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Abstract
Predictable polarization is everywhere: we can often predict how people’s opinions—
including our own—will shift over time. Extant theories either neglect the fact that we
can predict our own polarization, or explain it through irrational mechanisms. They
needn’t. Empirical studies suggest that polarization is predictable when evidence is
ambiguous, i.e. when the rational response is not obvious. I show how Bayesians should
model such ambiguity, and then prove that—assuming rational updates are those which
obey the value of evidence (Blackwell 1953; Good 1967)—ambiguity is necessary and
sufficient for the rationality of predictable polarization. The main theoretical result is
that there can be a series of such updates, each of which is individually expected to
make you more accurate, but which together will predictably polarize you. Polarization
results from asymmetric increases in accuracy. This mechanism is not only theoret-
ically possible, but empirically plausible. I argue that cognitive search—searching a
cognitively-accessible space for a particular item—often yields asymmetrically ambigu-
ous evidence; I present an experiment supporting its polarizing effects; and I use simu-
lations to show how it can explain two of the core causes of polarization: confirmation
bias and the group polarization effect.
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1 A STANDARD STORY

1 A Standard Story

I owe a lot to a bench.
My friends and I had been using it to sneak out the window. To push the boundaries.

To ‘experiment’. But my luck held: I forgot it outside; my parents confronted me; I wasn’t
quick on my feet... and that was that.

For me. But my friends were quicker on their feet; their parents slower to see the problem;
their luck sooner to run out. So we went our separate ways. While I got studious, they got
disaffected. While I went to a liberal city, many of them stayed in conservative towns. While
I was having my eyes opened, some of them were fighting for their lives.

Yet this isn’t a story about how a bench changed my life. It’s a story about how a bench
changed my beliefs. So let me ask: What do you think happened to our politics? Who now
is concerned about far-right militias, and who about Antifa? Who believes gun rights should
be restricted, and who owns handguns for their own protection? Who voted for Biden, and
who thinks Trump shook things up in a needed way?

I think you can guess.
That’s no surprise. Most societies display both local conformity and global disunity :

people’s attitudes are predictable given their social group, despite varying widely across such
groups (Mcpherson et al. 2001). As a result, people who set out on different trajectories often
polarize in ways that are profound, persistent, and predictable. (Cohen 2000; Sunstein 2009).
When I went a liberal university in a liberal city, I could predict—not with with certainty,
but with some confidence—that I’d become more liberal (Lottes and Kuriloff 1994).

My question is why.
The standard story: predictable polarization is due to epistemic irrationality—the fact

that people’s beliefs are insufficiently constrained by evidence.1 Instead, people glom onto the
beliefs of their peers,2 confirm and entrench those beliefs,3 and become wildly overconfident
in them.4 Combined with the informational traps of the modern internet,5 we have a simple
explanation of the rise of polarization (Iyengar et al. 2019; Boxell et al. 2020).

Notice that this story combines components: empirical hypotheses about why people
predictably polarize, and normative claims that they shouldn’t. The empirical hypotheses
are (largely) true. I’ll argue that the normative claims are false.

This requires rejecting standard Bayesian assumptions. Though it’s often overlooked,
they imply that predictable polarization must be irrational, regardless of varying evidential
standards (Schoenfield 2014), background beliefs (Jern et al. 2014; Benoît and Dubra 2019),
or distributions of trust (O’Connor and Weatherall 2018; Henderson and Gebharter 2021).

1Sutherland 1992; Lakoff 1997; Mills 2007; Lilienfeld et al. 2009; Haidt 2012; Klein 2014; Brennan 2016;
Achen and Bartels 2017; Bregman 2017; Carmichael 2017; Mercier and Sperber 2017; Lazer et al. 2018;
Pennycook and Rand 2019; Finkel et al. 2020; Klein 2020.

2Myers and Lamm 1976; Isenberg 1986; Baron et al. 1996; Sunstein 2000, 2009; Mcpherson et al. 2001;
Cohen 2003; Pronin 2008; Iyengar et al. 2012; Mäs and Flache 2013, Myers 2012, Ch. 8, Baumgaertner et al.
2016; Brownstein 2016; Mason 2018; Wilkinson 2018; Talisse 2019; Siegel 2021; Williams 2021.

3Lord et al. 1979; Frey 1986; Kunda 1990; Nickerson 1998; Jost et al. 2003; Fine 2005; Taber and Lodge
2006; Taber et al. 2009; Kahan et al. 2012, 2013, 2017; Kahan 2018; Stanovich 2020.

4Lichtenstein et al. 1982; Harvey 1997; Johnson 2009; Glaser and Weber 2010; Moore et al. 2015; Ortoleva
and Snowberg 2015; van Prooijen and Krouwel 2019; Stone 2019.

5Jamieson and Cappella 2008; Pariser 2012; Nguyen 2018; Sunstein 2017; Vosoughi et al. 2018.
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1 A STANDARD STORY

For they require your current opinion to always match your estimate of your future rational
opinion, meaning you can’t (rationally) do what we do all the time: predict the direction our
actions will shift our opinions (§2).

But we should reject those assumptions, for they also imply that rational people can never
be unsure whether they’ve been rational. Given ambiguous evidence—evidence that’s hard to
know how to interpret—such self-doubts can be rational. As a result, there are updates that
satisfy the value of evidence (Blackwell 1953; Good 1967)—that are expected to improve
your accuracy and cannot be Dutch booked—that nonetheless are predictably polarizing
(§3). Indeed, common cognitive processes generate asymmetric ambiguities, making it easier
to recognize evidence pointing in one direction than the other (§4). Each such update is
expected to improve accuracy, despite the fact that a long series of them can predictably
lead to profound polarization (§5). Moreover, this mechanism plausibly plays a role in the
psychological processes that drive real-world polarization (§§6–7).

Although this story is built upon a series of technical results, the main ideas can be
understood without them. Thus I’ve partitioned the paper: those interested in the story but
not the technicalities can skip the formal subsections and footnotes without loss of continuity.

But what’s the point? Why want a rational story? Consider the alternative. From the
outside, it looks like my beliefs were just as predictable as my friends’: long before I came
to believe that (say) guns decrease safety, it was predictable that I would. That means
that if predictable polarization is due to irrationality, my beliefs are due to irrationality.
Yet I can’t admit that—at least not while maintaining my beliefs: it’s incoherent (‘akratic’)
to believe “Guns decrease safety, but it’s irrational for me to believe that” (Horowitz 2014;
Dorst 2020a). So if I’m not willing to give up my beliefs—as indeed I’m not—I must resort to
special pleading: “Their beliefs were predictable, but mine were not. They were the irrational
ones, not me.” That’s desperate. It’s also dubious. My friends were smarter (and quicker)
than I was. My trajectory was more predictable than theirs were. Our divergence is due to
our circumstances, not ourselves. A slight change in those, and I’d believe everything they
do—there but for a bench go I.

That’s the point. A rational story lets us to avoid both special-pleading and incoher-
ence. It lets us admit our own predictability, maintain the truth of our own deeply-held
commitments, and yet acknowledge the rationality of others’. Let me show you how.

1.1 The Idea

Here’s the idea. Sometimes evidence is clear—you should know exactly how to respond to
it. Other times evidence is ambiguous—you should be unsure how to respond. Ambiguity-
asymmetries can make it easier to recognize evidence pointing in one direction than another.
Example: is the following word-search completable?

FR L

If you find a completion, you know you should be 100% confident it’s completable (c). But
if you don’t find one, your evidence is ambiguous—you should be unsure how confident you
should be (“Am I missing something?”), and so should stay near 50% (§4).
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2 THE PROBLEM

Notice two things. First: you expect this update to improve accuracy. When the evidence
is clear, it leads you to the truth; when it’s ambiguous, it leaves you where you were. So the
(potentially ambiguous) evidence won’t hurt, and might help.

Second: such asymmetric accuracy-increases can drive polarization. Iterate this with
many claims c1, ..., cn that you’re 50%-confident in, and you can predict that your average
rational confidence (‘credence’) will rise: the average of ‘rise a lot’ and ‘fall a little’ is ‘rise a
little’. Thus you can predict that it’ll be rational to become confident in things you initially
doubt: if your average confidence in the (independent) ci becomes 60%, you must become
confident that more than half are true. Predictable polarization amounts to an epistemic
diachronic tragedy (Hedden 2015): taking steps that are each expected to make you more
accurate predictably leads, in the long run, to opinions you (initially) think are wrong. Once
we allow ambiguous evidence, all of this this can be proven in a Bayesian setting (§§3–5).

I’ll further argue that it helps rationalize real-world polarization. Sound naive? Hasn’t
psychology shown that people are irrational? Though many think so,6 many don’t: they
critique the empirical replicability and normative interpretations of such work,7 and contrast
it with the growing evidence that rational processes explain the mind’s ability to perform
intractably-complex tasks that computers cannot.8 I’ll show how confirmation bias can be
rational when your prior beliefs make it easier to recognize flaws in arguments against than
in favor of them (§6); and arguments can predictably persuade you by making the evidence
favoring their side less ambiguous than the evidence opposing it (§7).

The payoff? This story makes sense of our own polarization. When we scrutinize opposing
viewpoints or check partisan news sources, we often think it’s the best way to figure things
out. According to my story: We’re right. The problem is that locally-optimal steps toward
the truth can lead, in the long run, to a predictable drift away from it.

2 The Problem

What’s the epistemic problem of ‘predictable’ polarization?
Many think: nothing. They point out that differences in background beliefs, networks

of trust, and lived experiences (evidence) can easily lead rational Bayesians to persistently
disagree, or polarize further upon seeing the same evidence.9 Case closed?

No. Distinguish different types of ‘predictable’ polarization. Extant models show that
there can be two Bayesians P and P ′ and some other agent—who knows more than they do—
who can predict how they’ll polarize further. For example, Jern et al. 2014 and Henderson
and Gebharter 2021 show that for two Bayesians who disagree about the likely causal paths or

6E.g. Tversky and Kahneman 1974; Kahneman et al. 1982; Kahneman and Tversky 1996; Fine 2005;
Ariely 2008; Hastie and Dawes 2009; Kahneman 2011; Thaler 2015; Mandelbaum 2018.

7E.g. Cohen 1981; Gigerenzer 1991, 2018; Krueger and Massey 2009; Stafford 2015, 2020; Whittlestone
2017; Rizzo and Whitman 2019; Mercier 2020; Cushman 2020.

8E.g. Anderson 1990; Oaksford and Chater 1994, 1998; Gopnik 1996, 2012, 2020; Tenenbaum and Griffiths
2006; Tenenbaum et al. 2011; Griffiths et al. 2012, 2015; Lieder and Griffiths 2019; Gershman 2021.

9E.g. Feeney et al. 2000; Dixit and Weibull 2007; Austerweil and Griffiths 2011; Le Mens and Denrell
2011; Olsson 2013; Acemoglu and Wolitzky 2014; Jern et al. 2014; Cook and Lewandowsky 2016; Angere
and Olsson 2017; Pallavicini et al. 2018; Benoît and Dubra 2019; Nimark and Sundaresan 2019; Nielsen and
Stewart 2021; Bowen et al. 2021; Henderson and Gebharter 2021.
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2 THE PROBLEM

the reliabilities of sources, there can be a proposition E such that learning E will exacerbate
their disagreement about q (so P (q|E) > P (q) > P ′(q) > P ′(q|E)). Yet they can’t predict
how they’ll polarize: they can’t know whether they’ll learn E or ¬E, and learning the latter
would push their opinions in the other direction (P (q) > P (q|¬E) and P ′(q|¬E) > P ′(q)).

This is no accident. Standard Bayesian models (including those in fn. 9) forbid a rational
person from expecting a rational update to move their opinions in a particular direction.
Let ‘P ’ be the prior rational probability function and ‘P̃ ’ the rational one after the update.
(More on my rationality-assumptions in §3.) Since you can be unsure what evidence you’ll
receive, ‘P̃ ’ picks out different functions in different possibilities. Nevertheless, you can
form an estimate of what your updated rational credence should be. On standard Bayesian
models, your initial credence in q (P (q)) must match your initial estimate for your updated
rational credence in q (your estimate of P̃ (q)); thus you can’t estimate that it’ll be rational
to move your opinion in a particular direction. This is intuitive. Rationally estimating that
your more-informed future self will be confident of q seems to make it rational to now be
confident of q. If so, there can’t be a rational divergence between what you expect your
future rational self to believe, and what you now believe.

More precisely, a Standard-Bayesian model is one on which P̃ is always obtained by
conditioning P on the true answer to a question, i.e. the true cell of a finite10 partition (see
§A.3). (Example: if the question is whether E, then: the partition is {E,¬E}; in E-worlds,
P̃ = P (·|E); and in ¬E-worlds, P̃ = P (·|¬E).) Any such model yields11:

Reflection (martingale property): Your prior rational credence in q must equal
your rational estimate of your updated rational credence in q.
For all q, P (q) = EP (P̃ (q)).12

This is the epistemic problem of predictable polarization: empirically, our beliefs violate
Reflection, and hence (normatively) they’re rational only if Standard Bayesianism is wrong.
In this section I’ll defend this empirical point, leaving the question of rationality for later.

Reflection violations are mundane. We can often predict how our actions will shift our
beliefs, even when those actions provide no evidence about the issue. Not long ago, I had
both Piketty’s Capital in the 21st Century and Pinker’s Enlightenment Now on my shelf.
It wasn’t hard to predict that reading Pinker would make me more optimistic about our
economic system, and reading Piketty would make me less. (I read both.) Next up: I predict
that Gessen’s Surviving Autocracy will increase my credence that America’s political woes are
due to Republican authoritarian tendencies, while Lind’s The New Class War will increase
my credence that they’re due to Democrats’ distance from the working-class. No surprises
here—recall Pascal’s (1660) advice: if you want to become religious, read religious thinkers
and spend time with religious people. Likewise more generally.

Another example: biased sources. Make an estimate of the number of extreme weather
events there’ll be in the U.S. in the next 50 years. This is hard, but pick a number. (Say, 300).
Now, which direction do you think your estimate will shift if you decide to be extremely biased

10I’ll restrict attention to finite models.
11See Kadane et al. 1996; Weisberg 2007; Briggs 2009; Salow 2018 for explanations. The ‘Bayesian persua-

sion’ literature (Kamenica and Gentzkow 2011) takes this constraint as axiomatic. As we’ll see, it needn’t.
12EP captures the expectations of P : for any function from worlds to numbers X, EP (X) =

∑
t P (X = t)·t.
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2 THE PROBLEM

in your climate-news consumption—say, reading only the most dire, doomsday climate-
change reports? Obviously you expect this would increase your estimate! You’re aware that
reading biased sources will bias your opinions. This is a familiar Reflection failure13—the
sort that motivates us to try to be unbiased in our news consumption (Worsnip 2019).

A simpler case. Think of a bodily symptom that has puzzled you—a new pain, a bump
where you don’t remember one, etc. I predict that if you spend an hour Googling possible
causes, you’ll increase your credence that it’s worrying. (And I suspect you predict as much
too, which is part of why you haven’t Googled it.)

It’s not just you. It’s well-documented that people tend to shift their beliefs in the
direction they’re searching for evidence (e.g. Isenberg 1986; Kunda 1990; Nickerson 1998;
Kahan et al. 2017), and moreover that those who are aware of this tendency—so in a position
to predict it—are still subject to it (Pronin 2008; Lilienfeld et al. 2009).

Still skeptical? Granted, it can be hard to pinpoint a moment when Reflection clearly
fails. But it must at some point or other, for you obey Reflection for each update in a sequence
(P 1 to P 2 to... Pn) only if you your initial opinion matches your initial estimate of the opin-
ions you’ll have at the end.14 Yet as the epistemology of ‘irrelevant influences’ emphasizes,
this defies common sense.15 Standard example: in 1961 G. A. Cohen was choosing between
Harvard and Oxford for graduate school. He had no idea whether the analytic/synthetic
distinction was legitimate; but since most students at Oxford thought it was while most at
Harvard thought it wasn’t, he could predict how his opinion would move given his choice.
The choice itself was no evidence—so upon choosing Oxford, he still had no opinion, but
could now predict that he’d increase his credence in the distinction’s legitimacy.

Our politics is rife with such stories. Take me and an old friend, Dan. Consider a moment
soon after we’d parted ways—when our opinions hadn’t moved, but our trajectories were
clear. I’d started studying at an urban university; he’d started bartending in a rural town.
Let P be my (rational) opinions then, and P̃ be those it’d be rational to have 5 years later.
Likewise for D and D̃ for Dan. Let s be a partisan-coded claim, e.g. that guns increase
safety. Neither of us had any strong opinions about s—we were close to 50-50 on it. Yet
we knew Republicans tended to believe it, while Democrats didn’t.16 We knew living with
liberals tends to make you liberal, and likewise for conservatives (Lottes and Kuriloff 1994;
Brown and Enos 2021). And we had no reason to think we’d be exceptions to this rule.
Thus—regardless of what we in fact expected—we were in a position to expect that in 5
years time, Dan would be more confident of s, while I’d be more doubtful. If this was
rational, the following must be possible:

Expectable Polarization: Dan and I could both estimate that my rational credence
in s would end up lower, and his would end up higher.
EP (P̃ (s)) < P (s), and EP (D̃(s)) > D(s); likewise for ED.

This violates Reflection. Even though we knew we’d receive radically different evidence,
13Reflection requires your estimate to equal your estimate of your future estimate: EP (X) = EP (EP̃ (X)).
14If P i = EP i (P j) and P j = EP j (Pk), then EP i (Pk) = EP i (EP j (Pk)) = P i. Iterating, EP1 (Pn) = P 1.
15E.g. Cook 1987; Cohen 2000; White 2010; Schoenfield 2017b; Vavova 2018. For empirical work, see

Mcpherson et al. 2001; Kossinets and Watts 2009; Sunstein 2009; Easley and Kleinberg 2010; De Cruz 2017.
16A 2018 poll found that 89% of Republicans agree with s, while only 29% of Democrats do (Murray 2018).
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Standard Bayesianism forbids our expectable polarization. (When Reflection fails in this
way, I’ll speak of a single person expectably polarizing.)

Some clarifications. First, I don’t claim politics is predictable—it’s hard to say how the
Democratic Party’s platform will shift. What I claim is that since people often shift faster
than parties, we can often say how a given person’s opinions—even our own—will likely shift.

Second, estimates (‘expectations’) are not necessarily predictions. If I toss a fair coin 10
times, your estimate for the number of heads is 5, but you don’t predict this, since you’re
pretty (76%) confident that it won’t be exactly 5. Expectable polarization thus permits
uncertainty about whether the rational posterior (P̃ (s)) will move in the expected direction;
all it says is that you rationally think that on average, across the various possibilities, it will.
Still, expectable polarization violates Reflection so is all we need to generate the epistemic
problem of predictable polarization. In response, I’ll show that updates that are expected
to make you more accurate about every subject-matter and can’t be Dutch-booked can
nonetheless expectably polarize you (§§3–4).

But third: more is needed. In both Cohen’s case and mine, polarization is more than
expectable: we could reasonably predict with confidence that our opinions would move sub-
stantially in the expected direction. In an increasingly polarized society, there doesn’t seem
to be a principled limit on how strong these predictions could be. Thus if we aim to rational-
ize real-world polarization, we should consider whether the following (strictly) stronger type
of polarization could be rational (§5):

Predictable Polarization: Dan and I could both predict with confidence that my
credence in s should substantially drop, and his should substantially rise.
P
(
P̃ (s) << P (s)

)
≈ 1 and P

(
D̃(s) >> D(s)

)
≈ 1; likewise for D.

You should balk at this—if rationality is a guide to truth, how could rational updates pre-
dictably radicalize you? The main theoretical result of this paper (Theorem 5.1) is that
they can: there can be a sequence of updates—each of which is expected to make you more
accurate about a given subject-matter, and cannot be Dutch-booked on the basis of that
subject-matter—that nonetheless will predictably polarize you about that subject-matter.

3 The (Im)possibility Theorems

What would it take for polarization to be epistemically rational? Being good Bayesians, let’s
assume that in any world w (at a given time), the rational opinions for you can be modeled
with a probability function Pw. This assumes rational opinions are precise (White 2009;
Schoenfield 2012), but allows varying standards of reasoning across people (Schoenfield 2014)
and times (Callahan 2019). Since what’s rational to think (what you ‘should’ think) varies
across worlds—with your evidence, priors, etc.—let ‘P ’ be a description for ‘the rational
opinions, whatever they are’: in w, it picks out Pw; in x, it picks out Px, etc.17

17Notation: I’ll use uppercase Romans (‘P ’, ‘P̃ ’, ‘H’,...) for descriptions that pick out different functions
in different worlds. Their subscripted versions (‘Pw’, ‘Px’,...) and lowercase Greeks (‘π’, ‘δ’,...) will be rigid
designators for functions whose values are known. See Schervish et al. 2004; Williamson 2008; Dorst 2019.
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How is it rational to change opinions? I won’t assume any particular mechanism (e.g. that
a proposition comes in as evidence). Rather, let an update be a pair of (descriptions of) the
prior and posterior rational opinions, ⟨P, P̃ ⟩: at each world w, you should start out with Pw

and end up with P̃w. This makes no assumption about mechanism; all it assumes is that the
facts about you (priors, evidence, etc.), pin down rational probability functions at the two
times. (Standard Bayesians assume this too.) Think of it as ‘black-box learning’ (Huttegger
2014); we only model the input, P , and output, P̃ .

Our question: which updates ⟨P, P̃ ⟩ represent potentially-rational updates, i.e. ones that
could be rational given some rational prior and some learning experience? Bayesians usually
say one of three things. (1) Rational updates cannot be Dutch booked : rationally choosing
bets before and after the update cannot result in a foreseeable loss (Teller 1973). (2) Rational
updates improve accuracy : the prior expects the posterior to be (at least or) more accurate
than itself, on all reasonable ways of measuring accuracy (Oddie 1997; Greaves and Wallace
2006). (3) Rational updates satisfy the value of evidence: given any decision problem, the
prior expects the posterior to make a decision that is (at least as good or) better than
itself (Ramsey 1990; Blackwell 1953; Good 1967). There are various ways to formalize these
constraints, but Dorst et al. (2021) show that, on arguably the most natural, they are
equivalent. Say that P values P̃ iff the update ⟨P, P̃ ⟩ satisfies these constraints (Appendix
A.2)—iff, in other words, P prefers to give P̃ power of attorney to make its decisions for it.
I’ll assume throughout—with a slight weakening in §5—that:

Valuable Rationality: ⟨P, P̃ ⟩ is a potentially-rational update iff P values P̃ .18

I’ll assume that a sequence of updates ⟨P 1, P 2⟩, ⟨P 2, P 3⟩, ... is potentially-rational iff each P i

values P i+1. This offers a bright line between the updates that can and cannot be rational:
rational ones are those that can be expected to improve accuracy and decision-making.

It’s commonly thought that Value (or the avoidance of Dutch books) on its own entails
Reflection, and hence forbids expectable polarization. It doesn’t:19

Example. There are two worlds, b and g. We can specify P and P̃ by saying
how, at each world, they distribute credence between b and g. At both, P is 50-50
between b and g. In the bad case (b), P̃ remains 50-50; but in the good case (g),
P̃ becomes certain of g. We can diagram this by letting an arrow labeled t from
x to y indicate (left/blue) that Px(y) = t or (right/red) that P̃ x(y) = t:

P : b g 0.5

0.5

0.5

0.5

P̃ : b g 1

0

0.5

0.5

It’s not hard to see that P values P̃ : at all worlds, P̃ is either equally accurate
(at b) or strictly more accurate (at g) in all propositions. But Reflection fails: at
both worlds, P is 0.5 in g but its expectation of P̃ (g) is 0.75.20

18You might add: “...and there’s no available update preferable to P̃ .” If so, what I’ll assume is that in my
cases the only available updates are to stay with P , switch to a particular π, or switch to P̃ .

19This follows from Geanakoplos 1989 (Thm. 1), and is suggested by the assumptions imposed in Skyrms
1990; Huttegger 2014, but as far as I know wasn’t explicit until Dorst 2020a. Cf. Williamson 2000, Ch. 10.

20P̃ (g) is a random variable with possible values of 0.5 and 1, so (e.g.) at b its prior expectation is
EP (P̃ (g)) = EPb

(P̃ (g)) =
∑

t Pb(P̃ (g) = t)·t = Pb(P̃ (g) = 0.5) ·0.5 + Pb(P̃ (g) = 1) ·1 = Pb(b) ·0.5 + Pb(g) ·1
= 0.5 · 0.5 + 0.5 · 1 = 0.75 ̸= 0.5 = Pb(g).
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How do Standard-Bayesians forbid this? In this model, at world g you learn that you’re at g
(P̃ g(·) = Pg(·|g)), while at world b you learn nothing (P̃ b(·) = Pb(·|{b, g}) = Pb(·)). Standard
Bayesians will insist that the latter is an error: if sometimes you learn g, then when you don’t
learn g you learn something—namely, that you didn’t learn g. In other words, they assume
that rational updates are introspective: you always can be rationally sure of what you (did
or didn’t) learn. I will not assume that. It fails in the above model; P̃ b has higher-order
uncertainty : it knows that at b it learned nothing, while at g it learned g; but since in fact it
learned nothing (it’s at b), it doesn’t know what it learned! Thus it’s 50-50 on whether P̃ is
50% or 100% confident of g: P̃ b(P̃ (g) = 0.5) = P̃ b(b) = 0.5 and P̃ b(P̃ (g) = 1) = P̃ b(g) = 0.5.

Standard Bayesians may protest that this breaks Bayesianism. It doesn’t. At each world,
the rational credences are probabilistic at each time. And Value holds: P expects P̃ to be
more accurate and make better decisions than itself.21 Mathematically, nothing is broken.

What about philosophically? How to interpret introspection failures? Recall that P̃ is
the posterior credence it’s rational to have. When P̃ is uncertain what P̃ is, that means
it’s rational to be unsure what the rational opinions are—it’s rational to have epistemic
self-doubt.22 Standard Bayesians assume that such self-doubts couldn’t be rational:

No Ambiguity: Rational opinions are always sure what the rational opinions are.
Always, if P̃ = π, then P̃ (P̃ = π) = 1. That is, ∀q, t : if P̃ (q) = t, then P̃ (P̃ (q) = t) = 1.

‘Ambiguity’ is a fitting label. Evidence is ambiguous when it’s hard to know what to make
of it—when it’s rational to be unsure what it’s rational to think (Ellsberg 1961, 661). This
higher-order model of ambiguity follows naturally from ‘anti-luminous’ epistemology, which
argues that we often can’t tell exactly what rationality requires of us (see Williamson 2000,
chapters 4 and 10, and Srinivasan 2015). If you endorse anti-luminosity, you should permit
ambiguity in this sense—and even if you have doubts about anti-luminosity in general, there’s
reason to permit ambiguity (Elga 2013; Dorst 2019; Carr 2020).23

(Ambiguity is consistent with knowing your actual opinions: since P̃ represents the ra-
tional posteriors, it’s distinct from your actual posteriors C̃. Even if you are rational (C̃ = P̃

at the actual world) and know what your credences are (C̃ knows what C̃ is), you can doubt
that your credences are rational (C̃ leaves open worlds where C̃ ̸= P̃ ). See Dorst 2019.)

No Ambiguity is the assumption that makes Value and Reflection equivalent (§A.3):

Theorem 3.1. Given No Ambiguity, P values P̃ iff P obeys Reflection toward P̃ .

This is an impossibility result: any theory of rational (expectable) polarization must deny
either Value or No Ambiguity.

I know of no proposals that deny No Ambiguity.24 In fact, an update is Standard-
21Moreover, in this model posteriors result from conditioning—namely, on {b, g} in b and on {g} in g.
22Formally, P̃ fails the axiom [P̃ (q) = t] → [P̃ (P̃ (q) = t) = 1]. Despite doubts (Savage 1954; de Finetti

1977), higher-order uncertainty is mathematically nontrivial whenever this axiom fails (see §A.1 and Samet
2000), and philosophically nontrivial on many interpretations (Lewis 1980; Williamson 2008; Pettigrew and
Titelbaum 2014; Salow 2018; Dorst 2019, 2020a; Das 2020a,b; Levinstein 2022; Levinstein and Spencer 2022).

23Bayesians usually model ambiguity differently, either using an ‘imprecise’ set of probability functions
(Levi 1974; Seidenfeld and Wasserman 1993; Joyce 2010), or positing an introspective P̃ that is unsure about
a different, more ideal (introspective) P ∗ (Camerer and Weber 1992; Klibanoff et al. 2005). Such models
either violate Value (e.g. Kadane et al. 2008; Baliga et al. 2013; Bradley and Steele 2016) or mimic Standard
Bayesianism (e.g. Das 2022) in a way that yields Reflection.

24Salow 2018—who I take inspiration from—uses expectable polarization to argue for No Ambiguity.

9



3 THE (IM)POSSIBILITY THEOREMS

Bayesian—the result of conditioning a fixed prior on the true cell of a partition—iff it satisfies
both No Ambiguity and Value (Theorem A.1). This is why none of the models in footnote
9 permit expectable polarization: they are Standard-Bayesian, so impose Reflection.

Meanwhile, extant models that allow expectable polarization do so using updates that
violate Value, so are subject to Dutch books and are expected to make you less accurate.25

What to make of this? If we allow non-valuable updates to be ‘rational’, the standard
storytellers might fairly complain that we’ve moved the goalposts. For example, some argue
that allowing evidence to be permissive—open to multiple rational interpretations—nullifies
worries about predictably-polarizing influences.26 Theorem 3.1 entails that such predictable
shifts can be expected to make you less accurate. The natural complaint: what distinguishes
this from irrational forms of (say) motivated reasoning?

The way around the impossibility result is to allow ambiguity (see §A.3):

Theorem 3.2 (Informal). Whenever P̃ is ambiguous but valued by some P , Reflection fails.

This shows that the above Example generalizes: whenever evidence is ambiguous, Reflection
can fail for valuable updates. It is our possibility proof: expectable polarization could be
valuable—hence (I say) rational.

Upshot: assuming that the rational updates are the valuable ones, there is a tight the-
oretical connection between rational expectable polarization and ambiguity—the former is
possible if (Theorem 3.2) and only if (Theorem 3.1) the latter is.

Intriguingly, there’s also a tight empirical connection between polarization and ambigu-
ity. The intuitive cases of rational self-doubt—what I’m calling ‘ambiguity’—are ones in
which people face complicated evidence, have peers who disagree with them, or have reason
to doubt their own reasoning.27 These are also the cases in which there’s the strongest psy-
chological evidence for expectable polarization. People are most inclined to engage in ‘biased
processing’—seeing evidence in ways that fit with their prior beliefs—when evidence is mixed,
complex, or hard to interpret (Lord et al. e.g. 1979; Kunda e.g. 1990; Kahan et al. e.g. 2017;
see §6). These effects are exacerbated by group discussions, where peer (dis)agreements have
large effects on people’s opinions (Isenberg 1986, e.g.; see §7). And when the evidence is
made easier to interpret or discussion-norms are altered, biased processing often disappears
(Lundgren and Prislin 1998; Grönlund et al. 2015; Anglin 2019).

In short: people tend to predictably polarize in exactly the situations where self-doubts
seem rational. What if it’s not a coincidence?

25E.g. Kadane et al. 1996; Rabin and Schrag 1999; Hegselmann and Krause 2002; DeMarzo et al. 2003;
Halpern 2010; Flache and Macy 2011; Andreoni and Mylovanov 2012; Baliga et al. 2013; Wilson 2014;
Baumgaertner et al. 2016; Proietti 2017; O’Connor and Weatherall 2018; Fryer et al. 2019; Loh and Phelan
2019; Singer et al. 2019; Stone 2020; van der Maas et al. 2020; Weatherall and O’Connor 2020; Zollman 2021.

26E.g. Schoenfield 2014; Podgorski 2016; Simpson 2017; Callahan 2019; Ye 2019; Jackson 2021.
27See the ‘higher-order evidence’ literature, e.g. Christensen 2010; Lasonen-Aarnio 2013, 2014, 2015; Horow-

itz 2014, 2019; Schoenfield 2015, 2018; Sliwa and Horowitz 2015; Fraser 2021; Dorst 2020b gives a summary.
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4 The Mechanism

In principle, ambiguous evidence could rationalize expectable polarization. But are there
realistic mechanisms that generate it? And can they generate predictable polarization?

There are, and they can. Consider a word-search task (cf. Elga and Rayo 2020). Given
a string of letters and some blanks, you have a few seconds to figure out whether there’s an
(English) completion. For example:

P A ET

And the answer is... yes, there is a completion. Another:

P G ER

And the answer is... no, there is no completion.
A word-search task involves cognitive search (Todd et al. 2012): searching an accessible

cognitive-space for a particular type of item. Other cases: searching your memory for an
example, your reasoning for a flaw, or your knowledge for a proof. This involves calling
on background knowledge. Intuitively, sometimes you know you’ve done this rationally,
other times you don’t. If you find a completion (‘planet!’), you (often) know that it’s
rational to be certain there’s a word (that P̃ (Word) = 1). But if you don’t find a completion,
you don’t know how confident to be—“Maybe I should be doubtful (maybe P̃ (Word) is
low), but maybe I’m missing something obvious (maybe P̃ (Word) is high).” I’ll argue that
this generates an ambiguity-asymmetry between completable and uncompletable searches,
rationalizing expectable polarization. In §5 I’ll turn to predictable polarization.

Meet Haley. She’s wondering whether a fair coin landed heads. I’ll show her a word-search
determined by the outcome: if heads, it’ll be completable; if tails, it’ll be uncompletable.
Thus her credence in heads equals her credence it’s completable. She’ll have 7 seconds, then
she’ll write down her credence. She knows all of this.

Let H and H̃ be the rational prior and posterior for Haley. She should initially be 50-
50 on heads: H(Heads) = 0.5. But I claim her estimate for her posterior rational credence
should be higher than 50%: EH(H̃(Heads)) > 0.5. Remember: estimates aren’t predictions, so
she needn’t be confident her credence should go up. Rather, expectable polarization means
that across many identical trials, she should be confident that the average posterior rational
credence will be above 50%. Why? Intuitively: it’s easier for her to assess her evidence
when the string is completable (when the coin lands heads) than when not. So if heads, her
credence should (on average) increase a lot; if tails it should (on average) decrease a bit; and
the average of ‘increase a lot’ and ‘decrease a bit’ is ‘increase a bit’.

Standard Bayesians will balk. They’ll say that we must find the most fine-grained ques-
tion (partition) Q that Haley can always answer with certainty, and that she’s rational iff she
conditions on the true answer to Q. It’s as if she rummages around in her head for a comple-
tion; at the end all she learns is either that the search succeeded (Find) or failed (¬Find); so
Q = {Find,¬Find}. (If she learns more, they’ll insist there’s a finer-grained Q to update on.)
As we know from Theorem 3.1, such a model forbids expectable polarization. For example,
suppose Haley thinks that if there’s a word, she’ll find it half the time (H(Find|Word) = 1/2);

11
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and if there’s not, she’ll never find one (H(Find|¬Word) = 0). Then 1/4 of the time she’ll learn
Find (1/2 likely to be a word, and 1/2 likely to find if so), making it rational to be sure there’s
a word: H̃(Word) = 1. (And she’ll know this is the rational reaction: H̃(H̃(Word) = 1) = 1.)
The remaining 3/4 of the time she’ll learn only ¬Find, making it rational to slightly lower her
credence: H̃(Word) = 1/3.28 (And since she’ll know all she learned is that she didn’t find one,
she’ll know that this is the rational reaction: H̃(H̃(Word) = 1/3) = 1.) Thus her expected
future rational credence is 1/4 · 1 + 3/4 · 1/3 = 1/2. No expectable polarization.

I object. It’s implausible to insist that such a model is always correct. As I’ve argued,
that doesn’t follow from the justifications of Bayesianism (§3). Moreover, it rules out the
possibility of ambiguity, so ignores the most salient feature of a word-search: that it’s easier
to know what to make of your evidence when you’ve found a word than when you haven’t.

Reflect on your experience with another example:

E RT

When you haven’t found one, your mind is racing (‘beurt? No... teart? No...’), your credence
is oscillating (“Probably... no wait, maybe not. Oh I got it! Wait, no...”), and you have the
nagging sensation that maybe you’re missing something obvious. If you haven’t found one
when the 7-second timer goes off, your credence that there’s a word may have gone down
or gone up, but you won’t (shouldn’t!) be willing to bet the farm that it’s moved in the
rational direction. After all, sometimes it doesn’t: if your credence went down to 1/3, and
then I whisper ‘heart’, you might think, “Oh! I should’ve seen that...”. It was rational for
you to have more than 1/3 credence in a completion; after all, you know that ‘heart’ is a
word—you just failed to make proper use of that knowledge.

Given that sometimes you’re irrational, what about when you’ve in fact been rational to
lower your credence? You should still wonder whether you’ve been irrational. For example,
if you don’t find a completion to st re and so drop your credence to 1/3, you might still
wonder if there’s a word and (so) wonder if you should have a higher credence—even though
in fact there isn’t, so in fact you shouldn’t. Rational people can doubt that they’re rational,
just as humble people can doubt that they’re humble.

These are intuitions. If we couldn’t make precise sense of them, perhaps they could be
ignored. But we can—just introduce ambiguity. Here’s one way to do so. There’s more that
Haley (is and) should be sensitive to than what she can settle with certainty. Beyond whether
she found a completion, there’s the question of whether the string is ‘word-like’—whether it
contains subtle hints that it’s completable. If it does, she should increase her credence it’s
completable; if it doesn’t, she should decrease it. But—and here’s where ambiguity comes
in—she can’t always tell with certainty whether it’s word-like, and hence can’t always tell
whether her credence should go up or down.

Here’s a simple model (details in §4.1). Suppose, as before, it’s 1/2 likely there’s no word
(and so she doesn’t find one), 1/4 likely there’s a word she finds, and 1/4 likely there’s a
word she doesn’t find. Moreover, suppose she knows the string will be word-like iff there’s
a word. If she finds a word, she’s rational to become certain there’s one: H̃(Word) = 1. If

28H̃(Word) = H(Word|¬Find) = H(Word&¬Find)
H(¬Find) =

1/4
3/4

= 1/3.
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she doesn’t find a word and there is none—so it’s not word-like—she’s rational to drop her
confidence slightly: H̃(Word) = 1/3. So far this is just like the Standard-Bayesian model. Yet
suppose that if she doesn’t find a word but there is one (so the string is word-like), she’s
rational to raise her credence slightly—she should suspect it’s word-like: H̃(Word) = 2

3 . This
yields ambiguous evidence: if she doesn’t find a word, she’s rational to be unsure whether
the rational posterior is 1/3 or 2/3: H̃(H̃(Word) = 1/3) > 0 and H̃(H̃(Word) = 2/3) > 0. (Which
one it is depends on whether the string is word-like—but she’s also rational to be unsure of
that. There is no cognitive home; see Williamson 2000; Srinivasan 2015.)

Two facts about this model. First, her prior H values her posterior H̃. In fact, this
ambiguous update is better than the Standard-Bayesian one: if she finds a word, both update
to credence 1; if there’s no word, both update to credence 1/3; but if there is a word she
doesn’t find, the Standard-Bayesian updates to credence 1

3 , while the ambiguous model
updates to 2

3 . The ambiguous update is never less accurate, and sometimes more accurate.29

Thus neither is Dutch-bookable, and it’s always rational to prefer the ambiguous one (§4.1).
Second, this update is expectably polarizing: Haley is initially 0.5 confident there’s a word,

but her estimate of the future rational credence is roughly 0.58.30 Notice why. Uncompletable
searches are more likely to generate ambiguity than completable ones. So although the
rational opinions always move toward the truth, they (on average) move further if the string
is completable than if not. It is asymmetric increases in accuracy that lead to polarization.31

This is just one simplified model of how word-searches could generate ambiguity. Here,
H̃ may best be interpreted as the average rational credence to have across cases, since in
realistic models there’d be a much wider range of possibly-rational posteriors. Appendix A.4
proves that a wide class of such models will lead to expectable polarization—so even if you
object to the details, I hope you’ll agree that updates like this are possible.

I claim that these expectably-polarizing updates can be rational. But I also claim (and will
argue in §§6–7) that they might drive polarization of actual opinions. How, in theory, could
expectable polarization in the opinions that are rational for Haley (H̃) lead to polarization
in her actual opinions? There are a variety of answers, but the simplest: if Haley is approx-
imately rational, her actual opinions will be a noisy indicator of the rational ones—thus her
actual opinions will expectably polarize too.32

In theory. How to test the hypothesis that ambiguous evidence can polarize real people?
Meet Thomas. Like Haley, he’s about to see a word-search, determined by the (same) coin
toss. But while she’ll see a completable string iff heads, he’ll see a completable string iff

29Is the comparison unfair, since the ambiguous posterior differs in more places than the Standard-Bayesian
one? Insisting it’s unfair presupposes that if people can distinguish between two possibilities at all, they
can distinguish them with certainty (Greaves and Wallace 2006; Huttegger 2013; Schoenfield 2017a; Gallow
2021; Isaacs and Russell 2022; Zhang and Meehan 2022). That, in turn, forbids ambiguous evidence (since
it implies that P̃ is available only if its ‘informed’ version is—see §A.3, Theorem A.2). So although this is a
way to object, if you’re onboard with ambiguous evidence you shouldn’t worry about such ‘unfairness’.

30EH(H̃(Word)) = H(H̃(Word) = 1/3) · 1/3 +H(H̃(Word) = 2/3) · 2/3 +H(H̃(Word) = 1) · 1 = 1
2
· 1/3 + 1

4
· 2/3 + 1

4
· 1 ≈ 0.58.

31EH(H̃(Word)|Word) = 1
2
· 1+ 1

2
· 2/3 ≈ 0.83, while EH(H̃(Word)|¬Word) = 1/3 ≈ 0.33, so if it’s completable

the average rise is 0.83− 0.5 = 0.33, and if it’s uncompletable the average drop is 0.33− 0.5 = −0.17.
32If her actual opinion, C̃(Word), is an unbiased estimator of the rational opinion (meaning ∀t :

EH(C̃(Word)|H̃(Word) = t) = t), then it’ll expectably polarize to the same degree. If it’s a biased estim-
ator, it may still polarize depending on the degree and direction of the bias.
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tails. By parallel reasoning, Thomas’s opinion should expectably polarize in the opposite
direction: it’ll be easier for him to assess his evidence if tails than if heads, so his average
posterior rational credence in heads should be lower than 50%.

In fact, meet everyone. Half are Headsers: like Haley, they’ll see a completable string iff
heads. The rest are Tailsers: like Thomas, they’ll see a completable string iff tails. Headsers
get evidence that’s easier to assess when the coin lands heads; Tailsers get evidence that’s
easier to assess when the coin lands tails. So if the coin lands heads, the average Headser
should be confident it did, while the average Tailser should be unsure; and if it doesn’t land
heads, the average Tailser should be doubtful it did, while the average Headser should be
unsure. Since all start out 50%, they can predict that they’ll split apart.

Do they? I’ve tested this in two ways. The fun way: audiences. In 6 of 7 talks, Headsers
had a higher average posterior in heads. The rigorous way: an experiment. Across trials,
there was a significant (and large) difference in the average posterior credence in heads
(Headsers: 57.7%; Tailsers, 36.3%, p < 0.001, d = 1.57; see §4.2). This doesn’t establish
that the participants themselves could predict how they’d polarize, but it does support a
necessary precondition of that—namely, that I could predict it.

More work is needed. But we’ve now seen—in principle, and perhaps in practice—how
cognitive search could generate ambiguities that rationalize expectable polarization. What of
predictable polarization? If you’d like to jump to that argument, skip to §5; for the technical
(§4.1) or experimental (§4.2) details from this section, read on.

4.1 The Formalities

Figure 1 specifies the Standard-Bayesian model of the word-search in two forms: the left
in a generalized-Kripke (or Markov) diagram; the right in stochastic-matrix notation. (See
Appendix A.1 for formal semantics.) w1 and w2 are where Haley doesn’t find a word; w3 is
where she does. The rational prior is always (1/2 1/4 1/4) over (w1, w2, w3). In w1 and w2, the
rational posterior shifts to (2/3 1/3 0) (conditioning on ¬Find); and in w3, it shifts to (0 0 1)

(conditioning on Find). No Ambiguity holds because the posterior is constant within worlds
it leaves open: if H̃i(j) > 0, then H̃i = H̃j .

The ambiguous model (Figure 2 below) is identical except that in w2 the rational posterior
assigns higher credence to there being a word (the string is word-like). Thus H̃w1

̸= H̃w2
,

and since H̃w1
(w2) > 0, the evidence is ambiguous: if Haley doesn’t find a word, she should

be unsure whether the rational credence is 1/3 (as it is at w1) or 2/3 (as it is at w2).
Four comments. First, the ambiguous update is preferable to the Standard-Bayesian

one, since it’s identical at w1 and w3, and strictly more accurate at w2—see footnote 29 for
why the comparison is fair. (Appendix A.4 proves that this model validates Value—hence
is not Dutch-bookable, and is expected to improve accuracy.) Second, the ambiguous model
violates Reflection: EH(H̃(Word)) = 1/2 · 1/3+ 1/4 · 2/3+ 1/4 · 1 = 7

12 ≈ 0.58 > 0.5 = H(Word).
Third, note that this update cannot be modeled by conditioning (H̃w2

is the culprit). This
is for simplicity: we can also generate valuable expectable polarization using conditioning
updates, as we’ve seen in the Example in §3.33

33If we assume all updates happen by conditioning, ambiguity occurs iff the possible propositions that
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w3
1/4

w2
1/4w1

1/2

1

1/3

2/3

2/3

1/3

Word

Find
H =

1/2 1/4 1/4

1/2 1/4 1/4

1/2 1/4 1/4



H̃ =

2/3 1/3 0

2/3 1/3 0

0 0 1



Word = {w2, w3}
Find = {w3}

Figure 1: Standard-Bayesian model of a Headser’s rational opinions. Left: Generalized-Kripke (Markov)
diagram, in which blue numbers represent the prior probabilities of possibilities, and red arrows from circles
represent the posterior probabilities in those possibilities. Right: The matrix H represents (constant) prior
probabilities; the matrix H̃ represents posteriors: row i column j is the probability, in world i, that it’s
rational to assign to being in world j. Thus the third row of H̃ says what Haley’s probabilities should be if
she finds a word; the second row says what they should be if it’s completable but she doesn’t find one, etc.

w3
1/4

w2
1/4w1

1/2

1

2/3

1/3

2/3

1/3

Word

Find
H =

1/2 1/4 1/4

1/2 1/4 1/4

1/2 1/4 1/4


H̃ =

2/3 1/3 0

1/3 2/3 0

0 0 1



Word = {w2, w3}
Find = {w3}

Figure 2: Ambiguous model of a Headser’s rational opinions. See Figure 1 for interpretation.

Fourth, you might be puzzled: How is Haley in a position to be 2/3-confident of Word in
w2, but only 1/3 in w1? Because she receives different signals in the two—‘word-like’ in w2

and ‘not world-like’ in w1. Why, then, can’t she be sure there’s a word in w2? Because she
can’t be sure which signal she received—in w2, she can only be 2/3-confident that she received
‘word-like’. Well, in w2 can she be sure that she can be 2/3-confident she received ‘word-
like’? No—look at the model; she can only be 2/3-confident that she can be 2/3-confident she
received ‘word-like’. (And so on.) ...Okay, but if she can’t be sure she received ‘word-like’,
how can she be sensitive to whether it’s word-like? The same way you can be humble without
knowing you are, or can understand my argument without being sure you have. It is only
by implicitly assuming that facts about rationality are introspectable—that you can always
know what the rational opinions are, or what signals you received—that the puzzle arises.

4.2 The Experiment

Here I’ll sketch an experiment that both suggests that cognitive search can cause people to
polarize, and controls for a confound. (See Appendix B for more.)

might be rational to condition on don’t form a partition. See e.g. Geanakoplos 1989; Williamson 2000,
Ch. 10; Salow 2018; Dorst 2020a; Das 2019; Isaacs and Russell 2022; Zendejas Medina 2022.
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The confound: ambiguous evidence is not simply weak evidence. Evidence is weak when
it shouldn’t move your opinions very much; evidence is ambiguous when you shouldn’t be
sure how weak it is. Highly-ambiguous evidence must be weak (Dorst 2020a, Fact 5.5), but
evidence can be weak without being ambiguous. Figure 3 gives an example. Urn A contains
one black and one red marble; Urn B contains two red. I flip a coin, grabbing A if heads,
B if tails. Then I draw a marble and show you. A black marble is strong evidence: you
should be sure I’m holding A. A red marble is weak evidence: you should slightly boost your
confidence that I’m holding B. Either way, it’s unambiguous: if it’s black, you should know
that you should be sure I’m holding Urn A; if it’s red, you should know that you should be
2/3 confident I’m holding urn B. You should not have self-doubt.

Urn A

Urn B

0.5

0.5

?
Strong

Weak

Figure 3: A case of unambiguous (but sometimes weak) evidence.

Upshot: the strong/weak asymmetry is not the unambiguous/ambiguous asymmetry. In
the word-search, both are present. If the string is completable, you can get unambiguous
evidence that it is; if it’s not, you get ambiguous evidence that it’s not. But also: if the string
is completable, you can get strong evidence that it is; if it’s not, you get weak evidence that
it’s not. My theory predicts that the ambiguity-asymmetry drives polarization; but what
if the weak/strong asymmetry does? What if people polarize because they under-react to
weak evidence?34

The experiment tested this (pre-registration: https://aspredicted.org/8jg3e.pdf) in a 2×2

design that independently manipulated both valence (Headser vs. Tailser) and ambiguity
(Ambiguous vs. Unambiguous). Headsers sometimes got strong evidence when a coin landed
heads, and always got weak evidence when it landed tails; Tailsers vice versa. The Ambiguous
condition saw word-search tasks; the Unambiguous condition saw marble-draws from urns.
I predicted more polarization in the Ambiguous than Unambiguous condition.

It worked. Each subject saw four bits of evidence, determined by four different coin flips.
Figure 4 shows how the mean subject’s average confidence in Heads1,...,Heads4 evolved as
they saw evidence about each flip: at 0, this is the average of their priors in each toss;
at 1, this is the average of their posterior in the first toss (having seen the first bit of
evidence) and their priors in the remaining three, etc. The Ambiguous condition polarized,35

and did so significantly more than the Unambiguous one.36 Appendix B reviews evidence
34There’s indeed some evidence that people are conservative in this sense (Peterson and Beach 1967;

Edwards 1982), though this may be due to a failure to believe the experimental setup (Corner et al. 2010;
Hahn and Harris 2014)—a source of ambiguity.

35One-sided t-test: t(101) = 7.98, p < 0.001, d = 1.577; the bootstrapped 95% confidence interval for the
difference in posterior confidence between the two groups was [16.02, 26.82].

36A 2 × 2 ANOVA indicated a main effect of valence (F (1, 224) = 68.99, p < 0.001, η2 = 0.217), a main
effect of ambiguity (F (1, 224) = 6.39, p = 0.012, η2 = 0.020), and an interaction effect between the two
(F (1, 224) = 21.63, p < 0.001, η2 = 0.068). A bootstrapped 95% confidence interval for the difference of
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that ambiguity explains this effect—including the minor polarization in the ‘Unambiguous’
condition.
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Figure 4: Means of participants’ average confidence in Heads1,...Heads4 as they saw more tasks, in
Ambiguous (left) and Unambiguous (right) conditions. Error bars represent 95% confidence intervals.

5 The Predictable Theorem

We’ve seen (valuable, so I say) rational expectable polarization. But what about predictable
polarization—the fact that when I went off to college, I could predict with confidence that
I’d come to doubt that guns increase safety? Since estimates are not predictions, this doesn’t
follow from what we’ve seen so far. Can we go further?

Yes and no. ‘No’ because full Value forbids it. ‘Yes’ because there’s a weakening of
Value—which we already knew we’d have to make—that allows it.

The basic idea: iterate cognitive searches. In the model from §4, Haley knows the coin is
fair but rationally estimates that the rational posterior is around 58%. So if we can repeat
this with many independent fair coins and searches, since she’s initially confident that around
half the coins will land heads, she predicts that her average credence in Heads1, ...,Headsn
should rise to around 58%. Since they’re independent, she can predict that she should
become confident that around 58% landed heads and very confident that more than half
landed heads. Since she’s initially 50-50 in the latter, that’s predictable polarization.

But there’s a hitch. Can we iterate cognitive searches, given Value? Suppose the rational
opinions for Haley go from H1 to H2 to... to Hn. I’ve shown how an individual step could be
valuable despite being expectably polarizing. But ignore the steps—focus on the beginning
and end. Let h be the claim that more than half the coins landed heads. If we can iterate,
then at the beginning Haley can predict with (say, 90%) confidence that she should wind
up (say, 90%) confident of h: H1(Hn(h) ≥ 0.9) ≥ 0.9. It follows immediately that her initial
opinions (H1) do not value her final opinions (Hn): since she’s should initially be 50%
confident of h, she must think that almost half the time, the final 90%-confidence will be
misplaced! Thus she expects Hn to be less accurate about h than her initial opinions.37

differences, i.e. for (A-Headsers − A-Tailsers) − (U-Headsers − U-Tailsers), was [7.19, 22.59]—indicating
that the former was larger.

37Formally, H1 values Hn only if H1(Hn(h) ≥ t) ≥ s ⇒ H1(h) ≥ t ·s (Dorst 2020a, Fact 5.5). So if
H1(Hn(h) ≥ 0.9) ≥ 0.9, we must have H1(h) ≥ 0.9·0.9 = 0.81 > 0.5.
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Though it’s not obvious, this implies that for some i, Hi does not value Hi+1, for Theorem
A.4 (§A.5) shows that Value is ‘transitive’: if H1 values H2 and H2 values H3, then H1 values
H3. (If we tried to simply iterate our model from §4, then H2 would not value H3.38) You
might understandably get off the boat here, insisting that epistemic rationality requires full
Value, allowing expectable but forbidding predictable polarization.

But should you? We already knew that people don’t obey full Value—after all, they
sometimes forget things. And here’s an easy theorem: if Haley might forget something—
anything—then she can’t value her future opinions.39

Forgetting is never ideal. Is it also always irrational? Surely not. Some things—like
Mom’s birthday—are bad to forget. Others—like what you ate last Tuesday—aren’t. The
former are questions whose answers you should care about getting right; the latter are not.
As stated, Value ignores this distinction: H values H̃ iff for any decision problem, it prefers
to let H̃ decide; iff for every question, it expects H̃ to be more accurate than itself; iff there
is no subject-matter the update can be Dutch-booked on.

That’s a high bar. Most forms of deference are question-relative. You defer to the
forecaster about whether it’ll rain, but not about whether your poncho is stylish; you defer
to your future-self about how busy you’ll be next month, but not about what you had for
breakfast this morning. Value can be question-relative too (Dorst et al. 2021). A question
Q is a partition of logical space (Hamblin 1976)—a division of possibilities into groups that
agree on the answer to Q. (E.g. “Will it rain tomorrow?” = {Rain,¬Rain}.) H values H̃

with respect to Q iff, for any decision whose outcomes are determined by the answer to Q,
it prefers to let H̃ decide. This entails that the update cannot be Dutch-booked using bets
about Q; and it entails that H expects H̃’s opinions about Q to be more accurate. (See §5.1.)

Let’s lower the bar. Fix the most fine-grained Q you (should) care about. I propose that
if you should value an update with respect to Q, then it’s a rational update:

Q-Valuable Rationality: ⟨P, P̃ ⟩ is a potentially-rational update iff P values P̃ with
respect to the most fine-grained question Q that you should care about.

After all, if you should not care about a question, why must you expect to become more
accurate about it in order to update rationally? You might object that such updates aren’t
fully ‘rational’. Still, you probably assumed that requiring each update to be expected to
increase accuracy about Q would lead to expected long-run increases in accuracy about
Q—guarding against predictable polarization about Q. I’ll show that it doesn’t.40

Here’s why. H can value H̃ with respect to Q even if H̃ forgets some things, so long
as that forgetting doesn’t affect H̃’s opinions about Q. This yields one way of iterating
cognitive searches.41 Let Q be the question of how all the cognitive searches went, including

38If the first update was valuable, why would another copy fail to be? Because ambiguity can compound
problematically—see discussions of ‘double-bad-cases’ in Williamson 2019, §4; Das 2020b; Dorst 2020a, §A.1.

39If H(q) = 1, then H values H̃ only if H(H̃(q) = 1) = 1.
40Although a variety of models show how limited memory can lead to polarization (Wilson 2014; Dallmann

2017; Fryer et al. 2019; Loh and Phelan 2019; Singer et al. 2019), they all require losing information about
(hence require updates that are not valuable with respect to) the question you polarize on.

41An alternative strategy is to allow the question Haley cares about to (predictably) change across times: at
time i, Haley cares only about outcome of the ith word-search task, and so rationally does each word-search.
This avoids any forgetting, but has the down-side that Haley does not care about the claim (h) she’s
predictably polarizing on throughout the process; see §A.6.
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whether Haley found a word and whether the coin landed heads or tails. Suppose this—so
any question answered by it, e.g. whether more than half landed heads (h)—is what Haley
should care about. Each time she’s presented with a string, she updates as discussed in §4
(Figure 2, page 15). Such updates satisfy (full) Value. But she knows that, after each, she’ll
forget the letter-string (the details of the evidence she received). This forgetting doesn’t
affect her opinions about how the cognitive search went, so is valuable with respect to Q.
What it does is consolidate her ambiguity. When she initially doesn’t find the completion,
she’s left wondering whether the string is word-like, and hence whether she should be 1/3

or 2/3 confident it’s completable. But once she forgets the string, she knows she can no
longer be sensitive to whether it’s word-like, and so knows the rational way to respond to
her (now-impoverished) evidence is simply to stick with the opinion she ended up with. This
consolidation of her ambiguity makes it so that when the next cognitive search comes around,
she can again update as in §4 and satisfy (full) Value. Rinse and repeat.

The main theoretical result of this paper is that each step in this process is expected to
make Haley more accurate about Q, despite the whole sequence predictably polarizing her:

Theorem 5.1 (Informal). Haley can start out 50% confident of h, know that each update
in a sequence is valuable with respect to how all the coins land (hence whether h), and yet
predict with arbitrary confidence that the sequence will make her arbitrarily confident of h.

This is an epistemic form of a diachronic tragedy (Hedden 2015): at each stage she expects
the next step to make her more accurate and later ones to make her less so—despite knowing
that once she takes the next step, she’ll then expect the later ones to make her more accurate,
and so will be willing to take them. This is the slippery slope to radicalization.

More is true. If Thomas goes through the Tailser-version of this process, the resulting
polarization is also persistent : when Haley and Thomas discover that they’ve shifted in
opposite directions, their now-polarized opinions remain extreme (Corollary 5.3).

What, intuitively, is happening? Initially Haley wants to do the first search (since it’ll
give her an inkling about Q), but doesn’t want to do the first two—for doing so might
generate too much ambiguity to be valuable. Suppose she does the first and doesn’t find a
word, so is left with ambiguous evidence (“Should I be 1/3 or 2/3 there’s a word?”). At this
stage she doesn’t want to do the second. Then she forgets the first string, maintaining her
opinions about Q but consolidating her ambiguity (“Okay, now I should be 2/3”). She thus
stops worrying that the second search will yield too much ambiguity—and since it will give
her more of an inkling about Q, she prefers to do it. And so it goes...

Since the (fair) coins are all independent, initially Haley is 50-50 on whether more than
half will land heads, and is quite confident that roughly half of them will. As the process
unfolds, there are tosses (say, Heads2, Heads5,...) that she becomes sure landed heads (she
finds completions). For the rest, her evidence was ambiguous, so she tends to have middling
degrees of confidence—some slightly below 50%, others slightly above it. Across trials, her
average credence in the Headsi rises to roughly 58%. To maintain coherence, she must
therefore come to think that it’s very likely that more than half the coins landed heads.

Of course, she predicted this rise in confidence. But so what? She had no idea which
Headsi her credence would rise or fall in. Using the only evidence she has (the word-searches),
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her confidence has risen a lot in some, risen a bit in others, and fallen slightly in still others.
She can’t conclude that the ones it’s fallen in landed tails—that would require assuming she’s
been rational, which she can’t be confident of. Thus the fact that she initially predicted that
half would land heads can’t be used as a basis to lower her credence—in fact, she becomes
progressively less confident in that prediction as the process unfolds. Thus Haley finds herself
confident that more than half landed heads, with no rational way to lower that confidence.
(She should expect lowering her credence in any of the Headsi to decrease her accuracy.)

Peeking over her shoulder, she notices that Thomas is now extremely doubtful that more
than half the coins landed heads. But so what? She predicted as much from the outset, so
it doesn’t provide much evidence. Her confidence persists.42

They can reduce (but not eliminate) their disagreement if they start sharing which com-
pletions they found. But that’s an exacting exercise: it takes the patience to talk through—
and the ability to recall—the individual reasons underlying their opinions about h. Since
time and memory are limited, Haley and Thomas may be left disagreeing about high-level
claims (most of the coins landed heads) while being unable to share all the (rational) reasons
they have for their differing opinions.

Upshot: predictable polarization could indeed be rational.
What, abstractly, is the structure that generates it? We need a ‘high-level’ target claim—

e.g. most of the coins landed heads. We need a large collection of individual facts that bear
on the target claim—e.g. the outcomes of individual coin tosses. We need the evidence about
each such fact to be asymmetrically ambiguous in different directions for two groups—one
group (Headsers) must be better at recognizing when a fact points one way (Headsi); the
other (Tailsers) must be better at recognizing when it points the other way (Tailsi). We
expect discussion of individual facts to lead to (rough) agreement about which way those
facts point. However, the opposing groups’ high-level opinions are shaped by many more
facts than they can recall or discuss—thus their asymmetric sensitivities will leave them
strongly disagreeing about the high-level claim.

To me, this feels familiar. Let’s tell a better story.
For Headsi and Tailsi substitute bits of evidence for and against the claim that guns in-

crease safety. Going to a liberal university made me a Tailser—made me better at recognizing
evidence against that claim. Living in a conservative town made Dan a Headser—made him
better at recognizing evidence favoring that claim. Neither of us became worse at assessing
evidence; we became better, in asymmetric ways. When we discuss individual facts (a school
shooting; a case of self-defense), we often agree on which way they point. Yet since time and
memory are limited, we are left disagreeing about high-level claims (guns increase safety)
while being unable to share all the (rational) reasons we have for our differing opinions.

If that were what happened, then both of us could’ve predicted polarization as the
outcome—as we could. And neither of us should be moved now, when we discuss our persist-
ent disagreements—as we’re not. Nevertheless, while we each think the other is incorrect, we
needn’t think they are dumb, or foolish, or irrational to believe what they do—as we don’t.

If that were what happened. I’m going to argue that it may have. That the example of
42If they both knew they’d been rational and exactly what each of their opinions were, their disagreement

would disappear (Aumann 1976; Lederman 2015). But they don’t know that.
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Haley and Thomas is far more realistic than it seems. That we engage in cognitive search and
face asymmetrically-ambiguous evidence all the time. And that this helps explain real-world
polarization. For that argument, jump to §6; for the formal details of this section, read on.

5.1 The Formalities

A question Q is a partition of possibilities; Q(w) is the partition-cell of w. A proposition
p is about Q iff every complete answer to Q settles whether p (iff p =

⋃
i qi, for qi ∈ Q).

A decision problem is about Q iff every answer to Q settles the value of every option. P

Q-values P̃ (values P̃ with respect to Q) iff it prefers to let P̃ decide for any decision about
Q. A fixed-option Q-book against an update is a pair of decision problems about Q such
that deciding rationally before and after the update guarantees a loss. Q-Value entails that
there is no Q-book against the update (Theorem A.5), and that for any quantity X whose
value is determined by the answer to Q, P expects P̃ ’s estimate of X to be more accurate
than its own (Dorst et al. 2021, Theorem 3.2 and Levinstein 2022). See §A.5.

Suppose Haley sees a sequence of n independent word-search tasks. Let Qi be the parti-
tion of how the ith task went: Qi = {Ni, Ci, Fi} where Ni is the set of worlds where it’s not
completable, Ci is where it is but she doesn’t find a completion, and Fi is where she finds
one. Let Q be the question of how all the tasks went: for any w,w′, Q(w) = Q(w′) iff for all
i: Qi(w) = Qi(w

′). When Haley forgets a string, this consolidates the ambiguity: she holds
fixed her opinions in Q, but becomes certain (via imaging, Lewis 1976) they’re now rational.
Hi is the rational probability function after doing the ith task, and Hi is its consolidation.
The updates from Hi to Hi are valuable with respect to Q. Meanwhile the updates from
Hi to Hi+1 are fully valuable, following the update from §4: they Jeffrey-shift (Jeffrey 1990)
her opinions in the Qi partition in different ways in different worlds, as indicated by Figure
2 (e.g. in worlds in Ci, she Jeffrey-shifts to become 1/3 in Ni and 2/3 in Ci).

This yields Q-valuable predictable polarization about Q:

Theorem 5.1. There is a sequence of probability functions H0, H0, H1, H1....,Hn, Hn, a
partition Q, and a proposition h =

⋃
i qi (for qi ∈ Q) such that, as n → ∞:

· H0 is (correctly) certain that Hi values Hi+1, for each i;
· H0 is (correctly) certain that Hi values Hi with respect to Q, for each i;
· The sequence is predictably polarizing about h: H0(h) ≈ 1

2 , yet H0(Hn(h) ≈ 1) ≈ 1.

See Appendix A.6 for proof. Adding a Tailser leads to persistent polarization (Corollary 5.3).
The crux is that H1 can think H1 makes (at least as good or) better decisions about

Q than itself, and H1 can think H2 makes better decisions about Q than itself, while H1

thinks H2 makes (some) worse decisions about Q than itself. How is this possible? Isn’t
H1’s judgment that H2 makes better decisions about Q itself a decision about Q (hence one
H1 should worry about)? No. The consolidation breaks the connection between Q and the
rational opinions: we can no longer tell what H1 is based purely on the answer to Q, since
once Haley forgets the string, she’s rational to maintain her credence even if it was originally
irrational. This means the judgment that H2 makes better decisions about Q than H1 is
not itself a decision about Q. That’s what allows Q-Value to fail to be transitive.
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Given this, you might want rational updates to be valuable about the combined ques-
tion: What’s the answer to Q, and what are the rational opinions about Q? That, I conjec-
ture, would block predictable polarization. Does this cast doubt on its rationality? I don’t
think so. It’s still true that every step is expected to make you more accurate about Q; if
what you care about is the answer to Q, how can you be faulted for taking any such step?

6 The Confirmation Bias

Dan and I weren’t polarized by word-searches. We were polarized by who we talked to, what
we lived through, and how those factors shaped our ways of thinking. Dan fell in with liber-
tarians, experienced failures of educational and criminal institutions, and became skeptical
of many types of authority. I fell in with liberals, experienced favors of educational and
criminal institutions, and became skeptical of many claims about individual responsibility.

Can my story explain this? Yes. I’ll show how ambiguity-asymmetries may arise in
the empirical processes that drive polarization, and that (unlike my word-search example)
polarization can be predictable even if people have a choice about what evidence to receive.

Psychologists have documented many processes that predictably polarize people. Con-
firmation bias comprises tendencies to seek and interpret evidence in ways that strengthen
your prior beliefs (Nickerson 1998; Whittlestone 2017). Motivated reasoning is the related
tendency to scrutinize uncongenial information (Kunda 1990; Kahan et al. 2017). And the
group polarization effect is the tendency for discussions with likeminded others to make you
more extreme (Isenberg 1986; Sunstein 2009). People who are aware of these tendencies are
still subject to them (Pronin 2008; Lilienfeld et al. 2009), hence Theorem 3.1 implies that (i)
if evidence is unambiguous then they must be irrational, and (ii) Standard-Bayesian models
(see footnote 9) can’t rationalize them. I’ll show that ambiguous models can.

Confirmation bias first. This effect has been widely cited as a core driver of polarization
in both academic43 and popular44 writings. Nevertheless, many researchers have noted that
we lack good normative standards for assessing its rationality.45 I hope to provide them.

Confirmation bias divides into at least two types: (1) selective exposure, the tendency to
seek evidence that you expect to confirm your preferred hypothesis (Frey 1986; Hart et al.
2009), and (2) biased assimilation, the tendency to interpret mixed evidence as supporting
your preferred hypothesis (Lord et al. 1979; Taber and Lodge 2006). Here I’ll focus on the
latter, returning to the former in §7.

Examples of biased assimilation go like this.46 Take two people—say, Dan and I—who
43Nickerson 1998; Taber and Lodge 2006; Risen and Gilovich 2007; Lilienfeld et al. 2009; Stangor and

Walinga 2014; Kahan et al. 2017; Mercier 2017; Mercier and Sperber 2017; Lazer et al. 2018; Talisse 2019.
44Gilovich 1991; Fine 2005; Sunstein 2009; Kahneman 2011; Klein 2014, 2020; Wolfers 2014; Carmichael

2017; Robson 2018; Koerth 2019; Rogers 2020; Stanovich 2020.
45Lord et al. 1979; Lord and Taylor 2009; Taber and Lodge 2006; Crupi et al. 2009; Ross 2012; Mercier

2017; Whittlestone 2017; Kinney and Bright 2021.
46Lord et al. 1979 is the classic study; see also Gilovich 1983; Lord et al. 1984; Plous 1991; Ditto and Lopez

1992; Liberman and Chaiken 1992; Miller et al. 1993; McHoskey 1995; Schuette and Fazio 1995; Kuhn and
Lao 1996; Klaczynski and Narasimham 1998; Lundgren and Prislin 1998; Munro and Ditto 1997; Taber and
Lodge 2006; Lord and Taylor 2009; Taber et al. 2009; Corner et al. 2012; Ross 2012; Kahan et al. 2013; Jern
et al. 2014; Kahan et al. 2017; Cook and Lewandowsky 2016; Liu 2017; Anglin 2019; Benoît and Dubra 2019.
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strongly disagree about whether guns increase safety (s). Present us with two studies: one
that (on its face) supports the claim, the other of which (on its face) tells against it. Give us
time to think about them. Since you’ve given us the same information, you might expect it
to dampen our disagreement. Generally, it won’t. Instead, people tend to conclude that the
congruent study—the one whose face-value reading supports their prior beliefs—is a more
convincing study than the incongruent one. Thus on average, across situations like this, Dan
will tend to increase his confidence in s, and I’ll tend to decrease mine.

Why? We won’t simply dismiss the evidence against our beliefs—we’ll likely spend more
time looking at it. As we do, we’ll often find legitimate flaws in the methodology, gaps in the
reasoning, or alternative explanations that could explain away the data. Biased assimilation
is driven by selective scrutiny : people spend more time looking for flaws with incongruent
evidence than congruent evidence—the same mechanism that drives motivated reasoning.47

Thomas Kelly (2008) argues that selective scrutiny is rational, and that it may rationalize
some types of polarization. It’s reasonable to spend more of our limited cognitive resources
on surprising findings. If I doubt that guns increase safety, then a study suggesting they
do should surprise me, while a study suggesting the opposite shouldn’t. It makes sense for
me to scrutinize the former, and for Dan to scrutinize the latter. Notice that if we do, we’ll
end up receiving different evidence: I know more about one study, Dan knows more about
the other. Thus selective scrutiny is a type of selective exposure: exposure to flaws with
incongruent evidence (cf. Kunda 1990). And if we aren’t aware that we’re being selective—
all we come away with is, “I saw one congruent study, and one flawed incongruent one”—then
the resulting polarization is rational.

But, says Kelly, this only works if we aren’t aware we’re being selective. If we are, we
shouldn’t be surprised to find a flaw in only the incongruent study (cf. McWilliams 2021).
(Compare: if you’re aware you’re fishing with a big net, you shouldn’t be surprised to catch
only big fish.) In fact, if we fail to find a flaw in the incongruent study we should lower our
credence in our prior belief, since this suggests the incongruent evidence is stronger than we
thought (McKenzie 2004). This is an instance of the point from §3 that, without ambiguity,
no rational strategy can lead to expectable polarization (Theorem 3.1; see Salow 2018).

And this is where Kelly and I part ways. Many of us do realize we’re engaging in selective
scrutiny. Indeed, it’s standard scientific practice: adopt a hypothesis, and then spend your
time trying to explain away problems with it (Kuhn 1962; Solomon 1992). We’re all familiar
with how choosing a school to attend or a project to pursue can have a predictable impact
on how we think, and thus on how our beliefs evolve (Cook 1987).

The question: How could knowingly searching for flaws predictably polarize people?
My answer: the same way that knowingly searching for words can. Both are forms of

cognitive search. Both involve an ambiguity-asymmetry: if you find what you’re looking for
(a flaw, a word), it’s easier to know how to react to the evidence; if you don’t, you should
be (more) unsure what to think. As a result, both induce asymmetric accuracy-increases: if
there is a flaw (a word), your credence that there is should on average increase a lot; if there’s
not, your credence should decrease only a bit. And again: the average of ‘increase a lot’ and
‘decrease a bit’ is ‘increase a bit’—the process is expectably polarizing.

47Kunda 1990; Ditto and Lopez 1992; Lundgren and Prislin 1998; Kahan et al. 2012, 2017, 2013.
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Suppose scrutinizing a study leads to the same structure of evidence as searching for a
word, so we can model it in the same way (see §6.1 for details). Which way it’s polarizing
depends on how you scrutinize. When I scrutinize a study suggesting that guns increase
safety (s), this expectably lowers the rational credence in s, since finding a flaw would lower
my credence. When Dan scrutinizes a study suggesting the opposite, that expectably raises
the rational credence in s. Thus if it’s rational to selectively scrutinize, then even if you’re
aware of it, the resulting ambiguity-asymmetries will rationalize expectable polarization.48

But, given this polarizing model, is it rational to selectively scrutinize? You might think it
couldn’t be. After all, repeated selective scrutiny will predictably polarize you—so wouldn’t
it be better to scrutinize even-handedly? This is where the diachronic tragedy rears its head.
Just as with Theorem 5.1: if you were deciding on a policy for your whole life, you’d expect
to be more accurate if you didn’t selectively scrutinize; nevertheless, in each instance, when
faced with a pair of conflicting studies, you expect selective scrutiny to be the best thing
you can do in that instant to get to the truth.

How to assess the rationality of the choice in each instant? Since scrutinizing either
study is (fully) valuable, both are expected to improve accuracy (on everything). So even
if pragmatic considerations influence your choice—as some literature suggests (Kunda 1990;
Kahan et al. 2017)—the process is arguably epistemically rational.

But more is true. Why do I tend to scrutinize incongruent studies over congruent ones?
Because I expect doing so to make me more accurate, since it’s more likely I’ll be able to find
a flaw, avoiding ambiguity. I may think it’s more likely to contain a flaw—but even if I don’t,
I’ll be more likely to find any flaws it contains. After all, part of being convinced of a claim
is learning how to rebut arguments against it. This very paper illustrates the point: what
convinced me of its conclusions was, largely, figuring out how to rebut objections—that
rational polarization violated Bayesianism (§3), that it was purely theoretical (§4), that
ambiguity wasn’t the driving force (§4.2), that it couldn’t be predictable (§5), and so on.
More generally, there’s both theoretical (Aronowitz 2020) and empirical (Evans et al. 1983;
Kahan et al. 2017) reason to think that people are better at finding flaws with evidence that
tells against their beliefs—an idea at the heart of the adversarial model of academia.

Granting this, will polarization result? Here’s an analogy. Suppose I’ll see a series of
pairs of word-search tasks—one following Headser rules, the other following Tailser rules.
Headser tasks use British English; Tailser tasks use American English. At each stage I can
choose which to look at. Being an American, I expect to be better at finding words in the
latter task than the former. So if at each stage I’m guided by my desire to form accurate
beliefs, I’ll tend to do the Tailser tasks more often. And since doing so leads to predictable
polarization, I’ll wind up confident that less than half the coins landed heads.

How to verify this intuitive reasoning? Simulation. Randomly generate models of cog-
nitive searches for flaws in studies, and examine (1) whether a preference for accuracy can
lead to selective scrutiny of studies that you’re better at finding flaws in, and (2) whether
this preference can indeed lead to predictable polarization.

48As in §4, these updates are fully valuable. If (as in §5) we allow for consolidations of higher-order
uncertainty that are valuable with respect to some question Q—for example, which direction all the bits of
relevant evidence point—this polarization can be predictable and persistent.

24



6 THE CONFIRMATION BIAS

To (1): I randomly generated models and compared P (Find|Flaw) to expected accuracy,
finding a robust correlation (Figure 5, left). I then generated pairs of models in which you’re
(on average) more likely to find flaws that exist in the incongruent than the congruent study;
expected accuracy quite often warrants scrutinizing the former (Figure 5, right).
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Figure 5: Left: Correlation between P (Find|Flaw) and the expected accuracy of scrutiny. Right: Rates
of selective scrutiny based on expected accuracy (y-axis) grow as the average gap in P (Find|Flaw) between
incongruent and congruent studies (x-axis) grows.

To (2): two groups of agents face a series of choices about which of two random studies
to scrutinize. They start out 50% confident in a claim q, and at each stage they scrutinize
in the way they expect to make their beliefs most accurate. But one group (red) is better at
recognizing flaws in studies that tell against q, and the other (blue) is better at recognizing
flaws in those that tell in favor of q. The result is polarization (Figure 6).
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Figure 6: Agents faced with cognitive-search choices, choosing via expected accuracy. Red agents better at
finding flaws in q-opposing studies; blue agents vice versa. Thin lines are individuals; thick lines are averages.

These results suggest that irrationalist interpretations of biased assimilation and motiv-
ated reasoning are too quick: rational people who care about the truth but face ambiguous
evidence will exhibit them. In fact, this model fits with a variety of empirical findings. It’s
built on the idea that people are better at finding flaws in incongruent than congruent evid-
ence. They are.49 It predicts that instructions like “Don’t be biased” or “Be accurate” won’t
prevent biased assimilation—but that instructions that get people to scrutinize both sides

49Evans et al. 1983; Petty and Wegener 1998; Mercier and Sperber 2011; Kahan et al. 2012, 2017.

25



6 THE CONFIRMATION BIAS

equally will. They do.50 And it suggests that bias will be more extreme when people think
harder—when they scrutinize more, rather than less. It is.51

Upshot: Insofar as confirmation bias and motivated reasoning drove me and Dan apart,
this may have been due to rational management of ambiguous evidence. Still, this model
depends on differences in background knowledge and abilities to find flaws. How could
such differences predictably emerge, simply from falling into different social circles? For the
answer, skip to §7; for the details from this section, read on.

6.1 The Formalities

Here I’ll describe cognitive-search models, which generalize the word-search model from Fig-
ure 2 (see Appendix C.1 for more). They have the same structure—possibilities where you
find a flaw, possibilities where you don’t but there is one, etc.—but they multiply possibil-
ities within each class to represent when the target proposition (s) is true or false, and they
allow variation in priors and posteriors. Figure 7 is an example. I face a study favoring s, am
currently 25% confident of s, and am scrutinizing for flaws. The si are where s is true; the sj
where it’s false. Prior probabilities (the blue numbers) are constant across worlds; posteriors
are obtained by Jeffrey-shifting the prior P on the {Find&Flaw,¬Find&Flaw,¬Flaw} parti-
tion as indicated by the labeled arrows (holding conditional probabilities like P (·|Find&Flaw)
fixed, but changing P (Find&Flaw)). Thus the posterior probability for s is: if I find a flaw (s5
and s6), 0.05

0.05+0.20 = 0.2; if there’s a flaw that I don’t find (s3 and s4), 1
3 (

0.15
0.5 )+ 2

3 (
0.05
0.25 ) = 0.23;

and if there’s no flaw (s1 and s2), 2
3 (

0.15
0.5 ) + 1

3 (
0.05
0.25 ) ≈ 0.26. If the study contains a flaw,

s is 20% likely (P (s|Flaw) = 0.2); if it doesn’t, s is 30% likely (P (s|¬Flaw) = 0.3); and it’s
equally likely to contain a flaw as not (P (Flaw) = 0.5 = P (¬Flaw)). But since evidence is
less ambiguous when I find a flaw, the update is expectably polarizing.52

s5 0.05

s6 0.2

s3 0.05

s4 0.2

s1 0.15

s2 0.35

1

2/3

1/3

2/3

1/3

Flaw

Find P =

(
0.15 0.35 0.05 0.2 0.05 0.2
...

)

P̃ =


0.2 0.46 0.06 0.26 0 0
0.2 0.46 0.06 0.26 0 0
0.1 0.23 0.13 0.53 0 0
0.1 0.23 0.13 0.53 0 0
0 0 0 0 0.2 0.8
0 0 0 0 0.2 0.8



Flaw = {s3, s4, s5, s6}
Find = {s5, s6}

Figure 7: Model of scrutinizing s-supporting evidence in (left:) Kripke-model and (right:) stochastic-matrix.
See Figure 1 for interpretation.

I measured accuracy with the Brier score (Brier 1950): the sum of squared distances
between the probability of each possibility and its truth-value, so the inaccuracy of P at w

50Koriat et al. 1980; Lord et al. 1984; Schuette and Fazio 1995; Lundgren and Prislin 1998; Liu 2017.
51Fitzpatrick and Eagly 1981; Kuhn and Lao 1996; Downing et al. 1992; Tesser et al. 1995; Kahan et al.

2013.
52EP (P̃ (Flaw)) ≈ 0.583 > 0.5 = P (Flaw), so EP (P̃ (s)) ≈ 0.242 < 0.25 = P (s).
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7 THE GROUP POLARIZATION EFFECT

is B(P,w) :=
∑

x∈W (1{x}(w)−Pw(x))
2, and the accuracy 1−B(P,w). For tractability, the

simulations only tracked the agents’ opinions in s and in the cognitive-searches they were
evaluating at a given time—it didn’t model their evolving opinions about all the searches.
This is harmless, as a generalization of Theorem 5.1 (which I omit) shows that if we use
a series ‘small-world’ updates like this—which don’t track past or future updates—we can
stitch them together into a ‘large-world’ model that satisfies Q-Value.

7 The Group Polarization Effect

Once Dan and I had different background beliefs, selective scrutiny could pull us further
apart. But our polarization became predictable when we fell into different social groups,
before our beliefs had changed. How could ambiguity-asymmetries start our divergence?

One answer is simple: different social groups incentivize different cognitive searches (Ka-
han et al. 2017). When Dan fell in with libertarians, that incentivized him to search for
flaws in pro-government arguments; vice versa for me.

But clearly this isn’t the full explanation. Much polarization is due to the fact that
group membership affects what information you receive. Libertarians discuss libertarian
arguments; liberals discuss liberal ones; both get their news from congenial sources; hence
they diverge. This group polarization effect is widely documented (Myers and Lamm 1976;
Isenberg 1986; Sunstein 2009; Talisse 2019). The mechanism driving it is unsurprising: people
who believe a claim tend to share arguments that favor it (Toplak and Stanovich 2003; Wolfe
and Britt 2008), and arguments for a claim tend—on average—to predictably persuade
people of it (Vinokur and Burstein 1974; Burnstein and Vinokur 1977; Petty and Wegener
1998; Stafford 2015).53 This is intuitive, so most explanations stop here.

They shouldn’t. A familiar point applies again: it’s not just that someone can predict
that we’ll be persuaded by arguments—it’s that we ourselves can. If you’re open-minded
(more on that caveat in a moment), you can expect that reading liberal arguments will make
you more liberal. Theorem 3.1 again implies that if the evidence is unambiguous, rational
Bayesians can expect no such thing (Salow 2018). Yet we can.

Everyone needs to explain this. Either we process arguments irrationally, or they generate
ambiguity-asymmetries. I don’t have a knock-down case for the latter, but here’s the idea.
Suppose you know you’ll be given an argument that guns increase safety (s). Given your
background evidence, that argument will be either good (convincing) or bad (unconvincing): if
it’s good, it’ll warrant increasing your credence in s (“I hadn’t thought of that”); if it’s bad,
it’ll warrant decreasing it (“That’s the best they’ve got?”). You can’t be certain the argument
will be good—if you were, you should’ve already raised your credence.54 Nor will you be
able to be sure whether the argument was good after you’ve seen it: it’s ambiguous, so you’ll
rationally be unsure how you should interpret it. What you can expect is that the arguer will
make it easier to recognize evidence favoring their position, and harder to recognize evidence

53Some (e.g. Sunstein 2009) also point to ‘social comparison’: adopting your group’s opinions so they
like you. I set it aside because (1) arguments explain more of the effect (Isenberg 1986), and (2) every
social-comparison study I’ve seen fails to control for fact that others’ opinions provide evidence (Elga 2007).

54If P values P̃ with respect to {s,¬s} and P (P̃ (s) ≥ t) = 1, then P (s) ≥ t.
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7 THE GROUP POLARIZATION EFFECT

disfavoring it. There may even be a selection effect: good arguments tend to get repeated
because they are good; bad arguments tend to get repeated because they sound good. Thus
bad arguments will tend to be more ambiguous, i.e. harder to recognize as bad.

Here’s an (overly) simple example. Suppose Jack was hurt, and someone’s is trying to
convince you that he didn’t have a gun. Contrast two arguments:

“Every weekend, Jack has a gun. But it was Monday, so he didn’t have it.”
“Whenever Jack has a gun, it’s a weekend. But it was Monday, so he didn’t have it.”

At a quick glance, or to the untrained eye, it’s easier to recognize that the latter is valid than
that the former is invalid. (Some fallacies are tempting!) Indeed, there’s some evidence that
people are worse at recognizing fallacies as fallacies than they are at recognizing validities
as validities (Evans et al. 1983; Cariani and Rips 2017, Figure 1).

Suppose this generalizes: arguments are (on average) less ambiguous when they’re good
than when they’re bad. Here’s a simple-argument model. When you see an argument, your
credence that it’s good should either increase or decrease. Value implies that it should
increase when it’s good and decrease when it’s not, but allows the degree to be asymmetric:
the good-case increase is larger than the bad-case decrease. What follows? If two groups
see randomly-generated arguments—one (red) group sees arguments supporting s, the other
(blue) sees ones opposing s—then they predictably polarize (Figure 8; see §7.1 for details).
Upshot: being exposed to different arguments might’ve rationally, predictably polarized us.
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Figure 8: Red agents are presented with random argument models (from Figure 10) favoring s, and blue
agents presented with models favoring ¬s. Thin lines are individuals; thick lines are averages.

But how does this simple-argument model fit with my discussion of selective scrutiny
(§6)? If an argument is bad, shouldn’t you be able to find a flaw and get unambiguous
evidence? Proposal: it depends on how you engage. If you engage passively (you don’t
scrutinize), the simple model makes sense—with just a quick glance, it’s easier to recognize
modus ponens as valid than affirming the consequent as invalid. But if you engage actively
(you do scrutinize), the update becomes a cognitive search. This splits the bad -possibilities
into two: those in which you find a flaw, and those in which you don’t (see §7.1 for details).

On this picture, whenever you see an argument you face a choice: scrutinize or not? Your
choice affects how your rational opinions should expectably shift. To illustrate, imagine that
two groups see arguments favoring s: one (red) group never scrutinizes; the other (blue)
group always does. On natural parameterizations: if they know they won’t find a flaw even if
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7 THE GROUP POLARIZATION EFFECT

there is one, scrutiny leaves the polarizing effects of the argument unchanged (Figure 9, top
left). If they know they will find a flaw if there is one, scrutiny removes all ambiguity—the
update becomes a Standard-Bayesian one with no expectable polarization (top right). And
if there’s a middling chance of finding a flaw, scrutiny dampens the polarizing effects of
arguments (bottom left), and can even reverse the polarizing effects (bottom right).
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Figure 9: Two groups presented with arguments favoring q; red group never scrutinizes, blue group always
does. Top Left: 0% chance of finding flaw if there is one; full blue polarization. Top Right: 100% chance
of finding flaw if there is one; no blue polarization. Bottom: Middling chance of finding, with small (left)
and large (right) amounts of ambiguity if don’t find; dampens (left) or reverses (right) blue polarization.

Upshot: if we always scrutinized arguments and had no self-doubt in our assessments,
then our evidence would be unambiguous and predictable polarization would be irrational.
But since we can’t scrutinize everything and we should have self-doubts, arguments can
predictably polarize us despite being expected to improve accuracy.

Thus irrationalist interpretations of the group polarization effect are too quick. Indeed,
when supplemented with the hypothesis that people selectively scrutinize incongruent argu-
ments (§6), this model fits with a variety of findings about persuasion. It predicts that there
are two routes to engaging with arguments: a passive, low-effort one that predictably shifts
opinions; and an active, high-effort one for which the persuasive effects vary widely. There
are.55 It predicts that those who are (selective in scrutinizing but) better at finding flaws will
end up with a more skewed assessment of the overall weight of evidence. They do.56 And
it predicts that manipulating how much people scrutinize will affect persuasion—with the

55Petty 1994; Petty and Wegener 1998; Taber and Lodge 2006; Lundgren and Prislin 1998.
56Kahan et al. 2012, 2013, 2017; Bail et al. 2018.
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7 THE GROUP POLARIZATION EFFECT

biggest effects being on the evaluation of weak, congruent arguments (they’ll be surprised to
find flaws) and strong, incongruent ones (they’ll be surprised not to find flaws). It does.57

Finally, this model may clarify the mixed findings on selective exposure (§6)—the tend-
ency to seek out congruent arguments over incongruent ones. Sometimes people do this
(Fischer et al. 2005; Taber and Lodge 2006); other times they don’t (Sears and Freedman
1967; Whittlestone 2017). Why? One throughline: people are more inclined to engage in
selective exposure when they expect the arguments to be of high quality (to not contain ob-
vious flaws), less inclined otherwise (Frey 1986; Hart et al. 2009). The model predicts this.
When arguments are high quality, scrutiny is useless (you won’t find a flaw even if there is
one); so deciding which argument to see is just a comparison of simple-argument models.
In that case, avoiding ambiguity will drive you to look at the argument you think is more
likely to be good—generally, the one that supports your beliefs, leading to selective exposure.
But when arguments are low quality, scrutiny makes a difference: avoiding ambiguity will
spur you to look at the arguments you’re most able to find a flaw in—i.e. the incongruent
arguments, contra the selective exposure effect.

Obviously this model is speculative—it needs to be refined and tested. But it shows that
the group polarization effect is not necessarily a sign of irrationality.

7.1 The Formalities

Here I’ll sketch the simple- and scrutinized-argument models (see Appendices C.2 and C.3).
The simple-argument model partitions possibilities into those where the argument is good

(G) and those where it’s bad (B). The posteriors are obtained by Jeffrey-shifting on the
{G,B} partition—increasing credence in the true possibility, hence satisfying (full) Value.
But the degree of these shifts is asymmetric: since good arguments are easier to recognize,
the shift is larger if G than if B (Figure 10).58

P (G) P (B)P (G) + x

1− P (G)− x

P (B) + y

1− P (B)− y

Figure 10: Schematic simple-argument model. If it’s an argument for s, then P (s|G) > P (s) > P (s|B);
for ¬s, vice versa. Since bad arguments are more ambiguous than good ones, y ≤ x.

What about scrutiny? Given an argument-model, you choose whether to update in
accordance with it, or instead transform the update by splitting the Bad possibilities into
those where you do vs. don’t find a flaw, as diagrammed schematically in Figure 14 (page
60). There are many ways to parameterize these models; see §C.3 for details.

57Schuette and Fazio 1995; Petty and Wegener 1998; Liu 2017.
58E.g. if P (s) = 0.5, P (G) = 0.5, P (s|G) = 0.6, P (s|B) = 0.4, and x = 0.4 > 0.1 = y, then EP (P̃ (G)) =

0.65 > 0.5 = P (G) and so EP (P̃ (s)) = 0.53 > 0.5 = P (s).
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8 A Better Story

Not long ago, I caught up with an old friend. Not Dan. A better friend. A friend who was
with me that night we forgot something outside. A friend whose story is not mine to tell.

We talked about old times. About our lives. About politics. And about that damn bench.
The details were stunning. But the outlines? Predictable. We weren’t surprised by each
others’ opinions; most of them, we could’ve guessed. That said, his reasons surprised me. I
didn’t agree with them—with selective scrutiny, I concluded that some were misinformation,
and many were missing the bigger picture. Nevertheless, given his networks of trust, his
lived experience, and his background beliefs, they made perfect sense.

That conversation sticks with me. What should I think of him and his beliefs? He’s
bright and well-meaning. He’s had experiences—the failures of institutions, of communities,
of friends—that I can only dimly imagine. The reasons he shares seem, given their context,
perfectly sensible. Yet the overall picture seems radically distorted: the steps reasonable,
but the destination wrong. How could that be?

For me, predictable polarization tends to induce this sort of double-vision. I find myself
unsurprised (“Of course you believe that”), but at the same time baffled (“How can you
believe that?”) Unsurprised, because I know the psychology: people glom onto the beliefs
of their peers, confirm and entrench those beliefs, become extremely confident, and so on.
Baffled, because I often find that they’re not just conforming, or pigheaded, or dogmatic.
Yet if they aren’t, how do they end up where they do?

This double-vision is starkest when I look inward. I am not just conforming, or pigheaded,
or dogmatic. But the psychology works: if I told you my biography, you could tell me my
beliefs.

This project is my attempt to square this circle. The mistake is to assume that we should
expect individual steps toward the truth to lead to an accurate overall picture. If evidence
weren’t ambiguous, we should expect this (§2)—but it is, so we shouldn’t (§3). Instead, we
face ambiguity-asymmetries that make us better at recognizing evidence on one side than the
other (§4). Wanting get to the truth, we take each individual step; by the end, the ‘radically
distorted’ picture has become our own (§5). This theoretical idea has both experimental
support (§4.2), and the potential to explain the mechanisms underlying confirmation bias
(§6) and the group-polarization effect (§7).

Obviously this doesn’t show that real-world polarization is rational. What it suggests is
that it might be—that it would not look terribly different, if it were. And what it promises
is a better way to think about our ideological opponents, and ourselves.

Assuming predictable polarization is irrational leaves me seeing my beliefs in double. It’s
incoherent to believe “Guns decrease safety, but I formed that belief irrationally”. But how
to avoid it? The evidence is overwhelming that guns do decrease safety. But the evidence is
also overwhelming that my belief was formed by predictably-polarizing mechanisms.

Accepting the rationality of predictable polarization resolves the image. Yes, guns do
decrease safety. Yes, the psychologists are right about why I believe as much. But no, I
am not irrational for that. And no, my friends are not irrational for believing otherwise.
Likewise for the religious beliefs we’ve formed through selective scrutiny, the political beliefs
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we’ve formed through selective exposure, and the philosophical beliefs we’ve formed through
searching for evidence favoring our positions.

That’s the promise of this story. It allows us to admit our own predictability without
undermining our own deeply-held commitments—and without disparaging those of others.59

59Far too many people helped me with this project to properly thank them all. I received feedback from
audiences at MIT, the Prindle Institute for Ethics, Indiana University, the University of Pittsburgh, the
National University of Singapore, the 2019 Pacific APA, the University of Oxford, the University of Missouri,
the Pittsburgh Center for Philosophy of Science, the University of Lisbon, and USC. Bernhard Salow, Jack
Spencer, Dmitri Gallow, Roger White, Sally Haslanger, Caspar Hare, Kieran Setiya, and Bob Stalnaker each
played formative roles early in this project. I received feedback along the way from Riet van Bork, Martina
Calderisi, Agnes Callard, Chris Dorst, Adam Elga, Branden Fitelson, Rachel Fraser, Jane Friedman, Jeffrey
Friedman, Peter Gerdes, Dan Greco, Brian Hedden, Jay Hodges, Michael Hannon, Jean Janasz, Joshua
Knobe, Harvey Lederman, Ben Levinstein, Annina Loets, Tim Maudlin, Travis McKenna, Aydin Mohseni,
Pedro Passos, Steven Pinker, Drazen Prelec, Kevin Richardson, Mark Schroeder, Teddy Seidenfeld, Laura
Soter, Tom Stafford, Kate Stanton, Daniel Stone, Mason Westfall, Kevin Zollman, two stellar referees, and
many others—including several anonymous blog- and social-media commenters. Special thanks to Liam Kofi
Bright, Thomas Byrne, Cosmo Grant, Matthew Mandelkern, Miriam Schoenfield, Ginger Schultheis, and
Quinn White for helping me pull the project together. And to some old friends—for sharing their stories,
and setting me straight.
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A Analytical Details

Appendix A gives all analytical details and proofs, including:

§A.1 Higher-order probability models;
§A.2 The value-of-evidence constraint;
§A.3 Standard Bayesianism and the (im)possibility of valuable expectable polarization;
§A.4 Word-search models;
§A.5 Question-relative value; and
§A.6 The predictable-polarization theorem.

A.1 Higher-Order Probability Models

Following standard epistemic logic (Hintikka 1962; van Ditmarsch et al. 2015), we give a
semantics for higher-order probability using a (finite) structure that can identify higher-
order claims with events, i.e. sets of worlds, i.e. propositions.60 A probability frame
⟨W, {P i}i∈N ⟩ is a (finite) set of worlds W and a set of functions P i from worlds w ∈ W to
probability functions P i

w defined over all subsets of W , so that P i : W → ∆(W ). Thus ‘P i’
can be thought of as a description of a probability function—it picks out different functions
in different worlds. In our case, it’ll be interpreted as “the rational credence function (for
some particular agent) at time i”. ‘P i

w’ is a rigid designator that picks out the probability
function that P i associates with a given world w. When we’re only concerned with one or
two functions, I’ll drop indices, using P , Pw and P̃ , P̃w. I’ll also often enrich the structure
with one or more (rigidly designated) probability functions, denoted π, δ, η,....

W represents the propositions in the frame, so for any p, q ⊆ W , p is true at w iff w ∈ p;
¬p = W \ p, p ∧ q = p ∩ q, p → q = ¬p ∪ q etc. All theorems are restricted to models with
finite W—it’s an open question how far they generalize.

We use P to identify facts about probabilities as sets of worlds in the frame, thus allowing
us to ‘unravel’ higher-order probability claims into propositions. Thus for any q ⊆ W and t ∈
R, and π ∈ ∆(W ): [P (q) = t] := {w ∈ W : Pw(q) = t}, [P (q|r) ≥ t] := {w ∈ W : Pw(q|r) ≥ t},
[P = π] := {w ∈ W : Pw = π}, etc.

Since W is finite, we can think of a probability function as an assignment of non-negative
numbers to worlds that sum to 1, so we can diagram probability frames as we did in the
main text using Markov diagrams (i.e. generalized-Kripke frames): nodes represent worlds
and an arrow labeled t from w to v says that Pw(v) = t. Equivalently, we can number

60For explanations of such structures, see Williamson 2008 and Dorst 2019, 2020b. For uses of them, see
e.g. Gaifman 1988; Hild 1998; Samet 2000; Williamson 2000, 2014, 2019; Schervish et al. 2004; Lasonen-Aarnio
2013, 2015; Campbell-Moore 2016; Salow 2018, 2019; Das 2020a,b; Dorst 2020a; Dorst et al. 2021.
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the worlds w1, ..., wn and write this information in a (square) stochastic matrix M in which
Mij = Pwi

(wj), i.e. the probability that world i assigns to world j. A simple example of an
(unambiguous) probability frame ⟨W, P̃ ⟩ is given in Figure 11.

a

b

c

d

0.75

0.25

0.5

0.5

P̃ = π P̃ = ρ


0.5 0.5 0 0
0.5 0.5 0 0
0 0 0.75 0.25
0 0 0.75 0.25

π
{

ρ
{

Figure 11: An unambiguous frame, in both Markov-diagram and stochastic-matrix notation. π assigns 0.5
to a and 0.5 to b; ρ assigns 0.75 to c and 0.25 to d.

A.2 The Value of Evidence

When is an update from P to a posterior P̃—updating from Pw to P̃w in each world w—a
potentially-rational update? Following Dorst et al. 2021, I proposed that this is so when P

prefers to outsource its decisions to P̃ , i.e. P values P̃ : it always expects P̃ to make better
decisions than itself. This is equivalent to saying that the update from P to P̃ cannot be
Dutch-booked, that it’s always expected to increase accuracy, and that P obeys a particular
(‘Trust’) deference principle toward P̃ . Let’s formalize these in turn.

Consider a probability frame modeling the update, ⟨W,P, P̃ ⟩, with W finite. An option
O is a random variable: a function from worlds w to numbers O(w) ∈ R representing the
utility that would be achieved by taking option O at world w. A decision problem is
simply a finite set of options O. A strategy S is a way of choosing options based on P̃ ’s
probabilities, i.e. a function from w to Sw ∈ O such that Sw = Sx whenever P̃w = P̃ x.
Abusing notation slightly, for any probability function π, let Eπ(S) be π’s expectation of
following strategy S: Eπ(S) :=

∑
w π(w)Sw(w). P̃ recommends a strategy S for O iff S

always selects an option that maximizes expected value according to P̃ . For any probability
function π, let Eπ(O) be π’s expectation of O: Eπ(O) =

∑
t π(O = t) · t =

∑
w π(w)O(w).

Thus S is recommended by P̃ iff for all w and O ∈ O: EP̃w
(Sw) ≥ EP̃w

(O).
Given this, we say a particular probability function π values P̃ iff, for any decision

problem, π expects following any strategy recommended by P̃ to do at least as well as
simply picking an option itself: π values P̃ iff for all O, if P̃ recommends S for O, then for
any O ∈ O, Eπ(S) ≥ Eπ(O). We lift61 this from a particular prior π to a description of the

61There’s a subtlety here. As stated, P values P̃ iff, at all worlds w, Pw prefers to let P̃ (picked out
descriptively) decide over itself (picked out rigidly), i.e. over Pw. When P has no higher-order uncertainty,
P knows what P is, so ‘letting P decide’ is same as ‘letting Pw decide’, which is the same as choosing an
option O ∈ O—namely, the one that maximizes expectation according to Pw. But when P has higher-order
uncertainty, it may be unsure what option it itself recommends. In that case we might prefer to say that P
values P̃ when at each world w, Pw prefers to let P̃ (picked out descriptively) decide rather than P (also
picked out descriptively). These two formalizations are equivalent only if P is higher-order certain. I choose
the former because it’s the one used in Dorst et al. 2021, and whose formal properties are well-understood.
However, every update I use in this paper is valuable (or, later on, valuable-with-respect-to-Q) in the latter
sense as well, so the choice doesn’t matter for our purposes.
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prior P by asserting that each at each world w, Pw values P̃ in this sense:

Value: P values P̃ iff ∀w,O: if P̃ recommends S for O, ∀O∈O: EPw
(S) ≥ EPw

(O).
P values P̃ iff, for any decision problem, P prefers to let P̃ decide on it’s behalf, rather
than simply choose an option.

A fixed-option Dutch book is a pair of decision problems—both containing a ‘no bet’
option; one presented before and the other presented after the update—such that doing the
rational thing at both times is guaranteed to result in a loss. Formally, given Pw and P̃ , it’s
a pair O1 and O2, including a constant O0 = 0 such that: O ∈ argmaxO′∈O1

EPw
(O′) and

S is recommended by P̃ for O2 and yet O(w) + Sw(w) < 0 at every world w. A short but
subtle proof show that Pw values P̃ iff there is no fixed-option Dutch book against updating
from Pw to P̃ (Dorst et al. 2021, fns. 21 and 22). Lifting this as before (cf. footnote 61), P
values P̃ iff there is no fixed-option Dutch book against updating from any of the Pw to P̃ .

An estimate-accuracy measure AX for a random variable X takes an estimate e ∈ R,
a world w, and outputs the accuracy of e at w, AX(e, w)—how ‘close’ e comes to X(w)

(Schervish et al. 2014). Writing AX(π) to abbreviate AX(Eπ(X)), say that AX is strictly
proper iff any probability function expects its own estimate of X to be more accurate
than any other (rigidly designated) estimate: for any π, Eπ(AX(π)) > Eπ(AX(e)) whenever
Eπ(X) ̸= e. Dorst et al. (2021, Theorems 3.2 and 5.1) show that Pw values P̃ iff: for any
quantity X, and all strictly proper estimate-accuracy measures AX , the expected accuracy
of P̃ is at least as great at that of Pw: EPw

(AX(P̃ )) ≥ EPw
(AX(Pw)). Once again lifting

this to descriptions (cf. footnote 61), P values P̃ iff each Pw expects P̃ to have estimates at
least as accurate as itself (Pw).

Given a random variable X, let [Ẽ(X) ≥ t] be the proposition that P̃ ’s expectation of X
is at least t, so [Ẽ(X) ≥ t] := {w ∈ W : EP̃w

(X) ≥ t}. The ‘deference principle’ that Value
is equivalent to requires deferring to facts of this form:

Total Trust: For any variable X and threshold t: Eπ(X| Ẽ(X) ≥ t ) ≥ t

Given that P̃ ’s estimate for X is at least t, have an estimate for X that’s at least t.

Total Trust entails that Eπ(X|Ẽ(X) ≤ t) ≤ t, but it does not entail that Eπ(X|Ẽ(X) = t) = t,
hence it’s a weakening of standard ‘Relection-style’ deference principles like Function Reflec-
tion (§A.3 below; see Dorst et al. 2021 for discussion). Note that if we let X be the indicator
function 1q for some proposition q, it implies that π(q|P̃ (q) ≥ t) ≥ t and π(q|P̃ (q) ≤ t) ≤ t.
Lifting this to descriptions (cf. footnote 61), P values P̃ iff each Pw totally trusts P̃ .

A.3 Ambiguity, Standard Bayesianism, (Im)possibility Theorems

Recall the (often implicit) constraint implied by Standard Bayesianism:

No Ambiguity: Rational opinions are always sure what the rational opinions are.
Always, if P̃ = π, then P̃ (P̃ = π) = 1. That is, ∀q, t : if P̃ (q) = t, then P̃ (P̃ (q) = t) = 1.

No Ambiguity fails in any frame in which there are two worlds w and v such that P̃w(v) > 0

and yet P̃w ̸= P̃ v, for that means that w ∈ [P̃ = P̃w] yet v /∈ [P̃ = P̃w], and hence that at
w, P̃ = P̃w but P̃ (P̃ = P̃w) < 1. Figure 12 represents an ambiguous frame wherein there
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are two possibly-rational probability functions, P̃ a = P̃ b = η and P̃ c = P̃ d = δ, wherein η

assigns 0.4 to δ being the rational function (and 0.6 to itself), while δ assigns 0.2 to η being
the rational function (and 0.8 to itself). For more philosophical and technical background
on such ambiguous probability frames, see Williamson 2008; Dorst 2019, 2020b.

a

b

c

d

0.3

0.3

0.3

0.1

0.6

0.2

0.1

0.1

P̃ = η P̃ = δ


0.3 0.3 0.3 0.1
0.3 0.3 0.3 0.1
0.1 0.1 0.6 0.2
0.1 0.1 0.6 0.2

η
{

δ
{

Figure 12: An ambiguous frame. η assigns 0.3 to a, to b, and to c, and 0.1 to d; δ assigns 0.1 to a and to
b, 0.6 to c, and 0.2 to d. Thus η(P̃ = η) = 0.6 and η(P̃ = δ) = 0.4, while δ(P̃ = η) = 0.2 and δ(P̃ = δ) = 0.8.

Standard Bayesianism is a constraint on frames that captures the assumptions standardly
built into Bayesian models. It holds if P has no higher-order uncertainty (the prior is known),
and there’s a partition whose cells represent the possible bits of evidence you could receive,
such that P̃ results from conditioning P on the true bit of evidence. Precisely:

Definition. ⟨W,P, P̃ ⟩ is Standard-Bayesian iff there is a partition Π such that for each
world w, Pw(P = Pw) = 1 and P̃w(·) = Pw(·|Π(w)), where Π(w) is the partition-cell of w.

This is (nearly) equivalent to the conjunction of Value and No Ambiguity:62

Theorem A.1. If ⟨W,P, P̃ ⟩ is Standard-Bayesian, it validates No Ambiguity and Value.
Conversely, if ∀w: Pw(w) > 0 (the prior is regular), No Ambiguity and Value are valid only
if ⟨W,P, P̃ ⟩ is Standard-Bayesian.

Proof. (⇒:) Suppose the update is Standard-Bayesian. It’s immediate that P satisfies No
Ambiguity, since if P = π = Pw at world w, then Pw(P = π = Pw) = 1. To show the same
for P̃ , consider any P̃w. Since P̃w = Pw(·|Π(w)), if P̃w(x) > 0 then Pw(x) > 0, and hence
(since P satisfies No Ambiguity) Pw = Px, i.e. w and x share the same prior. Moreover, since
P̃w(Π(w)) = 1, we know x ∈ Π(w), so x and w are in the same partition-cell: Π(x) = Π(w),
i.e. w and x share the same evidence. It follows that P̃ x = Px(·|Π(x)) = Pw(·|Π(w)) = P̃w.

What remains is to show that P values P̃ . Consider any Pw and any decision problem
O on W . Recall (§A.2) that a strategy S is a function from worlds v to options Sv ∈ O
such that if P̃ v = P̃ x, then Sv = Sx; and that S is recommended by P̃ iff for each world v

and any O ∈ O, EP̃v
(Sv) ≥ EP̃v

(O). Notice that since P̃ is not ambiguous, it knows what
option it recommends: for any v, P̃ v(P̃ = P̃ v) = 1, so that P̃ v(S = Sv) = 1. Now we take

62Compare Samet 1999, who shows a similar result using a Reflection principle that is equivalent to No
Ambiguity and Value, as shown in Dorst et al. 2021, fn. 17. See also Skyrms 1990 and Huttegger 2014, who
show similar results assuming No Ambiguity.
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an arbitrary option O ∈ O and show that EPw
(S) ≥ EPw

(O):

EPw
(S) =

∑
Π(v)

Pw(Π(v)) · EPw
(S

∣∣Π(v)) (total expectation)

=
∑
Π(v)

Pw(Π(v)) · EP̃v
(S) (since Pw(·

∣∣Π(v)) = P̃ v)

=
∑
Π(v)

Pw(Π(v)) · EP̃v
(Sv) (since P̃ v(S = Sv) = 1)

≥
∑
Π(v)

Pw(Π(v)) · EP̃v
(O) (since EP̃v

(Sv) ≥ EP̃v
(O))

=
∑
Π(v)

Pw(Π(v)) · EPw
(O

∣∣Π(w)) = EPw
(O)

(⇐:) Given ⟨W,P, P̃ ⟩, suppose for all w, Pw(w) > 0 and the frame validates No Ambi-
guity and Value. No Ambiguity immediately implies that the prior is known: at each world
w, Pw(P = Pw) = 1. Thus we need to find a partition Π such that P̃ always results from
conditioning Pw on the true member of Π.

Consider the possible posteriors, i.e. {π : ∃w : P̃w = π}, and label them π1, ..., πn.
Notice that Π := {[P̃ = π1], ..., [P̃ = πn]} partitions W , and P̃ is constant within each cell.
Moreover, if w ∈ [P̃ = πi], then by No Ambiguity P̃w(P̃ = πi) = P̃w(Π(w)) = 1; that is, P̃w

assigns probability 1 to its own partition-cell.
Now suppose, for reductio, that there’s a world w such that P̃w ̸= Pw(·|Π(w)). We know

that P̃ is constant within Π(w), so there is a π such that for all v ∈ Π(w), P̃ v = π. WLOG,
suppose there is a q, t such that π(q) > t > Pw(q

∣∣Π(w)). We construct a decision problem
that’s a conditional bet on q given Π(w) to show that Pw doesn’t value P̃ . Let O = {N,B}
where N = 0 everywhere, and

B(x) =


1− t if x ∈ q ∩Π(w)

−t if x ∈ ¬q ∩Π(w)

−1 if x /∈ Π(w)

What strategy is recommended by P̃? Notice that for any v /∈ Π(w), by No Ambiguity
P̃ v(Π(w)) = 0, so P̃ v is certain that N pays out 0 while B pays out −1, hence Sv = N .
Meanwhile, for any x ∈ Π(w), we know P̃ x(Π(w)) = 1 and P̃ x(q) = π(q) > t, hence
EP̃x

(B) > t(1 − t) + (1 − t)(−t) = 0 = EP̃x
(N), hence Sx = B. Thus the recommended

strategy S is to take N at worlds not in Π(w) and B at worlds inside it. But since Pw has
a conditional credence in q given Π(w) that’s below t, it thinks this strategy is worse than
simply taking N : EPw

(S) = Pw(¬Π(w)) ·0+Pw(Π(w)) ·EPw
(B

∣∣Π(w)). Since Pw(Π(w)) > 0

(since Pw(w) > 0), this quantity is negative iff EPw
(B

∣∣Π(w)) is; and EPw
(B

∣∣Π(w)) < t(1 −
t) + (1− t)(−t) = 0, hence EPw

(S) < 0 = EPw
(N). Value fails.

Now our impossibility result: given No Ambiguity, Value and Reflection are equivalent;
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thus, if we assume Value as a constraint on rationality, Reflection failures (and expectable
polarization) are possible only if evidence is ambiguous.

Theorem 3.1. Given No Ambiguity, P values P̃ iff P obeys Reflection toward P̃ .

Two steps. First we show that given No Ambiguity, Reflection is equivalent to an (otherwise
stronger; see Dorst et al. 2021, fn. 18) ‘Function Reflection’ principle:

Function Reflection: Pw(·|P̃ = π) = π (whenever well-defined)

Lemma 3.1.1. Given No Ambiguity, Reflection holds iff Function Reflection holds.

Proof. (⇐:) Notice that we can partition w into the possible posteriors P̃ 1, ..., P̃n, we have:

EPw(P̃ (q)) =
∑
P̃ i

Pw(P̃ = P̃ i) · EPw(P̃ (q)
∣∣P̃ = P̃ i) (total expectation)

=
∑
P̃ i

Pw(P̃ = P̃ i) · P̃ i(q)

=
∑
P̃ i

Pw(P̃ = P̃ i) · Pw(q|P̃ = P̃ i) = Pw(q) (Function Reflection)

(⇒:) For reductio suppose there’s a π such that Pw(·|P̃ = π) ̸= π. WLOG, suppose
Pw(q|P̃ = π) > π(q). Consider q ∧ [P̃ = π]. Since No Ambiguity is valid, at all worlds x,
P̃ x(P̃ = P̃ x) = 1, so π(q ∧ [P̃ = π]) = π(q); and if P̃ x ̸= π, then P̃ x(q ∧ [P̃ = π]) = 0, so

EPw(q ∧ P̃ = π) = Pw(P̃ ̸= π) · 0 + Pw(P̃ = π) · π(q ∧ [P̃ = π])

= Pw(P̃ = π) · π(q) (since π(P̃ = π) = 1)

< Pw(P̃ = π) · Pw(q|P̃ = π) = Pw(q ∧ [P̃ = π])

So Reflection fails.

Now we show that, given No Ambiguity, Function Reflection is equivalent to Value:

Lemma 3.1.2. Given No Ambiguity, Pw values P̃ iff it obeys Function-Reflection.

Proof. (⇒:) Suppose Function-Reflection fails, so there is a P̃ i and a w such that Pw(·|P̃ =

P̃ i) ̸= P̃ i. Since this is well-defined, we know that Pw(P̃ = P̃ i) > 0. WLOG, suppose
Pw(q|P̃ = P̃ i) < t < P̃ i(q). Let O = {N,B} were N = 0 everywhere and

B(x) =


1− t if x ∈ q ∩ [P̃ = P̃ i]

−t if x ∈ ¬q ∩ [P̃ = P̃ i]

−1 if x /∈ [P̃ = P̃ i]

What is recommended by P̃? For any v /∈ P̃ = P̃ i, by No Ambiguity P̃ v(P̃ = P̃ i) =

0, so Sv = N . For any x ∈ P̃ = P̃ i, we know that P̃ x(q) > t and by No Ambiguity
P̃ x(P̃ = P̃ i) = 1, so EP̃x

(B) > 0 = EP̃x
(N), so Sx = B. Thus the recommended strategy

38



A ANALYTICAL DETAILS

S takes N at [P̃ ̸= P̃ i]-worlds and B at [P̃ = P̃ i]-worlds. So Pw’s expectation of S is
EPw

(S) = Pw(P̃ ̸= P̃ i) ·0+Pw(P̃ = P̃ i) ·EPw
(B|P̃ = P̃ i). This is negative since EPw

(B|P̃ =

P̃ i) < t · (1− t) + (1− t)(−t) = 0, hence EPw
(S) < 0 = EPw

(N). Value fails.
(⇐:) Suppose Pw obeys Function Reflection. Taking an arbitrary O and recommended

strategy S, and noting that that by No Ambiguity we have that P̃ always knows what P̃ is
and hence what S recommends (so P̃ v(S = Sv) = 1), we have:

EPw
(S) =

∑
P̃ i

Pw(P̃ = P̃ i) · EPw
(S|P̃ = P̃ i) (total expectation)

=
∑
P̃ i

Pw(P̃ = P̃ i) · EP̃ i
(S) (Function Reflection)

=
∑
P̃ i

Pw(P̃ = P̃ i) · EP̃ i
(Si) (P̃ i(S = Si) = 1)

≥
∑
P̃ i

Pw(P̃ = P̃ i) · EP̃ i
(O) (S is recommended)

=
∑
P̃ i

Pw(P̃ = P̃ i) · EPw
(O|P̃ = P̃ i) (Function Reflection)

= EPw(O) (total expectation)

Thus Value holds.

Theorem 3.1 is an immediate consequence of Lemmas 3.1.1 and 3.1.2.

Now turn to our possibility theorem (Theorem 3.2)—whenever valuable evidence is ambigu-
ous, it can be expectably polarizing. The easiest way to prove this is to appeal to the
model-theoretic characterization of Value from Dorst et al. 2021. Given a function P̃w, we
can consider its informed version ̂̃Pw which removes its higher-order uncertainty (if it has
any) by conditioning P̃w on what the rational opinions were. Learning what the rational
opinions were tells you how the rational opinions would respond to that very information
(learning what P̃ is tells you what all P̃ ’s conditional opinions are as well), so P̃w can then
infer what new opinions are now rational upon learning what it learned (see Elga 2013;
Stalnaker 2019; Dorst 2019). That is, let ̂̃Pw := P̃w(·|P̃ = P̃w). For example, informing
η and δ from Figure 12 (page 36) would generate the frame in Figure 11 (page 34), since
η̂ = η(·|P̃ = η) = η(·|{a, b}) = π, and likewise δ̂ = ρ.

Now think of a probability function π over a set W of size |W | = n as a point in
Euclidean n-space, i.e. a vector in which entry i is π(wi). The convex hull of a set of
such points π1, ...πn is the set of points obtainable by averaging them: CH{π1, ..., πn} =

{δ : ∃λi ≥ 0 and
∑

λi = 1 such that δ =
∑

λiπi}. Given a probability function δ, let
Cδ := {π : δ(P̃ = π) > 0} be the set of Candidates that δ thinks P̃ might be. Let
C−

δ := Cδ − {δ} the ones other than δ. Say that P̃w is modestly informed iff it’s an
average of its informed self along with the other (uninformed) candidates, i.e. iff P̃w is in
the convex hull of {̂̃Pw} ∪ C−

P̃w
. Then we have:
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Theorem A.2 (Dorst et al. 2021, Theorem 4.1). π values P̃ iff each P̃w in Cπ is modestly
informed, and π is in the convex hull of Cπ.

(A consequence is that if π values P̃ , then each P̃w such that π(w) > 0 must also value P̃ .)
This allows us to prove that ambiguity suffices for valuable expectable polarization:

Theorem 3.2. If P̃ is valued by some π that assigns positive probability to it violating No
Ambiguity, there are infinitely many P that value P̃ and yet don’t obey Reflection.

Note that π assigns positive probability to P̃ violating No Ambiguity iff π(x) > 0 with
P̃ x(P̃ = P̃ x) < 1.

Proof. Let ρ1, ..., ρn be the potential realizations of P̃ , so Cπ = {ρ1, ..., ρn}. We know that
each ρi is modestly informed, and that π is in their convex hull.

We begin by showing—following Samet 2000, Theorem 5—that, since once of the ρi is
ambiguous, there is a q ⊆ W and a ρi such that ρi(q) ̸= Eρi

(P̃ (q)). For reductio, suppose
that for all ρi and q, ρi(q) = Eρi

(P̃ (q)). Note that, formally, P̃ is a finite Markov chain with
W the state space and P̃w(w

′) the probability of transitioning from w to w′. As such, we can
partition W into its communicating classes E1, ..., Ek, plus perhaps a set of transient states
E0. The claim that, for all q, ρi(q) = Ei(P̃ (q)) is equivalent to the claim that ρi is a stationary
distribution with respect to the Markov chain, i.e. where M is the transition matrix and ρi is
thought of as the (row) vector with the ρi(wj) in column j, ρiM = ρi. By the Markov chain
convergence theorem (e.g. Bertsekas and Tsitsiklis 2008, Ch. 7), each E1, ...Ek has a unique
stationary distribution, and every stationary of M assigns 0 probability to E0. These imply,
first, that π(E0) = 0, for otherwise π would not be in the convex hull of the (stationary)
ρi. Since Cπ includes all the ρi, this implies that E0 is empty. Moreover, the fact that each
Ei has a unique stationary, combined with our assumption that all ρi(·) = Eρi(P̃ (·)) implies
that for any w,w′ ∈ Ei, P̃w = P̃w′ , since all w ∈ Ei must equal that stationary. Since Ei is
a communicating class, we also have that P̃w(Ei) = 1, hence P̃w(P̃ = P̃w) = 1. Since this
covers all the ρi, it implies that P̃ is not ambiguous after all—contradiction.

Thus we reject our supposition: there is a ρi and q such that ρi(q) ̸= Eρi(P̃ (q)). WLOG
suppose ρi(q) < Eρi

(P̃ (q)). Letting 1q be the indicator function of q (1 at w ∈ q, 0 elsewhere),
ρi(q) = Eρi

(1q), so ρi(q) < Eρi
(P̃ (q)) iff 0 < Eρi

(P̃ (q)) − Eρi
(1q) iff Eρi

(P̃ (q)− 1q) > 0.
Thus it suffices to show that there are infinitely many δ such that δ values P̃ and yet
Eδ(P̃ (q)− 1q) > 0. Pick some ρi that maximizes Eρi(P̃ (q)− 1q) within the frame (the frame
is finite, so there is one), and any other ρj ̸= ρi (there must be at least one other, since P̃ is
ambiguous). Now for any ϵ ∈ [0, 1], letting ηϵ := (1− ϵ)ρi + ϵρj . Thinking of Eηϵ

(P̃ (q)− 1q)

as a function of ϵ, notice that this function is continuous and non-increasing in ϵ, with
maximum Eρi(P̃ (q)− 1q) > 0 and minimum Eρj (P̃ (q)− 1q) (which may or may not be equal
to Eρi

(P̃ (q)− 1q). By the intermediate value theorem, this function must hit every value in
between the two, meaning there are uncountably many values of ϵ such that Eηϵ

(P̃ (q)− 1q) >

0. Since each one of these ηϵ are distinct (since ρi ̸= ρj), and they are all in the convex hull
of Cπ (since ρi, ρj ∈ Cπ), they all value P̃ despite having ηϵ(q) < Eηϵ(P̃ (q)). So by picking
various ϵ and then letting P = ηϵ everywhere, we have infinitely many P that value P̃ but
do not obey Reflection toward it.
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A.4 Valuable Word Searches

Recall our simple word-search model, repeated from Figure 2:

w3
1/4

w2
1/4w1

1/2

1

2/3

1/3

2/3

1/3

Word

Find
H =

1/2 1/4 1/4

1/2 1/4 1/4

1/2 1/4 1/4


H̃ =


2/3 1/3 0

1/3 2/3 0

0 0 1



Word = {w2, w3}
Find = {w3}

Intuitively H should value H̃, since the latter is closer to the truth-value of all propositions
at all worlds. We can verify this using Theorem A.2 (page 39). First, notice that Hw =

(1/2 1/4 1/4) is in the convex hull of the H̃i because 3
4Hw1 +

1
4Hw3 = 3

4 (
2/3 1/3 0)+ 1

4 (0 0 1) =

(2/4 1/4 1/4) = Hw. Second, each H̃i is modestly informed. H̃w3 trivially so, as H̃w3 = ̂̃Hw3 .
Note that ̂̃Hw2

= (0 1 0) and ̂̃Hw1
= (1 0 0). Thus H̃w2

= (1/3 2/3 0) = 1
2 (

2/3 1/3 0)+ 1
2 (0 1 0) =

1
2H̃w1

+ 1
2
̂̃Hw2

, so H̃w2
is modestly informed. Likewise, H̃w1

= 1
2
̂̃Hw1

+ 1
2Hw2

.
Notably, recalling footnote 61, since H knows what H is, it thereby not only values H̃,

but also prefers H̃ (whatever it is) to H (whatever it is) for all decision problems. This holds
despite the fact that Reflection fails: EHw

(H̃(Word)) ≈ 0.583 > 0.5 = Hw(Word).
This feature—that word searches are valuable but expectably-polarizing—holds gener-

ally: a wide class of models of this structure are expected to increase your credence in Word,
despite being valuable. Let a word-search model be as follows. There are three classes of
worlds, {N,C, F}, where N is the set of worlds where there is no word, C is the set where
there is one but you don’t find it, and F the set where you find it. Word = C ∪ F is the
proposition that there’s a word. The posterior always knows whether you found one: if
x ∈ F , H̃x(F ) = 1 and if x /∈ F , H̃x(F ) = 0. The prior H assigns positive probability to
all worlds; let it be constant across worlds, so the prior has no higher-order uncertainty. Say
the search is bounded by conditioning iff minn∈N H̃n(Word) = Hw(Word|¬F ). Say that a
search is possibly ambiguous iff you might be unsure of the rational posterior in Word, i.e. iff
there is an x such that for all t: H̃x(H̃(Word) = t) < 1. Then:

Fact A.3. If H values H̃ in a word-search model ⟨W,H, H̃⟩ that is bounded by conditioning
and possibly ambiguous, then EH(H̃(Word)) > H(Word).

Proof. Since H̃ is possibly ambiguous, there is a v ∈ W such that H̃v(H̃(Word) = t) < 1

for all t. This v cannot be in F . Since H values H̃, each H̃w must value H̃ as well. This
implies that they must totally trust H (§A.2). Since for any f ∈ F , H̃f (Word) = 1, and
also H̃f (Word|H̃(Word) ≤ t) ≤ t, we must have that H̃f (H̃(Word) ≤ t) = 0 for all t < 1; in
other words, H̃f (H̃(Word) = 1) = 1. Thus v must be in N ∪ C.

Since any v ∈ N ∪ C = ¬F has H̃v(N ∪ C) = 1, this implies there must be at least two
values of H̃(Word) in N ∪ C, so ∃x ∈ N ∪ C such that H̃x(Word) ̸= Hw(Word|¬F ). We
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know that ∀n ∈ N : H̃n(Word) ≥ Hw(Word|¬F ). Suppose for reductio that there is some
y ∈ C with H̃y(Word) = t < Hw(Word|¬F ). Since this is lower than any n ∈ N , we have
[H̃(Word) ≤ t] ⊆ Word, hence Hw(Word|H̃(Word ≤ t) = 1 > t, hence Hw doesn’t obey Total
Trust toward H̃—contradiction.

Thus for all y: H̃y(Word) ≥ Hw(Word|¬F ). Since there are at least two values of
H̃(Word) in N∪C = ¬F , there must be some x ∈ ¬F such that H̃x(Word) > Hw(Word|¬F ).
Since Hw assigns positive probability to all worlds, this implies that EHw

(H̃(Word)|¬F ) >

Hw(Word|¬F ). And from here we can infer that

EHw
(H̃(Word)) = Hw(F ) · 1 +Hw(¬F ) · EHw

(H̃(Word)|¬F )

> Hw(F ) ·Hw(Word|F ) +Hw(¬F ) ·Hw(Word|¬F ) = Hw(Word)

A.5 Question-Relative Value

First we show that full Value is ‘transitive’, as discussed in §5:

Fact A.4. If P 1 values P 2 and P 2 values P 3, then P 1 values P 3.

Proof. Consider any P 1
w, and let C3

w = {P 3
v : P 1

w(v) > 0} be the set of candidates P 1
w thinks

P 3 might be. By Theorem A.2, it suffices to show that each P 3
v ∈ C3

w is modestly informed
and that P 1

w is in their convex hull. Take an arbitrary P 3
v in C3

w. There must be an x such
that P 1

w(x) > 0 and P 2
x (P

3 = P 3
v ) > 0—for if not, then P 1

w(P
3 = P 3

v |P 2(P 3 = P 3
v ) ≤ 0) =

P 1(P 3 = P 3
v ) > 0, violating Total Trust and (so) the assumption that P 1

w values P 2. Since
P 2 values P 3 and P 2

x (P
3 = P 3

v ) > 0, this means P 3
v is modestly informed.

Now we show that P 1
w is in the convex hull of C3

w. Let C2
w = {P 2

x : P 1
w(x) > 0}, and take

an arbitrary P 2
x ∈ C2

w. If P 2
x (P

3 = π) > 0 for π /∈ C3
w, then P 1

w(P
3 = π|P 2(P 3 = π) > 0) = 0,

violating Total Trust, hence the assumption that P 1
w values P 2. Thus P 2

x (P
3 = π) > 0 only

if π ∈ C3
w. Since P 2

x values P 3, this means that P 2
x is in the convex hull of C3

w. Since P 2
x was

arbitrary, this means all members of C2
w are in the convex hull of C3

w, so CH(C2
w) ⊆ CH(C3

w).
Since P 1

w values P 2, P 1
w is inside the former and so also inside the latter.

Now turn to question-relative value. A question Q is a partition of W ; let Q(w) be the
partition-cell of w. A proposition p ⊆ W is about Q iff p =

⋃
i qi for qi ∈ Q, i.e. iff p is

a partial answer to the question Q. Recall that a decision problem O is any set of options
(i.e. functions from worlds to numbers) on W . Say that an option O is Q-measurable iff Q

settles the value of O, i.e. for all w,w′, if Q(w) = Q(w′), then O(w) = O(w′). Say that OQ

is a decision about Q iff each of its options is Q-measurable. Then: π Q-values P̃ iff it
prefers to let P̃ make any decision about Q. Lifting this to P :

Q-Value: P Q-values P̃ iff: for all w and every decision problem OQ about Q, if P̃
recommends S for OQ, then ∀O ∈ OQ : EPw

(S) ≥ EPw
(O).

P Q-values P̃ iff, for any decision about Q, it prefers to let P̃ decide on its behalf,
rather than make the decision itself.
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As mentioned in the main text, we can also question-relativize our definition of a Dutch
book. A fixed-option Q-book is a pair of decisions about Q—both containing a ‘no bet’
option, one presented before and the other after the update—such that doing the rational
thing before and after is guaranteed to result in a loss. Formally, given Pw and P̃ , it is a pair
O1

Q and O2
Q of decision-problems about Q that both include a constant O0 = 0 option, where

O ∈ argmaxO′∈O1
Q
EPw

(O′) and S is recommended by P̃ for O2
Q and yet O(w) + Sw(w) < 0

at every world w. Q-Value entails that no such book can be constructed against the update:

Theorem A.5. If Pw Q-values P̃ , then there’s no fixed-option Q-book against ⟨Pw, P̃ ⟩.

Proof. Suppose Pw Q-values P̃ , and take any O1
Q and O2

Q about Q that both contain an
O0 = 0 option, and suppose O maximizes expectation amongst O1

Q relative to Pw and S is
recommended for O2

Q by P̃ . By definition, EPw
(O) ≥ EPw

(O0) = 0 and since Pw values P̃

about Q, EPw(S) ≥ EPw(O0) = 0, hence EPw(O + S) = EPw(O) + EPw(S) ≥ 0. Thus O1
Q

and O2
Q do not constitute a Q-book, for if they did then Pw(O + S < 0) = 1.

Finally, note that one decision about Q is to choose a set of opinions about Q to be
scored for accuracy. Thus Q-value entails that Pw expects P̃ to be at least as accurate as
itself on any proper measure of the accuracy of opinions about Q (see Dorst et al. 2021, §3).

A.6 The Predictable Theorem

I’ll now turn to proving that updates that are valuable with respect to Q can nevertheless
lead to predictable, persistent polarization about Q. The proof is long and the method is
unintuitive, so I should say something about why. As mentioned in footnote 41, it would
be straightforward to generate predictable polarization by iterating word-search tasks if we
allowed the question Q Haley cares about to (predictably) change over time—for then we
could simply say that at time i she cares (only) about the outcome of the ith word-search,
and since each of those is valuable with respect to that question, there’d be no obstacle
to iteration. Though a sensible (and perhaps realistic) route to polarization, this faces the
concern that it’s not too surprising that Haley polarizes about how many coins landed heads
if her updates are not constrained to be valuable about that question. The point of the
following construction is to show that she can at all times care about the same question
Q (namely, how all the word-searches went—hence how all the coins landed, and whether
more than half landed heads), and nonetheless Q-value will not prevent her from predictably
polarizing on that question. The method of the construction—using consolidations of higher-
order uncertainty, as discussed in the main text—is, I admit, rather baroque. But it’s a
possibility proof. I conjecture that there are more-intuitive ways to get the same result.

I’ll proceed in stages. First, I’ll specify a model that iterates word-search tasks and
consolidates higher-order uncertainty along the way. I’ll then prove that each word-search
update is fully valuable, while each consolidation update is valuable with respect to Q. I’ll
then establish the long-run predictable behavior of the final rational credence Hn in this
model, showing it predictably polarizes on the proposition h = more than half the coins
landed heads. Finally, I’ll add a Tailser to show that the polarization is also persistent.

Here is our initial goal:
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Theorem 5.1. There is a sequence of probability functions H0, H0, H1, H1....,Hn, Hn, a
partition Q, and a proposition h =

⋃
i qi (for qi ∈ Q) such that, as n → ∞:

· H0 is (correctly) certain that Hi values Hi+1, for each i;
· H0 is (correctly) certain that Hi Q-values Hi, for each i;
· The sequence is predictably polarizing about h: H0(h) ≈ 1

2 , yet H0(Hn(h) ≈ 1) ≈ 1.

Haley the Headser faces a sequence of n independent word-search tasks, each determined
by the toss of a (new, independent) fair coin that she’s 50% confident will land heads. Since
we want to consolidate her higher-order uncertainty between each update, we must include
additional possibilities, initially ignored, where the outcome of each task is the same, but her
rational credence function updates in different ways; consolidations will use these possibilities
to hold fixed her opinions in how the tasks went, but remove her higher-order uncertainty.

For each task i = 1, ..., n, let Xi = {ni, n
′
i, ci, c

′
i, fi} be the set of outcomes. fi indicates

that she finds the completion, ci and c′i are where it’s completable but she doesn’t find it,
and ni and n′

i are where it’s not completable. (c′i and n′
i are the ‘weird’ outcomes, initially

ignored, where the rational credence function updates differently.) Let our set of worlds W =

X1 × ...×Xn be the sequence of all possible outcomes. Let U = {w : ∃i : c′i ∈ w or n′
i ∈ w}

be the set of weird-update sequences that contain at least one c′i or n′
i.

Over W we lay some partitions. Let

Ni = {w ∈ W : ni ∈ w or n′
i ∈ w}

Ci = {w ∈ W : ci ∈ w or c′i ∈ w}
Fi = {w ∈ W : fi ∈ w};

Now let Qi = {Ni, Ci, Fi} be the question of how the ith task went—did she find one,
was there a completable one she missed, or was it not completable?—ignoring the further
question of how her rational opinions changed. Now let Q be the combination of all these
partitions, so that Q(x) = Q(y) iff for all i, Qi(x) = Qi(y). Notice that Headsi = Fi ∪ Ci,
and thus that any proposition about how the coins landed—one definable by specifying a set
of sequences of heads and tails—is about Q.

Finally let Ui be the question of how the rational credence updated at i, so U i =

{U i
n, U

i
c , U

i
f} where

U i
n = {w ∈ W : ni ∈ w or c′i ∈ w}

U i
c = {w ∈ W : ci ∈ w or n′

i ∈ w}
U i
f = {w ∈ W : fi ∈ w};

As we’ll see, U i
n is the set of worlds where Hi updated as if there was no completion (as if

ni) and U i
c is that where Hi updated as if there was one (as if ci).

A few more bits of notation. Given a probability function π, let π[x, y, z]k (with x, y, z ≥ 0

and summing to 1) be the probability function that results from Jeffrey-shifting (Jeffrey 1990)
π on the partition Qk = {Nk, Ck, Fk} such that the posterior assigns x to Nk, y to Ck, and
z to Fk. Explicitly, for any p ⊆ W :

π[x, y, z]k(p) := x · π(p |Nk) + y · π(p |Ck) + z · π(p |Fk).
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Higher-order consolidations will happen by imaging (Lewis 1976): intuitively, throwing
all probability mass from a set of worlds onto their ‘closest’ neighbors in which a given
claim is true. Thus we’ll need to define a corresponding selection function (Stalnaker 1968),
telling us which these closest neighbors are. Let ℘(W ) be the power set of W , i.e. the set
of propositions. For each world w ∈ W , let gw : ℘(W ) → W be a selection function which,
given a nonempty proposition p ∈ ℘(W ) (p ̸= ∅), outputs a world gw(p) ∈ p that is the
‘closest’ one to w in which p is true. We assume g obeys:

Strong Centering: if w ∈ p, then gw(p) = w.
Q-Respecting: if possible, gw selects a world that agrees with w about Q:
If ∃x ∈ p such that Q(x) = Q(w), then gw(p) ∈ Q(w).
Sequence-Respecting: gw selects a world that agrees with w in as much of its final-
sequence as possible.
If there are two worlds x = ⟨x1, ..., xn⟩ and y = ⟨y1, ..., yn⟩ which both are in p and
have Q(x) = Q(w) = Q(y), but y has a longer w-agreeing end-sequence (xn = wn, ...

but xn−k ̸= wn−k, and yn = wn, ..., yn−k = wn−k), then gw(p) ̸= x.

Following Lewis 1976, for any probability function π, we let π imaged on p, π(·||p), be the
result of shifting all probability π assigns to ¬p-worlds to their closest p-world counterparts.
Formally, for any world w:

π(w||p) :=
∑

y∈W : gy(p)=w

π(y)

Imaging shifts probability mass around, but neither creates not destroys it, so π(·||p) is
always a probability function. As a result, note that for any r ⊆ W :

π(r||p) =
∑
w∈r

π(w||p) =
∑
w∈r

∑
y∈W :gy(p)=w

π(y)

=
∑

y∈W :gy∈r

π(y)

Machinery in place, we can now define the series of probability functions H0, H0, H1, H1, ...,

Hn, Hn that represent Haleys rational opinions over time. (Hi is that right after completing
the ith word-search task, while Hi is some time after that, when she’s forgotten the string
and so consolidated her higher-order uncertainty.) Recall that Hi is a description (so it picks
out different probability functions at different worlds), whereas Hi

w is a rigid designator (that
always picks out the function that Hi associates with w).

Recalling that U = {w : ∃i : c′i ∈ w or n′
i ∈ w} is the set of worlds that contain a weird

update, for any world w ∈ W let H0
w be such that H0

w(U) = 0, and for each Qi:

H0
w(Ni) = 1/2;

H0
w(Ci) = 1/4;

H0
w(Fi) = 1/4.

Moreover assume H0
w treats the Qi as mutually independent, thus for any qi1 , ..., qik in

Qi1 , ..., Qik respectively, H0
w(qi1&...&qik) = H0

w(qi1)H
0
w(qi2) · · ·H0

w(qik). Since H0
w(U) = 0,

this pins down H0
w uniquely over W , hence all worlds begin with the same prior.
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Now define updates. For any world w and task i, the consolidation Hi comes by imaging
on the proposition that the Hi equals the particular function Hi

w. Formally, for all w and i:

Hi
w := Hi

w(·||Hi = Hi
w)

As we’ll see, these consolidation-updates change her higher-order opinions (removing higher-
order doubts) without changing her opinions about Q.

Finally, we define the regular (non-consolidation) updates as Jeffrey-shifts in the way
indicated by the word-search model, except that c′i+1 and n′

i+1 (the ones initially assigned 0
probability) update in the opposite way from what their word-search outcome would indicate.
Thus for all w and i < n:

If fi+1 ∈ w, then Hi+1
w = Hi

w[0, 0, 1]i+1;
If ci+1 ∈ w or n′

i+1 ∈ w, then Hi+1
w = Hi

w[
1
3 ,

2
3 , 0]i+1;

If ni+1 ∈ w or c′i+1 ∈ w, then Hi+1
w = Hi

w[
2
3 ,

1
3 , 0]i+1;

Having defined the iteration model, we now establish a variety of its features, including that
its updates are (Q-)valuable the long-run behavior of Hn.

Lemma 5.1.1. (1) For each i and w: Hi
w is higher-order certain.

(2) Moreover, for i > 1, if Hi
w(x) > 0, then Hi−1

w = Hi−1
x .

Proof. (1) Suppose Hi
w(x) > 0; we show that Hi

x = Hi
w. By definition, Hi

w(x) =

Hi
w(x||Hi = Hi

w) > 0. By the definition of imaging, x ∈ [Hi = Hi
w], i.e. Hi

x = Hi
w. Thus

Hi
x = Hi

x(·||Hi = Hi
x) = Hi

w(·||Hi = Hi
w) = Hi

w. Since x was arbitrary, Hi
w(H

i = Hi
w) = 1.

(2) By definition Hi
w is obtained from Hi−1

w by Jeffrey-shifting in a way that preserves
certainties, therefore if Hi

w(x) > 0 then Hi−1
w (x) > 0, so by (1), Hi−1

w = Hi−1
x .

Now we show that weird updates (n′
i and c′i) are assigned probability 0 ahead of time:

Lemma 5.1.2. For any w, x, i < j, if n′
j ∈ x or c′j ∈ x, then Hi

w(x) = 0 and Hi
w(x) = 0.

Proof. By induction. Base case: By construction, H0
w(U) = 0, so H0

w(x) = 0. Since
H0

x = H0
x, likewise for H0

x. Induction case: Supposing it holds for all w with k < i, we
show it holds for i. Since Hi

w = Hi−1
w [a1, a2, a3]i, and this doesn’t raise any probabilities

from 0, since (by induction) Hi−1
w (x) = 0, likewise Hi

w(x) = 0. Now suppose, for reductio,
Hi

w(x) > 0. Thus there must be a y such that Hi
w(y) > 0 and gy(Hi = Hi

w) = x. But since
Hi

w didn’t assign positive probability to any world with n′
j or c′j in it, those are not in y

and yet they are in x. If Hi
y = Hi

w, then (by Strong Centering) gy(Hi = Hi
w) = y, so this is

impossible; hence Hi
y ̸= Hi

w. Since Hi
w(y) > 0, and if w ∈ fi then Hi

w would be higher-order
certain, it must be that either (i) w ∈ U i

c and y ∈ U i
n, or (ii) w ∈ U i

n and y ∈ U i
c . Since we

must’ve had Hi−1
w (y) > 0, by the inductive hypothesis we know either ci ∈ y or ni ∈ y (not

c′i ∈ y nor n′
i ∈ y). So if (i), then y′ = ⟨y1, ..., n′

i..., yn⟩—which swaps out n′
i for ni in y and

is a world that is in the same Q-cell as y—updates the same as w so Hi
y′ = Hi

w. Since y′

agrees with the end-sequence of y more than x does (since n′
j ∈ x or c′j ∈ x), by Sequence-

Respecting, gy(Hi = Hi
w) ̸= x—contradiction. If (ii), parallel reasoning works substituting c′i

into y, completing the proof.
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We now show that our consolidations never move probability mass from one Q-cell to another:

Lemma 5.1.3. For any x, i: if Hi
x(y) > 0, then gy(Hi = Hi

x) ∈ Q(y).

Proof. Suppose Hi
x(y) > 0. By Lemma 5.1.1, Hi−1

x = Hi−1
y . By Lemma 5.1.2 and the fact

that Hi
x preserves Hi−1

x ’s certainties, neither c′i ∈ y nor n′
i ∈ y; hence either fi ∈ y or ci ∈ y

or ni ∈ y.
If fi ∈ x, then of course fi ∈ y and so Hi

y = Hi
x, meaning that by Strong Centering

gy(Hi = Hi
x) = y, establishing the result.

If ci ∈ x or n′
i ∈ x, then Hi

x = Hi−1
x [ 13 ,

2
3 , 0]i. If ci ∈ y, then Hi

y = Hi
x, so again we have

the result. But suppose ni ∈ y instead. Then y = ⟨y1, ..., yi−1, ni, yi+1..., yn⟩. Consider the
possibility y′ = ⟨y1, ..., yi−1, n

′
i, yi+1, ..., yn⟩, which is the same as y except that it swaps n′

i

for ni. By construction, Q(y′) = Q(y), and also Hi−1
y′ = Hi−1

y = Hi−1
x , so

Hi
y′ = Hi−1

y′ [ 13 ,
2
3 , 0]i

= Hi−1
x [ 13 ,

2
3 , 0]i = Hi

x.

Thus there is a y′ in [Hi = Hi
x] such that Q(y′) = Q(y), so by Q-Respecting gy(Hi = Hi

x) ∈
Q(y), establishing the result.

If ni ∈ x or c′ ∈ x, parallel reasoning (substituting c′i for ci) establishes the result.

Since consolidations never move probability mass from one Q-cell to another, they don’t
change any opinions about Q:

Lemma 5.1.4. For all x, i and q ∈ Q, Hi
x(q) = Hi

x(q).

Proof. By construction and the definition of imaging:

Hi
x(q) = Hi

x(q||Hi = Hi
x)

=
∑

y∈W :gy(Hi=Hi
x)∈q

Hi
x(y)

=
∑

y∈q:gy(Hi=Hi
x)∈q

Hi
x(y) +

∑
y/∈q:gy(Hi=Hi

x)∈q

Hi
x(y)

By Lemma 5.1.3, all and only worlds in q map to worlds in q under Hi = Hi
x; thus {y ∈ q :

gy(H
i = Hi

x) ∈ q} = {y : y ∈ q} and {y /∈ q : gy(H
i = Hi

x) ∈ q} = ∅. Therefore the right
summand is 0 and the left summand equals

∑
y∈q H

i
x(y) = Hi

x(q), as desired.

Lemma 5.1.5. For any w, i < j, Hi
w(Fj) = Hi

w(Cj) =
1
4 and Hi

w(Nj) =
1
2 and Hi

w treats
the Qk as mutually independent.

Proof. By induction. Base case: trivial by definition of H0
w. Induction step: Suppose it

holds for k < i. By definition, Hi
w is obtained by Jeffrey-shifting Hi−1

w on Qi, so since by the
induction hypothesis Hi−1

w treats the Qk as mutually independent and assigns 1
4 to Fj and

Cj , and 1
2 to Nj , Hi

w does too. Now, by Lemma 5.1.4, Hi
w maintains the same distribution

over Q as Hi
w has, establishing the result.
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Now we can establish that the Jeffrey-shift updates are fully valuable, and that the
consolidation updates are Q-valuable.

Lemma 5.1.6. For all w and i, Hi
w values Hi+1

w .

Proof. Letting Si
w := {x ∈ W : Hi

w(x) > 0} be the support of Hi
w, by Theorem A.2 we must

show that (1) for each x ∈ Si
w, Hi+1

x is modestly informed, and (2) Hi
w is in their convex

hull.
(1) Taking an arbitrary x ∈ Si

w, we show that Hi+1
x is modestly informed. By Lemma

5.1.1, note that since Hi
w(x) is higher-order certain, Hi

x = Hi
w. Now either (i) fi+1 ∈ x, or (ii)

ci+1 ∈ x or n′
i+1 ∈ x, or (iii) ni+1 ∈ x or c′i+1 ∈ x. Supposing (i), then Hi+1

x = Hi
x[0, 0, 1]i+1,

meaning Hi+1
x (Fi) = 1 so that if Hi+1

x (y) > 0, then fi+1 ∈ y, and Hi+1
y = Hi+1

x . Hence
Hi+1

x (Hi+1 = Hi+1
x ) = 1, so trivially Hi+1 is modestly informed. On the other hand, if (ii)

holds then Hi+1
x = Hi

x[
1
3 ,

2
3 , 0]i+1 = Hi

w[
1
3 ,

2
3 , 0]i+1—label this function πc. If (iii) holds, then

Hi+1
x = Hi

x[
2
3 ,

1
3 , 0]i+1 = Hi

w[
2
3 ,

1
3 , 0]i+1—label this function πn. Note that πc and πn both

assign 1 to Si
w, and also assign 1 to [Hi+1 = πc] ∨ [Hi+1 = πn]. Now, since by Lemma 5.1.2

we have that Hi
w assigns 0 to any world with n′

i+1 or c′i+1 in it, it follows that πc and πn do
too, and hence that:

π̂c = πc(·|Hi+1 = πc) = Hi
w(·|Ci+1)

π̂n = πn(·|Hi+1 = πn) = Hi
w(·|Ni+1)

From this it follows that πc (and, by parallel reasoning, πn) is modestly informed, since:

1
2 π̂c +

1
2πn = 1

2H
i
w(·|Ci+1) + 1

2

(
1
3H

i
w(·|Ci+1) +

2
3H

i
w(·|Ni+1)

)
= 1

2H
i
w(·|Ci+1) + 1

6H
i
w(·|Ci+1) +

1
3H

i
w(·|Ni+1)

= 2
3H

i
w(·|Ci+1) +

1
3H

i
w(·|Ni+1)

= πc.

Since πc, πn, and Hi
w(·|Fi+1) are the three realizations of Hi+1 in Si

w, this establishes (1).
(2) We now show that Hi

w is in their convex hull. Note that by Lemma 5.1.5 and total
probability,

Hi
w = 1

2H
i
w(·|Ni+1) + 1

4H
i
w(·|Ci+1) + 1

4H
i
w(·|Fi+1)

Now notice that:

1
4H

i
w(·|Fi+1) + 3

4πn = 1
4H

i
w(·|Fi+1) +

3
4

(
1
3H

i
w(·|Ci+1) +

2
3H

i
w(·|Ni+1)

)
= 1

4H
i
w(·|Fi+1) + 1

4H
i
w(·|Ci+1) + 1

2H
i
w(·|Ni+1) = Hi

w.

This establishes that Hi
w is in the convex hull of the realizations of Hi+1 that it leaves open,

completing the proof.

Corollary 5.1.7. For all w, i: Hi
w values Hi.
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Proof. For i = 0, this is trivial, since H0
w is higher-order certain. For i > 0, by construction,

Hi
w(x) > 0 only if Hi−1

w (x) > 0, and by Lemma 5.1.6, this implies that Hi
x is modestly

informed. Since Hi
w(H

i = Hi
w) > 0, trivially Hi

w is in the convex hull of the realizations of
Hi it leaves open. Thus by Theorem A.2, Hi

w values Hi.

Since the consolidation updates don’t shift credences in Q, the Q-value step is quick:

Lemma 5.1.8. For all x, i: Hi
x Q-values Hi.

Proof. By Lemma 5.1.4, for any q ∈ Q: Hi
x(H

i(q) = Hi(q)) = 1. It follows that for any
decision-problem OQ based on Q, Hi recommends strategy S for OQ iff Hi recommends S

for OQ. Since, by Corollary 5.1.7, Hi
x values Hi, it follows that Hi

x Q-values Hi.

Lemmas 5.1.6 and 5.1.8 establish the first two bullet-points of Theorem 5.1; we now focus
on establishing the third.

Recall that h = more than half the coins land heads is a proposition about Q, and that
for each Headsi = Fi ∪ Ci, H0(Headsi) = 1

2 , mutually independently. Thus letting #h

be a random variable for the number of coins that land heads, H0(#h = k) is a binomial
distribution with parameters 1

2 and n. Since each sequence of heads and tails is equally
likely, and as n → ∞ the proportion of sequences with more than half heads tends to 1/2,
the first part of the third bullet-point follows: H0(h) ≈ 1

2 .
To establish the second part of the third bullet-point, that H0(Hn(h) ≈ 1) ≈ 1, we estab-

lish the long-run behavior of Hn (which, by Lemma 5.1.4, establishes it for Hn).

Lemma 5.1.9. With Headsi = Fi ∪ Ci, we have, for all w, i, H0
w assigns probability 1 to:

· Fi → [Hn(Headsi) = 1];
· Ci → [Hn(Headsi) = 2

3 ]; and
· Ni → [Hn(Headsi) = 1

3 ].

Proof. First focus on Hi(Headsi), returning to Hn in a moment. Combining Lemma 5.1.5
with the definition of the update, we know immediately that Hi

w’s distribution over the
partition ⟨Ni, Ci, Fi⟩ satisfies the following:

· If fi ∈ w, then Hi
w’s distribution over ⟨Ni, Ci, Fi⟩ is (0, 0, 1);

· If ci ∈ w or n′
i ∈ w, then Hi

w’s distribution over ⟨Ni, Ci, Fi⟩ is ( 13 ,
2
3 , 0);

· If ni ∈ w or c′i ∈ w, then Hi
w’s distribution over ⟨Ni, Ci, Fi⟩ is ( 23 ,

1
3 , 0).

Since H0(U) = 0, H0
w assigns 0 to any world with n′

i or c′i in it, it suffices to show that
Hn follow the same pattern as Hi. By Lemma 5.1.5, each Hj treats the Qk as mutually
independent, so by definition none of the later Jeffrey-shifts—for j ≥ i, the update from Hj

to Hj+1—change the probabilities in Qi. And by Lemma 5.1.4, none of the consolidations
(from Hj to Hj) do so either. Thus Hn follows the above pattern as well, establishing the
result.

From here, the law of large numbers quickly takes us to the desired conclusion:

Lemma 5.1.10. For any ϵ > 0, as n → ∞, H0(Hn(h) ≥ 1− ϵ) → 1.
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Proof. By Lemma 5.1.4, it suffices to show the result for Hn.
Choosing an arbitrary ϵ > 0, let x ≈ y mean that x is within ϵ of y. Sort the time indices

into (random) groups by their outcomes, so IF := {i : Qi = Fi}, IC := {i : Qi = Ci}, and
IN := {i : Qi = Ni}. Since H0 treats the Qi as i.i.d. with H0(Fi) = H0(Ci) = 1

4 , by
the law of large numbers, as n → ∞, H0

(
|IF | ≈ n

4 & |IC | ≈ n
4 & |IN | ≈ n

2

)
→ 1. We want to

show what follows if this obtains, so suppose it does: |IF | ≈ n
4 & |IC | ≈ n

4 & |IN | ≈ n
2 .

What is true of Hn? We have from Lemma 5.1.9 that Hn treats all the Headsi as mutually
independent, is certain of Headsi if i ∈ IF , is 2

3 in it if i ∈ IC and is 1
3 in it if i ∈ IN :

For all i ∈ IF , Hn(Headsi) = 1;
For all i ∈ IC , Hn treats Headsi as i.i.d. with Hn(Headsi) = 2

3 ; and
For all i ∈ IN , Hn treats Headsi as i.i.d. with Hn(Headsi) = 1

3 .

Thus by the weak law of large numbers, as n → ∞, Hn becomes arbitrarily confident that
the proportion of Headsi within each IF , IC , and IN is close to 1, 2

3 , and 1
3 , respectively:

Hn(
∑
i∈IF

1Headsi

|IF |
= 1) = 1 (α)

Hn(
∑

i∈IC

1Headsi

|IC |
≈ 2

3) → 1 (β)

Hn(
∑

i∈IN

1Headsi

|IN |
≈ 1

3) → 1 (γ)

Note that that |IF |
n

∑
i∈IF

1Headsi
|IF | + |IC |

n

∑
i∈IC

1Headsi
|IC | + |IN |

n

∑
i∈IN

1Headsi
|IN | =

n∑
i=1

1Headsi
n is the

proportion of all flips that land heads. Combining the fact that |IF | ≈ n
4 & |IC | ≈ n

4 & |IN | ≈
n
2 , with (α), (β), and (γ), we have, as n → ∞:

Hn

(
n∑

i=1

1Headsi

n
≈ 1

4 (1) +
1
4 (

2
3 ) +

1
2 (

1
3 ) = 7

12

)
→ 1

And therefore, recalling that h = more than half the tosses land heads:

Hn
( n∑
i=1

1Headsi

n
> 1

2

)
= Hn(h) ≈ 1

Since this follows from |IF | ≈ n
4 & |IC | ≈ n

4 & |IN | ≈ n
2 , and H0 is arbitrarily confident of

that conjunction, it follows that as n → ∞, H0(Hn(h) ≈ 1) → 1, completing the proof.

This completes the proof of Theorem 5.1: Lemma 5.1.6 establishes the first bullet-point,
Lemma 5.1.8 establishes the second, and the reasoning on page 49 combined with Lemma
5.1.10 establishes the third.

Finally, we can add Tailsers to this model to establish that such predictable, profound
polarization is also persistent :

Corollary 5.3. There are two sequences of probability functions H0, H0,..., Hn and T 0,
T 0,...,Tn, a partition Q and a proposition h =

⋃
i qi (for some qi ∈ Q) such that, as n → ∞:
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· Both H0 and T 0 are (correctly) certain that, for all i:
· Hi values Hi+1 and T i values T i+1;
· Hi Q-values Hi, and T i Q-values T i; and
· H0 = T 0, and in particular H0(h) = T 0(h) ≈ 1

2 .
· H0 and T 0 are arbitrarily confident of Hn(h) ≈ 1 and Tn(h) ≈ 0 (predictability);
· H0 and T 0 are arbitrarily confident of Hn

(
h
∣∣∣Tn(h) ≈ 0

)
≈ 1 and Tn

(
h
∣∣∣Hn(h) ≈ 1

)
≈ 0

(persistence).

Proof. All but the final bullet-point are straightforward generalizations of the proofs of The-
orem 5.1, gotten by dividing possibilities further to track which updates T i goes through,
consolidating throughout the process in a way that maintains opinions about Q, and adding
the partitions Qt

i = {F i
i , C

t
i , N

t
i }, where F t

i ∪ Ct
i = Ni and N t

i = Fi ∪ Ci. By doing so, we
create a model in which both H0 and T 0 are (correctly) certain that:

· Fi&N t
i →

(
Hn(Headsi) = 1 & Tn(Headsi) = 2

3

)
· Ci&N t

i →
(
Hn(Headsi) = 2

3 & Tn(Headsi) = 2
3

)
· Ni&Ct

i →
(
Hn(Headsi) = 1

3 & Tn(Headsi) = 1
3

)
· Ni&F t

i →
(
Hn(Headsi) = 1

3 & Tn(Headsi) = 0
)

with Hn and Tn treating the Headsi as mutually independent. Moreover, H0 = T 0, and
both treat the Qi as mutually independent, as well as the Qt

i, assigning e.g.:

· H0(Fi) = H0(Ci) =
1
4 , while H0(Ni) =

1
2 ; and

· H0(F t
i ) = H0(Ct

i ) =
1
4 , while H0(N t

i ) =
1
2 .

By reasoning parallel to that in Lemma 5.1.10, as n → ∞ both H0 and T 0 become arbitrarily
confident that

Hn
( n∑

i=1

1Headsi

n
≈ 7

12

)
≈ 1, and so Hn(h) ≈ 1,

and that

Tn
( n∑

i=1

1Headsi

n
≈ 5

12

)
≈ 1, and so Tn(h) ≈ 0.

To establish the final bullet-point, of persistent polarization, notice that by the weak law
of large numbers, both H0 and T 0 are arbitrarily confident that (where IF t = {i : Qt

i = F t
i },

etc.) |IF | ≈ n
4 & |IC | ≈ n

4 & |IF t | ≈ n
4 & |ICt | ≈ n

4 . Supposing this conjunction obtains, we
show that the resulting polarization is persistent for Hn and hence Hn (parallel reasoning
works for Tn)—which suffices to show that it is predictable and persistent.63

Note that, since Hn remains certain of the above four conditionals, we have:

i) For all i ∈ IF , since Hn(Fi) = 1, we have Hn(Tn(Headsi) = 2
3) = 1.

Therefore, Hn(
∑
i∈IF

Tn(Headsi)
|IF | = 2

3) = 1

63Strictly, we should use different bounds for the ≈ at different levels of nesting, but since all can be made
arbitrarily small by making n large enough, I ignore this complication.
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ii) For all i ∈ IC , since Hn(Ci) =
2
3 and Hn(Ni) =

1
3 , so Hn(Ni&Ft) = Hn(Ni&Ct) =

1
6 , we

have: Hn(Tn(Headsi) = 2
3) =

2
3 , Hn(Tn(Headsi) = 0) = 1

6 , and Hn(Tn(Headsi) = 1
3) =

1
6 .

Therefore, if π = Hn, for all i ∈ IC , Eπ(Tn(Headsi)) =
2
3 (

2
3 ) +

1
6 (0) +

1
6 (

1
3 ) =

1
2 . Since

Hn treats the Tn(Headsi) as independent, by the weak law of large numbers, as n → ∞,
Hn(

∑
i∈IC

Tn(Headsi)
|IC | ≈ 1

2) → 1.

iii) For all i ∈ IN , since Hn(Ci) =
1
3 and Hn(Ni) =

2
3 , so Hn(Ni&Ft) = Hn(Ni&Ct) =

1
3 , we

have: Hn(Tn(Headsi) = 2
3) =

1
3 , Hn(Tn(Headsi) = 0) = 1

3 , and Hn(Tn(Headsi) = 1
3) =

1
3 .

Therefore, if π = Hn, for all i ∈ IN , Eπ(Tn(Headsi)) = 1
3 (

2
3 ) +

1
3 (

1
3 ) = 1

3 . Since Hn

treats the Tn(Headsi) as independent, by the weak law of large numbers, as n → ∞,
Hn(

∑
i∈IN

Tn(Headsi)
|IN | ≈ 1

3) → 1.

Since by hypothesis |IF | ≈ n
4 ≈ |IC | and |IN | ≈ n

2 , and

|IF |
n

∑
i∈IF

Tn(Headsi)
|IF | + |IC |

n

∑
i∈IC

Tn(Headsi)
|IC | + |IN |

n

∑
i∈IN

Tn(Headsi)
|IN | =

n∑
i=1

Tn(Headsi)
n ,

combining (i)–(iii) we have, as n → ∞,

Hn
( n∑

i=1

Tn(Headsi)
n ≈ 1

4 (
2
3 ) +

1
4 (

1
2 ) +

1
2 (

1
3 ) = 11

24 ≈ 0.458
)
→ 1

Therefore, Hn gets arbitrarily confident that Tn’s average confidence in Headsi is less than 1
2 :

Hn(
∑n

i=1
Tn(Headsi)

n < 1
2) → 1. And since Hn is certain that Tn treats the Headsi independ-

ently, it follows that Hn(Tn(
∑n

i=1

1Headsi
n > 1

2) ≈ 0) → 1, i.e. that Hn(Tn(h) ≈ 0) → 1. Thus
it follows that as n → ∞, Hn(h|Tn(h) ≈ 0) → Hn(h) → 1. Since Hn(h) = Hn(h) and
Tn(h) = Tn(h), and since H0 is arbitrarily confident of this outcome, this establishes the
desired result.

By parallel reasoning, it is likewise true that as n → ∞, T 0 becomes arbitrarily confident
that Tn(h|Hn(h) ≈ 1) → Tn(h) → 0, completing the proof.

B Experimental Details

Appendix B discusses the experiment from §4.2.
250 English-speakers were recruited through Prolific (107 F/139 M/4 Other; mean age

= 27.06).64 The hypothesis was that subjects would polarize more when given (potentially
ambiguous) word-searches than (unambiguous) draws from an urn. Subjects were randomly
assigned to conditions in a 2 × 2 design that independently manipulated valence (Headsers

64Pre-registration: https://aspredicted.org/8jg3e.pdf. I made two mistakes at the pre-registration
phase: (1) failing to realize I had collected time-series data for individual participant’s average confidence
(which allowed me to increase statistical power over merely pooling all judgments) and (2) failing to plan
both the ANOVA and difference-of-difference confidence intervals. The main text reported the results after
correcting these mistakes; here I report the pre-registered tests. The conclusions are the same.
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vs. Tailsers) and ambiguity (Ambiguous vs. Unambiguous). I’ll abbreviate the groups ‘A-
Hsers’; ‘A-Tsers’; ‘U-Hsers’, and ‘U-Tsers’. Each was told they’d be given evidence about
a series of four independent, fair coin tosses (in fact, the tosses were pseudo-randomized to
simulate two heads and two tails, in random orders). They were given standard instructions
about how to use a 0–100% scale to rate their confidence in the answer to a yes/no question.

The A-group was told how word-search tasks work (§4), and given three examples
(‘P A ET’ [planet], ‘CO R D’, [uncompletable] and ‘ E RT’ [heart]). The A-Hsers were
told they’d see a completable string if the coin landed heads, and an uncompletable one if
it landed tails. (For A-Tsers ‘heads’ and ‘tails’ were reversed.) The U-group were told how
the urn task worked (§4.2). For U-Hsers, if the coin landed heads then the urn contained 1
black marble and 1 non-black marble; if it landed tails, it contained two non-black marbles.
(For U-Tsers, ‘heads’ and ‘tails’ were reversed.) The colors of the non-black marbles changed
across trials to emphasize that they were different urns.

Both groups saw four tasks, each corresponding to a new coin flip, and were asked before
and afterward how confident they were in that new flip’s outcome.65 The pre-task question
was an attention-check, wherein they were instructed to move the slider to 50% since it was
a new coin toss; as preregistered, I excluded (25 of 250) participants who failed two or more
of these attention-checks.

The order of the tasks was randomized. Each subject in the A-group saw two completable
and two uncompletable strings. (The completable strings were randomly drawn from the list,
{FO E T, ST N, FR L} (forest/foment; stain/stern; frail/frill); the uncompletable
strings were drawn from the list, {TR P R, ST RE, P G ER}.) Each subject in the
U-group saw 3 tasks in which a non-black marble was drawn, and 1 in which a black marble
was, simulating the expected rate of drawing black marbles from a fair coin and urn.

From the responses of each individual to each question, I calculated their prior and pos-
terior confidence that the coin landed heads in each toss (for Hsers, this was the number
they reported as their confidence; for Tsers, it was obtained by subtracting this number from
100). I pooled such responses across participants and items to calculate the following stat-
istics. (Note: As discussed below, we obtain more statistical power if we group by participant
and calculate their mean confidence as they view more tasks; those stronger statistics were
reported in the main text in §4.2, page 16.)

I predicted (predictions 1–3) that the ambiguous evidence would lead to polarization, and
(predictions 4–6) that it would lead to more polarization than the unambiguous evidence:

1. The mean A-Hser posterior in heads would be higher than the prior (of 50%).
2. The mean A-Tser posterior in heads would be lower than the prior (of 50%).
3. The mean A-Hser posterior would be higher than the mean A-Tser posterior in heads.
4. The mean A-Hser posterior would be higher than the mean U-Hser posterior.
5. The mean A-Tser posterior would be lower than the mean U-Tser posterior.

65To minimize confusion in a somewhat complicated setup, for each task the A-group was asked how
confident they were that “this string is completable”—this is equivalent to “this toss landed heads” for A-
Hsers, and “this toss landed tails” for A-Tsers. Since they know of these equivalences, I treated their answer
for task i as (for Headsers) their credence in Headsi or (for Tailsers) their credence in Tailsi. Meanwhile, the
U-Hsers were asked how confident they were that the toss landed heads, while the U-Tsers were asked how
confident they were that the toss landed tails.
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6. The mean difference between A-Hser posteriors and A-Tser posteriors would be larger
than that between the U-Hser posteriors and U-Tser posteriors.

Here are the means and standard deviations of credence-in-heads for each group:

Group Prior Mean (SD) Posterior Mean (SD)
A-Hsers 50.35 (3.26) 57.71 (30.33)
A-Tsers 49.60 (2.90) 36.29 (31.04)
U-Hsers 50.31 (2.68) 54.56 (26.93)
U-Tsers 50.12 (2.33) 48.10 (28.47)

Predictions 1, 2, 3, 5, and 6 were confirmed with significant results; Prediction 4 had the
divergence in the correct direction but it was not statistically significant. Precisely: one-
sided paired t-test for Prediction 1 indicated that A-Hser priors were lower than A-Hser
posteriors, with t(219) = 3.58, p < 0.001, d = 0.341. One-sided paired t-test for Prediction 2
indicated that A-Tser posteriors were lower than A-Tser priors, with t(191) = 5.90, p < 0.001,
d = 0.604. One-sided independent samples t-test for Prediction 3 indicated that A-Hser
posteriors were higher than A-Tser posteriors, with t(410) = 7.07, p < 0.001, d = 0.699. One-
sided independent samples t-test for Prediction 4 failed to indicate that A-Hser posteriors
were higher than U-Hser posteriors, with t(441) = 1.15, p = 0.125, d = 0.107. One-sided
independent samples t-test for Prediction 5 indicated that A-Tser posteriors were below
U-Tser posteriors, with t(393) = 4.07, p < 0.001, d = 0.398.

Prediction 6 was (due to my oversight) handled poorly at pre-registration—I only planned
to calculate 95% confidence intervals for the differences between A-Hser and A-Tser posteriors
as well as U-Hser and U-Tser posteriors, and compare them. This comparison went as
predicted: the 95% confidence interval for the difference between A-Hsers and A-Tsers was
[15.2, 27.2], while that for the difference between U-Hsers and U-Tsers was [1.8, 11.8]. Since
the former dominates the latter, it indicates a larger difference.

What should’ve been planned was (a) a 2 × 2 ANOVA, and (b) a bootstrapped 95%
confidence interval for the difference between the differences between A-Hsers/A-Tsers and
U-Hsers/U-Tsers. (a) Analyzing the results using a 2 (valence: Hser vs. Tser) by 2 (ambigu-
ity: A vs. U) ANOVA indicated that there was a main effect of valence (F (1, 899) = 46.47,
p < 0.001, η2 = 0.048), a marginally significant main effect of ambiguity (F (1, 899) =

4.31, p = 0.038, η2 = 0.005), and an interaction effect between valence and ambiguity
(F (1, 899) = 14.57, p < 0.001, η2 = 0.015), indicating that the divergence between Headsers
and Tailsers was exacerbated by having ambiguous evidence. (b) Meanwhile, the empirically
bootstrapped 95% confidence interval for the difference in differences between A-Hsers/A-
Tsers and U-Hsers/U-Tsers was [7.2, 22.6], indicating that the Hsers and Tsers in the am-
biguous condition diverged in opinion more than in the unambiguous condition. And while
there was a significant difference between U-Hser posteriors (M = 54.64, SD = 26.93) and
U-Tser posteriors (M = 48.10, SD = 28.47), with t(486) = 2.61 and (two-sided) p = 0.009,
the effect size was smaller (d = 0.236) than for the difference between A-Hser and A-Tser
posteriors (as mentioned, d = 0.699).

Another oversight at the pre-registration was failing to use the time-series data generated.
Using the priors and posteriors for each participant, we can calculate their average confidence
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in heads after seeing n bits of evidence, for n ranging from 0 to 4.66 (For Bayesians, this
average confidence equals their estimate for the proportion of times the coin landed heads.)
In other words, we can re-run the above statistics by pooling responses within subjects at
each stage in their progression through the experiment. All the predicted results above hold
true, with universally lower p-values and higher effect sizes, since the variance of the data
has dropped. These are the statistics I reported in the main text (§4.2, page 16).

A supplemental prediction probed the hypothesis that (something like) the model in
Figure 2 is driving the effect. Within the ambiguous condition, I predicted that amongst
those who didn’t find a completion, the average confidence that their string was completable
would be higher if it was completable (bottom right possibility of Figure 2) than if it wasn’t
(bottom left). This would indicate sensitivity to whether or not there was a word, over and
above whether or not they found one. To test this, in addition to recording their confidence,
the experiment explicitly asked subjects in the ambiguous condition whether they found
a completion. We can then focus on those who said they didn’t, and then compare the
average confidence of those who were vs. weren’t looking at a completable string. A one-
sided independent samples t-test failed to indicate that the confidence of those who weren’t
(M = 39.00, SD = 19.90) was lower than that of those who were (M = 42.03, SD = 21.37),
with t(243) = 1.11, p = 0.13, one-sided. However, a substantial proportion of people who
claimed to have found a word did not have the extreme confidence that they should’ve
if so (39% of them were less than 95% confident there was a completion; 25% of them
were less than 80%), suggesting that self-reports of ‘finding’ were unreliable. If we instead
operationalize ‘finding’ as ‘reporting 100% confidence there’s a completion’—though, to be
clear, this change was not pre-registered—the prediction is confirmed: amongst those who
were less than 100% confident there was a completion, a one-sided t-test indicated that the
average confidence for those looking at uncompletable strings (M = 44.60, SD = 25.15)
was below the average confidence for those looking at completable strings (M = 52.26,
SD = 22.98), with t(309) = 2.77, p = 0.003, d = 0.32.

Finally, two further (not pre-registered—so take them with a grain of salt!) trends support
the role of ambiguity. First, since ambiguity—uncertainty about how to react to evidence—
should cause variance in people’s opinions, we should expect the word-search condition to
have more variance than the urn condition. It does. Restricting attention to those with
weak (so, potentially ambiguous) evidence—those (A-group) who didn’t find a completion,
or (U-group) who didn’t see a black marble—the variance in opinions was higher in the
ambiguous condition than in the unambiguous one. This can be seen in the plots in Figure
13, and is confirmed by tests for equality of variance.67 (Notice that the there remains
a nontrivial amount of variance even in the unambiguous condition; it may be that low
levels of ambiguity—people being unsure how confident to be in response to a non-black
marble—could be driving the slight polarization found in the unambiguous condition.)

Second, recall that the theory predicts that polarization will result from asymmetric
increases in accuracy : Headsers will be better at recognizing heads-cases; Tailsers will be

66At stage 0 we average their priors for all tosses; at stage 1, we average their posterior for the first toss
with their priors from the 3 remaining; etc.

67A-Hsers’ variance was 563.33, while U-Hsers’ was 285.28, Conover = 5.40, p < 0.001. A-Tsers’ variance
was 606.78, while U-Tsers’ was 321.88, Conover = 5.44, p < 0.001.
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Figure 13: Density plots of confidence in Heads, given weak evidence.

better at recognizing tails-cases. As can be seen in Table 1, this is what we find. When
presented with uncompletable strings (Tails cases for Headsers; Heads cases for Tailsers),
neither group’s average posterior moved significantly from their priors of 50%; but when
they saw a completable string, it moved significantly in the direction of the truth. Hence
asymmetric accuracy increases can drive polarization—the mean squared errors of their
average priors vs. posteriors is: for Headsers, 0.5(1 − 0.5037)2 + 0.5(0 − 0.5034)2 = 0.250

vs. 0.5(1− 0.6742)2 + 0.5(0− 0.4773)2 = 0.167; for Tailsers, 0.253 vs. 0.166.

Headser prior Headser posterior Tailser prior Tailser posterior
Heads cases: 50.37* 67.42 49.34* 48.00*
Tails cases: 50.34* 47.73* 49.86* 24.84
Overall: 50.35* 57.7 49.60* 36.29

Table 1: Ambiguous condition, mean prior and posterior confidence in Heads, by cases.
* = not significantly different from 50%.

C Computational Details

Appendix C contains the details of the simulations used in §§6–7. It can be read in tan-
dem with the Mathematica notebook (https://github.com/kevindorst/RP_notebook) which
contains a working version of all code.

C.1 Cognitive-Search Models (§6)

This subsection explains the generalization of the word-search models that I call cognitive-
search models. Imagine an agent searching for flaws in a piece of evidence that bears on a
proposition q. The general form of such a model starts with a known prior P and divides
the worlds into 3 classes, depending on whether the agent finds a flaw (F ), there is a flaw
that they don’t find (C; the search is ‘Completable’), or there is no flaw (N). Within each
class are (at least) two worlds that have the same posteriors, but which differ on whether
the target proposition q is true. Letting Pw be the known prior and P̃ the posterior, a
cognitive-search model is any in which:
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· Pw(q|F ) = Pw(q|C).
(The existence of a flaw is what affects the probability of q, not whether you find it.)

· For any n ∈ N : P̃n = Pw(·|¬F ).
(If there’s no flaw, all you learn is that you didn’t find one.)

· For any f ∈ F : P̃ f = Pw(·|F )

(If you find a flaw, you learn exactly that.)
· For any x, y ∈ C: P̃ x = P̃ y; P̃ x(¬F ) = 1; and P̃ x(C) ≥ Pw(C|¬F ).

(If there is a flaw that you don’t find, that determines the rational credence; you learn
that you didn’t find one; and you assign at least as much credence to this possibility
as you would if that were all you learned.)

Such models generalize the model of the word-search task from Figure 2. For x ∈ C and
y ∈ N , we must have P̃ x(C) ≥ P̃ y(C) to satisfy the Value of Evidence. When P̃ x = P̃ y,
the model is unambiguous and just consists in conditioning on whether or not you found
a completion; but when P̃ x(C) > P̃ y(C), the evidence is ambiguous (since P̃ y(x) > 0 and
P̃ x ̸= P̃ y); this leads to expectable polarization.

The simplest cognitive-search models consist of 6 worlds (two in each of F , C, and N)
plus a prior over them. (In Mathematica, we represent this with a 7 -world frame in which
the first world encodes the prior and is assigned probability 0 by all worlds, including itself.)
Such models can be parameterized in a variety of ways; the funtion csModel takes one
such set of parameters and generates the resulting cognitive-search model. The function
getCondCSModel takes a prior in q, the degree to which finding a flaw would move it, and a
probability of finding a flaw, and outputs a cognitive-search model by generating a random
probability of there being a flaw (uniform from [0,1]), and then using that and the above to
fix all the other parameters in a cognitive-search model.

Given a cognitive-search model and some posterior probability function P̃w, we can get
the (Brier) inaccuracy of that function at w by taking the mean squared distance between
it’s probability of each world x in the model and the truth-value of {x} at w. (We use
this form of the Brier score—summing across worlds rather than across propositions, for
computational tractability, since the number of propositions grows exponentially with the
size of the model.) Thus getGlobPartitionInAcc takes a probability frame (specified using
a stochastic matrix, where row i column j equals P̃ i(j)) and a world w, and outputs the
inaccuracy of P̃w at w. By subtracting this number from 1 we get a measure of the accuracy
of P̃w. And by taking the expectation of this value, according to our prior P , we get P ’s
expected accuracy of the posterior rational credence function after the update.

We can then test the correlation between the probability of finding a flaw if there is one
(i.e. P (Find|Flaw)) and the expected accuracy of the update. There are a variety of ways to
run such simulations. One issue is that when the gBump is large (i.e. the searches might shift
your credence quite a bit) that introduces noise in the correlation. Thus I constrained such
bumps to be small (as they will be in ensuing simulations), between 0 and 0.2. To minimize
noise, I also fixed the prior in q at 0.5—but similar results are obtained by setting it to any
other number. This simulation led to the plot on the left of Figure 5 (page 25).

Given this correlation, we can test what proportion of the time expected accuracy favors
scrutinizing incongruent studies rather than congruent ones, as a function of how much more
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likely you are (on average) to find extant flaws in the former than the latter. The simulations
I ran fixed a given prior in q, and then generated pairs of cognitive-search models (one would
raise your credence in q if you found a flaw, the other would lower it), such that the probability
of finding a flaw was pulled from distributions with steadily higher means for the incongruent
study and steadily lower means for the congruent one. As the gap grew, the proportion of
pairs where expected accuracy favors scrutinizing the incongruent study grew as well. This
led to the plot on the right of Figure 5 (page 25).

Finally, we can run a simulation of two groups of agents, presented with pairs of studies,
but one group (red) is better at finding flaws with studies that tell against q, while the other
group (blue) is better at finding flaws with those that tell in favor of q. At each stage, each
agent chooses which study to scrutinize based on which one they expect to make them most
accurate, and then updates their credences with probability matching the various outcomes
of that update-model (i.e. their credences about how likely they are to undergo the various
possible updates are calibrated with the objective chances).

There are a variety of choice-points here; although variations on the theme will lead to
the same results, here are the ones I made. Agents always have accurate beliefs about how
likely they are to find a flaw in each study; this probability varies from a minimum of 0.1 to a
maximum of 0.9. When scrutinizing q-detracting studies, red agents are pulling (uniformly)
from [0.1 + findGap, 0.9] and blue agents are pulling (uniformly) from [0.1, 0.9 − findGap];
when q-supporting studies, vice versa. This parameter findGap can range from 0 (where
there’s no difference between the groups) to 0.8. The simulation displayed uses 0.5; generally
the rate of polarization grows as findgap increases. The amount agents’ credences would
move if they found a flaw in the study was limited to an initial upper bound (of 0.125), which
was steadily lowered as agents saw more studies and the ‘weight’ behind their credence in q

was correspondingly increased. hardenSpeed is a parameter that controls how quickly agents
harden in opinions; the smaller it is, the more polarization generally results but also the more
chaotic their trajectories. The results of running the simulation with these parameters are
displayed in Figure 6 (page 25).

Robustness. Fixing parameters, we can check for robustness by simulating 100 red
(‘pro’) agents and 100 blue (‘con’) agents to get respective estimates for their posterior aver-
age credences at 0.603 (95% confidence interval = [0.580, 0.626]) and 0.387 (95% confidence
interval = [0.366, 0.409]). These exact numbers depend on the parameters, so can check for
robustness by varying them. The end of the section (1) on Cognitive Search in the Mathem-
atica notebook, runs cross-variations on findGap and hardenSpeed, finding that as findGap
grows and hardenSpeed shrinks, polarization becomes more extreme.

C.2 Argument Models (§7)

This subsection explains the simple-argument models used in §7 (without scrutiny). You
know that you’re about to be presented with an argument in favor of a given claim q. The
model divides worlds into two classes, depending on whether the argument is good (G) or
bad (B). If the argument’s good, it’s rational to increase your confidence in q; if it’s bad,
it’s rational to decrease it. For simplicity, we assume there are only two posteriors you could
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end up with. We assume the argument will be more ambiguous if it’s bad. Letting Pw be
the known prior and P̃ is the posterior, a simple-argument (for q) model is any in which
{G,B} is a partition and in which:

· Pw(q|G) > Pw(q) > Pw(q|B)

(If the argument is good, q is more likely to be true; if not, it’s less.)
· For any x, y: if x, y ∈ G, P̃ x = P̃ y; and if x, y ∈ B, then P̃ x = P̃ y

(Whether the argument is good or bad determines the rational posterior.)
· ∃ϵ, ϵ′ > 0, ϵ ≥ ϵ′: if g ∈ G and b ∈ B, P̃ g(G) = Pw(G) + ϵ and P̃ b(B) = Pw(B) + ϵ′.

(Whether good or bad, your credence should shift toward the truth; but since good
arguments are easier to recognize, it should shift more if the former.)

Since P̃ moves uniformly (though asymmetrically) toward the truth of {G,B}, Pw values P̃ .
The simplest models consist of 4 worlds (two in each of G and B) plus a prior over them.
(In Mathematica, we represent this with a 5 -world frame in which the first world encodes
the prior and is assigned probability 0 by all worlds, including itself). Such models can be
parameterized in a variety of ways; the function getArgModel does so using Pw(q) (priorQ),
Pw(q|G) (gInf), P̃ g(G) for g ∈ G (gConf), Pw(q|B) (bInf), and P̃ b(B) for b ∈ B (bConf).

An argument favors q if Pw(q|G) > Pw(q); an argument disfavors q if it favors ¬q, i.e. if
Pw(q|G) < Pw(q). getRandFavShiftArgModel and getRandDisShiftArgModel respectively
generate random instances of such models. Given this, we can simulate presenting a group of
(red) agents with (different) random arguments that favor q, and a separate group of (blue)
agents with (different) random arguments that disfavor q. Again, there are a variety of choice-
points in how to run such simulations. I assume agents always have accurate beliefs about
how likely the arguments they’re presented with are to be good or bad, and that all arguments
are equally likely to be good—Pw(G) was drawn uniformly from [0, 1]. Additionally, we can
modify how much arguments could initially shift opinions, and how quickly agent’s opinions
‘harden’ (become less susceptible to change with new arguments). I simulated the result of
20 agents in each group, each witnessing 100 (different) random arguments, with an initial
maximum potential shift (baseShift) of 0.2; the result is Figure 8.

The code also allows for simulations to vary the rate at which each group of agents is
presented with good arguments, using favGBound to lower-bound the probability that a red
group-member’s argument is good (Pw(G) drawn from [favGBound, 1]) and upper-bound the
probability that a blue-member’s is (Pw(G) drawn from [0, 1− favGBound]). The code runs
simulations with 30 agents and 50 arguments, with the above parameters for possible shifts
and hardening speed, with favGBound at 0, 0.25, 0.5, 0.75, and 0.95. The effects of varying
this parameter are not straightforward—at low levels it does little; at middling levels it makes
the groups’ shifts more asymmetric; at high levels it reduces the degree of belief-change (I
conjecture because agents are already quite confident about whether the argument is good
or bad before seeing it, limiting its effects).

Robustness. Fixing parameters, I simulated 100 red (favorable-argument) agents and
100 blue (disfavorable argument) agents to get estimates for their mean posteriors of, respect-
ively, 0.650 (with 95% confidence interval = [0.630, 0.670]) and 0.332 (with 95% confidence
interval = [0.311, 0.352]). These exact numbers depend on the parameters, so we can check
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for robustness by varying them. The end of the section (2) on Argument models in the Math-
ematica notebook, finds that as baseShift grows and hardenShift shrinks, the amount and
rate of polarization grows. All runs resulted in polarization.

C.3 Argument-Scrutiny Models (§7)

This subsection explains how to combine the simple-argument models of §7 with the cognitive-
search models in §6 to yield argument-scrutiny models. As discussed in the main text, we
begin with a simple argument-model favoring some claim, and then give the agent the choice
to either scrutinize that argument or not. If she doesn’t, the model remains the same and
she updates as in §C.2; if she does scrutinize, the scenarios where the argument is bad (B)
split into two, as in the right of Figure 14. In one set of possibilities (F , top right) she finds
a flaw with the argument; in another (C, bottom right) there is a flaw but she doesn’t find it
(the search is Completable). When the argument is good (G, left), there is no flaw (N = G).

Don’t Scrutinize:
Good (G) Bad (B)

P (G) P (B)

Scrutinize:

P (BF )

P (BF )P (GF )

Good (G) Bad (B)

Find

Figure 14: Schematic model of the choice of whether to scrutinize an argument.

Precisely, given an argument model as described in §C.2, with known prior Pw and
posterior P̃—realized as P̃ g if the argument is good and P̃ b if it’s bad—scrutinizing it
generates a cognitive-search model with the partition {F,C,N} fixing the posterior P̃ as
specified in §C.1, and the following constraints:

· Pw(q|F ) = Pw(q|C) = Pw(q|B).
(Conditional on there being a flaw—whether or not you find it—the probability that
q is true is the same as it would be if you learned the argument was bad.)

· Pw(q|N) = Pw(q|G)

(Conditional on there being no flaw, the probability that q is true is the same as it
would be if you learned the argument was good.)

· If x ∈ C, then P̃ x(C) ≥ P̃ b(C|¬F )

(If there’s a flaw that you don’t find, your credence that there is should be at least as
great as it should be if you didn’t scrutinize and updated your beliefs accordingly, and
then conditioned on the claim that you wouldn’t have found a flaw.)

The only subtle constraint is the third one. This ensures that, compared with the original
argument model, not finding an extant flaw provides no more evidence against there being a
flaw than simply conditioning on not finding one would. This is in keeping with our treatment
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of what happens in N -possibilities in cognitive-search models. When P̃ x(C) = P̃ b(C|¬F ),
scrutiny adds no additional ambiguity over-and-above that already present in the argument
model; when P̃ x(C) > P̃ b(C|¬F ), the divergence between P̃ x (for x ∈ C) and P̃ y for y ∈ N

grows, increasing the ambiguity.
To generate such an argument-scrutiny model, we are given an argument-model and must

first extract its parameters—this is what extractArgPars does. The function scrutArg then
uses this function to generate a cognitive-search model meeting the above constraints. It
takes three inputs: the original argument model (frame), the probability of finding a flaw in
the argument if there is one (pFind), and the degree to which scrutiny increases ambiguity
over and above the original argument, i.e. the degree (if at all) to which P̃ x(C) approaches
1, over and above P̃ b(C|¬F ) (jShift, ranging from 0 to 1).

Given this, we can simulate what happens when both groups are presented with a series
of (different) arguments favoring q, but one group (red) never scrutinizes them, while the
other group (blue) always does. Again, there are a variety of choice-points for how we model
and constrain this. I used the same parameters for generating arguments that I used in §C.2,
and ran four versions of the scrutiny simulation. Since scrutiny introduces more noise into
the simulations, I used 50 agents and 100 arguments, to see the trends.

In version (1), scrutinizing agents never find a flaw even if there is one (pFind = 0), and
the scrutiny adds no ambiguity (jShift = 0). Such scrutiny does not change the original
argument-model, and so agents who scrutinize polarize as much and in the same direction
as those who don’t—as seen in the top left of Figure 9 on page 29.

In version (2), scrutinizing agents always find a flaw if there is one (pFind =1), meaning
that scrutiny removes all ambiguity. (The jShift parameter has no effect in this case.) Since
scrutiny changes the model to an unambiguous one, by Theorem 3.1, scrutinizing agents do
not expectedly polarize from their priors of 0.5—as seen in the top right of Figure 9.

In version (3), scrutinizing agents sometimes find a flaw if there is one (pFind pulled
uniformly from [0, 1]), and scrutiny introduces a small degree of ambiguity (jShift pulled
uniformly from [0, 0.5]). The result is that scrutinizing agents polarize is the same direction
as those that don’t, but less so—as seen in the bottom left of Figure 9.

In version (4), scrutinizing agents sometimes find a flaw if there is one (pFind pulled uni-
formly from [0, 1]), and scrutiny introduces substantial ambiguity (jShift pulled uniformly
from [0, 1]). The result is that scrutinizing agents polarize in the opposite direction of those
that don’t—as seen in the bottom right of Figure 9 on page 29.

Robustness. Recall that pro agents in this simulation are identical to those from the
main simulation of §C.2, meaning we have estimates for their mean posteriors with these
parameters at 0.650 with 95% confidence interval = [0.630, 0.670]. To check that the results
in the above simulations (1)–(4) were robust, I ran the same parameters with 200 con agents
and calculated estimates and confidence intervals for their posteriors. The results are as
expected. In version (1), the mean posterior was 0.645, with a 95% confidence interval of
[0.633, 0.658], indicating that scrutinizing agents shift to a comparable degree to those who
don’t scrutinize. In version (2), the mean posterior was 0.503, with a 95% confidence interval
of [0.474, 0.533], indicating that agents do not predictably shift from their priors of 0.5. In
version (3), the mean posterior was 0.551, with a 95% confidence interval of [0.530, 0.573],
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confirming that such scrutiny dampens polarization. In version (4), the mean posterior was
0.463, with a 95% confidence interval of [0.442, 0.483], confirming that such scrutiny reverses
the direction of polarization.
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