence p(b) is the absolute probability of b, (Note
that Papper, following common usage, uses ‘p’ as a sign not only for unary, but also for
binary probability functions.) Fourthly, when Popper writes *Exc{a, b)’, he means neither
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the excess of statement a over statement b nor the excess of the probability of a over the
probability of b, but the excess of the absolute probability of the conditional statement
b—>a over the relative probability of statement a in regard to statement b; hence ‘Exc(a, b’
is an abbreviation of ‘the excess of p(b—a) over p(a, by, Since the abbreviative effect of
the term *Exc{a, b)’ is far less than iis misleading effect, let us use the more harmless term
‘Exc[p(b—a), pla, b)]’ rather than ‘Exc(a, b)’. Finally, when Popper writes ‘conditional
probability” in the last line of the passage cited above, he means not conditional probability
in the sense of ‘relative probability’, but the absolute probability of the conditional b—a,
thereby deviating from common usage as well as from his own usage elsewhere. So we
have as cur first exegetic resnlts:

(1.1.1) a definition of excess: Exc[p(b—a), pla, b)] = p(b—a)-p(a, b);
(1.1.2) afirst law of excess: Exc[p(b—a), p(a, b)] = [1-p(a, D)} {1-p(®)];
(1.1.3) and a second law of excess: Exc[p(b—a), pla, b)]1 2 0.

Since no probability (i.e. value of a probability function) can be greater than 1, proposition
(1.1.3) is an immediate logica} consequence of proposition (1.1.2}. Note that neither
{1.1.2) nor (1,1.3) contain a condition that the probability of b be greater than 0. Whereas
such a condition is very often tacitly to be assumed when one encounters formulations of
theorems of Kolmogorov probability theory {according to which p(a, b) may not exist
when p(b) = 0), it is very seldom tacitly o be assumed when one encounters formulations
of theorems of Popper probability theory (according to which p{a, b) exists even when
p(b) = 0). Since Popper intends propositions (1.1.2) and (1.1.3) to be theorems of his
probability theory, there is no need here to add “p(P)>0" as an if-clause to (1.1.2) or
(1.1.3) in order to make an indispensable tacit assumption explicit, Finally, when we have
a look at definition (L.1.1), we see that the excess function maps ordered pairs of prob-
abilities into the reals; since probabilities are themselves real numbers, the excess function
is a purely nuemerical function—in contrast to probability functions, which are viewed here
as functions which map statements or ordered pairs of statements into the reals.

1.2 Logik der Forschung, 1966

Popper's second published refelé%ce to his laws of excess was in the appendix *V Ablei-
" tungen der formalen Wahrscheinlichkeitstheorie of the second German edition of his Logik
der Forschung, which appeared in 1966. Here he makes not merely a passing remark
about his laws of excess, but goes into details. I shall cite the whole paragraph in which
Popper presents his laws of excess. I shall keep, however, not’to the se¢ond, but to the
most recent German edition of his Logik der Forschung, and I shall use for easier reading
the negation sign ‘=’ insicad of Popper’s complement bar




In ibrer logischen Interpretation (die keineswegs ihre wichtigste ist) kann man die relative Wahrschein-
lichkeit also als Verallgemeinerung des Begriffes der Ableitbarkeit auffassen. Es ist jedoch wichtig, die
Ableitbarkeit von a aus b aichf mit der ,materialen Implikation®, d.h, mit dem Konditionalsatz ,,wenn q,
dann b“ [1] {,,boa"), zu verwechseln, der ein Satz derselben Art ist wic @ und b, withrend 2 folgt aus b°
und ,p(a, b) = r* Behauptungen #ber @ und b sind. Vor langer Zeit hat Relchenbach vorgeschiagen,
pla, b) als den Grad avfzufassen, in dem b=a gilt, mit anderen Worten, p(a, ) = p(boa) zu setzen, Um
diesen Vorschlag zu priifen, berechnete ich 1938 ,,Exc(a, )", das heiBt den ,Excess” oder den ,Uber-
schuB* von p(boa) tther pla, b). Schon vor der Rechnung sehen wir, da8 -1<Exc<+]1 und da8, wenn &
widerspruchsvoll ist, Exc(a, b) = 0. Wenn b widerspruchsfref ist, finden wir Exca, b) = p(—a, bYp(--b).
In unserem System gilt aber bedingungslos: Exc(a, b) = (1-pla, )p(=b} = p(—a, Hp(=b)(1-p(-b, b 2
0. Wenn a und b probabilistisch unabhiingig sind, dann gilt, falls b widerspruchsfrei ist: Excla, b) =
pl—ayp(=b), In diesem Fall ist auch Exe(a, &) = 1, wenn p(a, b) = 0 = p(h). Dieser Fall wird verwirklicht
durch ein widerspruchsfreies & und jedes beliebige a, wenn p(b) = 0 und @ entweder von b unabhiingig
und p(a) = 0, oder mit b unvereinbar oder fast unvereinbar ist. (Beispiel: = ,,Bs existiert ein weiBer
Rabe®“, b = —a.} Daher ist die Inferpretation von pa, D) durch p(boa) offenbar ganz unzutreffend, (Lo-
gik9, pp. 306-307)

Let us study this paragraph sentence by sentence, starting with ‘-1$Exc<+1’, which we
reformulate more fully:

(1.2.1) -1 £ Exclp(b—a), pla, b)] < +1,

(1.2.1) is not surprising in view of (1.1.2). The next sentence is more illuminating. In our
reformulation we use the arrow instead of the horse-shoe:

(1.2.2) If b is a contradiction, then Exclp{(b—a), p(a, b)] = 0.

Note that (1.2.2) has so far been and will remain the only law of excess Popper mentions

which gives a condition under which p(b-»a) does nof exceed p(a, b but equals pla, b).
Popper continues with:

(1.2.3) If bis not a contradiction, then Exclp(b—a), pla, b)) = p(—a, b)-p(—b).

We now encounter in the cited paragraph a very compactly formulated statement, which
we divide into threg convenient parts:

(1.2.4) Exclp(b—a), pa, b)] = [1-p(a, b)]-p(=b)

(1.2.5) Excip(b—a), pla, b)l = p{—a, b)yp(—=b)[1-p(—b, b)]

(1.2.6) Excip(b—a), pla,P)}=0
(1.2.5) is new, but (1.2.4) reminds us of (1.1.2), and (1.2.6) we know already as
(1.1.3).
The next proposition is abont an alleged relationship between probabilistic independence,
contradictions, excess and unary probability functions:

(1.2.7) If a and b are probabilisticaily independent and if & is not a contradiction, then:
Exclp(b—a), pla, b)] = p(—a)-p(=b).

Having so far experienced no interpretative problems, we have not found it necessary to
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quote the German sentences one for one in order to dissect their possible meanings. But
the next sentence in the cited paragraph is an exception;

(1.2.8°) In diesem Fall ist auch Exc(a, b) = 1, wenn p(a, b) = 0= p(b).

It requires special treatment because of its ambiguity. How are we to interpret (1.2.8°)?
The phrase ‘in diesem Fall’ suggests that at least one of the two if-clauses in (1.2.7)
should be assumed. This suggestion is sirengthened by comparison of the second with the
ninth German edition of the Logik der Forschung. For we read on page 307 of the second
edition, instead of (1,2.8"), the following sentence:

(1.2.8>*) Auch gilt Eve(a, b) = 1 stets, wenn pla, b) = 0= p(h),

Tt seems that Popper saw good reasons after the publication of the second German edition
to back away from the straightforward (1.2.8"") and to substitute for it the circumspect
(1.2.8"). But nowhere does he say explicitly that (1.2.8"") is faise. So we have here four
possible laws of excess:

(1.2.8) If p(a, b) = 0 = p(b), then Exclp(b—a), p(a, b)] = 1.
(1.2.9) If p(a, b) = 0 = p(b) and if a and b are probabilistically independent, then:
Exclp(b—a), pla, b)l = 1.
(1.2.10) If p(a, b) = 0 = p(b) and if b is not a contradiction, then:
Exclp(b—a), p(a, b)] = 1.
(1.2.11) If p(a; b) = 0 = p(b) and if & and b are probabilistically independent and
if b is not a contradiction, then Exc[p(b—a), p(a, b)] = 1.

We now come to the last sentence which is of relevance here:

(1.2.12") Dieser Fall wird verwirklicht durch ein widerspruchsfreies b und jedes betiebige a, wenn p(b) =
0und a entweder von b unabhlingig und p(@) = 0, oder mit & unvereinbar oder fast unvereinbar ist.

Again, it will be convenient to divide a very condensed statement into three parts:

(1.2.12) If b is not a contradiction and if p(b) = 0 and if @ and b are probabilistically
independent and if p(a) = 0, then Exc[p(b—a), pla, b)] = 1.

(1.2.13) If b is not a contradiction and if p(b) = 0 and if a stands in contrary opposition
to b, then Exc[p{b—a), pla, B)] = 1,

(1.2.14) If bis not a contradiction and if p(b) = 0 and if a stands almost in contrary
opposition to b, then Exc[p(b—a), pla, b)1 = 1.

Thus we have extracted from the cited paragraph 14 propositions that seem o be laws of
excess. I should like to siress that the logical question whether each of these propositions
is indeed a law of excess, i.e., whether each of these propositions is a theorem of Popper
or even Kolmogorov probability theory, has not yet been decided; this question will have
to be answered by adducing logical proofs, not by interpreting quotations.

Finally, let us take a look at the cited paragraph from a psychotogical point of view.
Firstly, we observe that again—Ilike the passage cited from Conjectures and Refutations—
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it is hidden in a very technical appendix, which presumably has not found much atiention
outside philosophy of science. In addition, it is written in a compact style without any
explanation or sketch of a proof. We shall probably not be far off the mark when we sus-
pect that it has not been easily comprehensible to anyone unfamiliar with Popper probabi-
lity theory, although she or he may be well acquainted with Kolmogoroy probability theo-
ry. In fact, especially those philosophers who know Kolmogorov but not Popper probabi-
lity theory should be most bewildered by propositions like (1.2.2) and (1.2.3) or by the
contrast between (1.2.4) and (1.2.5), to mention only three of their possible perplexities,
To make matters worse, this very paragraph has been inadvertently omitted in all English
editions of the Logik der Forschung, although it is the most detailed and comprehensive
account Popper has given us of his laws of excess. No wonder, therefore, that philoso-
phers from the English-speaking world do not associate Karl Popper’s name with his in-
sight into the excess of the probability of the conditional over the conditional probability.
No wonder, either, that the term ‘faw of excess’ has, as far as I know, been neither used
nor mentioned in the vast literature on the logic of conditionals, although Popper dis-
covered his laws of excess two generations ago,

1.3 Nature, 1983

Our third encounter with Popper’s laws of excess is in the widely-known Popper/Miller
anti-induction proof, the first official version of which was published in Natre (Aprl 21,
1983) under the title “A Proof of the Impossibility of Inductive Probability” in the section
Letters to Nature.® We shall quote the relevant passage in their letter to Nasure and then try
to extract the laws of excess mentioned there. But first let us preface our citation with a
few terminological remarks. We are to understand £ as a hypothesis and e as evidence
possibly in favour of k. If 2 and 4 are any statements whatsoever and if p(a, d)-pla) <0,
then the degree to which d countersupports a is defined as p(a, d)-p(a). Now, Popper and
Milter inform us in their letter to Nasure that the degree to which evidence e counter-
supports the conditional statement e~3h

equals Exc(h, ), that is the excess of the probability of the conditionat over the conditional probability.

Theorem 2: Under the same assumptions [as in theorem 1: p(h, e) # 1.2 p(e)], plhee) - p(hie—e, ) =

plhe-e) - plh, €) = p(-h, E)p(-¢) = Exc(h, ¢) > 0. (POPPER/MILLER, Proof, p. 688)
This is what we find about the excess of p(e—h) over p(h, €) in their leticr. To be sure,
Popper and Miller introduce a term similar to ‘Exc(h, €}’ only seven lines after the end of
our citation, but by this new term *Exc(h, e, b)’ they no longer mean the excess of the ab-
solute probability of a conditional over the respective relative probability, but something

3. Another version, published in the same year, but written at least two years earlier, can be found in
POPPER (Realism, p. 326), However, nc iaws of excess are mentioned there.
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different, to wit, the excess of the relative probability of e—#k in regard to some back-
ground knowledge b over the relative probability of e—k in regard to eab: Exc(h, e, b) =
Excess[ple—h, b), ple—h, enb)] = ple—h, b) - ple—h, eab). A study of the conditions
under which, generally, p(d—a, ¢) exceeds p(d—a, dac) would certainly be instructive,
100, but the task of the present siudy is to amass knowledge about conditions under which
pld—a) exceeds pla, d); 1 shall concentrate on this task,

Interpreting the passage cited above, one immediately asks oneself whether the sug-
gestion that e should be viewed as evidence for a hypothesis # implies pragmatically some
tacit assumptions about semantical properiics of e, and—if so-——which. Evidence, when
taken as a conjunction of basic statements or observation reports, will usvatly be assumed
as being not contradictory, indeed as having a probability far above 0. So, when Popper
and Miller formulated their theorem 2, did they tacitly assume that e is not a coniradiction
or even that p(e)>07 If so, we would be doing them an injustice if we did not explicitly add
to our inferpretation their tacit assumptions; if not, we would be doing them an injustice il
we added an assumption not tacitly made by them, thereby giving a logically weaker inter-
pretation of theorem 2 than they had intended. Fortunately, even an extremely modest
knowledge of probability theory rids us of the problem whether we have (o add both
assumptions together. We do not, because the proposition “If p(¢)>0, then e is not a con-

- tradiction” holds for every standard probability function p, However, the problem remains
whether, if any agsumption is to be added at all, it is sufficient to add the condition that e
be not a contradiction or whether it is necessary to add the logically stronger condition that
the probability of e be greater than 0. As neither text nor context help us to decide this
guestion, I shall list all possible interpretations, on the understanding that if the logically
stronger ones turn out to be valid, then it was these Popper and Miller intended; otherwise,
they presumably intended the logically weaker ones. By parsing the citation according to
the equations in it (omitting the now well-known definition of excess), we obtain first the
three propositions (1.3.1), (1.3.2) and (1.3.3). Then by adding separately.to cach of these
three propositions one of the two possible tacit assumptions, we arrive at nine possible
laws of excess, all of them new:

(1.3.1) If p(a, b) # 1 and if p(b) # 1, then Exc[p(b—a), p(a, b)] = p(b—a)-p(b—a, b).
(1.3.1°) If p(a, b) = 1 and if p(b) # 1 and if b is not a coniradiction, then:
Excip(b—a), pla, b)] = p(b—a) - p(b->a, b).
(1.3.1"") If p(a, b) = | and if p(b) # 1 and if p(b)>0, then:
Exclp(b—a), p(a, b)) = p(b—a) - p(b—a, b).
(1.3.2) If pla, b) 2 L and if p(b) # 1, then Exclp(b—a), pla, b)] = p(—a, b)p(—b).
(1.3.2°) X pla, b) # 1 and if p(b) # 1 and if b is not a contradiction, then:
Excip(b—a), p(a, b)] = p(—a, b)p(-b).
(1.3.27) I p(a, b) # 1 and if p(b) # 1 and if p(b)>0, then:
Exclp(b—a), p(a, b)] = p(—a, b)p(-b).
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-

(1.3.3) If pla, by # 1 and if p(b) # 1, then Exc[p(b—a), pla, 1)] > 0.

(1.3.3%) If p(a, b) = L and if p(b) # 1 and if b is not a contradiction, then:
Exc|p(b—a), pla, b)] > 0.

(1.3.37) If p(a, b) # 1 and if p(b) # 1 and if p(b)>0, then Exclp(b—a), p(a, b)] > 0.

Note that in (1.3.3*") we encounter for the first time in our interpretation of Popper’s
writings the main law of excess, although in a formulation which is different from that
used in the introduction. But if we take into account that p(a, b)<1 iff p(a, b) # 1, that
pb)<l iff p(b) # 1, and that plb—a) > p(a, b) iff Exc[p{b->a), p{a, b)] > 0, then we
obtain a reformulation of (1.3,3”") which reveals the identity of proposition (1.3.3**) with
the main law of excess: ‘If 0 < p(b) < 1 and if p(a, b) < 1, then p(b—a) > pla, b)’. Since
the main law of excess islogically weaker than the proposition (1.3.3%) and since (1.3.3")
is again logically weaker than (1.3.3), there would be at least one law of excess which is
logically stronger than the main law of excess if proposition (1.3.3") were a theorem of
Popper probability theory, and there would be at least two laws of excess stronger than the
main law if proposition (1.3.3) were also a theorem,

- Propositions (1.3.2°) and (1.3.2°") are obvious logical consequences of a proposition
which we noted down in subsection 1.2:

‘ (1.2.3) If b is not a contradiction, then Exc[p(b—a), p(a, b)] = p("-aa byp(—-b).

The logical relationship between (1.3.2) and (1.2.3), however, is an open questlon About
(1.3.1) we shail have to say more in the next subsection.

1.4 Foundations of Logic and Linguistics, 1985

Karl Popper presented another, more extensive version of the Popper/Miller anti-induction
proof at the 7th international congress of logic, methodology and philosophy of science
held at Salzburg University in 1983, Two years later, his congress paper, entitled “The
Non-Existence of Probabilistic Inductive Support”, appeared in the anthology Foundations
of Logic and Linguistics. Since laws of excess play an essential role in the Popper/Miller
anti-induction proof, we find them treated again in this paper. We read in POPPER (Non-
Existence, p. 308):

I shall end this section with an important Theorem I, For every x, yand z, [...]

L1644  es{xey, 3, 2 =ct(x, yDoi(y, D = Exc(x, v, 2 2 0 [...]

1166  All these formulae remain valid if we erase in each term the second comma (if any) and the
variable z.

So let us erase;

1.16.4° For every x and y: cs(x¢=y, y) = ct(x, y)ct(y) = Exc{x, y) 2 0.
That part of 1.16.4’ which consists of “cf(x, y)ct(y) = Exc(x, y) = 0" we know already as
propositions (1.1.2) and (1.1.3), taken together:
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Exc[p(b—a), pla, b)] = [1-pla, B){1-p(b)] 2 0.

since the functor ‘cf’ is here a symbol for ‘the content of’. The term ‘cs(x¢y, y)’ is to be
read as ‘-s(x¢-y, y)’, which denotes the countersupport of the conditional x¢—y by the
statement y. Now, s(x, y) is defined as p(x, y)-p(x). Hence, s(xé=y, y) = [plxe=y, y) -
plxe<=y)], hence ~s(x¢~y, y) = p(x&~y) - p(x¢&~y, y). So interpretation of 1.16.4’ presents
us with the following proposition as a new law of excess:

(1.4.1} Exclp(b—a), p(a, b)] = plb—a) - p(b—a, b).

Since Exc[p(b—a), p(a, b)] = p(b—a)-p(a, b), the theoremhood of (1.4.1) depends on
that of “p(b—a, b) = p(a, b)”. When we look back to (1.3.1), we realize that (1.3.1) is an
immediate logical consequence of (1.4.1). Because of the question of tacit assumptions,
we were not sure whether proposition (1.3.1) is a theorem of Popper probability theory;
10w we may be even less sure whether the logically stronger (1.4.1) is. But as there is no
indication of tacit assumptions in or around the passage cited above, no logical weakening
of (1.4.1) is justified from text or context. On the contrary, two pages later, Popper offers
a proof of “p(b—a, b) = p(a, b)” which proceeds straightforwardly without any assump-
tions (cf. POPPER, Non-Existence, p. 310):

Proof (1) p(b—a, b) = p[(b—a)ab, b] = plarb, b) = p(a, b).A

Obviously, if proof (1) can do without tacit assumptions, so can proposition (1.4.1).
On the previous page, Popper offers a proof of another law of excess. We find in
POPPER (Non-Existence, p. 309):
Lenima. Exc(x, ¥) = ci(x, Yyet(y)
Proof: Since p(x, x) = p(y, ) = 1, [...] we have
ci(x, Y)et(y) = c1Q)+ply)-pln » ...
= ple-y)-plx, y) [...]
=FExc(x, y).
In this second citation we encounter a forther possible law of excess. To see this clearly,
let us first rewrite the proof in our terminology:

(1) pla,a) =pb, by=1

(2) t1-pla, b)) [1-p(b)] = 1-p(b)+plarb)-p(a, b)
3 = plb—a)-pla, b)

4. T bave experienced that proof (1) can look so strange to people who are used to working within the Kol-
mogorovian framework that they are sure its formulation contains 2 misprint, distorting the meaning,
and must be corrected, as follows: p(b-sa, b) = pl(b—a)Ablip(h) = planb, b)Y = p(a, b). Since stating
anything ahout the quotient p[{b—a@)Ablp(h) means presupposing that p(b)>0, they go on to point
out—and rightly so—that their “corrected” proof will never work for (1.4.1), but only for the weaker
proposition: “If p(b)>0, then Exclp(b—a), pla, b)) = p(b—a) - p(b—a, b)". As one of the editors of
POPPER (Non-Existence), I should like to stress, however, that there is no misprint in the formulation
of proof (1) in POPPER (Non-Existence, p. 310}, Proof (1) was intended as formulated.
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C)] = Exc[p(b—a), p(a, B)].
From step (2) and (4) we obtain;

(1.4.2) Excl[p(b—a), pla, b)] = 1-p(b)+p(anb)-pla, b).
Here the theoremhood of (1.4.2) will ohviously depend on the theoremhood of
. plb—a) =1-p(b)+pland),

which is fortunately well established, -

1.5 Philosophical Transactions of the Royal Society of London, 1987

Karl Popper and David Miller elaborate their anti-induction proof still further and defend it
impressively against manifold criticisms in their paper “Why Probabilistic Support Is Not
Inductive”, published in the Philosophical Transactions of the Royal Society of London in
1987. This paper has been the last one so far, to the best of my knowledge, in which Pop-
per says something about the excess of p(b—a) over p(a, b). He stresses again that p(a, b)
never exceeds p{b—a), he alludes again to proposition (1.4.1), and he offers again a proof
of the proposition “p(b—a, b) = p(a, b)”, on the theoremhood of which (as we know from
subsection 1.4) the theoremhood of (1.4.1) wholly depends. As this new proof differs
slightly but instructively from proof (1) above, we note it also, using our own terminology
(cf. POPPER/MILLER, Support, p. 576):

Proof (2) Because pla, by = plaab, b) and because (b-2a)Ab is logically equivalent to
anb, it follows that p(b-a, b) = planb, b) = p(a, b}.

Note that proof (2} proceeds, like proof (1), without the assumption that p(b)=>0,

1.6 The Discoveries of 1938

From the point of the history of philosophy, it is noteworthy that Popper tells us in POP-
PER/MILLER (Support, p. 576) for the second time the year of his discovery of laws of
excess: 1938. He gave this information first in POPPER (LdF2, p. 307) (sec subsection
1.2 above) and he has repeated it in correspondence {e.g. in a letter to the present author,
dated August 25, 1987). As he published no references to his laws of excess until 1963,
we have to rely here on his words. Fortunately, Popper’s claim of having discovered laws
of excess as early as 1938 is a wholly ptausible one, considering his great logical achieve-
ment of 1937: his first axiomatization of probability theory. In a note to Mind, dated No-
vember 20, 1937, he let the philosophical community know of his axiomatization. His
note was published six months later in Mind 47 (1938), pp. 275-277, under the title “A
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Set of Independent Axioms for Probability”. Anyone who could construct in 1937 a con-
sistent and independent set of axioms strong enough to allow the deduction of mathema-
tical probability theory as known at that time, could easily derive in 1938 some illumina-
ting theorems concerning relationships between p(b—a) and p(a, b), especially when his
note introduces at the very beginning #wo probability functors—*pa(x;)’ for the absolute
probability of x;, ‘p(x1, x5)" for the relative probability of x; in regard to x,—where the
arguments x, and x, need not be sets (as in Kolmogorov’s axiomatization), but may, for
instance, be statements or formulae. In retrospect, Popper’s axiomatization appears as the
most appropriate logical framework in the 1930s for developing insights, examining con-
jectures and deriving theorems about relationships between absolute and relative probabili-
ties of statements. Having created an innovative axiomatic probabilistic system of his own,
Popper certainly had the means at that time to test the conjecture “p(b—a) = p(a, b)”
thoroughly within his system and, finding the conjecture false, to prove the existence of
other relationships between p(b—a) and p(a, b).

But exactly which relationships between p(b—>a) and p(a, b) did Popper discover and
prove in 19387 To this question, I have no full answer, but a pariial one. The only thing
we learn from POPPER (LdE2, p. 307) and POPPER/MILLER (Support, p. 576) is that
he calculated the excess of p(b—a) over p{a, b) in 1938 and found that it was never nega-
tive. So it may appear at first sight that he must have known and proved at that time the
proposition “Ex¢[p(b—a), p(a, b)] 2 0", which he mentions in Conjectures and Refuta-
tions and later in the second German edition of his Logik der Forschung. But—speaking
strictly and with a tinge of pedantry—it could not, in my opinion, have been this proposi-
tion which he proved in 1938; it must have been the following, logically weaker one:

If p(b)>0, then Excl[p(b—a), pla, b)Y 2 0.

The probabilistic system in which he seems to have worked at that time—he called it ‘sys-
tem Sy’ in his note to Mind—would have been logically too weak to aliow a proof of the
former proposition, but was strong enough to allow a proof of the latter one. It is true that
already his system S differs essentially from Kolmogorov’s axiomatization, for Sy Jeads
to theorems which Kolmogorov’s axiomatization presupposes; but Sy still introduces—-as
does Kolmogorov’s axiomatization—the two-place probability functor ‘p(a, by (our sym-
bols now) by the standard condition “If p(b)>0, then p{a, b} = planb)/p(b)”. Hence, if it
was the sysiem Sy in which Popper constructed his proofs in 1938, he—like Kolmogorov
or any other probability theorist of the time—could say nothing about p(a, b) when p(b) =
0; hence he could find out something about the excess of p(b—»a) over p(a, &), only when
he assumed that p(b)>0. Now, we know from POPPER (LdF9, p. 260; LScD, p. 319)
that he worked from 1937 up to the carly 1950s within the system S5, for which he de-
veloped more and more elegant axiomatic bases over the years-Hence Popper could only
have proved in 1938 such laws of excess the if-clause of which guarantees that p(b)>0.
Hardly any of the propositions which we have listed in this section as possible laws of
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excess have such an if-clause. So when Popper informs us that he discovered and proved
in 1938 the never negative excess of p(b—a) over p{a, b}, then I think we are to undes-
stand that he discovered and proved in 1938 at least the following three propositions ( p is
a unary or binary standard probability function according to context):

(1.6.1) If p()>0, then Excp(b—a), pla, b)] = [1-p(a, B)I-[1-p(b)1.
- (1.6.2) If p(b)>0, then Exclp(b—a), pla, b)] 2 0.
(1.6.3) If 0 < p(b) < 1 and if p(a, b) < 1, then Excp(b—a), p(a, b)] > 0.

{1.6.1) must have been the central insight, (1.6.2) and {£.6.3) were welcome corollaries to
it, Note that (1.6.1) is a weakened version of (1.1.2), and (1.6.2) a weakened version of
{1.1.3) or (1.2.6). (1.6.3) is ihe main law of excess—without which (1.6.2) would be
pointless, because (1.6.2) could be true even when p(b—a) always equals p(a, b).

Having detailed what I consider to be the smallest set of laws of excess which were
discovered and proved by Popper in 1938, T should like to illustrate by means of three
typical examples which propositions could not have been proved in system So. Because
© context.in POPPER (LdE2, p, 307) might misleadingly suggest that, in 1938, Popper
proved every proposition listed in subsection 1.2, I shall take these examples from there:

(1.2.2) If b is a contradiction, then Exc[p(b—a), pla, b)] = 0.
(1.2.3) If & is not a contradiction, then Exc[p(b—a), p{a, b)] = p(—a, b)-p{(—b).
(1.2,6) Exclplb—a), pla, 5120

Since S, does not allow proofs of propositions about p(a, &) without a guarantee that
p(bY>0, neither (1.2.2) nor (1.2.3) nor (1.2.6) is provable in Sy. (1.2.6) is the most trans-
parent case, because it simply has no if-clause. (1.2.2) is the most blatant case, because its
if-clause guarantees that p(b) = 0. (1.2.3) makes us ask the iwesticm whether not being a
contradiction is a guarantee for having a probability greater than (. In probability theories
like those of Kolmogorov and Popper (from S5 up to the most recent ones) the answver is
no. Indeed, in the opinion of many a philosopher of science, especially Popper’s (see
Ldf9, pp. 313-328), universal hypotheses are very good examples for statements which
are not contradictions but have probability 0. It was eventually Popper himself who be-
came so dissatisfied with probability theory for its inability to tell us anything about p{a, b)
when p(&)y = 0 that he began, in the 1950s, to develop probability theories which do tell us
something about p(a, b) even when p(b} = Q. 1t is this family of new probability theories,
published in the late 1950s and the following years, which is now summarizingly called
‘Popper probability theory’, and it is Popper probability theory of this new kind--and no
longer So—which is the theoretical frame of every passage we have cited from Popper’s
writings. So, if propositions like (1.2.2), (1.2.3) and (1.2.6) are not theorems of S, then
this should not be taken to mean that these propositions are not theorems of Popper prob-
ability theory,

This ends our historical study of those propositions in Popper’s writings which seem to
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be laws of excess. We have found 27 of them, Let us now turn to their logical examina-
tion.

2 LAWS OF BXCESS WITHIN KOLMOGOROV PROBABILITY SEMANTICS

2.1 Elementary Kolmogorov Probability Semantics

According to Kolmogorov's axiomatization of probability theory, unary probability func-
tions are real-valued, non-negative, additive set-functions normalized to 1, the sets being
elements of a ficld § of subsets of some non-empty set E (cf. Kolmogoroff, Grundbe-
griffe, p. 2; Kolmogorov, Foundations, p. 2). So, central terms like ‘P(A)’, ‘P(A+B)’,
and ‘P{E)’ are to be read as ‘the probability of set A’, ‘the probability of the union of sets
A and B, and ‘the probability of the universal set’, respectively. Binary probability
functions are also non-negative, additive functions, mapping some or ali elements of Fx§
into the reals according to the standard condition “If P(A)>0, then P4(B) = P(AB)P(A)”,
where ‘AB’ stands for the intersection of the sets A and B, and ‘P4(B) for p(B, A).
However, it is possible to consider A and B not as sets, but as formulae of a logical
language &, to use the set intersection and set union signs as conjunction and disjunction
signs, and to let ‘E’ stand for an arbitrary tautology of €. Under this reading, ‘P(A+B)’,
for instance, means the probability of the disjunction of the formulae A and B. Let us call
‘Kolmogorov probability semantics’ that version of Kolmogorov’s original axiomatic
probability theory which deals with those probability functions that attach probabilities not
to sets of a field §, nor to ordered pairs of §x§, but to formulae of a logical language £ or
to ordered pairs of £,

Let £ be our object-language with {—, A, v, —} as its set of logical constants and let the
set of formulae of £ be inductively defined as usual (whence every formula of £ is of finite
length), All we need from classical semantics for developing Kolmogorov probability se-
mantics is the set of theorems of the following seven familiar definitions (let us call this set
of theorems ‘the classical theory of truth value functions and truth-functional attributes’):

(1) fis a classical truth value function defined on & iff fis a function from £ into {0, 1}
such that for all formulae x and yof & f—x) = LT fx) =0, flaay) = Liff fx) = 1 =
F vy =1 fx)=1or fiy) = L; and flx—y) = 1HE ) =0 0or fy) = 1.

(2) If x is a formula of &, then x is a tautologyg [in £} iff for all classical truth value
functions f defined on £ fix) = 1. - -

(3) If x is a formula of &, then x is a contradictiony, Jin €] iff for all classical truth value
functions f defined on §: flx) = 0.

(@) If x and y are formulae of &, then x trath-functionally followsk from y {in §] iff for
all classical truth value functions f defined on & if f{x) = 0, then Ay) =0,
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{5) If x and y are formulae of £, "then x is truth-functionally equivalenty to y [in £] iff for
all classical truth value functions fdefined on & f(x) = f{y).

(6) If x and y are formulae of &, then x stands in truth-functional contrary oppositiony to
y [in £} iff for all classical truth value functions f defined on &

ffx)=1,thenf(y)=0. .

(7) If x and y are formulae of &, then x stands in truth-functional contradictory opposi-
tiony to y [in &) iff for all classical truth value functions f defined on £ f(x} # fy).

We extend our classical theory of truth value functions and truth-functional attributes to
[the] Kolmogorov probability semantics [of €] by adding appropriate definitions of unary
and of binary Kolmogorov probability functions and of a ternary relation of probabilistic
independence; these definitions will serve as the three specific axioms K1, K2 and K3 of
elementary Kolmogorov probability semantics {(elementary, because K1 and K2 say no-
thing about probability functions that map infinitely long formulae into the reals);

Axiom K1: For all fand £: f is a unary (or absolute or unconditional) Kolmogorov
probability function defined on £ iff fis a function from £ info the reals such that for alt
formulae x and y of & f{x)>0; if x is a tautologyy, then f{x) = 1; and if x stands in truth-
functional contrary oppositiony fo y, then flxvy) = £x)+Ay).

Axiom K2: For all f, g and £: fis a g-based binary (or relative or conditional) Kolmo-
gorov probability function defined on £ iff g is a unary Kolmogorov probability function
defined on £ and fis a function from a non-empty subset of £x& into the reals such that
for all formulae x and y of & if g(x)>0, then fly, x) = glyrxn)/g(x).

Axiom K3: For all x, y, £ and f: if x and y are formulae of &, then: x is f-independenty, of
y [in &) iff, firstly, £1s a unary Kolmogorov probability function defined on &, and, se-
condly, fxAy) = fx)fy). '

As the conditions in the definiens of X1, K2 and K3 are the usual ones and correspond
in an obvious way to Kolmogorov’s familiar probability axioms and independence defini-
tion, T will not here elaborate on them, but only point to the instructive fact that every
classical truth value function defined on £ is a unary Kolmogorov probabitity function
defined on &, hence the term *‘semantics’ in ‘Kolmogorov probability semantics’ is a highly
appropriate one.’

To save ink, paper and time, let us agree to use the first six capital letters of the Latin
alphabet as variables for formulae of £, the subindexed letter ‘py’ as a variable for unary
Kolmogorov probability functions defined on £, and the subindexed letter ‘wy’ as a vari-
able for pg-based binary Kolmogorov probability functions defined on £. So, instead of
beginning each formulation of a theorem of our Kolmogorov probability semantics with
the cumbersome preamble:

5. For more informations on probability semantics in general see LEBLANC (Alternatives, pp. 225-274).
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For all §, x, y, fand g: If x and y are formulae of £ and if fis a g-based binary Kol-
mogorov probability function defined on &, then. ..

we shall simply write:
For all A, B, p and wy...

where wy is a py-based binary Kolmogorov probability function. For instance, we shall
prefer to the following long formulation of, say,

Theorem K20: For all §, x, y, fand g: If x and y are formulae of & and if fis a g-based
binary Kolmogoroy probability function defined on &, then:
if g(x¥>0, then f{y, x) = 0iff g(xay) = 0.
this short formulation of

Theorem K20: For all A, B, py, and wy: If pp{A)>0, then:
wiB, A) = 0 iff p (AAB) =0,

We shall need not only theorem K20 for the later development of the theory of excess of
Pi{A—>B) over wi (B, A), but also 17 other simple theorems of elementary Kolmogorov
probability semantics, T hdve listed these theorems in appendix 1 for easy reference. Since
they are well established, they are stated without proof.

2.2 Extension of Elementary Kolmogorov Probability Semantics to the Theory Ke about
the Excess of py(A—B) over wi(B, A) )

2.2.1 The Specific Axiom of Ke

Let us first observe that we cannot extend elementary Kolmogorov probability semantics to
a theory of excess (call it ‘Ke") without adding to: '

excessipg(A—B), wi(B, A)] = py(A—B)-w (B, A)

the constraint that pi(A)>0. For suppose, py(A) = 0. Then K2 does not guarantee that
there is a real number r such that wy (B, A) = r, But if we have no guarantee that w(B, A)
exists, then we have no guarantee that excess is a function from ordered pairs of
probabilities inta the reals. But as we want excess (0 be such a function, we must make
sure that there is an r such that wy (B, A) = r. This we do by requiring that the probability
of A be greater than 0, for if PilAY>0, then, by K2, wi(B, A) = pp(BaA)p(A), hence
there is an r, the quotient pR(BAAYPLA), such that wi(B, A) = r. Therefore the specific
axiom of our theory Ke will have to be formulated more carefully, as follows:

Axiom Kel:

For all A, B, py and wy: If pi(A)>0, then:

excess[p (A—B), wi (B, A)] = p{lA—=B)-wi (B, A).
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2.2.2 Laws of Excess of py(A— B) over wy(B, A) in Ke

A corollary to Kel is:

Theorem Ke2:

For all A, B, py and wy.: If pi(A)>0, then:

excess{py{A->B), wy(B, A)] = p(A—>B)-wi(A—>B, A); and
. excess[p(A—B), wy (B, A)] = l-pk(A)+pk(BAA) wi(B, A).
Proof of theorem Ke2:

(D plA)0 assumplion
@ wlA->B 4)= pk[(AaB)AAIIp(A) (O, K2
3 plA-B)AA] = p(BAA) K5
@  w(A-B, A) = pp(BAAYpL(A) - @3
5)  wyi(B, A) = pp(BrAYp(4) (I3, K2
©®  w(AoB, A =wi (B, A) ), (5)
(1) excess[py(A-+B), widB, A)l = p (A B)-w (A-2B, A) - (1), Kel, (6)
B pA=B) = pr(-AHPBAA) = 1-p (A p(BAA) Kii, K4
©  excess[ppA—B), w(B, A)] = 1-pl AN pr(BAA) Wi (F, A) (1}, Kel, (8

Our next theorem shows that the difference between the absolute probability of A—B
and the relative probability of B in regard to A is equal to a product of absolute and relative
probabilities, provided that p(A)>0:

Theorem Ke3:

For all A, B, py and wy:

If py(A)>0, then excess[py(A—>B), wi(B, A)] = wi(—B, A)pi(—A).6
Proof of theorem Ke3:

0 pAR0 , . assumption
@ pylA-2B) = p(-ANp(BA4) K11
() plA—B) = pp(=AN DB, A) pi(A)] @, (1), K2
@ pflA—B)-wi(B, A) = pp(-~AYH (B, A)p(A)]-wy (B, A) _ @
G} plA—BYwi(B, A) = p (AN W (B, A)(p{A)- D] @
©  pA—-B)-widB, A) = pp(—A) [1-wy (B, A)] (53, K4
N p(A-2Bywi(B, A) = pp(—A)wy (=B, A) = wy (=B, A)p(—4) (1), K12, (6}
®  excessIpp(A->B), wi(B, A)] = wi (=B, A)py(-A) - (1), Kel, ()

This leads at once to the following two theorems:

Theorem Ke4:

For all A, B, py and wy: If pp (A)>0, then excesslpy(A—=B), wi(B, A)] 2 0.
Proof of theorem Ke4:
@ pa»0 assumption
(D) excessip(A—B), wi(B, A)l = wid=B, A) prp(—=A4) (1), Ke3

6. Note that David Lewis uses the condition “p(—A¥{p(—Bad)py (A)1", hence “py (—A)w (B, 4)",
hence “wy (=B, A)p(—=4)", hence the excess of py(A—B) over wi(B, A) as a measure of the diminu-
tion of the assertability of the truth-functional conditional A—B (cf. LEWIS, Probabilities, p. 306).
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@  excessipy(A-2B), w (B, A)] 20 @.3

Theorem Ke5:

For all A, B, py and wy: If p(A)>0, then:

excess[px(A—B), wi(B, A)] = [1-wi(B, A)][1-p(A)]; and

excess[p{A— B), wi(B, A)] = [1-wy(B, A)]pp(—A); and

excess[p{A— B), wi(B, A)] = wi(—B, A)-pr(—A) [ 1-w(—A4, A)].
Proof of theorem Ke5:
I p AP0 assumption
Q) excessipp(A—2B), wi(B, A)l = wy(B, A)py(—A) (), Ke3
3 excesslp(A—B), wi(B, A)] = [1-wy (B, A))[1-pi(A)] (1), (2), K12, X4
@) excessipp(A—B), wi(B, A)] = [1-wy (B, AYkpp(—A) @, 3
(5 w4, A)=0 (1), K12,K18
©)  excessfp(A—B), wi(B, A)] = wi (B, A) pr(—AM{1-w(-A, 4)] 2.3

A more informative corollary to theorem Ke3 is:

Theorem KeO:

For all A, B, py and wy: If O<py(A)<1, then:

if pi(B) = 0 or B is a contradictiony, then excess{px(A—B), wi(B, A)] = pi(—4) > 0.
Proof of theorem Ke6:
(M O<pA)<l’ assumption
(2)  If Bis a contradictiony, then py(B) = 0. K10
(3) Hp(B)=0,thenwy(B,A)=10. (1), K16
@  Ifw(B, Ay =0, then w(=B, A) = L. (1, K12
() 1w (=B, A) = 1, then excess(p,(A-B), wi (B, A)l = p(-A4). (1), Ke3, (4)
©  p A0 (1), X9
(M If p(B) =0 or B is a contradictiony, then: 2), 3, @), (53, (6)

excess|pyp(A—2B), wi (B, Al = p(=A4) > 0.

Another is the main law of excess:

Theorem Ke7:

For all A, B, py and wy!

If 0<p(A)<] and if wi(B, A)<1, then excess[p(A—B), wi(B, AY] > 0.
Proof of theorem Ke7:
1) O<p(AX<t assumption
2} w(B, A<l assumption
(3)  cxcessipA—B), wi(B, A)] = pp(—A)wy (=B, A) (1), Ke3
@ p-A)-0 (1}, K9
) wy(=B, A0 0, (2, K17
) excessIp(A—B), wi (B, A)1> 0 (3), ), (5)

And a third one is our next theorem, which describes a general relationship between

probabilistic independence; and excess:
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Thearem Ke8: :
For all A, B, py, and wyc If pi(A)>0 and if B is py-independenty of A, then:
excess[pr(A—B), wi(B, A)] = pp(—B)py(-A).

Proof of theorem Ke8:

(1 pfA»0 assumption
{3}  Bis py-independent, of A. assumption
) excess{p{A—B), wp(B, Al = pr(—A)wi(—B, A) (1), Ke3
@ wi(-B, A) = py(=B) (1), (2), K21
6 excesslp(A—B), wi(B, A) = py(-~A)py(-B) = pi(—B)py(—4) ONE

Now to the range of the excess function. We know already from Ke4 that the excess of
DlA—B) over wi (B, A) is never less than 0, we prove now that it never reaches 1, but
does reach 0 (if p.(A)>0). Hence the range of the excess function is the hatf-open interval
10, 1), provided that its arguments are values of Xelmogerov probability functions (as
should be stressed since things will be different when we calculate the range of the excess
function under the assumption that its arguments are values of Popper probability func-
tions; see subsection 3.3). '

Theo;'em Ke9: .
For atl A, B, p; and wy: If p(A)>0, then excess[p(A—B), wi (B, A)] < 1.
Proaf of thearem Ke9:

(D py(Ax0 assumption
(@ I [p(A>B)-wi (B, A} >1, then: if w (B, A)20, then py{A—B)>1. arithmetics
) w(B, A0 (1), K13
@ I [p(AoB)-w B, A)] >1, then pp (A B)>1, @, 3
(5) It is not the case that p{(A—B}>1. Ké
©  [peA-B)w (B, A <1 @, )
@ I [p(A—=B)-wi (B, A)] = 1, then p . (A—B) = 1 and w (B, A) = 0. . {3), (6)
& Ifp(A—>B)=1,1then p(ArB) 20, K8, (1)
©  IfwdB, A) =0, then pp(AaB) = 0. (1), K20
{10) 1t is not the case that both pp(A—B) = 1 and wy (B, A) = 0. &), ()
(11} [y (A—B)-wLB, ANl =1 N, (10
(12) [p(A—=B)w(B, Al <1 ) 6), (1D
(13) excessip(A—B), wy(B, A)l <1 (1, Kel, (12)

Now to the conditions under which p(A— B) equals wy(B, A). The following two
theorems summarize the most important among them,

Theorem Kel0;
For all A, B, py and wy: If pr(A)>0 and
if pr(B) =1 or if wi (B, A} = 1 or if B is a tautology or if B truth-functionally followsy
from A or if A is truth-functionally equivalenty to B, then:
excess[p(A—B), wi (B, AY] = 0.
Proof of theorem KelO:

O A0 assumption
) Hp(B) =1, then wi (B, A) = 1, (1), K15
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(@)  Ifwe(B, A)=1, then PrA-B) =1L, (1), K14

@) If B is a tautologyy, then wy (B, A) = 1. ’ K1, (2)

(5) It B truth-functionally followsy from A or if A is truth-functionally equivatenty to B, then (1), K18
Wk(B, A) =1.

© I pe(By=1orif wy(B, A) = 1 or if B is a tautologyy or if 2), (3), @), (5)

B 1ruth-functionally followsk from A or if A is truth-functionally equivalenty to 8, then;

Wk(B, A)= pk(A—>B). ’
) W (B, A) = pp{A—B), then p (A B)-w (B, A) = 0 = excess[p(A—B), wi (B, A)} (1), Kel
® I p(B)=1orif w(B, A} =1 orif B is a tautologyy. or if B truth-functionally followsy  (6), ()

from A or if A s truth-functionally equivalenty to B, then excess[py(A—3B), w (B, AY] = 0.

Theorem Kell:
For all 4, B, py and wy: )
If pr(A) = 1 or if A is a tautologyk, then excess[py(A—+B), wi(B, A)] =0,

Proof of theorem KelI:

(1) If pp(A) = 1, then wi (B, A) = Px(B) = pp(AB), _ K19, K7
@ I p(A) =1, then ppfA—B)-w (B, A) =0 = excess{p (A—B), wi(8, A)]. (1), Kel
(3) If Ais a tautologyy, then excess[py(A->B), wi(B, A)] = 0. K1, (2)
@ IEp (&) =1orif A is a tautologyy, then excess (A= B), wy (B, A)] =0, 2), (3)

Finally, let us calculaie the excess of py(A—B) over wi(B, A), when A stands in truth-
functional contrary or contradictory opposition to B. (Note that we cannot calculate the
excess of p(A—B) over wi(B, A), when pi(A) = 0 or A is a contradictiony.)

Theorem Kel2:

For all A, B, py and wy: If pp(A)>0 and if A stands in truth-functional contrary opposi-
tiony to B, then excess[px(A—B), wi(B, A)] = pi(—A).

Proof of theorem Kel2: .

D pA>0 assumption
(2) A stands in truth- funcuonal confrary oppositiony to B. assumplion
Q) pBA=0 (2), K10
@  w(BA=0 (1), K20, (3)
8 pA-B) = p(RAMPLBAA) = p(—A) _ . K11, (3)
©)  pA—=B)-wi(B, A) = p(—4)-0 = pr(—A) 5), @
D excessipp(A—B), widB, A)] = pii—4) (1}, Kel, (6)

Theorem Kel3:

For all A, B, py and wy: If p (A)>0 and if A stands in truth-functional contradictory
opposmonk to B, then excess[pp(A—B), wi(B, A)] = p(B).
Proof of theorem Kel 3:

@O pA0 assumption
(2} Astands in teuth-functionat contradictory oppositiony to B. assumption
(3} A stands in truth-functional contrary opposition; to B. 2)
@) excess[p(4—B), w(B, A)l = Pr(-A) . (1), 3), Kel2
(5} —Ais truth-functionally equivalenty to B. &
©  nA)y=pB) (3), K5
() excessip{A—B), w (B, A)] = P(B) ), (6)
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3 LAWS OF EXCESS WITHIN POPPER PROBABILITY SEMANTICS

3.1 Basic Popper Probability Semantics

In Popper’s first publication of 1938 on the axiomatization of probability theory, axioms
for a theory of absolute probability functions were given; this theory was then extended to
a theory of relative probability functions by means of the standard condition “If p(b)>0,
then p(a, b) = plasb)p(b)’, where ‘** is a two-place operator {the axioms are understood to
take care that « is boolean meet; see POPPER, Axioms), This axiomatization was called '
‘S7’. In the same publication, Popper presented a further idea on how to axiomatize prob-
ability theory: to give first axioms for a theory of relative probability functions and then to
extend it 10 a theory of absolute probability functions by means of the condition “p(a) =
Pla, {aa®)*]”?, where **' is a one-place operator (* may be understood as boolean com-
plement). Such an axiomatization was called ‘S1’, but no axioms were given. In Popper’s
second publication on the axiomatization of probability theory—dated 1955—two axio-
matic bases were presented. The first one was a refined version of $4: again axioms for a
theory of absolute probability functions were given, which was again extended to a theory
of relative probability functions, this time by means of three conditions and in such a way
that the values of relative probability functions were defined even for those b with absolute
probability 0 (see POPPER, Axiom Systems, pp. 53-55). The second one was a worked-
out version of S (see POPPER, Axiom Systems, pp. 56-57). This innovative kind of
axiomatizations in the S-style has become known as ‘Popper probability theory’, Popper
has constructed and discussed several such “axiomatic systems for relative probability”, as
he calls them; we shall keep to the axiomatic system developed in appendix *V of the
Logik der Forschung, for it is in appendix *V that Popper develops his new S;-style
axiomatic probability theory in the most detail, and it is in appendix *V that Popper gives
the most extensive account of his laws of excess, which---so the context suggests—are to
be viewed as theorems of precisely this axiomatic probability theory, suitably extended to a
theory of the excess of p(A—B) over w(B, A}.7 .

7. Sq-systems can be found in POPPER (Philosophy, appendix} [1957); POPPER (L.Sc¢D, pp. 326-358)
[1959]; POPPER {(Conjectures, pp. 59-60, pp. 388-389) {1963); POPPER (Definitions, p. 169)
(1963]; POPPER (LAF2, pp. 268-308) [1966]; POPPER (Non-Existence, pp. 317-318) [1985].
Although Popper prefers Sy-systems to 8,-systems, ke has not stopped to develop axiomatic bases for
8y-systems; the most recent one (so far I am aware) was published in POPPER (LdF7, pp. 419-424)
[1982).—For secondary literature on Popper probability theory see the probabilistic work of Leblanc and
his collaborators, mainty: LEBLANC (Requirements), LEBLANC/VAN FRAASSEN (Functions), LE-
BLANC (Autonomy), LEBLANC {Contributions), LEBLANC/ROEPER (Probabilities), ROEPER/LE-
BLANC (Indiscemibility) and LEBLANC/ROEPER (Functions); these articles contain sophisticated ela-
borations and comparisons of Camnap’s, Kolmogorov's, Popper’s and Rényi’s probability theories, 1
have also found the following article helpful: HARPER (Belief, pp. 84-112), which contains not only a
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Relative Popper probability functions are functions from §xS§ into the reals—S being a
non-empty set, closed under an arbitrary unary operation * and under an arbitrary binary
operation ; absolute Popper probability functions are functions from S into the reals. We
note that every sentential-logical language £ with {—, A, v, —] as its sct of connectives
behaves as is required of §: £ is always non-empty and closed under negation and con-
junction (or disjunction). Let us call ‘fthe] Popper probability semantics {of £’ that version
of Popper probability theory which deals with those Popper probability functions that at-
tach probabilities not to the elements of an arbitrary set S of the kind described above, nor
to ordered pairs of $xS, but to formulae of a logical language £ or to ordered pairs of
them. So, as in Kolmogorov probability semantics, any sentential-logical language £ is our
object-language. But whereas Kolmogorov probability semantics is an extension of the
classical theory of truth value functions and truth-functional attributes, Popper probability
semantics is not. Hence we embed our Popper probability semantics #ot in our theory of
truth value functions and truth-functional attributes, but simply in informal set theory and
arithmetic by adding to the set of their theorems appropriate definitions of binary and of
unary Popper probability functions and of a ternary relation of probabilistic independence;
these definitions will serve as the three specific axioms Pbl, Pb2 and Pb3 of basic Popper
probability semantics (basic, because the set {Pbl, Pb2, Pb3} is the basis on which we
shall build a theory of some important semantical properties and relations and, after that, a
theory of the excess of the probability of the conditional over the conditional probability):

Axiom PbI; For all fand €. fis a binary (or relative or conditional) Popper probabitity

function defined on £ iff fis a function from £x® into the reals such that the following

seven conditions are fuifilled:

Popper's axiom Al: There is at least one formula x of & and at least one formula y of £

such that fix, x) # flx, y). '

Popper’s axiom A2: For all formulae y and z of &: if there is at least one formula x of &
_ such that f(x, y) # fx, z), then there is at least one formula u of € such that fy, u) #

Kz, u).

Popper’s axiom A3: For all formulae x and y of & f{x, x) S fy, y).

Popper's axiom Bl; For all formulae x, y and z of & flxay, 2) < fix, 2).

Popper’s axiom B2: For all formulae x, y and z of & flxAy, z) = Ax, yAz)-Ay, 2).

Paopper’s axiom C: For all formulae x, y and z of &

if f(x, x) # f{y, 2), then flx, x) = fx, 2) + fi=x, 2).

Condition D: For all formulacx, y and z of &

Favy, 2) = fla(—=xAa—y) 2) and flx—y, 2) = floxvy, 7).

Axiom Pb2: For all f, g and §: g is an f-based unary (or absoluie or unconditional)

succinct eomparison of Popper probability theory with traditional probability theory, but alse an appli-
cation of Popper probability theory to the problem of rational belief change.
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Popper probability function defined on £ iff, fitstly, f is a binary Popper probability
function defined on '€ and, secondly, for all x and y: if x and y are formulae of &, then:
g(x) = fix, ~(yA-y)l.

Axiom Pb3: For all x, y, £ and £ if x and y are formulae of &, then:

x is f-independenty of y [in £] iff, firstly, fis a binary Popper probability function de-
fined on &, and, secondly, for some formula z of & flx, y) = flx, =(za—2)].

As regards axiom Pbl, cf. POPPER (LdF9, p. 298) and POPPER {LScD, p. 349).
Note that axiom Al in (LScD, p.349) is logically stronger than axiom Al in (LdF9, p.
298). Although the formulations of the other axioms of Popper probability theory in (Lo-
gic, p. 349) are slightly different from the respective formulations in (LdF9, p. 298), they
are logically equivalent to each other. (Some of Popper’s axioms in Pbl may be beiter
understandable if ‘f{x, x)’ is read as ‘1’.} As regards axiom Pb2, ¢f. POPPER (LdF9, p.
2735, p. 284 and p. 302) and POPPER (LS¢D, p. 333, p. 337 and p. 353). The main mes-
sage of Pb2 is simply that the absolute probability of x equals the relative probability of x
in regard to a tautology —(yA—y). As regards axiom Pb3, ¢f. POPPER (LdF9, p, 422),
from which an independence definition such as Pb3 can be gathered (unfortunately, there
is no definition of probabilistic independence to be found in the appendix *V of the Logik
der Forschung). Pb3 was chosen here instead of the following definition Pb3*, which
would also have been possible: '

Pb3* x is f-independent* of y [in £] iff, firstly, fis a binary Popper probability function
defined on &, and, secondly, for some formula z of &

Jxay, ~{za—2)) = fix, ~{za~2)] Ay, —(zA—2)].

Pb3* has the advantage of closely corresponding to definition K3 in Kolmogorov prob-
ability semantics, but it is certainly not an adequate definition of probabilistic independence
in Popper probability semantics, For instance, Pb3* would declare y to be findependent®
of x if fly, ~(za—2)] = 0—even when y truth-functionally follows, from x. Furthermore,
Popper's formulation of his proposition:

(1.2.12) If b is not a contradiction and if p(b) = 0 and if ¢ and b are probabilistically
independent and if p(a) = 0, then Exc[p(b—a), pla, b)] = 1.

strongly suggests that he did not have something like Pb3* in his mind when he wiote
down (1.2.12), since a and b would be probabilistically [p-]independent* anyway when
Pa) =0 or p(b) = 0; so why require that ¢ and b be probabilistically independent and p{a)
=0 and p(b) = 07 In addition, not even that weakened version of (1.2.12) which is prov-
able in Pe {see subsection 3.3.2) could be proved if Pb3* had here been used instead of
Fb3. This is not to say that Pb3 is a satisfying definition of probabilistic independence in
Popper probability semantics; Pb3 yields its own stock of counterinfuitive theorems. It is
Just to say that using Pb3* would have been worse than using Pb3, Surely, Popper proba-
bility semantics is still in need of an adequate definition of probabilistic independence.
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Let us again use the letters ‘A” to ‘F” as variables for formulae of £. Let the subindexed
letter ‘wp’ be a variable for binary Popper probability functions defined on £, and the-sub-
indexed letter ‘py’ & variable for wy-based unary Popper probabitity functions defined on
€. So, instead of beginning each fonnulauon of a theorem of our Popper probablhty se-
mantics with the cumbersome preamble;

For all §, x, y, fand g: If x and y are formulae of € and'if fis a g-based unary Popper
probability function defined on &, then...

we shall simply write:
For all A, B, pp and wy...

where py, is a w)-based unary Popper probability function, For instance, we shall prefer to
the followmg long formulation of:

Popper’s theorem (96): For all &, x, y, fand g: If x and y are formulae of € and if fis a
g-based unary Popper probability function defined on £, then: g(y x)flx) = flyrx).

this short formulation of:
Popper’s theorem (96): For all A, B, p, and Wp! wp(B, A)-pp(A) = pp(BAA).

We shall need not only Popper’s theorem (96) for the later development of the theory of
the excess of py(A—B) over wy(B, A), but also 34 other theorems of basic Popper prob-
ability semantics. 19 of them can be taken over from Popper’s own development of his
probability theory in his (LdF9, pp. 298-304) or (LScD, pp. 349--355); there he derives
100 theorems from his axioms in a fascinating step-by-step process. I have listed these 19
theorems in appendix 2 for easy reference. The remaining 16 theorems from basic Popper
probability semantics (numbered Pb101-Pb116) will be formulated and proved in the text .
when they are required for proofs of further theorems.

Finally, in order to facilitate comparisons between Kolmogorov and Popper probability
semantics, let us say that a proposition y is the Kolmogorov analogue to a theorem x of
Poppér probability semantics if the formulation of y results from replacing each occurrence
of the subindex 5’ in the formulation of x by an occurrence of the subindex *,’. For
instance, when we replace in the formulation of Popper’s theorem (96):

‘Forall A, B, Pp and wp wp(B, A)-pp(A) = pp(BAA).’
each occurrence of the subindex 5’ by an oceurrence of %y, then we obtain the following
sentence:

‘For all A, B, py and wit wi{B, A)pi(A) = pp(BAA).

and the proposition which is expressed by this sentence is the Kolmogorov analogue to
Popper’s theorem (96). Significantly, the Kolmogorov analogue to Popper’s theorem (96)
is not a theorem of Kolmogorov probabilily semantics, An immediate arithmetical conse-
quence of Popper’s theorem (96) is Popper’s theorem (97):
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For all A, B, p, and wp: If py(A) # 0, then wy(B, A) = pp(BAA)pp(A).
The Kolmogorov énalogue to Popper’s theorem (97):
"For all A, B, py and wy: If pp(A) # 0, then wi(B, A) = pr(BAA)Yp(A).

is a theorem of Kolmogorov probability semantics. Likewise, we shall also speak of the
Popper analogue to a theorem of Kolmogorov probability semantics,

3.2 Extension of Basic Popper Probability Semantics to the Theory Ps of some’
Fundamental Semantical Properties and Relations

3.2.1 ‘The Spécific Axioms of Ps

We extend basic Popper probability semantics to a probabilistic theory of some fundamen-
tal semantical properties and relations (call it *Ps’) by adding to the axioms Pb1, Pb2 and
Pb3 of basic Popper probability semantics the following seven definitions Ps1-Ps7, which
will serve as the specific axioms of Ps: .

Axiom PsI: For all A and B: B truth-functionally follows,, from A iff for all wp and C:
wp(BAA, C) = wp(4, C).

Axiom Ps2: For all A and B: A is truth-functionally equivalent,, to B iff B truth-func-
tionally followsy, from A, and A truth-functionally follows, from B.

Axiom Ps3: For alt A and B: A stands in truth-functional _contrary opposition,, to B iff
—B truth-functionally follows,, from A.

Axiom Ps4: For all A and B: A stands in truth—functtonal contradictory opposition, to B
iff A is truth-functionally equivalent to —B.

Axiom Ps5: ForallAiAis a contradxcuon iff A stands in truth-functional contrary
oppositiony to A.

Axiom Ps6 For all A: A is a tautology,, sz -Aisa contradlctlonp

Axiom Ps7: For all A and wp: A is wp-absurd iff for all B: wy(B, A) = L,

Axiom Ps1 is modelled after (but not identical with) that definition of “B (truth-func-
tionally} follows, from A” which Popper gives in appendix *V (cf. definition (D3) on p.
305 in POPPER, LdFY; and the last paragraph on p. 356 in POPPER, LScD). Of course,
Ps1 is chosen in such a way that the following theorem which connects our classical theo-

ry of truth value functions and truth-functional attributes with Popper probability semantics
be valid:

For all A and B: B truth-functionally followsy from A iff B truth-functionaily follows,,
from A.

28




However, I shall not have recourse to this bridge theorem. All theorems of Popper prob-
ability semantics which will here be required will be neatly proved within Popper probabi-
lity semantics, be they deemed to be trivial or not. No (specific) theorems of Kolmogorov
probability semantics and no (specific) theorems of the classical theory of truth value func-
tions and truth-functional attributes will be used in any of these proofs, Only in this way
can it be seen how Popper probability semantics works.

3.2.2 Theorems concerning “A Truth-functionally followsp from B” and “A is Truth-
Jfunctionally equivalenty to B”

Popper’s own step-by-step development of his probability theory ends on page 304 of the
Logik der Forschung with theorem (100). On page 307 he lists his laws of excess. In be-
tween, on page 306, he informs.us that there are two noteworthy theorems in his (exten- .
ded) probability theory which are only theorems of his, but not theorems of Kolmogorov
probability theory, namely (in our terminology, universal quantification over wy, added):

B truth-functionally follows;, from A iff for all wp: wy(B, ~BAA) # 0; and
B truth-functionaily follows,, from A iff for all wp: wp(B, —BAA) = 1.

To build a bridge of theorems from the last proved theorem (100) on page 304 to the
first law of excess on page 307, it will be convenient to start with a proof of these two im-
portant propositions. Call the first one ‘Psi0’ and the second one ‘Psi1’. By working our
way to Ps10 and Psil, we shall collect a lot of theorems, all of them helpful for the later
proofs of Popper’s laws of excess.—To prove Ps10, two lemmata will suffice:

Theorem Ps8: {lemma 1 for Ps10; also lemma for Psl15 and Pe33]
For all A, B and wyp: I B truth-functionally followsp from A, then wy(B, A) = 1,
Proof of theorem Ps8: :

() B mth-functionally foliows, from A. assumption
@ ForalicC: wp(Bad, C) = w4, C). Psi, (1)
B wpBaA, A) = wp(A, A) @
@ Wp(BaA, A) = wp(AnB, A) = wy(B, A) Popper's theorems (40) and (29)
G wp4,A)=1 Popper’s theorem (23)
© wp(B,4)=1 @, 3,06

Theorem Ps9: [lemma 2 for Ps10]

For all A, B, C: If B truth-functionally followsp from A, then B truth-functionally
followsp from AAC.

Proof of theorem Ps9: .

(1} B truth-functionally follows, from A. . assumplion
(2)  Forall C wp(Bad, C) = wyld, C), Pst, (1)
() wp(BaA, CaD) = wp(A, CAD) @
@ wpl(BAAIAC, D] = wp(Bad, CADYwy(C, D) Popper’s axiom B2
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(5)  wpl(BAAIAC, D} = wy(A, CAD)wy(C, D) ‘ )@

6 wpl(BAAAC, D= wplBA(AAC), D] : Popper's theorem (62)
(M wplBAAAC), D] = wp(A, CAD)w(C, D) o {5), (6)
®8)  wplAAC, D) = wp(A, CAD)wy(C, D) : Popper's axiom B2
@ wplBAAAC), DY = wplAAC, D) M, (&
(10)  Yorall D and wp: wplBAAAC), D] = Wp(AAC, D). (9), for neither D nor wp is free in (1) or (10)
(1) B truth-functionally followsy from AAC. Psl, (10)

Theorem Psl0; [lemma for Ps20]
For all A and B: If B truth- funchona]ly followsp from A, then for all wy:
wp(B, ~BAA) =1 #0.

Proof of theorem PsiO:

() B wuth-functionally followsP from A, assumption
(2 B iroth-functionatly t‘n:)llc:w.'sp from Aa—B. (1), Ps9
@ wplB, BAA) = wy(B, An-B) =10 Popper’s theorem (40), (2}, Ps8
) Forall wy: wy(B, ~aBad) =120, (3, for wp is neither free in () nor in (4)

Note that the Kolmogorov analogue to Ps9 is an unspecific theorem of Kolmogorov prob-
ability semantics, whereas the Kolmogorov analogues to Ps8 and Ps10 are not theorems of
it—an obvious shortcoming of Kolmogorov probability semantics.

To prove Psli, we shall need a sublemma (Pb101) and five lemmata (Pbi02-Pb106).
None of the Kolmogorov analogues to Pb101-Pb106 is a theorern of Kolmogorov prob—
ability semantics.

Theorem Pbl01: [lemma for Pb106; also lemma for Pb108, Psll, and Ps24]
For all A, B, C and wp: wp(B, A) = wp(——B, A) and wp{AA——B, C) = wp(AAB, C)
and wp(B, A) = wp(B, =—A) and wp(B, A) = wp(B, ~—AAA).

Proof of theorem Pb101:

() wp(=—=B, A) = T-wp(-8, A)+wp(—\A, A) Popper's theorem (64)
@ wp(=B, A) = L-wy(B, A)twp(—-4, A) Popper’s theorem (64)
@) wp==B, A) = 1-{1-wp(B, A)+wp(—A, A)lvwp(—A, A) = wp(B, A) D,
(@)  Forall A and B; wy(B, A) = wp(——B, A). (3), for neither A nor B is free in (4)
G wp(=—-BaA, C) = wp(mB, ARCywp(Ad, C) Popper’s axiom B2
©  wpB, AAC) = wp(~—B, AC) @
0 wp(=-BAA, Cr=wp(B, AnC)wp4, O) (3, (6)
@ wplB, AACrwplA, €) =wp(Ba4, O Popper’s axiom B2
@ wpn=Bad, O) = wy(Bad, ©) N, &
A wpAa——B, C) = wplAnB, O) (%), Popper’s theorem {(40)
(A1) wp(B, A) = wp(——B, A) and wp{As——B, C} = wp(AAB, O). 3), (1D
(12) Forall D and E: If for all C: wp(D, C) = wp(E, C}, then Popper’s axiom A2
for all C: wp(C, D)= wp(C, B,
(13) For all C: wy(A, C) = wp(—4, C) {4), for C is not free in (13)
(14} If for all C: wp(A, C) = wy(——A C), then for all C: wp(C, A) = wp(C, ——A). (12)
(15)  wyp(B, A) = wp(B, ——4) (13), (14)
{16y Forall B: wp(-n—J}AA, O= wp(BAA, ). {9}, for B is not free in (16)
(an Wp(—;—\AAA, C) = wplAnrA, C) =wp(4, C) (16), Popper's theorem (32)
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(18) TFor all C: wplA, C) = wp(h—An4, €). (17, for C is not free in (18)
(19 Forall C: wp(C. A= WP(C, —~—AAA), e (12),(18)
Q0)  wp(B, A) = wy(B, ~~AA4) ' 9)
Theorem Pb102: [lemma 1 for Ps11]}
For all A, B and wy: If wp(B, =BAA) # 0, then for alt C: wp(C, —BAA) = 1.
Proof of theorem Fb102:

(1) wp(B, —BAA) =0 assumption
@  wpB, AamB) = 1= wp(B, ~Brd) ~ Popper’s theorems (28).and (40)
@ 1= 1-wp(B, =BrA)+wwpl—(—BAA), ~BAA] . Popper’s theorem (64), (2)
@ wy(B, —BAA) = wpl~(—BAA), ~BAA] %0 a3, m
(5)  Forall Ciwp(C, —Bad) = |, Popper's theorem (63), (4)

Theorem Pbi03: [lemma 2 for Psl1; also lemma for Pb104]
For all A, B and wy: If wp(BA—B, A) = 1, then wp(A, B) = wp(—B, B).
Proof of theorem Pb103:

(1) wp(Ba-B,A)=1 assumption
(2 wp(=BAA, By = wp(=B, AaB)wi(A, B) Popper's axiom B2
(3)  wp(BA—B, A) = wp(BAB, A) Popper's theorem (40)
@ 1= Wp(—BAB, A) = wp(—B, Bad)w(B, A) {1}, (3), Popper's axiom B2
(5] wp(=B, AnB) = Wp(—B, Bad) Popper's theorem (40}
©  wpl—=B, AAB)wp(B; A) =1 (5, @)
M wp(B, A)<1 and Wp(—B, AAB)<L. : Popper’s theorem (16)
(B wp(=D, AnB) =1 ©), (N
o Wpl—BAA, B = 1wy(4, B) = wp(4, B) (2}, (8)
(1) wp(=BAaA, B) = wy(-B, B) Popper's theorem {(69)
(1) wplA, B) = wp(~B, B) @), (1%

Theorem Pb104: [lemma 3 for Psll1; also lemma for Psi7]
For all A and wy: for all B: wy(B, A) = 1 iff for all B: wp(—4, B) = L.
Proof of theorem PbI104:

(1)  Forall B:wp(B, A)=1. assumption —
@ wplBa-B,A) =1 [¢)]
‘() wplA, B)=wp(=B, B) ) (2), Pbi03
@ wp(A, BY= 1-wy(A, Bwy(—B, By =1 . Popper's theorem (64), (3)
(53 Forall B: wp(—A, B =1 (4), for B is neither free in (1) nor in (5)
6) Forall B; wp(—.A, nH=1, assumption ¢
0 wy-d, 4)=1 ©)
{8) Foral B: wp(B. Ay=1, Popper’s theorem {63}, (T}

Theorem Pb105: [lemma 4 for Ps11; also lemma for Ps19]
For all A, B and wp: wp(BA—B, A) = wp(—A, A) = wp(—BAB, A),
Proof of theorem PbI10S5:

(1) wp(Ba—B, A) = 1-wp[~(Ba—B), A +wp(—LA, A= Popper's theorems (64) and (74)
= 1-14wp(=A4, A) = wp(—4, 4)

@)  wp(Ba-B,A) = Wp(—BaB, A) Popper's theorem (40)

3 Wp(BA—HB, A} = wy(—A4, A) = wp(—BaB, A) (O, ()
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Theorem Pb106: [lemma 5 for Psl1; also lemma for Ps18, Pbl113, and Ps26]

For all A, B, C and wy:

wp(A—B, C) = wp[—(AA-B), C] = wp(BAA, C)+wp(—4, C)rwp(Aa—A, C).
Proof of theorem Pb106:

)  wpld—B, O) = wy(-AvB, C) = wyl~(——An—=B), C] - Phi
@ wpl{—danB), C] = l-wp(-—.—.AA—LB, C’J+wp(—1 C,O Paopper’s theorem {(64)
@) wp(A—B, Cy = 1-wp(——AA—B, C)+wp(—.C, C) (1), (2)
@ wpl=(=(AAB)A-—A), C] = L-wpl~(AnB)A—-d, Chiwp(-C, O Popper's theorem (64)
&) wpl=(AAB)AA, C] = wpl-(AAB), —:MACI-WP(—;—-A, C) Popper’s axiom B2
©  wpl(~(AAB), ~—AACT = 1-wp(AAB, e AACHWp[—(=—AAC), ——AAL] Popper’s theorem (64)
M WplAAB, —~AAC) = wplA, BAC—AAC)]wp(B, =—AAC) Popper's axiom B2
®  wplA, BA(=—-AAC)] = wyl4, (~=AACIAB] = wplA, ~—AA(CAB)] Poppeg‘s theorems (40), (62)
©  wpl-4, (CABA--A] = 1 = wpl-—4, ~—AA(CAB)] = Popper's theorems (28) and (40}, Pb101
= wplA, ~—~AA(CAB)]
(10)  wp(AAB, ~—AAC) = wy(B, 5~AAC) _ ) (7, (8), ()
(1) wpl=B, ——AAC) = T-wy(B, ——AACHWp[{—AAC), ~—AAC] Popper’s theorem (64)
(12) wp(—;B, AN = i’l’p[_l(AAB), ——AAC) (11), (1D, (6)
(13 wpl~(AAB)A——A, C] = wp(-B, ~—AAC) w4, C) (12),(5)
(14)  wp(——AA-B, C) = wp(=Ba-—4, C) Popper’s theorem (40)
(15 wp(=BA—~—A, C) = wy(=B, ﬁ’ﬁA!\C)‘WP(—l_tA, C) Popper's axiom B2
(18  wp(m—AA=B, C) = wpl-(AAB)A-~-4, (] (14}, (15), (13)
AN wplA-B, C) = wpl-(~(ArB)A——A), C] (16} (3), @
(18)  wpl~(={(AaB)a——4), Cl = wplAaB, C)+wp(-4, C)-wpl(AaB)A-A, C1 Popper’s theorem (79)
19 wpl(AaB)a—A4, Cl = wplAa(Ba-A), €] Popper's theorem (62)
(20)  wplAA(Ba—A), C1 = wpl(Ba—A)ad, C] Popper's theorem (40)
(21}  wpl(Ba—A)AA, C1 = wplBA(-AAA), (] Popper’s theorem (62)
(22 wylBA(-AAA), C] = wplB, (RAADACTWL(-AAA, €) Popper's axiom B2
(@3} wp(BAC, —Aad)=wplB, CA{—AAA)wR(C, ~And) Popper's axiom B2
@ wp(BAC, —And) =1 = wp(C, —mAAA) . Popper's theorem (33")
(25)  wplB, CA(~AAA)] = 1=wyplB, (—AAAAC] (23), (24), Popper’s theorem (40)
(26)  wplBA(=AAA), C1= wp(—And, C) = wplda-4, C) (22), (25), Popper's theorem (40}
@7 wpllAABIA—A, Cl = wp(Aa—4, €) (19), (20), (21), (26)
28) wpl~(~(ArBIa——A), C1 = wi(AAB, Chwp(—4, C)-wpda—4, C) (18, 2"
(29 wp(AaB, O = wp(BAA, O Paopper’s theorem (40)
(30 wp(A—=B, C) = wp(BaA, Oxwp(—A, Chwpda—a, €) (i7, (28), 29)
(1) wpl——Aa=B, C) = wp(o—A, -BAC) w4, €) Popper’s axiom B2
(32)  wp(A, ~BAC) = wy(—~-, ~BAC) : Pb101
(33) wp(—l—.AA—|B, )= wp(A, —lBAC)-wp(—'B, C) (31), (32)
(39 wp(Aa=B, C) = wy(A, ~BACywp(=B, C) Popper's axiom B2
(35)  wp(Aa—B, €)= wy(——4a=B, C) (34), 3%
(36 1-wp(Aa—B, Crwp(=C, €) = L-wp(~—-Aa-B, Chwp(=C, €) 35
@D wpl(Aa=B), €1 = wpl~(—=—Ar-B), (] Popper's theorem (64), (36)
(38) wp(A—B, €) = wpl—~(Ar-B), C OINEY)
(39 wp(A—B, C) = wp[+(AA-B), €] = wp(BAA, Cyiwp(—A, O)-wp(An—4, C) {38), (3

Theorem Ps11: [lemma for Ps20]
For all A and B:
If for all wp: wp(B, ~BAA) #0, then B truth-functionally foliowsy, from A.
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Proof of theorem Psi1;

({d) TForall Wyt Wp(B, —Bad) 2 0, " assumption
(@) Forall € wi(C, —Bad) = 1. (1), Pb102
& wp(C —Brd) =1 : @
@ wp(C Ar-B)y=1 (3), Popper’s theorem (40)
(5)  For all E: wp(4, B} = wy(——4, E). . Pb101
©  wp(C ArB) = wp(C, ——AA—-B) (4), Popper’s theorem (99)
M wy(C ——Ar-B)=1 (©), @)
(8) VForal!C; wp(C, —~—AA—B) =1, (7}, for Cis neither free in (1) nor in (8)
9 ForaliC wpl(~As-B), (1= 1. (&), Pbitd
(10} wpl=(=—AA=B), Cl=1 = wy(Bad, Crwp(—4, O-wpda—4, ©) (9), Pb1G6, Pb101
AL wp(—4,0) = 1-wy(4, O+wp(=C, €) Popper’s theorem (64)
(12 wplda—A, C) = wp(=C, ) Pb105
(13)  1=wpBad, O)iI-wp(A, Orwp(=C, Oywp(=C, O) am;, an, 12y
(14 wp(Bad, C) = wy{4, C) {1%)
(15) Forall wp and C; wp(Bad, C) = w4, O). (14), for neither wp nor C is free in {1) or (15)
(16) B truth-functionally follc)wsP from A. Psl, (15)

So the first half of the bridge-—spanning the distance from Popper’s theorem (100) on
page 304 to theorems Ps10 and Psl11 on page 306 of the Logik der Forschung—is com-
pleted. We have fo construct now the second half of the bridge from theorems Ps10 and
Ps11 to Popper's laws of excess on page 307; this will require proving further 18 theo-
rems. Some of them (though not their proofs) will look familiar from Kelmogorov prob-
ability semaitics. We continue with three theorems concerning the relation of trath-func-
tional equivalence,: Ps12, Ps13 and Ps14. The Kolmogorov analogue to Ps12 isnot a
theorem of Kolmogorov probability semantics—which is another one of its shortcomings.
The Kolmogorov analogue to Psl13 is theorem K5; and that to Psi4 is a well-known
theorem of the classical theory of truth-value functions and truth-functional attributes.

Theorem Ps12: [lenuna for Ps13, Ps14, and Pel3}
For all A and B:

A is truth-functionally equivalentp to B iff for all wpand C: wp(A, C) = wy(B, O).
Proof of theorem Psl2: '

(1)  Ais truth-functionally equiva]entp‘to B, assumption —
(2) B truth-functionally followsp from A, and A truth-functionally fol[owsp from B. Ps2, (1}
(3 wplBAA, Oy =wp(A, O) . . Psl, (2)
@ wplAAB, C) = wp(B, C) Psl, (2)
(5)  wplAaB, Oy =wp(Ba4, C) Popper’s theorem (40)
©® wpA, O =wp(B, O 3@, G

(0 Yor ail wp and C: wp(A, €)= wy(B, C). (6), for neither wp nor C is free in (1) or (7)

8y Forall wyp and G wp(A, )= wp(B, C). assumplion <
©  wpld, AAC) = wp(B, AAC) L63]
(A0)  wplA, CAd) = 1= wy(A, AAC) Popper’s theorems (28) and (40)

(1D wy(B,AAC) =1 ' . (), (10)
(12)  wp(BaA, C) = wp(B, AMC)wp(A, C) = wiy(A, C) Popper’s axiom B2, (11}
(13)  For all wp and C: wp(BaA, C) = wp(4, C) (12), for veither wp nor C is free in (8) or (13)
(14) B truth-functionally fc]lowsp from A, Psl, (13)
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(15
(16)
an
(18
a9
0
@n

WplA, BAC) = wp(B, BAC) B
wp(B, CAB) = 1 ="wp(B, BAC) Popper's theorems (28) and (40)
wp(A, BAC) = 1 (15), (16)
wpldaB, C) = wy(A, BAC)wp(B, C) = wp(B, C) Popper’s axiom B2, (17)
For all wp and C: wp(AAB, O= wp(B, 0. (18), for neither wp nor C is free in (8) or (19)
A truth-funciionally follows,, from B. Ps1, (19)
A is truth-functionally equivalent, to B. Ps2, (14), (20)

" Theorem Ps13; [lemna for Ps16]
For all A, B and pyp: If A is truth-functionally equivalent,, to B, then py(A) = pp(B).
Proof of theorem Psi3; -

)
@
3
@

" A is truth-functionally equivalemp to B. assumption
For alt C; wp(4, C) = wy(B, O). - Ps12, (1)
wp[A —(CA=C)} = wplB, ~(CA=O)] S V)

PplA) = pp(B) : (3), Popper’s theorem (75)

Theorem Psi4: [lemma for Pel3] _
For all A and B: (A—>B)aA is truth-functionally equivalenty, to BAA.

Proof of theorem Ps14:

Y
2)
&)
@
&)
®
Q)
®
®
(10
{15
(12)
a3
(4
(15
)
an
(18
(19)
20)
@

wpl{A—B)AA, C] = wp(A—B, AnCywplA, ©) Popper's axiom B2
wP(A-—>B, AAC) = wp[—|(AA—|B), AAC] Pbi06
wpl—~(AA=B), AnC] = 1-wp(AA—B, ANC)Hwp[—HAAC), ANC] ) Popper’s theorem (64)
wWplAa—B, AAC) = wp{—Bad, AnC) Popper’s theorem (40)
Wp(Bad, AAC) = wy[—8, AMAACH WA, AAC) Popper's axiom B2
wp(4, CAA) =1=wy(4, AnD) Popper s theorems {28) and (40)
wp(AA—B, AAC) = wpl—B, AMAAC)] @), (5), (&)
wpl-1B, AMAAC)] = wp[-B, (AAAAC] Popper's theorem (62)
For all E: wi{AAA, E) = wi(A, E). Popper's theorem 32)
Wpl—B, (AAAAC] = wy(=B, AnC) ’ (9), Popper's theorem (99)
wpl=B, AMAACY = wp(=B, AAC) ®), (10)
wp(=B, AAC) = 1-wp(B, AAC)wpi-AAC), AAC] Popper’s theorem (64)
wpl(AA—B, AAC) = 1-wp(B, AAC)+wpl—~{AAC), AnC] M, (D, A2
wpl—(Aa—B), AAC] = 1-{1-wy(B, AACY 4wl ~(AAC), AACTI+WyI-+(AAC), AAC] (3), (13)
wpl—(AA—B), AACY = wp(B, AnC) , (14
wp(A—=B, AAC) = wp(B, ArC) 5,15
1vp[(A~aB)AA, Cl= wp(B,AAC)-wp(A, <) (1), (16)
wp(BAA, O) = wp(B, AAC)wp(A, C) Popper’s axiom B2
wpl(A—=B)AA, Cl = wp(Bad, C) 17, {(18)
For all wp and C Wp[(A““}B}AA, Cl= WP(BAA, ), {19), for neither wp nor C s free in (20)
(A—B)rA is truth-functionally equivalenty, o BAA, . P12, 200

3.2.3 Theorems concerning “A stands in Truth-functional Contrary Opposition,, to B” and

“A stands in Truth-functional Contradictory Oppositiony to B”

We shall need only two of them for the time being: Ps15 and Ps16.
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Theorem Ps15: [lemma for Pell and Pe36]
For all A, B and wp: If A stands in truth-functional contrary oppositiony, to B, then
wp(=B, A) = 1,

Proof of theorem Psl5: immediately from Ps3 and P58,

For the proof of theorem Ps16 (and of many theorems to come), we need the negation
theorem for unary Popper probability functions, i.e., pp(—A) = 1-pp(A), which will be our
theorem Pb110. To make the proof of Pb110 transparent, we prove three lemmata first:
Pb107 as a starter, which is only a convenient lemma for the important theorem Pb108, to
which Pb109 is a coroliary, from which, finally, Pb110 foliows at once. Note that the
Komogorov analogues to Pb108 and Pb109 are not theorems of Kolmogorov probability
semantics. ‘

Theorem Pb107: {lemma for PbI08; also lemma for PbI11 and Pb115]
For al A, B and py: py(AnB) = py(Bad).
Proof of theorem Pbi07:

(B pplAaB) = wylAnB, ~(CA-()] Popper's theorem (75)
@  ppBAAY = wp[BAd, -(CA0)] Popper's theorem (75)
£)] WP{AAB, —(CA-0)] = WP[BAA, —(Ca=C)] ) Popper’s theprem (40}
@ pplAnB) = py(Bad) 1, (2, %

Theorem Pb108: [lemma for Ph109]
For all A and wp: If wp(—4, A) # 0, then wp(A, —A) = 0.
Proof of theorem Ph108:

(M) wp(—A, A) = 0 and wp(d, ~4) 2 0. . assumption [for indirect proof]
@ wp(BA)=1 (1), Popper's theorem {63)
(3 wplA, =AY = w4, ~4) Pb101
@ wpld,-4)=1 (1), (3), Popper’s theorem (63)
) Ifwp(—B, B)=0, then w) (AAA B+ Wp(—xAAA B} = wp(A, B). Popper's theorem (70)
© Ifwp(=B, By=10, then wp(A B} +wp(—~And, B) = wpld, B), (5), Popper's theorem (32)
() Ifwp(=B, BY =0, then wp{—AAA, B) =0=wp{Ar-4, B). {6}, Popper's theorem (40)
8 wplAn—a, B) = wp(A, ~AnB)wp(—A, B) Popper's axiom B2
%) wp(BAA -A) = Popper's axiom B2, Popper’s theorems (40} and (33), (4)
= Wp(B, AA—AY WA, —A) = wp(B, ~ArA)- wp(A ~A)=11=1
10y wp(BAA, —A) = wy(AAB, —A) = Popper's axiom B2, Popper's theorem (40)
= Wp(A, BA-A) Wy(B, 4) = wp(A, ~AAB)wy(B, —A) .
Al wp(A, =AAB)wp(B, ~A) = 1 a0, ®
(12) 0<wp{A,—AAB)S 1 and 0 S wyp(B, -A) S L Popper’s theorem (16)
(I3 wpd, -AAB) =1 - AD, (12)
(14 wplda—A, B) = wp(-4, B) @), 13
(15 I wp(=B, By =0, then wp(-4, B) = 0. . A
(16) I wp(—=B,B)=0,then 0=1 - wp(d, B) + 0. Popper's theorem (64), (15)
(7)1 wp(—B, B) = 0, then wy(4, B) = L. _ (16)
(18} If wy(—B, B) # D, then wp(4, B) = 1. ) Popper’s theorem (63)
(19 wpd, By=1 | (7, (18)
200 pP(B) = pp(AAB) (15}, Popper’s theorem {96)
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(21)  pylA) = pp(Brd) . (2), Popper's theorem (96)

22y pplA) = pp(B) ' 25, (20), Pb107
(23y Forall B: pP(A) = pp(B). (22), for B is neither free in (1) norin (23)
@ Pl =pplC) = pp~0) = pplr(BA-B)l = pyCA-C) . @3
29 wplC, ~(BA-BY = wpl-C, ~(BA-B)] = wpl~(BA~B), ~(Ba-B)]  (24), Popper's theorem (75)
(260 wplC, ~«(BA-B)] = L-wylC, -;{BA—.B)]-}wp{—.—l(BA—;B), —;(BAﬂB)] ! Popper’s theorem {(64)
@7 wpl=C, =(Ba-B)j =1 . : (26), (25}
28 pp(=C) = 1= pp(Caq0) . (27}, Popper’s theorem (75), (24}
29 wp(C, ~C)pp(—C) = pp(CA-C) ] Popper’s theorem (96)
(G0 wp(C,—-0)=1 (25),(28)
(1) Forall C: wp(C, -0O) =1, (30, for C is neither free in (1) nor in (31)
(32 wp(=C 0 =1 : : 6)3)
(33 wp=C O)=1 (32), Pb101
(34} Forall C: wp(~C, C) = 1, {33), for C is neither free in (1) nor in (34)
(35) There is at Jeast one C such that wy(—C, €)= 1. - Popper’s theorem (25)
(36) There is at least one € such that wp(—C, C) # |, and thereisno Csuch . (35), (34)

that wp(=C, ) = 1.

Theorem Pb109: [lemma for Pb110; also lemma for Pb113, Pb115 and Ps26]
For all A, B, wp and pp: wy[BA—B, ~(AA—A)] = 0 = py(BA—B).
Proof of theorem Ph109:

(1) wpl~(BA—B), BA-B] = Wpl-(Ba—B), ~BAB} £ 0 Poppcr s theorems (40) and (33")
@ wplBaB, ~(Ba-B)) =0 (1), Pb108
) pp(Ba-BY = wplBA-B, ~(BA—B)] Popper’s theorem (75)
@ pp(Ba=B) = wplBA—B, ~(An-A)] Popper's theorem (75)
) wplBa—B, ~(Ar—A)] = 0= p(BA-B) @, 3, ©

Theorem Pb110: [lemma for Ps16; also lemma for 14 _ﬁnther theorems]
For all A and pp: pp(—A) = L-pp(A).
Proof of theorem Ph110:

1y Wpl-A, ~(Ba-B)] = l-wp[A, —|(BA—|B)}+WP[—|—1(BAﬂB), —(Ba—B}]} Popper’s theorem (64)
@ wWplBA-B, ~(BA—-B)] = 0 = wpl=—(BA-B), ~(BA—B)] = 0 Pbl109, Pb101
@) wpl=A, ~(BA-B)) = 1-wplA, ~(BA—B)) 1, ()
@ ppl=A) = 1-pp(d) {3), Popper’s theorem (75)

Theorem Psl6: {lemma for Pe37 and Pe38]
For all A, B and pp: If A stands in truth-functional contradictory oppositiony, to B, then:

A stands in truth-functional contrary opposition;, to B; and

pp(A) = pp(—B) and pp(-A) = py(B).
Proof of theorem Ps16: :
{1) A stands in truth-functional contradictory opposilionp to B. asstmption
(@) Ais truth-functionally equivatent, to -, _ Psd, (1)
(3)  —B tuth-functionally fo!]owsp from A. Ps2, (2)
@) A stands in truth-functional contrary oppositionp o8 . Ps3, (3)
5 pplA)= pp(—B) (2), Psl3
©  pp(—A) = 1-pp(Ad) = 1-pp(—B) = 1-{1-pp(B)] = 1-1+py(B) = pp(B) Pb110, (5)
D pplA)=pp(-B} and pp(—A}= pp(B). 5, (6
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3.2.4 Theorems concerning wy-Absurdities, Contradictionsy and Tawtologiesy

We need also some theorems concerning wy-absurdities, contradictionsp and tautologiesp.
We start with two central theorems concerning wy-absurdities: Ps17 and Ps18.

Theorem Ps17: [lemma for Ps18, Ps20, Pe3-Pef, Pe8, Pe9, Pel6, Pe29, and Pe36]
For all A, B and wp: A is wp-absurd iff

wp(—4, A) # 0; or iff

wp(=B, A) # 1-wy(B, A); or iff

for all C: wy(—4, C) = 1.

Proof of theorem Psi7:

) Ais wy-absurd iff for all B: wy(B, A)y=1. Ps7
& wpl=A, A) =0 for all B wp(B, A)=1. Popper’s theorem (63)
(3 Aiswy-absurd iff wp(—4, 4) 2 0. -0, ()
@ wp(=B, A) = 1-wy(B, A)y+wp(—4, A) Popper's theorem (64)
(8 wp(=B, A) # L-wp(B, A) f wy(—A4, A)= 0. @
©  Ais wp-absurd iff wp(—B, A) # 1-wp(B, A). (3), (5
(I ForalhB: wp(B, A)=1 iff forall C: wp(—ué, =1, Pb104
@ Ais Wp-absurd iff for all C: wp(—lA, O=1 (O, (D
©)  Ais wp-absurd iff (3), (6), B

wp(—A, A) # 0 or iff wp(—B, A) # 1-wy(B, A) or iff for all C: wp(—A, Cy= 1,

To learn also something about general relationships between svp-absurdities and unary
Popper probability functions, another theorem from basic Popper probability semantics is
required;

Theorem Pb111: [lemma for Ps18, Pbl14, Pe22, Pb116, and Pe25]
For all A, B and pp: If pp(A) = 0, then pp(AAB) = O = pp(BAA).
Proof of theorem Pbl111;

(¢} pp(A) 0 : assumption
2) = wp{A —(CA—0)} Popper’s theorem (75), (1)
) wplBaA, ~(CA0)] = wP[B Ar—(CA-0))- wp[A —{CA—0)] =10 Popper's axiom B2, (2)
@) pp(BaA) = wplBAA, ~(CA-C)] =0 Popper’s theorem (75), (3)
() pplAAB) =0 = py(Br4) Pb107, (4)

Theorem Psl8: [lemma for Pe3, Pe8, Pe28, and Pe40]

For all A, B, pp and wy: If A is wy,-absurd, then:

PplA) = 0= pp(AAB) = pp(BAA) and pp(—A) =1 —Pp(A‘““)B)
Proof of theorem Psl8:

() Aiswpabsurd, assumption
@ wpl-d, ~(CA-C)] = 1= ppl—4) o (1), Ps17, Popper's theorem (75)
@ ppA)=1pyl-A)=1-1=0 Pb110, (2)
@ py(AnB) = 0= pp(Bad) ) (3), Pbl11
(5  Forall B: pp(AnB) =0. ’ (4), for B is neither free in (1) nor in {5)
© pplAa-B)=0 )

@) pplA-—=B) = wplA—oB, ~(CAO)] = wpl~(Aa-B), ~(CA-CH] Popper’s theorem (75), Pb106
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®  wpl—~(AA—B); ~(CA-O) = pl~(Ar—B)] Popper’s theorém (75)

©  ppl-Ar-B)] = 1-py{Ar-B)=1-0=1 Pb110, (6)
(10 ppd-B) =1 (D, 6O
(1 pplA) = 0=pp(AAB) = pp(BAA} and pp(-A)=1=pplA—B). (3), ), (2), (10)

We continue with four theorems concerning contradictions,. First a proof of the propo-
sition that the paragons of contradictionsy are contradictionsy, then a proof of the central
proposition that contradictionsy are precisely those formulae of £ which are absurd in re-
gard to every binary Popper probability function:

Theorem Ps19: [lemna for Pb125]
For all A: AA—A is a contradiction,,
Proof of theorem Ps19:

(®)  wp(=B, B) = wyl-(AA-AA(Ar-A), B] ' Pb105
@  wp(-B,B)= WP(AA—A, B) = wp[~(AA—-A)n(Ar—-A), B] Pb105
) wplAr-AAAA-A), Bl = wplAs—4, B) (1), (2
@  Torall wy, B: wyl-(Ar—A)AAA-A), B = wplAn—4, B).  (3), for neither wp nor B is free in (4)
(8 —(Ar—A) truth-functionally follows, from Ar-4, Psl, (4)
6  Aa—A stands in truth-funciional contrary opposition;, to An—A, ) Ps3, (5)
(N - Aa-Aisa conu'adicﬁonp. Ps5, (6)

Theorem Ps20; [lemma for Ps21 and Ps22]
ForallA:Aisa comradictionp iff for all wp: A is wp-absurd.

Proof of theorem Ps20:

{)  Aisacontradictiony iff —A truth-functionally followsy, from A, Ps5, Ps3
(2)  —A yuth-functionally followsy from A iff for all wpi wp(=A, -—AAA) £ 0, Ps10, Psli
(3} For all wy: wp(=4, A) = wpl—4, ——AnA). Pb101
@ A is acontradictiony Iff for all wp: wp(—4, A) # 0. (1,2, 3
(5) ForallwpAlis wp-absurd iff wp(—A, A) # 0. ’ Psl7
©) Forall wpi Ais wp-absurd iff for all Wp wp(—\A, Ay =0, &)
(Y Aisa <:ontradictionp iff for all wpyi A is wy-absurd, {4), {6)

We add to Ps20 two convenient corollaries (note that the Kolmogorov analogue to Ps21 is
not a theorem of Kolmogorov probability semantics):

Theorem Ps21; flemma for Ps24]
ForallA:IfAisa comradictionp, then for all B and wp: wp(B, A) = 1 = wp(—A, B).
Proof of theorem Ps21: immediately from Ps20, Ps7 and Psi7. :

Theorem Ps22: [lemma for Ps23]

ForallA:IfAisa contradictionp, then for all B and pp:

pp(A) = 0= pp(AAB) = pp(BAA) and pp(—A) = 1 = pp(A->B).
Proof of theorem Ps22: immediately from Ps20 and Ps18.

So much for contradictionsp. For the purpose of proving laws of excess in Popper prob-
ability semantics, two theorems concerning tautologiesp will also be required. The first one
will certainly not come as a surprise, but the second one might, because its Kolmogorov
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analogue. is not a theorem of Kolmogorov probability semantics (which is still another
shortcoming of Kolmogorov probability semantics):

Theorem Ps23: {lemma for Pe31 and Pe32}
For all A: If A is a tautologyp, then for all pp: pp(4) = 1.
Proof ot theorem Ps23:

() Aisa tantologyp. . assumption
@y —A is a contradiction b Pso, (1)
& ppl=—A) =1=1-pp(A4) = 1-[1-pp(A)] = 1-14pp(A) = pp(A) (2), Ps22, Pbiio
4) Forall Py pP(A) =1, (3), for pp, is neither free in (1) nor in (4)

Theorem Ps24: [lemma for Pe32]
For all A: If A is a tautologyy, then for all B and wy: wp(4, B) = 1.

Proof of theorem Ps24;

() Aisa tautologyp, ) assumption
) -—Aisa contradictionp, Ps6, (1)
() wp—-A, By=1=wy4, B) - (2), Ps21, Pb101
(4) Forall Band Wp! wp(A, By=1. (3), for wy, is neither free in (1) nor in (4)

With theorem Ps24 the second half of the bridge between theorems Psi0 and Ps11 on
page 306 and Popper’s laws of excess on page 307 of the Logik der Forschung is com-
pleted. It should now be easy to arrive at those of Popper’s laws of excess which are
provable in Pepper probability semantics. In the next section, we shall extend theory Ps
non-creatively to the theory Pe of the excess of pp(A—B) over wp(B, A) by adding to the
axiomatic basis {Pb1-Pb3, Ps1--Ps7} a further and last axiom which corresponds to Pop-
per’s definition of the excess of p(b—a) over p(a, b).

3.3 Extension of Ps to the Theory Pe about the Excess of pp(A—éB) over wp(B, A)

3.3.1 The Specific Axiom of Pe

According to axiom Pbl, every binary Popper probability function is a function from £x&
into the reals, hence it holds for all A, B and wy, that there is exactly one real number r
such that wy(B, A} = r. Hence in Popper probability semantics—in contrast to Kolmogo-
rov probability semantics—wp(B, A) always exists, whatever the absolute probabitity of
A. Hence we can take over the gist of Popper’s definition of excess without further ado as
the specific axiom of Pe;

Axiom Pel:
For all A, B, pp and wy: excess[pp(A—B), wp(B, A)] = pp(A—>B)-wp(B, A).

The only difference, if any, to Popper’s original definition of the excess of p(b->a) over
pla, b) is that, in Pel, A and B are formulae, whereas, in Popper’s definition, a and b are,
presumably, statements.
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3.3.2 Popper’s Laws of the Excess of pp(A—3B) over wp(B, A)

"Let us follow closely Popper’s presentation of laws of excess in POPPER (LdF9, p. 307),

from which we gained in subsection 1.2 fourteen propositions as possible laws of excess.
As it is our aim to prove these propositions and since, strictly speaking, all propositions
which we have listed as possible Jaws of excess say something about statements expressed
by sentences in some natural language rather than about meaningless formulae of some
logical language, we have to presume here that each of the following theorems which is
true for an arbitrary formula A is also true for every statement a that correponds o formula
A. We start with the proof of proposition (1.2.1), which states that the values of the ex-
cess function range at most from -1 to +1, To prove proposition (1.2.1), the following
theorem of basic Popper probability semantics is required: '

Theorem Pb112: [lemma for Pe2, Pe7, Pel6, Pel9, and Pe40]
For all A and pp: 0<pp(A)<1,
Proof of theorem Pb112;

By 0c=< WP[A, —(Ba—B) =1 Po_pper's theorem {16)
@ pplA) = wplA, —~(Ba-B)] Popper’s theorem (75)
3 0spylA)<t 0,

Theorem Pe2: {cf. proposition (1.2.1)}] 7
For all A, B, pp and wp: -1 < excess[pp(A—B), wp(B, A)} < +1.

Proof of theorem Pe2:

(1) If pp(A—B)=0 and wy(B, A)<I, then excess[pp(A— B), wy(B, A)l 2- 1, Pel
@ It pp(A—B)<l and wp(B, A)20, then excess{py(A—B), wy(B, A)] < +1. Pel
3 0<pp(A—-B)<I and O=wy(B, A)sL, Pb112, Popper's theorem (16)
@ -1 <excesslpp{A—B), wp(B, AY) < +1 ] 0, 2,3

We continue with the only one of Popper’s laws of excess that states a condition (i.e.
A’s being a contradictionp) under which py(A—»B) does not exceed wy(B, A). We prove
this law by proving a logically stronger one:

Theorem Pe3: [cf. proposition (1.2.2)]

For all A, B, pp and wp: If A is wp-absurd, then excess[pp(A—B), wy(B, A)] = 0.
Proof of theorem Pe3:

(1} Aiswp-absuid, assumption
@) ppla—sB)=1=wy(B, A) : Ps18, Ps7
(3 ppA-B)-wp(B,A)=0 . @)
@ excess{pp(A—B), wp(B, A)1 =0 Pel, (3)

We come to Popper’s central proposition (1.2.3), formulated in our terminology:

Forall A, B, pp and wy: If Aisnot a contradictionp, then;
excess[pp(A—>B), wp(B, A)] = wp(—B, A)pp(-A).,

Unfortunately, proposition (1.2.3) is not provable in Pe. In order to prove (1.2.3), we
would have to prove (as will be illustrated by the proof of Ped below):
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(i) fAisnota contradictionp, then wp(—B, A) = 1-wp(B, A).

Now, if (i) were a theorem of Popper probability semantics, then this would also be one:
(i) Aisa contradictionp iff wp(—B, A) # 1-wp(B, A).

But (i) is logically equivalent to the non-theorem: ’
(i) A isa contradictiony, iff (there is at least one ywp such that) A is wy-absurd.

Popper seems to take (i) for granted (as I gather from correspondence with him), and so it
is completely understandable that he considers proposition (1.2.3) to be a theorem of his
(extended) probability theory. But taking (i) for granted means equating wp-absurdities
with contradictionsp, as is illustrated by (iii). However, as Leblanc and his collaborators
found out in the 1970s?8, it is precisely Popper probability semantics in which the fine
distinction between 1w)-absurdities and contradictions can be made and has to be made, if
one wants all contradictions, to be contradictionsy: for whereas every coniradictiony, is
indeed wy-absurd, not every wp-absurdity is a contradictiony. So not (i), but only this
weaker version of (i) is a theorem of Ps:

(iv) If A is not a contradictiony, then there is at least one wp such that
wp(—B, A} = 1-wp(B, A).

Theorem (iv) (which is a corollary to Ps20 and Ps17) is not strong enough to yield
(1.2.3).° However, if we take wp-absurdit_ies instead of contradictionsp, then we can
prove a proposition which is, admittedly, logically weaker than (1.2.3), but which is
nevertheless illuminating and, in addition, still useful for proving further laws of excess:
this proposition will be theorem Pe4. First two convenient theorems from basic Popper
probability semantics: :

Theorem Pb113: [lemma for Pbli4, Ped, Pe20, and Ps25]
For all A, B and pp: pp(A—>B) = 1-pp(A)+pp(BaA).
Proof of theorem Pb113:
U wplA-B, —(An—A)] = wplBaa, —(AA-Aewp[—A, HAA-AwplAr—A, ~(AA-A4)]  PbI06

@) pplA—B) = pp(-AYepp(BAA)-ppAA—A) Popper’s theorem (75), (1)
3 pplAn-4)=0 Pb109
@ pp(A-»B) = 1-pp(A)tpp(BAA) 2), (3), Pb110

8. This discovery was triggered off by a remark in STALNAKER (Probability, p. 70) [£970] to the effect
that A need not be a tautologyy if A is w-valid, i.e., if -4 is wp-absurd, Stalnaker's remark was elabo-
rated in HARPER (Belief, p. 109) [1976], and the problem was taken care of in LEBLANC/VAN
FRAASSEN (Functions) [1979]. The 1980s and the early 1990s brought an abundancy of refinements
of these early results; see especially ROEPER/LEBLANC (Indiscemibility) [1991].

9. Tronically, if p were taken to be a Carnap probability function, then proposition (1.2.3) could be proved
in Camap probability semantics (the same holds true for propositions (1.2.7), (1.2.12), and (1.2.13)).
But Camap probability semantics is known to tum a controvessial proposition into a theorem which
Popper has never accepted, to wit: “If p{A} = 0, then A is a contradictiony”.
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Theorem Pbl14: flemma for PeS]
For all A, B and pyp: If pp(A) = 0, then pp(A—B) = 1.
Proof of theorem Pbi14;

O ppdy=0 assumption
@  ppBAA)=0 (1), Pb111
@) PplA—B) = 1-pyAypBAd) = 1-0+0 = 1 PB113, (1), (2)

Now to the proof of the weakened version of proposition (1.2.3):

Theorem Ped: [weakened version of proposition (1.2.3)]

For all A, B, pp and wp: If A is not wp—absurd, then:

excess[pp(A—>B), wp(B, A)] = wp(=B, A)pp(—4).
Proof of theorem Ped!

{1} Aisnot wp-absurd. assemption
2} wp(=B, A) = 1-wp(B, A) Psi7, (1)
B pp-d) = 1-pyA) Pb110
@ wpl=B, A)pp(—A) = [1-wy(B, A)I-E1-pplAd] @, 3
©)  wp(=B, A)pp(—A) = 1-pp(A)-wp(B, A)+[iwp(B, A)pp(A)] “@
©  wp(B, A)pplA) = pp(BrA) Popper’s theorem (96)
@ wp(-B, A)pp(—A) = 1-pp(A)-wp(B, A+pp(Bat) ). ©
@  pplA—B) = 1-py(A)ipp(Bad) Pblil
©)  wplB, Aypp(—A) = pplA—B)-wyB, A) 7 ®
(10 excess{py(A—B), wp(B, A)l = wp(-B, A)pp(-4) Pel, (9}

A nice side result is this: since, according to Ps7, A is not wp-absurd if wp(B, A) # 1,
theorem Ped guarantees at once the theoremhood of propositions (1.3.2), (1.3.2’), and
(1.3.2"*) (compare subsection 1.3.}.

We continue with the proofs of Popper’s laws of excess (1.2.4) and (1.2.5):

Theorem Pe5: [cf. proposition (1.2.4)]
For all A, B, pp and wy! excess[pp(A—B), wp(B, A)] = [1-wp(B, A)]-pp(—A).
Proof of theorem Pe5:

(1) IfAis wp-absurd, then wp(B, A) = L. Ps7
) IfAis wp-absurd, then {1-wp(B, A)]-pp(—zA) =0. (1)
3 IfAis wp-absurd, then excess[pp{A—38), wy(B, A)] = [{-wp(B, A)l-pp(—A). Pe3, (2)
@  IfAis not wy-absurd, then excess[pp(A—B), wp(B, A)l = wp(-B, A)py(—A). Ped
5) IfAisnot wp-absurd, then wp(—B, A) = 1-wp(B, A). Ps17
© I Aisnot wy-absurd, then excessipp(A—sB), wp(B, A)] = [1-wy(B, A)1.pp(—A). CYREY
() excess[pp(A—B), wy(B, A)} = [1-wp(B, A)]-pp(-A) 3). ®

Theorem Pe6:; [cf proposition (1.2,5)]

For all A, B, pp and wp:

excess[pp(A— B), wp(B, A)] = wp(—B, A)pp(—A)-[1-wp(=A4, A)].
Proof of theorem Pe6: .
() IfAis wp-absurd. then wp(—A, A) = L. Ps17
2y IfAis wp-absufd. then wp(—|B,A)-pp(—.A)-[1-wp(—.A, Al=0. ¢}
(3 IfAis wp-absurd. then excess[pp(A-aB), wp(B, A)l = wp(—.B, A)-pp(—.A)-[l—wp(-‘A,A)]. Pe3, (2)
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@ IfAisnot wp-absurd, then wp(—|A, A)=0. Ps17

(5) IfAisnot wp-absurd, then wp(=B, A)pp(=Ay[1-wpl—4, A = wp(—;B, A)pp(—4). (4)

® IfAisnot wp-absm'd, then: Ped, (5)
excess[pp(A—»B), wp(B, A)] = wp(=B, A)pp{—A){1-wp(—4, A)].

M excess[pp(A—B), wp(B, Al = wp(—B, A)pp(—A){1-wp(=4, A)] 3,6

Now comes the proof of proposition (1.2,6), i.e. Popper’s law of the never negative
excess of pp(A—B) over wp(B, A).

Theorem Pe7: [cf proposition (1.2.6)]
For all A, B, pp and wp: excess{pp(A—B), wp(B, A)] 2 0.

Proof of theorem Pe7:

(1) excess[pp(A—B), wy(B, A)] = [1-wp(B, AYl-pp(—4) Pes
) wp(B, A)s1 and pp(wq)zn. Popper’s theorem {(16), Pb112
3 excessipp(A—B), wp(B, )] 20 1,2

Proposition (1.2.7) would be the next one 1o require proof, but (see non-theorem (i)
above again and step (4) in the proof of Pe8 below) that proposition which can be proved
is the logically weaker:

Theorem Pe8: [weakened version of proposition (1,2.7)]
For all A, B, pp and wp: If B is wp-independent;, of A and if A is not wp-absurd, then
excess[pp(A~2B), wp(B, A)] = pp(=B)pp(—A).

Proaof of theorem Pe8:

1) Bis );?p-independemp of A, assumption
) Aisnot wp—absurd. ~ assumption
@) wp(B, A) = wp[B, ~(CA-C)] = pp(B) Pb3, (1), Popper’s theorem (75)
@ wp(—B, A) = 1-wp(B, A) = 1-p(B) = py(-B) (2), Psi7, (3), Pr110
(5)  excess[pp(A—B), wp(B, A)] = wp(=B, A)pp(-A) = pp(—B)pp(—A) ' (2), Ped, (4)

We turn now to the propositions {1.2.8)-(1.2.14), which state conditions under which
excess[pp(A— B), wp(B, A)] = 1. First we discern that Popper’s original formulation
*Auch gilt Exc{a, b) = 1 stets, wenn pla, b) = 0 = p(b)’ of proposition (1.2.8) is alright
after all: _

Theorem Ped: [cf, proposition (1.2.8)]

For all A, B, pp and wyy:

If wp(B, A) = 0 = pp(A), then excess|pp(A—B), wp(B, A)] = 1.

Proof of theorem Pe9: immediately from Pb1 14 and Pel.

This result guarantees also the theoremhood of propositions (1.2.9), (1.2.10) and
(1.2.11), which are weakened versions of proposition (1.2.8).

Propositions (1.2.12) and (1.2.13) cannot be proved in Popper probability semantics for
the old reason: not being a contradiction, is not cnough for not'being wp-absurd. But the
weakened versions of propositions (1.2.12), in which “not being a contradictionp” is
replaced by “not being wp-absurd”, can be proved:
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Theorem PelO [weakened proposition (1.2,12)]
For all A, B, pp and wy: If A is not wy-absurd and if pp(4) = 0 and if B is wp-in-
dependent;, of A and if py(B) = 0, then excess{pp(A—B), wp(B, A)] = 1.

Proof of theorem Pel0:

(1) Aisnot wp-absu:d. assumplion
@  ppA)=0 assumption
3 Bis wp-independentp of A. assumption
@ ppB)=0 ’ assumption
&) excess(pp(A—B), wp(B, A)l = pp(—B)-py(-A) (3), (1), Pe8
©® py-A=landp(-8)=1 - Pb1H), (2), (4
(M excess[pp(A—B), wp(B, A)l=1-1=1 (3), (6}

Theorem Pell: [weakened proposition (1.2.13)] ,
For all A, B, pp and wy: If A is not wy-absurd and if pp(A) = 0 and if A stands in truth-
functional contrary oppositiony, to B, then excess|pp(A—B), wy(B, A)] = 1.

Proof of theorent Pell!

() Aisnot wp-absurd. assumption
2 ppA)=0 assumption
(3) A stands in truth-functional contrary oppositiony to B. assumption
@ excess[pp{A—B), wp(B, A)] = wp(—B, A pp(—4) (1), Ped
3y wp=B,Ay=1 (3), Ps15
© pp-A)=1 ) Pbl19, (2)
(7 excess|pp(A—B), wp(B, A)]=1.1=1 {4), (5), (&)

Finally, we observe that proposition (1.2.14):

For all A, B, pp and wp: If A is not a contradictionp, if pp{A) = 0 and if A stands almost
in truth-functional contrary oppositiony to B, then excess[pp(A—B), wp(B, A)] = 1.

is not provable in Pe, because Ps, in which Pe is embedded, simply does not contain an
axiom which says something about the relation of almost contrary opposition. As I have
found no indications in Popper’s writings at how such an axiom could look like, I thought
it best to let the axiomatic basis of Ps stand as it is. Its extension in the direction of almost
truth-functional entailment and opposition might be fimitful, but would certainly go beyond
Popper probability semantics as known so far,

So 9 out of 14 propositions listed in subsection 1.2 as possible laws of excess have
turned out to be theorems of Pe. Let us now go through the other subsections of section 1
and find out which of the further propositions listed there are theorems of Pe.

In subsection 1.1, we interpreted a citation from POPPER (Conjectures, p. 396) and
found, besides the definition of excess, two pertinent propositions: proposition {1.1.3)
being Popper’s law of the never negative excess of pp(A—B) over wy(B, A)—already
proved above as theorem Pe7—as well as proposition (1.1.2), which is a corollary to
theorem Pe5:

Theorem Pel2: [cf. proposition (1.1.2}]
For all A, B, pp and wy: excess{pp(A—B), wp(B, A)] = [1-wp(B, AYF[1-pplAN.
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Proof of theorem Pel2: immnediately from Pe5 and Pb110,

We come to subsection 1.3, in which we interpreted a smalt citation from the 1983
Popper/Miller letter to Nature and arrived, because of the question of tacit assumptions, at
the high number of nine propositions which could have been intended as laws of excess.
These were the propositions: '

(L.3.1) Ifp{a, B) # 1 and p(b) # 1, then Exc[p(b—a), pla, )] = p(b—a) - p(b—a, b).
(1.3.2) If p(a, b) # 1 and p(b) # 1, then Exc[p(b—a), pla, b)] = p(—a, b)p(—b).
(1.3.3) If p(a, b) # 1 and p(b) # 1, then Exc[p(b—a), pla, 1)1 > 0.

plus two weakened versions of each of them. We prove propositions (1.3.1) and (1.3.2)
as well as their weakened versions by proving two propositions which are logically
stronger than (1.3.1) and (1.3.2), respectively. We know already from subsection 1.4 that
proposition (1.3.1) is an immediate logical consequence of the last but one proposition
which we encountered in Popper’s writings as a possible law of excess, i.¢. proposition:

(1.4.1) Exclp(b—a), pla, b)] = p(b—a) - p(b—a, b).

So if we prove proposition (1.4.1), we have also proved proposition {1.3.1) and its two
weakened versions. In addition, as our proof follows Popper’s proofs (1) and (2) of pro-
position {1.4.1) (see subsections 1.4 and 1.5), its correctness confirms theirs.

Theorem Pel3: [cf. proposition (1.4.1}]

For all A, B, pp and wp: excessipp(A—B), wp(B, A)] = pp(A-3B) - wp(A—B, A).
Proof of theorem Pel3: '

(1) wpl(A—-B)rd, Al = wp(BA4, 4) Ps14, Ps12
(@ wp(BaA, A) = wp(AAB, A) = wp(B, A) Popper’s theprems (40} and (29)
() wpl(AB)AA, Al = wy(B, A) 0,
@ wplA-BisA, A) = wplAnéA->B), Al = wp{A—B, A) Popper's theorems (40} and (29)
®)  wyB A =wyA—BA) 3), @)
&  pplA—B) - Wp(B, 4) = pp(A—sB)- wy{A-2B, A) )
(D excess[py(A—B), Wp(B, A} = pp(A—B) - wp(A—B, A) Pel, (6)

The next theorem guarantees the theoremhood of proposition (1.3.2) and (once again after
theorem Ped) that of its two weakened versions:

Theorem Peld: [covers propositions (1.3.2), {1.3.2°) and (1.3.27"}]
For all A, B, pp and wp: If wp(B, A) # 1, then:
excess{pp(A— B), wp(B, A)] = wy(—B, A)-pp(—4).

Froof of theorem Peld:

O wpB,AH=1 assumption
(2 Aisnot wp-absurd, Ps7, (1)
(3} excesspp(A—B), wp(B, A) = wp(—B, A)pp(=A) . (2}, Ped

Step (3) illustrates that Pel4 logically follows from Ped in Pe,.but not vice versa, because
the proposition “If A is not wp-absurd, then wp(B, A) # 17 is not a theorem of Pe, This
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answers the question, put in subsection 1.3, which logical relationship holds between
proposition (1.2.3), represented by theorem Pe4, and proposition (1.3.2), represented by:

Theorenm: Pel5: [cf. proposition {1.3.2}]
For all A, B, pp and wp: If wp(B, A) # 1 and if pp(A) # 1, then:
excess[pp(A—B), wp(B, A)] = wp(=B, A)pp(—4).

Proof of theorem Pel5: immediately from Peld.

Since the condition “wp(B, A) # 1” guarantees that A is not wp-absurd, Pels is still
logically stronger than Ped, hence proposition (1.3.2) is logically stronger than pro-
position (1.2.3).—Now to the proof of proposition (1.3.3):

Theorem Pel6: [cf. proposition (1.3.3)]

For all A, B, pp and wp:

If wp(B, A) # 1 and if pp(A) # 1, then excess[pp(A—B), wp(B, A)] > 0.
Proof of theorem Pel6:

M w3, A)=1 : assumption
@ ppd)y=1 assumption
(3)  Aisnot wy-absurd. Ps7, (1)
@ excessipp(A—B), wp(B, A = wy(—B, A)pp—4) (3), Ped
() wy(B, A)<1 Popper’s theorem (16), (1)
6 wp(=B, A) = 1-wy(B, A) . Ps17, (3)
@ wp(=B, A0 6, (5
B  pplA)<l Pb112, (2)
©  pp(-A»0 Pbl10, (8)
(10} [wp(-B, A)pp(—4)1 >0 .9
(1) excess[pp(A—B), wy(B, A} > 0 @, (10

Hence the two weakened versions of proposition (1.3.3) are also theorems of Pe:

Theorem Pel7: [cf. proposition (1.3.3°)]
For all A, B, pp and wp: If wp(B, A} # 1 and if pp(A) # 1 and if A is not a con-
tradictionp, then excess[pp(A~5B), wp(B, A}] > 0.
Proof of theorem Pel7: immediately from Pel6.
Theorem Pel8: [cf. proposition {1.3.3”)]
For all A, B, pp and wp: If wp(B, A) # | and if pp(A) # 1 and if pp(A)>0, then:
excess[pp(A—B), wp(B, A)l > 0.
Proof of theorem Pel8: immediately from Pel®.
Note that Pel8 is not only logically weaker than Pel6, but also logically weaker than
Pel7, for the condition “pp(A)}>0" guarantees that A is not a contradictionp, wheteas the

condition “A is not a contradictionp” does not guarantee that pp(A)>0. Since Pel8 is—
because of Popper’s theorem (16) and Pb112—logically equivalent to:

Theorem Pel9: [the main law of excess]
For all A, B, pp and wp:

46




If O0<pp(A)<1 and if wp(B, A)<1, then excess[pp(A—B), wp(B, A)] > 0.

this means that there are in Pe at least two Jaws of excess which are logically stronger than
the main law of excess, to wit: Pe16 and Pel7.

We still have to deal with proposition (1.4.2), which is a by-product of Pb113;

Theorem Pe20: [cf. proposition (1.4.2)]

For all A, B, pp and wp: excess[pp(A—B), wp(B, A)] = 1-pp(AY+pp(BAA)-wp(B, A).
Proof of theorem Pe20: immediately from Pb113 and Pel.

This completes our chain of proofs of those laws of excess which have been mentioned
or alluded to in Popper’s writings.

In the next subsection we prove some further laws of e¢xcess in preparation for the
comparison of Pe with Ke in section 4.

3.3.3 Further Laws of the Excess of py(A—B) over wy(B, A}

Firstly, three theorems concerning the excess of py(A-+B) over wﬁ(B, A), when pp(A) =
0 or pp(B) = 0.
Theorem Pe2l:
For all A, B, pp and wy:
If pp(A) = 0, then excess{pp(A—B), wp(B, A)] = 1-wp(B, A).
Proof of theorem Pe2l: immediately from Pel2,
Note that Popper’s law of excess Pe9 is an immediate logical consequence of Pe21.
Theorem Pe22:
Forail A, B, pp and wy!
If pp(B) = 0, then excess[pp(A—B), wp(B, A)} = pp(—A)-wp(B, A).
Proof of theorem Pe22: ‘

o ppB=0 . assumption
& ppBrAy=0 (1), Pblttl
(3)  excessipp(A—=B), wp(B, A)] = I-pp{Arpp(BAA)-wp(B, A) Pe20
@ excessIpp(A—B), wplB, Al = 1-pp(A)-wp(B, A) = pp(—A)-wp(B, A) (3), (2), Ph110

Secondly, two theorems concerning the excess of pp(A—B) over wp(B, A), when
PplA) = 1 or pp(B) = 1. First, we need two ferther theorems from basic Popper probability
semantics: ) ‘

Theorem Pb115: [lemma for Pb116]

For all A, B and pp: pp(B) = pp(AAB)+pp(—AAB) = pp(BAA)+pp(BA—A).

Proof of theorem Pb113; ‘

() wylAnB, ~(CA-C)+Wpl~AAB, ~(CA-C)] = Popper’s theorem (70)
= WP[B. ﬂ(CAﬂQ}'Hfo—V'\(CA“\C), —{CAa )]
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@ wplCA-C, ~(CA-O)] = O = wpl~—~{(CA~C), ~(CA-O)) Pb109, Pb101

@) wplB, ~(CA-C)] = WplAAB, ~(CA-O)4wp[—AAB, ~(CA-C)) D,
@ pp(B) = py(ArB)+py(—AAB) Popper’s theorem (75), (3)
() pyAnB) = p(BA4) and py(—AAB) = po(BA—A). Pb107
©® ppB= PplAABY+pp(-AnB) = Pp(BARYpp(BA-A) @, (5

Theorem Pb116: [lemma for Pe23 and Pe24]
_ Forall A, B and Pp I pp(A) = 1, then py(AAB) = py(B) = pp(BAA)
Proof of theorem Pb116:

O ppy=1 assumption

@ pp-A)=0 Pb110, (1)

(3 pp(AAB) =0 = p(Ba—A) (2), Pb111

@ pplAAB) = pp(B) = pp(BAA) ) Pbl15, (3)
Theorem Pe23:

For all A, B, pp and wy: If pp(A) = 1, then excess[pp(A—B), wp(B, A)] = 0.
Proof of theorem Pe23:

1) ppid)=1 assumption

@ pp(BaA) = py(B) (1), Pb1i6

() pp(A—B) = 1-pp(A)pp(BAA) = 1-L1py(B) = pp(B) Pb113, (1), (2)

@ wy(B, A)=py(Brd) = py(B) Popper’s theorem (96), (1), (2)

G)  excessipp(A—B), wy(B, A)l = py(A—>B)-w(B, A) = py(B)-pp(B) = 0 Pel, (3), (4)
Theorem Pe24:

For all A, B, pp and wy:
If pp(B) = 1, then excess(pp(A—B), wp(B, A)] = F-wp(B, A).

Proof of theorem Pe24:

O p@=1 assumption
(@ pplBady=py(A) : (1), Pbl16
G pplA—B) = 1pp(Arpp(Bad) = 1-pp(A)ip(d) =1 Pb113, (2)
@ excess(pp{A—B), wp(B, A)] = 1-wp(B, A) Pel, (3)

Thirdly, three theorems concerning the excess of pp(A—B) over wp(B, A), when
Pp(A)>0, and pp(B) = 0 or py(B) = 1.

Theorem Pe25:

For all A, B, pp and wy:

It pp(A)>0 and if pp(B) =0, then excess[pp(A—>B), up(B A= pp(—.A)
Proof of theorem Pe25:

@ pplao , assumption

2) ppB)=0 " assumpfion

3 wp(B,A)= Pp(BAAYpp(A) (1), Popper’s theorem (97)

@ ppBad)=0 . (2, Ppl11

9  wpBA=0 _ 3, @

©  excessIpp(A—B), wp(B, A)l = pp(~A)-wy(B, A) = pp(—A) (2), Pe22, (5)
Theorem Pe26:

Forall A, B, p, and wy:
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If O<pp(A)<l and if pp(B) = 0, then excess[pp(A—B), wp(B, A)] > 0.
Proof of theorem Pe26: immediately from Pe25 and Pb110.

Theorem Pe27:

For all A, B, pp and wy:

If pp(A)>0 and if pp(B) = 1, then excess|pp(A—B), wp(B, Al =0
Proof of theorem Pe27:

@) ppd)=0 o - ) dssumption
@ pp=1 ' assumption
@) ppBad) = pp(A) (2, Ppil6
@) wy(B, A= pp(Bad)py(A) = pp{Alpp(A) =1 (1), Popper’s theorem (97), (3)
() excess[pp(A—B), wp(B, A)l = Lwy(B,A)=1-1=0 ) (2), Pe24, (4)

Fourthly, five theorems concerning the excess of pp{A—B) over wy(B, A), when A or

B are known to be wy-absurdities or tautologiesp or not wy-absurdities or not tautologiesp.

The excess of pp(A—>B) over wp(B, A) equals 0, whenAisa wp~absurdity (see Pe3). No

such informative result can be obtained in regard to B. When we know only that B is not a

' wy-absurdity, then we can calculate neither pp(A—B) nor wp(B, A). And when we know
only that B is a wy-absurdity, then we get no more than a weakened version of Pe22:

Theorem Pe28:
For all A, B, pp and wy:
- IfBis Wy~ -absurd, then excess[pp(A%B), wp(B, A)] = pp(—A) wp(B A).
Proof of tHieorem Pe28: immediately from Pe22 and Ps18,
However, when we also know that A is not a wy-absurdity, then we can obtain:,

Theorem Pe29:
For all A, B, pp and wy: IfBis wp-absurd and if A is not wp-absurd,'then:
excess[pplA— B), wp(B, A)] = pp(—4).

Proof of thearem Pe29:

() Biswpyabsurd. . assumption

(2} A isnot w,-absurd. assumption

@  wp=BA)=1 (1), Ps17

@  excess{py(A—B), wp(B, A)] = wp(aB A)- pp(—.A) pp—4) {2), Pe4, (3)
Theorem Pe30:

_For all A, B, pp and wp: If B is wp-absurd and if A is not wy-absurd and if pp(A) =0,
then excess[pp(A—B), wp(B, A)] = L.
Proof of theorem Pe30: _in_imedatiate]y Jrom Pe29 and Pb110.
When we know only that A is not a tautologyp or that B is not a tautologyp, then nothing
new can be proved, But when we know that A is a tautologyy or that B is one, then we
immediately have:
.Theorem Pe31:
For all A, B, py and wy,: If A is a tautologyp, then excess{pp(A—B), wy(B, A)] = 0.
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Proof of theorem Pe31: immediately from Ps23 and Pe23,

Theorem Pe32: .
For all A, B, pp and wp: If B is a tautologyp, then excess[pp(A—B), wp(B, A)] = 0.
Proof of theorem Pe32: immediately from Ps23, Pe24 and Ps24.

Fifthly, two theoren{s concerning the excess of pp(A— B) over wp(B, A), when truth-
functional entailment or equivalence is known to exist between A and B. First a theorem
from Ps: '

Theorem Ps23; [lemma for Pe33]
For ail A, B and pp: If B truth-functionally follows;, from A, then pp(A—8) = 1.
Proof of theorem Ps25: ’

(1} B truth-functionally follows;, from A, assumption
@ wplBrA, ~(CAC)] = wplA, ~({CA=C)] = pp(Brd) = Ppfd) Psl, (1}, Popper’s theorem (75)
3) pp(A—)B) = 1—pp(A)+pp(BAA) =1 Pbl13, (2)
Theorem Pe33:
Forall A, B, pp and wp!

If B truth-functionally followsp from A, then excessipp(A—B), wp(B, A)} = 0.
Proof of theorem Pe33: immediately from Ps25, Ps8 and Pel.

Theorem Pe34:

For all A, B, pp and wp!

If A is truth-functionally equivalent;, to B, then excess[pp(A—B), wp(B, A)] = 0.
Proof of theorem Pe34: immediately from Ps2 and Pe33.

Sixthly, four theorems concerning the excess of pp(A—B) over wp(B, A), when con-
trary or contradictory oppositionp is known to exist between A and B. First we need once
more a theorem from Ps:

Theorem Ps26: [lemma for Pe35]

For all A and B:

If A stands in truth-functional contrary oppositiony to B, then for all py: pp(BAA) = 0.
Proof of thearem Ps26:

(1) A stands in truth-functional contrary oppositionp to B. ) assumplion
(2)  —B wuth-functionally follows from A. Ps3, (1)
) wp(=BaA, C) = wp4, ©) Psl1, (2)
@ wulAa-B, C) = wp(=Bad, O) = wp(4, C) Popper's theorem (40), (3)
Gy wpl-(AAnB), Cl = wy(—4, ©) . Popper’s theorem (64), (4)
@  wpl-A, C)=wp(BAad, Crwp(—A, O-wplAa-4, O Pbi06, (5}
M wpBAA, €) = wp{Aa-4, ©) ©
8  Forall C: wp(Ba4, C) = wp(Aa-4, C). . (N, for Cis neither free in (1} nor in (8)
©)  wplBAA, ~(CA-CO)] = wplAn—A, ~«(CA-0)) @
(10)  pp(Bad) = pplAn—A) =0 Popper’s theorem (75), (9}, Pbi09
(11) Foral py pp(BAA) =0, (10), for pp is neither free in (1) nor in (11)
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Note that A’s standing in truth-functional contrary oppositiony to B has the same effect on
pp(BAA) as B’s having probability 0; so, not surprisingly, theorem Pe22 and the fol-
- lowing theorem share the same then-clause:

Theorem Pe35:
For all A, B, pp and wy: If A stands in truth-functional contrary oppositiony to B, then:
excess{pp(A—B), wp(B, A)] = pp(—A) - wp(B, A).

Proof of theorem Pe35; like that af Pe22, just use Ps26 instead of Pb111,

A more informative result emerges, when we extend the if-clause:
Theorem Pe36:
For all A, B, pp and wp: If A stands in truth-functional conirary oppositiony to B and if
A is not wp-absurd, then excess[pp(A—>B), wp(B, A)l = pp(—A4).

Proaf of theorem Pe36:

(1) A stands in truth-functional contrary opposlitiony to B. assumption
2} A isnotw -absurd. assumption
) excessIpp(A—B), wp(B, A)] = pp(—A) - wi(B, A) (1), Pe3s
@ wp=B, Ay =1=1-wy(B, 4) ) (1), Ps15, (2), Ps17
() wp(B,A)=0 @
© excess[pp(A%B), wp(B, A)] = pp(—4) EROAS))
Similarly with truth-functional contradictory opposmonp and excess:
Theorem Pe37:

For all A, B, pp and wp: If A stands in tmth functional contradictory opposuionp to B,
then excess{pp(A—B), wp(B, A)] = pp(B) - wp(B, A).

Proof of theorem Pe37: immediately from Psl6 and Pe35.
Theorem Pe38:

For all A, B, pp and wp: If A stands in truth-functional contradictory oppositionp to B
and if A is not a contradictiony, then excess{pp(A—>B), wp(B,'A)] =pp(B).
Proof of theorem Pe38: immediately from Ps16 and Pe36.

- Seventhly, two theorems concerhing the range of the excess function, when its argu-
ments are values of Popper probability functions:
Theorem Pe39:
For all A, B, pp and wp: 0 < excess{pp(A—B), wp(B, A)] € L.
Proof of theorem Pe39: immediately from Pe2 and Pe7.
Theorem Ped0:

For all A, B, pp and wp: If p,(A)>0, then 0 < excess[pp(A—>B), wp(B, A)] < 1.
Proof of theorem Pe40:

M pA0 ' assumption
20 Aisnot wp-absu:d. . (1), Ps18
() excess[py(A—B), wp(B, A)l = wy(—B, A)pp(-A) . (2), Ped
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@ 02wp(=B, A)st and Ospp(-A)<t. Popper’s theorem (16}, Pb112, (1), Pb110
O [wp(=B, A)pp(-A)] <1 @
© 0< 6xcess[pp(A-~>B), wp(B, A<l ‘ ) ) Pe7, (3), (5)

Finally, let us summarize conditions under which excess[py(A—B), wp(B, A)] = 0, and
conditions under which excess[pp(A—B), wp(B, A)l = L.

Theorem Pedl; ; )

For all A, B, pp and wp: excess[pp(A—B), wp(B, A)] = 0,
if py(A) = 1 [Pe23]; or

if wp(B, A) = 1 [Pel2]; or

if py(A)>0 and py(B) = 1 {Pe27]; or

if A is a tautologyy, [Pe31]; or

ifAis wp-absurd {Pe3]; or

ifAisa (:ontradictionp [Ps20, Pe3]; or

ifBisa tauto]ogyp [Pe32]; or

i B truth-functionally follows, from A [Pe33]; or
if A 1§ truth-functionally equivalent, to B [Pe34].

Theorem Ped2:

For all A, B, pp and wp: exce.ss[pp(A—>B), wp(B, A =1,

if wp(B, A) = 0 = py(A) [PeS]; or '

if pp(B) =1 and wy(B, A) = 0 [Pe24]; or

if A is not wp—absurd and pp(A) = 0 and B is wp-indepandentp of A and pp(B) =0
[Pell]; or

if A is not wp-absurd and pp(A) = 0 and A stands in truth-functional contrary oppo-
sitionp to B {Pell}; or '

if A is not wpabsurd and pp(A) = 0 and B is wp-absurd [Pe30]; or

if A is not wy-absurd and py(B) = 1 and A stands in truth-functional contradictory oppo-
sitionp to B [Pe38].

4 COMPARATIVE TABLES OF LAWS OF EXCESS IN PE AND KE

In order to get an overview of the laws of excess we have obtained, and in order to see at a
glance which of the Kolmogorov analogues to theorems of Pe are also theorems of Ke, we
group all our laws of excess systematically in three tables. The left-hand column of each
table lists the theorems of Pe, the right the respective theorems of Ke—if they exist. Note
that some of the theorems which appear in the Ieft-hand column of the tables have not been
explicitly mentioned in section 3, for they are, in an obvious way, merely weakenings of
theorems of Pe, proved above. In the first table we collect those laws of excess which are
equations but which attach no definite numerical value to the excess of pp{A—>B) over
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wp(B, A) or of pg(A—> B) over wi(B, A). In the second table, we collect those laws of
excess which are equations and which do attach a definite numerical value to the excess of
PplA—B) over wp(B, A) or of p(A—B) over wi(B, A). And in the third table, we collect

those faws of excess which are inequalions.

Table 1: Equations without Definite Numerical Values

"~ Theorems of Pe

Respective Theorems of Ke (if any)

excess[p,(A—B), w,(B, A)) = .
[Pel3]

= pp(Aw)B)-wp(AaB, A)

= l-pp(A)i-pp(BAA)-wp(B, A) [Pe20]
= [1-w(B, A)-{1-p(A)] iPel2]
= {L-wp(B, A)l-pp(-A) {Pes]
= wo(oB, A)po(~A)[1-wy(od, A)]. {Pe6]
If A is not wp-absurd, then: {Ped]

excess|p(AB), wo(B, A)] = w(=B, A)p (~A).

If wp(B, A)# 1, then: [Peld]
EXCEsS [pp(A—>B), wp(B, A} = wp(—uB. A)-pp(—nA).

If pp(A)>0, then excess[py(A—B), wy(B, A)] =

= pP(A—}B)-pP(APéB, A) = pp{A—=B)-wi (A8, A) {Ke2]
= 1-py{A)+po(BAA)-D (B, A) = Lp AN P (BAA)-w (B, A) Ke2]
= wp(-ﬁB, A)-pp{—-A) [Ped, Ps18] | = wy (=B, A)pp(—A) [Ke3]
= [1-wy(B, AVH1-p,A)] = [1-w (B, A)[1-p(A)] [Kes]
= (19,8, AN]-ppl=A) = [Lwy(B, Alp(-A) [Kes)
= W, A)p(CA) (1w (A, A, = W (B, A)}p (AN (1w (4, A)).  [KeS]

If p(A)>0, then excess[py(A—>B), wi(B, 4)] =

IfBis wp-independentp of A and if A 1s not wp-ab-
surd, then: [PeB]
excess[pp(A—B), wp(B, A)] = pp(—~B)pp(—A).

If pp(A)>0 and if B is wy-independent;, of 4, then:
excess[py(A—B), wy(B, A)] = py(—B)py(—A).
[Pe8, Ps18]

If p{A)>0 and if B is py-independenty of A, then:
excess[p(A—B), wi (B, A)] = pr{-B)p (-A).
[KeB)

If pp(A) = Oor if pp(B) = 1, then:  [Pe21, Pe24]
excessipn(A--3B), wn(B, A)] = 1-wu(B, A).

If pp(B) = D or B is wp-absurd, then: [Pe22, Pe28}
excess(pp(A—2B), wi(B, A)] = po(A)-Wwi(B, A).

If A is not wp-absurd and B is wp~absurd, then:
excess[p (A—B), w (B, A)] = p,(—A). [Pe29]

If pp(A)>0 and if pP(B) =} or B is a contradic-
tionp, then excess[py(A—B), wy(B, A)] = p,(—A).
[Pe25, Ps22]

I p {A)>0 and if p.(B) = O or B is a conteadictiony,
then excessipp(A—8), wi(B, A)] = py(—-A). [KeS]
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If A stands in truth-functional conirary oppositiony,
to B, them: {Pe35]
excess[p (A B), wo(B, A)] = pp(—uA)-wn(B, A}

If A is not wp—absurd and if A stands in truth-func-
tional contrary opposilionp to B, then:
excess[p.(Ad--28), w (B, A)] = p{(-4). [Pe36]

If pp(A)>0 and if A stands in truth-functional con-
trary oppositionp to Bf then: [Pe36, Ps18]
excessipo(A—2B), wo(B, A)] = p(-+A).

1€ p(A)>0 and if A stands in tnuth-functional con-
trary oppositionyto B, then: [Kel2]
excess[p(A—B), wi(H, AN = p(oA).

If A stands in truth-functional contradictory opposi-
{ion, to B, then: [Pe37}
excess(Po(A—2B), wi(B, A)} = p (B)-wy(B, A).

If A is not wP-absurd and if A stands in truth-func-
tional contradictory oppositionp to B, then:

excess[p(A—B), wo(B, A)] = p.(B). [Peds]

if pp(A)>.0 and if A stands in truth-functional con-
tradictory oppositionP to B, then:  {Pe38, Ps18]
excess[p (A—B), wo(B, AN =p.(B).

¥ p (AY>0 and if A stands in truth-functional con-
tradictory opposition, to B, then: [Keld}

excess[p?(A—)B), w (B, A)] = po(B).

Table 2: Equations with Definite Numerical Values

Theorems of Pe

Respective Theorems of Ke (if any)

excess[pp(AaB), wp(B, A)=0,if

pP(A) =lordisa taulologyp. [Ped 1]

excess(pg(A—B), wy(B, A)] = 0, if:

pA)=1or A is a tautology,. [Kell}

excess[pp(Aw-)B), wp(B, A)) =0, if
wp(B, Ay =1, 01

Ais wy-absurd; or

Aisa comradictionp; or

Bisa tautology,; or

B truth-functionally followsp from A; or
A is tmith-functionally equivalemp 1o B.

{Ped1])

excess[pp(A—w), wp(B, A =0;it pp(A)>O and:
pp(B) =1;0r {Pedl1)
wp(B, Ay=10r

Bisa tautologyp; or

B truth-functionally fo]lows.p from A; or

A is truth-functionaily equivalem:, 0 B,

excess{p(A—B), wi(B, A) =0, if p(A)>0 and:
piB)=1ior

wi(B, Ay =1 or

B is a tautologyy; or

B truth-functionally followsy from A; or
A is truth=functionally equivalenty to B.

[Kel(]

54




cxcess[pp(A—>B), WP(B, Al=1,if: [Ped2]
wp(B, Ay=0= pp(A); or ’

Pp(B) =1 and wy(B, A)=0;0r

Aldsnot wp-absurd and ppf{A) = 0 and B is wp-in-
dependemp of A and pp(B) =0; or

A is not wy-absurd and pp(A) = 0 and A stands in
truthfunctional contrary oppositiony to B; or

A is not w)-absurd and ppfA) = 0 and B is w,-ab-
surd; or

A is not wp-absurd, pp(B) = 1 and A stands in
truth-funetional contradictory oppositiony to B,

Table 3: Inequations

Theorems of Pe

excass[pP(A—aB), wP(B, ARN=20 [Pe7]

Respective Theorems of Ke (if any) |

iIf pp(A)>D, then excess{p,(A—B), wP(B, Az,

If pp(A)>0, then excess[p(A—B), (B, AJ] 2 0.

[Ked]

exccsstP(A—)B). wP(B, A=l {Pe39]
If pP(A)>0, then cxcess[pp(A—)B), wp(B, A)] <1, | If pp{A)>0, then excess[p (A—B), wi (B, A)] < 1.

[Pe40] . : [Ke9]
If pp(A)<1 and wP(B, A)<l, then:
excess(p(A— B), wi(B, A)] > 0. [Pel6]
i t}<pp(A}<1 and wP(B, A)<1, then: If O<py(A)<1 and wi(B, A)<1, then:
excess[pp(A—R), wo(B, A)] > 0. excess[pr(A—B), wi(B, A)] > 0. [KeT]

If 0<pp(A)<1 and if pp(B) =0 or B is acontradic-
tionp, then: cxcess[pp(A%B), wP{B, Al=0,
fPe26, Ps22]

If O<py{A)<1 and if p,(B) = G or B is a contradic-
tiony, then: excess[p(A—B), wi (B, A)] > 0.
[Ke6]

We close the paper with two lists of those specific theorems of Kolmogorov and of
Popper probability semantics which have been used, but not proved-in the text,
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APPENDIX 11
THEOREMS OF ELEMENTARY KCLMOGOROV PROBABILITY SEMANTICS
WHICH HAVE BEEN USED IN THE TEXT!0

Theorem K4: [lemma for Ke2 and Ke5]
For all A and py: pp(—A) = 1-py(A).
" Theorem K5: [lemma for Ke2 and Kel3]
For all A, B and py; If A is truth-functionally equivaleniy to B, then pi(A) = p(B).
Theorem K6: {lemma for Ked and Ke9]
For all A and py: 0sp(A)<L.
Theorem K7: [lemma for Kell]
For all A, B and py: If p.(A) = 1, then p.(A—B) = pp(B).
Theorem K8: [lemma for Ke9]
For all A, B and py: If pp(A—B) = 1, then pp(A) = p(AAB).
Theorem K9: [lemma for Ke6 and Ke7]
For alt A, B and py: If pi(A)<t, then pp(—A)>0.
Theorem K10: [lemma for Ke6 and Kel2]
For all A and py.: If A is a contradictiony, then pp{A) = 0.
Theorem K11: [lemma for Ke2, Ke3 and Kel2]
For all A, B and py: pyp(A—B) = pr(—A) i (BAA).
Theorem K12: flemma for Ke3, Ke5, and Ke6]
For all A, B, py and wy: If py (A)>0, then wy(—B, A) = 1-wi (B, A).
Theorem K13: [lemma for Ked and Ke9]
For all A, B, py and wi: I pp(A)>0, then 0<wy (B, A)<L. .
Theorem K14: [lemma for Kel0]
For all A, B, py and wy: If py(A)>0 and if wi(B, A) = 1, then pp(A—B) = 1.
Theorem K15: [lemma for Kel0]
~ Porall B, A, py and wy: If jy(A)>0 and if py(B) = 1, then wy (B, A) = 1,
" Theorem K16: [lemma for Ke6] '
For all A, B, py and wy: If p (A)>0 and if py(B) = 0, then wy (B, A) =0,

10. Note that all these theorems are specific theorems of elementary Kolmogorov probability semantics,
ie, they follow from the axiomatic basis (K1, K2, K3} and, in addition, they do not follow from any
consistent set § of propositions if none of the sets {K1}, {K2}, {K3} isa subset of S. Elementary Kol-
mogorov probabilily semantics contains also unspecific theorems, these are the theorems of that theory
in which elementary Kolmogorov probability theory is embedded, Le. the classical theory of truth value
functions and truth-functional attributes. Those of the unspecific theorems of Kolmogorov probability
semantics which have been used in the text are so well-known that no special mention has been made of
them —Note, finally, that each of the Popper analogues to the theorems in appendix 1 is a theorem of
Popper probability semantics.
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Theorem K17: [lemma for Ke7]

For all A, B, py and wy: If pp(A)>0 and if wy (B, A)<1 then wy(=B, A)>O
Theorem K18: [lemma for Ke) and KeiG]

For all B, A, py and wy: If p(A)>0 and

if B truth-functionally followsy from A or A is truth-functionally equivalenty to B, then
wi(B, A) = 1, .

Theorem Ki9: {lenwna for Kell]

If pp(A) = 1, then wi (B, A) = px(B).

Theorem K20 [lemma for Ke9 and Kel2]

For all A, B, py and wy: If p(A)>0, then wi(B, A) = 0 iff p(AAB) = 0.
Theorem K21: {lemma for Ke8]

For all A, B, py and wy: If py(A)>0, then:

B is py-independenty of A iff wy (=B, A) = py(—B).

. APPENDIX 2: . -
THEOREMS OF BASIC POPPER PROBABILITY SEMANTICS
WHICH HAVE BEEN USED IN THE TEXT!!

Popper’s theorem (16): flemma for Pb103, Pb108, Pbl 12, Pe2, Pe7, Ped0), PeS,
. Pel3and Pel6]

For all A, B and wp: 0<wp(B, A)<1.

Popper’s theorem (23} {lemma for Ps8, Pb108, Pb110, Pbl10 and Pbl 15}

For all A and wp: wp(4, A) = 1.

Popper’s theorent (25): [lemma for Pb108]

For every Wp there is at least one A such that wy(—4,A) = 0.

Papper’s theorem (28): flemma for Pb102, PhI(6, Ps12 and Ps14]

For all A, B and wp: wy(B, AAB) = 1.

Popper’s theorem (29): [lemuma for Ps8 and Pel3]

For all A, B and wp: wp(AAB, A) = wp(B, A).

Popper’s theorem (32): [lemma for Ps14 and Pb108}

For all A, B and wp: wp(BAB, A) = wp(B, A),

Popper’s theorem (33°): flemma for Pb106, Pb108 and Pb115]

For all A, B and wp: wp(B, ~AAA4) = 1.

11, The numbering of these theorems is identical with Popper’s numbering of his theorems in his own
development of his probability theory in (LdF9, pp. 208-304). You may. also consult POPPER (LScD,
pp. 349-355), but note that the numbering of theorems in (LScD) is not identical with the numbering
in (L&F9) up to theorem (32). Incidentally, none of the Kolmogoroy analogues to the theorems in
appendix 2 is a theorem of Kolmogorov probability semantics.
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Popper’s theorem (40): [lemma for Ps8, Ps9, Pb102, Pb103, Pb105, Pb106, PbI07,
: ~* Pbl08, Pblll, Psil, Ps12, Psl4, Pel3, Pbl15, Pbli6]

For all A, B, C and wp: wp(AAB, C) = wp(BAA, C) and wp(C, AAB) = wp(C, BAA).

Popper’s theorem (62): [lemma for Ps9 Pb] 06 and PsI 4 ] '

Forall A, B, C, D and wp: O

Wpl(AABAC, D] = wplAA(BAC), D] and wy[D, (AAB)AC] = wp[D, AA(BAC)H. .

Popper’s theorem (63): [lemma for Pb102, Pb104, PbIOS, P.s*17 P323 ]

For all A and wp: wp(—A, A) # O iff for all B: wp(B; A) = 1.

Popperstheorem (64): {lemma for Pb101, Pb102, PbitM, Pbl06, Psl11, Psl4, Pb]OS
Pbl10, Ps17, Ped, and PeS]

For all A, B and wp: wp(—B, A) = 1-wp(B, A)+wp(~—:A A)

Popper’s theorem (69): {lemma for Pb103]

For all A, B and wp: wy(—AAB, A) = wp(—.A, A).

Popper’s theorem (70): {lemma for Pb108 and Pbi15]

For all A, B, C and wp: wp(AAB, CHwp(—AAB, C) = wp(B, C)+wp(=C, C).

Popper’s theorem (74): [lemma for Pb105]

For all A, B and wp: wpl—(=BAB), A] = 1 = wp[—~(BA-B), A].

Popper’s theorem (75): [lemina for Pb101, Pb107, Pb108, Pb110, Pb112, Pbl111,
Psi8, Ps23, Pbl15, Pbl116, Ps235, and Ps26]

For all A, B, pp and wp: pp(A) = wplA, =(BA-B)).

Popper’s theorem (79): [lemma for PbI06]

For all A, B, C and wp: wpl—~(—AA—BY), C] = wy(4, C)+wp(B, C)-wp(AAB, C).

Popper’s theorem (96): [lemma for Pb108, Pe4, Pe8, and Pe23]

For all A, B, py, and wy,: wy(B, A)pp(A) = pp(BAA).

Popper’s theorem (97): [lemma for Pe25, Pe27 and Pb120]

For all A, B, p, and wy,: If p(4) # 0, then wp(B, A) = py(BAA)Yp,(A).

Popper’s theorem (99): [lemma for Psl11 and Ps14]

For all A, B, C, D and wy:

If for all E: wp(A, E) = wp(B, E), then wy(C, AAD) wp(C, BAD).
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